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CS533
Modeling and Performance 
Evaluation of Network and 

Computer Systems

Experimental Design

(Chapters 16-17)
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Introduction (1 of 3)

• Goal is to obtain maximum information 
with minimum number of experiments

• Proper analysis will help separate out the 
factors

• Statistical techniques will help determine 
if differences are caused by variations 
from errors or not

No experiment is ever a complete failure.  It can always serve as a negative
example. – Arthur Bloch

The fundamental principle of science, the definition almost, is this:
the sole test of the validity of any idea is experiment.

– Richard P. Feynman
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Introduction (2 of 3)
• Key assumption is non-zero cost

– Takes time and effort to gather data
– Takes time and effort to analyze and draw 

conclusions
Minimize number of experiments run

• Good experimental design allows you to:
– Isolate effects of each input variable
– Determine effects due to interactions of 

input variables
– Determine magnitude of experimental error
– Obtain maximum info with minimum effort
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Introduction (3 of 3)
• Consider

– Vary one input while holding others constant
•Simple, but ignores possible interaction 

between two input variables
– Test all possible combinations of input 

variables
•Can determine interaction effects, but can 

be very large
•Ex: 5 factors with 4 levels 45 = 1024 

experiments.  Repeating to get variation in 
measurement error 1024x3 = 3072

• There are, of course, in-between choices…
– (Ch 19, but leads to confounding…)
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Outline
• Introduction
• Terminology
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• Simple Designs
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– 2k Factorial Designs
• 2kr Factorial Designs
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Terminology (1 of 4)
(Will explain terminology using example)

• Study PC performance
– CPU choice: 6800, z80, 8086
– Memory size: 512 KB, 2 MB, 8 MB
– Disk drives: 1-4
– Workload: secretarial, managerial, scientific
– Users: high school, college, graduate

• Response variable – the outcome or the 
measured performance
– Ex: throughput in tasks/min or response 

time for a task in seconds
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Terminology (2 of 4)
• Factors – each variable that affects 

response
– Ex: CPU, memory, disks, workload, user
– Also called predictor variables or predictors

• Levels – the different values factors can 
take
– EX: CPU 3, memory 3, disks 4, workload 3, 

users 3
– Also called treatment

• Primary factors – those of most important 
interest
– Ex: maybe CPU and memory the most
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Terminology (3 of 4)
• Secondary factors – of less importance

– Ex: maybe user type not as important
• Replication – repetition of all or some 

experiments
– Ex: if run three times, then three 

replications
• Design – specification of the replication, 

factors, levels
– Ex: Specify all factors, at above levels with 

5 replications so 3x3x4x3x3 = 324 time 5 
replications yields 1215 total
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Terminology (4 of 4)
• Interaction – two factors A and B interact if one 

shows dependence upon another
– Ex: non-interacting factor since A always increases 

by 2
A1 A2

B1 3 5
B2 6 8

– Ex: interacting factors since A change depends upon 
B

A1 A2
B1 3 5
B2 6 9

A1

A2

B1 B2

A1

A2

B1 B2
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Common Mistakes in Experiments 
(1 of 2)

• Variation due to experimental error is ignored.
– Measured values have randomness due to 

measurement error.  Do not assign (or assume) all 
variation is due to factors.

• Important parameters not controlled.
– All parameters (factors) should be listed and 

accounted for, even if not all are varied.
• Effects of different factors not isolated.

– May vary several factors simultaneously and then 
not be able to attribute change to any one.  

– Use of simple designs (next topic) may help but have 
their own problems.
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Common Mistakes in Experiments 
(2 of 2)

• Interactions are ignored.
– Often effect of one factor depend upon another.  

Ex: effects of cache may depend upon size of 
program.  Need to move beyond one-factor-at-a-
time designs

• Too many experiments are conducted.
– Rather than running all factors, all levels, at all 

combinations, break into steps
– First step, few factors and few levels

• Determine which factors are significant
• Two levels per factor (details later)

– More levels added at later design, as appropriate
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Simple Designs
• Start with typical configuration
• Vary one factor at a time
• Ex: typical may be PC with z80, 2 MB RAM, 2 

disks, managerial workload by college student
– Vary CPU, keeping everything else constant, and 

compare
– Vary disk drives, keeping everything else constant, 

and compare
• Given k factors, with ith having ni levels

Total = 1 + Σ(ni-1) for i = 1 to k
• Example: in workstation study

1 + (3-1) + (3-1) + (4-1) + (3-1) + (3-1) + (3-1) = 14
• But may ignore interaction

