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Introduction

® Reason? Lack of service differentiation
— Provide ‘best-effort’ to all

® Special-purpose operating systems are
similarly inadequate for other mixes

® Need OS that:
— Multiplexes resources in a predictable manner

— Service differentiation to meet individual
application requirements

Introduction

® General purpose operating systems handline
diverse set of tasks
— Conventional best-effort with low response time
+ Ex: word processor
— Throughput intensive applications
+ Ex: compilation
— Soft real-time applications
+ Ex: streaming media
® Many studies show can do one at a time, but
when do two or more grossly inadequate
— MPEG-2 when compiling has a lot of jitter
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Solution: QLinux
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® Solution: QLinux (the Q is for Quality)
— Enhance standard Linux
— Hierarchical schedulers

+ classes of applications or individual applications
— CPU, Network, Disk

mmEr-space

H=-SFa CPU
el

Hetwork

~TY 1L =&

Outline

® QLinux philosophy
® CPU Scheduler
— Evaluation
® pPacket Scheduler
— Evaluation
® Disk Scheduler
— Evaluation
® Lazy Receiver Processing
— Evaluation
® Conclusion

QLinux Design Principles

® Support for Multiple Service Classes
— Interactive, Throughput-Intensive, Soft Real-time
— Low average response times, high aggregate
throughput, performance guarantees
*® Predictable Resource Allocation
— Priority not enough (starvation of others)
— Ex: mpeg_decoder at highest can starve kernel

— QLinux uses rate-based rather than priority based
+ Weight based on rate for each: w;/ S;w;
— Not static partitioning since unused can be used

by others
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QLinux Design Principles QLinux Design Principles

® Service Differentiation ® Proper Accounting of Resource Usage
— Within a class, applications treated differently — Application level CPU easy
— Uses hierarchical schedulers — Kernel resources hard
— Top level gives resources to class + Load from interrupts difficult to charge to process
— In each class, can allocate resources + Many kernel tasks are system-wide
appropriately among all applications — Lazy receiver processing
° Support for Legacy Applications + Defer packet processing when receiver asks

— CPU scheduler allocation holds even when kernel

— Support binaries of all existing applications (no .
pp g app ( uses up various amounts of CPU

special system calls required)
— No worse performance (but may be better)
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H-SFQ CPU Scheduler

® Nodes can be created on the fly
® Threads can move from node to node

Experimental Setup (for al)

® Cluster of PCs

Syatem oall Prorproan
hafgnienad st o tew pode in the sehedeling Biecmechy — P2-350 MHz
hefgranad dedete nn exesting node fro the hiemschy — 64 MB RAM
hefgeiosinaed | sthehte surmn proews to s waf mode
hsEg-nava move i prnces 1o n specified child node - RedHat 6.1
hefEg.paces e o e the scheduling hiearchy — QLinux based on Linux 2.2.0
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® Network

® Defaults to top-level fair scheduler if not
specified
B ° utilities to do external from application
. -> Allow support of legacy apps without modifying source

— 100 Mb/s 3-Com Ethernet
— 3Com Superstack Il switch (100 Mb/s)
® “Assume” machines and net lightly loaded
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Experimental Workloads

® Inf: executes infinite loop
— Compute-intensive, Best effort

® Mpeg_play: Berkeley MPEG-1 decoder
— Compute-intensive, Soft real-time

® Apache Web Server and Client

— /O intensive, Best effort

Streaming media server

— /O intensive, Soft real-time

® Net_Inf: send UDP as fast as possible

— /O instensive, Best effort

Dhrystone: measure CPU performance

— Compute-instensive, Best effort

® Lmbench: measure 1/O, cache, memory ... perf
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CPU Scheduler Evaluation-1

® Two classes, run Inf for each
® Assign weights to each (ex: 1:1, 1:2, 1:4)
® Count the number of loops

CPU Scheduler Evaluation-1
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“count” is proportional to CPU bandwidth
allocated
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CPU Scheduler Evaluation-2

® Two classes, equal weights (1:1)
® Run two Inf

® Suspend one at t=250 seconds
® Restart at t=330 seconds

® Note count
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CPU Scheduler Evaluation-3

® Two classes: soft real-time & best effort (1:1)
® Run:
— MPEG_PLAY in real-time (1.49 Mbps)
— Dhrystone in best effort
® Increase Dhrystone’s from1to2to 3 ...
— Note MPEG bandwidth
® Re-run experiment with Vanilla Linux




