Application Performance in the
QLinux Multimedia Operating
System
Sundaram, A. Chandra, P. Goyal,
P. Shenoy, J. Sahni and H. Vin
Umass Amherst, U of Texas Austin

ACM Multimedia, 2000

WP

“~IY L =

Introduction

® Reason? Lack of service differentiation
— Provide ‘best-effort’ to all

® Special-purpose operating systems are
similarly inadequate for other mixes

® Need OS that:
— Multiplexes resources in a predictable manner

— Service differentiation to meet individual
application requirements

Introduction

® General purpose operating systems handline
diverse set of tasks
— Conventional best-effort with low response time
+ Ex: word processor
— Throughput intensive applications
+ Ex: compilation
— Soft real-time applications
+ Ex: streaming media
® Many studies show can do one at a time, but
when do two or more grossly inadequate
— MPEG-2 when compiling has a lot of jitter
WP

1Y lL =

Solution: QLinux

Bpplicarane Cnreracsva, thraughpuisbrisnehos, gl o ltn s

L Teraalsipare
LGello dak L Ly Hecave
i chod uiber Pioceasing
g
e hodiiar
® Solution: QLinux (the Q is for Quality)
— Enhance standard Linux
— Hierarchical schedulers

+ classes of applications or individual applications
— CPU, Network, Disk

mmEr-space

H=-SFa CPU
el

Hetwork

~TY 1L =&

Outline

® QLinux philosophy
® CPU Scheduler
— Evaluation
® pPacket Scheduler
— Evaluation
® Disk Scheduler
— Evaluation
® Lazy Receiver Processing
— Evaluation
® Conclusion

QLinux Design Principles

® Support for Multiple Service Classes
— Interactive, Throughput-Intensive, Soft Real-time
— Low average response times, high aggregate
throughput, performance guarantees
*® Predictable Resource Allocation
— Priority not enough (starvation of others)
— Ex: mpeg_decoder at highest can starve kernel

— QLinux uses rate-based rather than priority based
+ Weight based on rate for each: w;/ S;w;
— Not static partitioning since unused can be used

by others
WP




QLinux Design Principles QLinux Design Principles

® Service Differentiation ® Proper Accounting of Resource Usage
— Within a class, applications treated differently — Application level CPU easy
— Uses hierarchical schedulers — Kernel resources hard
— Top level gives resources to class + Load from interrupts difficult to charge to process
— In each class, can allocate resources + Many kernel tasks are system-wide
appropriately among all applications — Lazy receiver processing
° Support for Legacy Applications + Defer packet processing when receiver asks

— CPU scheduler allocation holds even when kernel

— Support binaries of all existing applications (no .
pp g app ( uses up various amounts of CPU

special system calls required)
— No worse performance (but may be better)

WP!

WP

QLinux Components Queuing
(H-SF(Q) CP'"' Tl qypica 0s9)
Bpplicadang riea cite, Thecegh pus-in el ve, sati real-sn = ® *‘Uses a tre! @
I I ® Each thread
L] s L]
' —— belongs to 1 leaf -1
® Each leaf is an Temn 44
If:'e'.'&‘.‘:”.'-‘] ]n‘.;:m:-:_-] Ty Raav £ application class Fam
z ® Weights are of 1
g i 2 parent class 0

wi ® Each node has own
B; = ( g ) * B

S w; scheduler
2

| ® Uses Start-Time Fair

. Queuing at top for time for

each

“~IY L =

H-SFQ CPU Scheduler

® Nodes can be created on the fly
® Threads can move from node to node

Experimental Setup (for al)

® Cluster of PCs

Syatem oall Prorproan
hafgnienad st o tew pode in the sehedeling Biecmechy — P2-350 MHz
hefgranad dedete nn exesting node fro the hiemschy — 64 MB RAM
hefgeiosinaed | sthehte surmn proews to s waf mode
hsEg-nava move i prnces 1o n specified child node - RedHat 6.1
hefEg.paces e o e the scheduling hiearchy — QLinux based on Linux 2.2.0
hsEgadnin silminisies n node (&g chnnge wesghis}
® Network

® Defaults to top-level fair scheduler if not
specified
B ° utilities to do external from application
. -> Allow support of legacy apps without modifying source

— 100 Mb/s 3-Com Ethernet
— 3Com Superstack Il switch (100 Mb/s)
® “Assume” machines and net lightly loaded

WP

~IY lL =




Experimental Workloads

® Inf: executes infinite loop
— Compute-intensive, Best effort

® Mpeg_play: Berkeley MPEG-1 decoder
— Compute-intensive, Soft real-time

® Apache Web Server and Client

— /O intensive, Best effort

Streaming media server

— /O intensive, Soft real-time

® Net_Inf: send UDP as fast as possible

— /O instensive, Best effort

Dhrystone: measure CPU performance

— Compute-instensive, Best effort

® Lmbench: measure 1/O, cache, memory ... perf

WP!

