
1

Operating Systems

Sockets

Outline

• Socket basics
• Socket details
• Socket options
• Final notes
• Project 3

2

Socket Basics
• An end-point for a IP network connection

– what the application layer “plugs into”
– programmer cares about Application

Programming Interface (API)
• End-point determined by two things:

– Host address (IP address) - name of machine
– Port number - location of process

• Two end-points determine a connection:
socket pair
– ex: 206.62.226.35,p21 + 198.69.10.2,p1500
– ex: 206.62.226.35,p21 + 198.69.10.2,p1499

Ports
• Numbers (vary in BSD, Solaris):

– 0-1023 “reserved”, must be root
– 1024 - 5000 “ephemeral”
– however, many systems allow > 5000 ports

+ (50,000 is correct number)

• /etc/services:
ftp 21/tcp
telnet 23/tcp

finger 79/tcp
snmp 161/udp

3

Sockets and the OS

User
Socket

Operating System
(Transport Layer)

• User sees “descriptor”, integer index
– like: FILE *, or file index from open()
– returned by socket() call (more later)

Network Communication
• UDP: User Datagram Protocol

– no acknowledgements
– no retransmissions
– out of order, duplicate possible
– connectionless
– Games, Streaming audio/video

• TCP: Transmission Control Protocol
– reliable (in order, all arrive, no duplicates)
– flow control
– connection
– duplex
– Web traffic, Telnet, FTP
– (Project 3 uses TCP)

4

Outline

• Socket basics
• Socket details
• Socket options
• Final notes
• Project 3

Socket Details

Unix Network Programming, W. Richard
Stevens, 2nd edition, ©1998, Prentice Hall

• Socket address structure
• TCP client-server
• Misc stuff

– setsockopt(), getsockopt()

– fcntl()

5

Addresses and Sockets

• Structure to hold address information
• Functions pass address from app to OS

– bind()
– connect()

– sendto()

• Functions pass address from OS to app
– accept()
– recvfrom()

Socket Address Structure
struct in_addr {
in_addr_t s_addr; /* 32-bit IPv4 addresses */

};
struct sock_addr_in {
unit8_t sin_len; /* length of structure */
sa_family_t sin_family; /* AF_INET */
in_port_t sin_port; /* TCP/UDP Port num */
struct in_addr sin_addr; /* IPv4 address */
char sin_zero[8]; /* unused */

}

• Are also “generic” and “IPv6” socket structures

6

TCP Client-Server
socket()

bind()

listen()

accept()

Server

socket()

connect()

send()

recv()

Client

(Block until connection) “Handshake”

recv()

send()

Data (request)

Data (reply)

close()End-of-File
recv()

close()

“well-known”
port

Server Functionssocket()

bind()

listen()

accept()

(Block until connection) “Handshake”

recv()

send()

Data (request)

Data (reply)

End-of-File
recv()

close()

“well-known”
port

7

socket()
int socket(int family, int type, int protocol);
Create a socket, giving access to transport layer service.

• family is one of
– AF_INET (IPv4), AF_INET6 (IPv6), AF_LOCAL (local Unix),
– AF_ROUTE (access to routing tables), AF_KEY (new, for encryption)

• type is one of
– SOCK_STREAM (TCP), SOCK_DGRAM (UDP)
– SOCK_RAW (for special IP packets, PING, etc. Must be root)

+ setuid bit (-rws--x--x root 1997 /sbin/ping*)

• protocol is 0 (used for some raw socket options)
• upon success returns socket descriptor

– similar to a file descriptor or semaphore id
– returns -1 if failure

bind()

• sockfd is socket descriptor from socket()
• myaddr is a pointer to address struct with:

– port number and IP address
– if port is 0, then host will pick ephemeral port

+ not usually for server (exception RPC port-map)
– IP address != INADDR_ANY (multiple nics)

• addrlen is length of structure
• returns 0 if ok, -1 on error

– EADDRINUSE (“Address already in use”)

int bind(int sockfd, const struct sockaddr *myaddr,
socklen_t addrlen);

Assign a local protocol address (“name”) to a socket.