CPU Scheduler Evaluation-3
Rexilte

#ipglizadon ksgaban
a8 ¢ ti v

T
nt Linuz —-— |

-
|

Frams rabe framaaiee)
o

i
1

I

H 2 4 L} B i L]
Mo of Chrysione Processes in Best-eHod Class

WP
CPU Scheduler Evaluation-4
Re<lte Applcnden | slaben ks Wb Servers
2 |
‘i &D |
EF an |
0|
- o L v i ST | 5 :...1..q 1| Foerim
whsight Aasignment
. WP

~TY 1L =&

CPU Scheduler Overhead
Evaluation Results
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CPU Scheduler Evaluation-4

® Explore another best-effort case

® Run two Web servers (representing, say 2
different domains)

® Have clients generate many requests

® See if CPU bandwidth allocation is
proportional

CPU Scheduler Overhead
Evaluation

® Scheduler takes some overhead since
recursively called

® Run Inf at increasing depth in scheduler
hierarchy tree

® Record count for 300 seconds
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QLinux Components
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H-SFQ Packet Scheduler

® Typical OS uses FIFO scheduler for outgoing
packets

® Use H-SFQ (Fair Queue) to schedule

® Each leaf is one or more queues of packets

® Weights for
queues

® Unused bandwidth
to others

H-SFQ Packet Scheduler

® Operations on the fly
® Associate with gueue via setsockopt()
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Packet Scheduler Evaluation-1

® Two classes using Net_inf
® Run two receivers to count received packets
® 8KB packets
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Packet Scheduler Evaluation-1
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Packet Scheduler Evaluation-2
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Packet Scheduler Evaluation-3

® Real-world applicatis

® Streaming media server in soft real-time class
® Increasing number of Net_inf apps

® Compare QLinux with Vanilla Linux
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Packet Scheduler Evaluation-3
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Packet Scheduler Overhead
Evaluation Results
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Combined Packet and Scheduler
Evaluation

® Web server and several I/O intensive apps
® Two classes in CPU and Packet scheduler
— Web server in one
— Alll/O intensive Net_inf in other
® Web server driven by trace (ClarkNet)
® Increase number of Net_inf

® Compare to Vanilla Linux
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Packet/CPU Evaluation Results
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QLinux Components
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Cello Disk Scheduler

® Typical OS uses SCAN for disk
® Cello 2 levels: class independ, class specific
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Cello Disk Scheduler Evaluation

® (None in this paper)
® (Previous paper at SIGMetrics)
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Lazy Receiver Processing (LRP)

® Process A running

® Packet arrives for process B
— Interrupt, IP, TCP, Enqueue gets charged to Al

® LRP postpones until process does a read

® Tricky! Some steps, e.g. TCP ack, requires it
to happen right away
— Special thread for each process for packets

® QLinux uses special queues, decodes only as
far as needed

— Special queue for ICMP, ARP ...
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QLinux Total System Evaluation

® Run Imbench
— System call overhead
— Context switch times
— Network 1/0
— File I/O
— Memory perofrmance
® QLinux vs. Vanilla Linux

QLinux Components

Epplicasions (rvieracties, heteg hpusintnalve, sati real-Sm )

| S
Trrnelespace

dchediar Actidhiler

g

Lello dak H-8F G GPU Lasy Fa
EEEN |22,

H-BFG Packe)
iotaduler

Hetwork

1Y lL =

L RP Evaluation and Results

® Run 2 Apache Web Servers
— Lightly loaded, retrieve 2KB file in 51ms
® Bombard 1 server with DoS by sending 300
requests/sec
— Other server load went to 70ms
® Re-run with Vanilla Linux
— Other server load went to 80ms
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QLinux Total System Evaluation

Results
Table 4: Linbench Results

Test Clirmx | Limx
sysenll overhend 1 s I jes

forkiy A00 ges | 400 ps
|azaecit) 21 ms 2 ms

Context switch {2 proc’ OKE) 4 s 1 jes

Comtext switch (16 proo! GARHY | 286 us | 283 s
Ll LI |nt=r-:y 47 i 53 1)

Locn] TCF latency B3 s 82 jes

File create (0 KE file) 21 ps 21 s

File didene (0 KB file) 2 s I s

*Not much overall.
«Context switch overhead, but 100 mstime slice
*QLinux untuned, so could be better
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Conclusion

® Qlinux provides
— CPU scheduler
— Packet scheduler
— Disk scheduler
— Proper 1/O processing
® Provide fair and predictable allocation
® Multimedia and Web applications can benefit
® Overhead is low

® All conventional operating systems should
incorporate
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Future Work?
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Future Work

® Disk scheduler results
® Multiprocessors
® Fair allocation of other I/O interrupts

® Other devices since Cello disk specific
— RAID, tape,