CPU Scheduler Evaluation-1

® Two classes, run Inf for each
® Assign weights to each (ex: 1:1, 1:2, 1:4)
® Count the number of loops

CPU Scheduler Evaluation-1

P rechiciebin Ads oallon of CFU B

Pl OF AN
¥
A

“oipr fapmrem e

“count” is proportional to CPU bandwidth
allocated

1Y lL =

CPU Scheduler Evaluation-2

® Two classes, equal weights (1:1)
® Run two Inf

® Suspend one at t=250 seconds
® Restart at t=330 seconds

® Note count

g

CPU Scheduler Evaluation-2

R PRU VI
€ Fa, weork-consendng naiure
B[ 4
~
Se4 5 et
i -
K -
i B e _.-"{
] 4
5 =E ¥
R —— J_/
r".-‘f
Te+E
._}-l"’f
1] 100 Zon 200 400 BO0 BO0
Tme [=e2cs]

(Countstwice asfast when other suspended)

~IY lL =

CPU Scheduler Evaluation-3

® Two classes: soft real-time & best effort (1:1)
® Run:
— MPEG_PLAY in real-time (1.49 Mbps)
— Dhrystone in best effort
® Increase Dhrystone’s from1to2to 3 ...
— Note MPEG bandwidth
® Re-run experiment with Vanilla Linux




CPU Scheduler Evaluation-3
Rexilte

#ipglizadon ksgaban
a8 ¢ ti v

T
nt Linuz —-— |

-
|

Frams rabe framaaiee)
o

i
1

I

H 2 4 L} B i L]
Mo of Chrysione Processes in Best-eHod Class

WP
CPU Scheduler Evaluation-4
Re<lte Applcnden | slaben ks Wb Servers
2 |
‘i &D |
EF an |
0|
- o L v i ST | 5 :...1..q 1| Foerim
whsight Aasignment
. WP

~TY 1L =&

CPU Scheduler Overhead
Evaluation Results

Ovarhends cf ha HEPG CPU Scha delor

13me09
£ oteams |
- Besde |
-
‘_;? Gl |
E
o= dzale -
b
= sl |

ol L L L L - |
o 2 4 £ [ w

DOepdh of the Hiamrndwy

WP:

CPU Scheduler Evaluation-4

® Explore another best-effort case

® Run two Web servers (representing, say 2
different domains)

® Have clients generate many requests

® See if CPU bandwidth allocation is
proportional

CPU Scheduler Overhead
Evaluation

® Scheduler takes some overhead since
recursively called

® Run Inf at increasing depth in scheduler
hierarchy tree

® Record count for 300 seconds

1Y lL =

QLinux Components

Epplicatiane (rieractine, Thiteg hpas-in tenalve, s real-Sm £

| i

acheduar actiaduler

g

kerealspare
Laly Hacay e
Processng

H-BF& Packa)
i cEaduler

'[ﬁ-unm'l ]n_aru-.-.vu

~IY lL =

£
E
x




H-SFQ Packet Scheduler

® Typical OS uses FIFO scheduler for outgoing
packets

® Use H-SFQ (Fair Queue) to schedule

® Each leaf is one or more queues of packets

® Weights for
queues

® Unused bandwidth
to others

H-SFQ Packet Scheduler

® Operations on the fly
® Associate with gueue via setsockopt()

ywtean g ell Frpoae .

Rxfoqeisc-inatnll | Dmstall HEFLG quesag disciplme
o e ok imieriace

1% _nikned coeme & node ke scheduling

hiemechy
cresle & ket qes
pranch & g 40 n berd sode
LriFve 4 queen between soboduler
telete the dpacilied sode

| rhelein the wpecified quese

e L £ chisige the meighood o ande'gasiso
hmfglink persancds | panc B prkouc @ the
scheculing ey

hEbEd 1o Laget roat et the L0 of the moot node a1 a
ol petwoak aneite
disgley e whedulmg ber

ek n mockoel 0 8 = wp

“~IY L =

Packet Scheduler Evaluation-1

® Two classes using Net_inf
® Run two receivers to count received packets
® 8KB packets

Ka. ol Byt sl

a8 BB O190 130 140 180 60
Thme (020 |

(Different packets sizes?) wp

Packet Scheduler Evaluation-1
Pm te Predicinble Alocrbon - 71° w2« 14
2e08 —— s e R e e
L0008 | s e e ——
1,6e+08 | " {
Lacace | ot
1.2¢508 | ]
Teslf | T |
Beal? | T |
Beao? | !
dean¥ | et
- ;

~TY 1L =&

Packet Scheduler Evaluation-2

—_— e
P Pradicinble Allocafion - w1 w2 = 11
FEotlh o S 2
. i1 pht fide 0K
Sastl wEnd, pit size 16KE —
¥ 50408 - -
"/
a 2n+00 2 ra
& s
5 180408 L
5 -
2 e 3

Time {secs.) wp

Packet Scheduler Evaluation-3

® Real-world applicatis

® Streaming media server in soft real-time class
® Increasing number of Net_inf apps

® Compare QLinux with Vanilla Linux

~IY lL =




Packet Scheduler Evaluation-3
Pm 4+~

Applicyion Bdition Stenming beds Serer
Sl = T g

Lirrz

B4 et {Whs]

05|

& ] F 3 ] 1t
Bl of Siodera ia Best-alicn

(Me.... note, degradation not linear)

WP!