8

listen()

• sockfd is socket descriptor from socket()
• backlog is maximum number of incomplete

connections
– historically 5
– rarely above 15 on a even moderate web server!

• Sockets default to active (for client)
– change to passive to OS will accept connection

int listen(int sockfd, int backlog);
Change socket state for TCP server.

accept()

• sockfd is socket descriptor from socket()
• cliaddr and addrlen return protocol address

from client
• returns brand new descriptor, created by OS
• if used with fork(), can create

concurrent server (more later)

int accept(int sockfd, struct sockaddr cliaddr,
socklen_t *addrlen);

Return next completed connection.

9

close()

• sockfd is socket descriptor from socket()
• closes socket for reading/writing

– returns (doesn’t block)
– attempts to send any unsent data
– socket option SO_LINGER

+ block until data sent
+ or discard any remaining data

– Returns -1 if error

int close(int sockfd);
Close socket for use.

Client functions

socket()

connect()

send()

recv()

Client

“Handshake”

Data (request)

Data (reply)

close()End-of-File

socket()

bind()

listen()

accept()

(Block until connection)

recv()

send()

recv()

close()

“well-known”
port

10

connect()

• sockfd is socket descriptor from socket()
• servaddr is a pointer to a structure with:

– port number and IP address
– must be specified (unlike bind())

• addrlen is length of structure
• client doesn’t need bind()

– OS will pick ephemeral port
• returns socket descriptor if ok, -1 on error

int connect(int sockfd, const struct sockaddr
*servaddr, socklen_t addrlen);

Connect to server.

Sending and Receiving
int recv(int sockfd, void *buff,
size_t mbytes, int flags);

int send(int sockfd, void *buff,
size_t mbytes, int flags);

• Same as read() and write() but for flags
– MSG_DONTWAIT (this send non-blocking)
– MSG_OOB (out of band data, 1 byte sent ahead)
– MSG_PEEK (look, but don’t remove)
– MSG_WAITALL (don’t give me less than max)
– MSG_DONTROUTE (bypass routing table)

11

Outline

• Socket basics
• Socket details
• Socket options
• Final notes
• Project 3

Socket Options (General)

• setsockopt(), getsockopt()
• SO_LINGER

– upon close, discard data or block until sent
• SO_RCVBUF, SO_SNDBUF

– change buffer sizes
– for TCP is “pipeline”, for UDP is “discard”

• SO_RCVLOWAT, SO_SNDLOWAT
– how much data before “readable” via select()

• SO_RCVTIMEO, SO_SNDTIMEO
– timeouts

12

Socket Options (TCP)

• TCP_KEEPALIVE
– idle time before close (2 hours, default)

• TCP_MAXRT
– set timeout value

• TCP_NODELAY
– disable Nagle Algorithm

fcntl()
• ‘File control’ but used for sockets, too
• Signal driven sockets
• Set socket owner
• Get socket owner
• Set socket non-blocking
flags = fcntl(sockfd, F_GETFL, 0);
flags |= O_NONBLOCK;
fcntl(sockfd, F_SETFL, flags);

• Beware not getting flags before setting!
• (Should not need for project 3)

13

Concurrent Servers

• Close sock in child, newsock in parent
• Reference count for socket descriptor

Text segment

sock = socket()
/* setup socket */
while (1) {

newsock = accept(sock)
fork()
if child

read(newsock)
until exit

}

Parent
int sock;
int newsock;

Child
int sock;
int newsock;

Project 3: Macro Shell

• Distributed Shell
• Client/Server
• Non-interactive

– command line args
– get-opt.c

• Uses TCP sockets
– listen.c and talk.c

• Security
– password

Server Client
(1) connect

Server

(2) ls
(3) fork()
and exec()

(4) data