Packet Scheduler Overhead
Evaluation Results

Cvarhende of tha HEFQ Packed Scheduiar
Sesdd — 4 o 3 ¥ |
4 8t |

A=A ¢
SBes0d - T T

s -

PRI L
2netidl |
1.hee0d ¢
Veadd |
Oesd? -
it i i i i i
[ Fl a % [ 41
Cepth of the Hizrancm

B o By bt ol i S v ios

WP

“~IY L =

Combined Packet and Scheduler
Evaluation

® Web server and several I/O intensive apps
® Two classes in CPU and Packet scheduler
— Web server in one
— Alll/O intensive Net_inf in other
® Web server driven by trace (ClarkNet)
® Increase number of Net_inf

® Compare to Vanilla Linux

g

Packet/CPU Evaluation Results

Apphcation b olation for Wb Woldoads
iy

GLinuix
Lnux —
00 | e
& .
g €300
i
-
= Loanle
£
=
2000 =z
[
o 2 4 B g 10

Me., of Bart E¥ort mandars

WP

Qlinux degradesat 8 ... ideaswhy?

~TY 1L =&

QLinux Components

Epplicatans (niemctise, heoeg h -t ve, a8 real-5n &

I I EET-apRcE
¥ krrealsdpare
Lady Racayer
Praceading

H-BF& Packa)
diEaduler

H-2FQ CPU
dachadaler

Hetwork

~IY lL =

Cello Disk Scheduler

® Typical OS uses SCAN for disk
® Cello 2 levels: class independ, class specific

* 3 classes s BEET e

® Class specific u i
decides when % BT E o _
and how manyto %2 ?i-"”" } & | i
move H\‘D e

® Class ind puts s '
where s s

® Lastly moved

FCFS @

(Badri’ sthesis)




Cello Disk Scheduler Evaluation

® (None in this paper)
® (Previous paper at SIGMetrics)

g

Lazy Receiver Processing (LRP)

® Process A running

® Packet arrives for process B
— Interrupt, IP, TCP, Enqueue gets charged to Al

® LRP postpones until process does a read

® Tricky! Some steps, e.g. TCP ack, requires it
to happen right away
— Special thread for each process for packets

® QLinux uses special queues, decodes only as
far as needed

— Special queue for ICMP, ARP ...

WP!

g

QLinux Total System Evaluation

® Run Imbench
— System call overhead
— Context switch times
— Network 1/0
— File I/O
— Memory perofrmance
® QLinux vs. Vanilla Linux

QLinux Components

Epplicasions (rvieracties, heteg hpusintnalve, sati real-Sm )

| S
Trrnelespace

dchediar Actidhiler

g

Lello dak H-8F G GPU Lasy Fa
EEEN |22,

H-BFG Packe)
iotaduler

Hetwork

1Y lL =

L RP Evaluation and Results

® Run 2 Apache Web Servers
— Lightly loaded, retrieve 2KB file in 51ms
® Bombard 1 server with DoS by sending 300
requests/sec
— Other server load went to 70ms
® Re-run with Vanilla Linux
— Other server load went to 80ms

~IY lL =

QLinux Total System Evaluation

Results
Table 4: Linbench Results

Test Clirmx | Limx
sysenll overhend 1 s I jes

forkiy A00 ges | 400 ps
|azaecit) 21 ms 2 ms

Context switch {2 proc’ OKE) 4 s 1 jes

Comtext switch (16 proo! GARHY | 286 us | 283 s
Ll LI |nt=r-:y 47 i 53 1)

Locn] TCF latency B3 s 82 jes

File create (0 KE file) 21 ps 21 s

File didene (0 KB file) 2 s I s

*Not much overall.
«Context switch overhead, but 100 mstime slice
*QLinux untuned, so could be better

WP




Conclusion

® Qlinux provides
— CPU scheduler
— Packet scheduler
— Disk scheduler
— Proper 1/O processing
® Provide fair and predictable allocation
® Multimedia and Web applications can benefit
® Overhead is low

® All conventional operating systems should
incorporate

WP!

Future Work?

“~IY L =

Future Work

® Disk scheduler results
® Multiprocessors
® Fair allocation of other I/O interrupts

® Other devices since Cello disk specific
— RAID, tape,