(Example next)
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Example of Interaction of Factors
• Consider response time vs. memory size 

and degree of multiprogramming
Degree 32 MB 64 MB 128MB
1 0.25 0.21 0.15
2 0.52 0.45 0.36
3 0.81 0.66 0.50
4 1.50 1.45 0.70

• If fixed degree 3, mem 64 and vary one at 
a time, may miss interaction
– Example: degree 4, non-linear response time 

with memory
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Full Factorial Designs
• Every possible combination at all levels of all 

factors
• Given k factors, with ith having ni levels

Total = Π ni for i = 1 to k
• Example: in CPU design study

(3 CPUs)(3 mem) (4 disks) (3 loads) (3 users)
= 324 experiments

• Advantage is can find every interaction component
• Disadvantage is costs (time and money), especially 

since may need multiple iterations (later)
• Can reduce costs by: reduce levels, reduce factors, 

run fraction of full factorial
(Next, reduce levels)
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2k Factorial Designs

• Very often, many levels at each factor
– Ex: effect of network latency on user response time 

there are lots of latency values to test
• Often, performance continuously increases or 

decreases over levels
– Ex: response time always gets higher
– Can determine direction with min and max

• For each factor, choose 2 alternatives at each 
level
– 2k factorial designs

• Then, can determine which of the factors impacts 
performance the most and study those further

Twenty percent of the jobs account for 80% of the resource consumption.
– Pareto’s Law
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22 Factorial Design (1 of 4)
• Special case with only 2 factors

– Easily analyzed with regression
• Example: MIPS for Mem (4 or 16 Mbytes) and Cache 

(1 or 2 Kbytes)
Mem 4MB Mem 16MB

Cache 1 KB 15 45
Cache 2 KB 25 75

• Define xa = -1 if 4 Mbytes mem, +1 if 16 Mbytes
• Define xb = -1 if 1 Kbyte cache, +1 if 2 Kbytes
• Performance:

y = q0 + qaxa + qbxb + qabxaxb
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22 Factorial Design (2 of 4)
• Substituting:

15 = q0 - qa - qb + qab
45 = q0 + qa - qb - qab
25 = q0 - qa + qb - qab
75 = q0 + qa + qb + qab

• Can solve to get:
y = 40 + 20xa + 10xb + 5xaxb

• Interpret:
– Mean performance is 40 MIPS, memory effect is 20 

MIPS, cache effect is 10 MIPS and interaction 
effect is 5 MIPS

(Generalize to easier method next)

(4 equations in
4 unknowns)
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22 Factorial Design (3 of 4)
Exp a b y
1 -1 -1 y1
2 1 -1 y2
3 -1 1 y3
4 1 1 y4

y = q0 + qaxa + qbxb +
qabxaxb• So:

y1 = q0 - qa - qb + qab
y2 = q0 + qa - qb - qab
y3 = q0 - qa + qb - qab
y4 = q0 + qa + qb + qab

• Solving, we get:
q0 = ¼( y1 + y2 + y3 + y4)
qa = ¼(-y1 + y2 - y3 + y4)
qb = ¼(-y1 - y2 + y3 + y4)
qab= ¼( y1 - y2 - y3 + y4)

• Notice for qa can 
obtain by multiplying 
“a” column by “y” 
column and adding
– Same is true for qb

and qab
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22 Factorial Design (4 of 4)
i a b ab y
1 -1 -1 1 15
1 1 -1 -1 45
1 -1 1 -1 25
1 1 1 1 75
160 80 40 20   Total
40 20 10 5 Ttl/4
• Column “i” has all 1s
• Columns “a” and “b” have 

all combinations of 1, -1
• Column “ab” is product of 

column “a” and “b”

• Multiply column 
entries by yi and sum

• Dived each by 4 to 
give weight in 
regression model

• Final:
y = 40 + 20xa + 10xb + 

5xaxb
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Allocation of Variation (1 of 3)
• Importance of a factor measured by 

proportion of total variation in response 
explained by the factor
– Thus, if two factors explain 90% and 5% of 

the response, then the second may be 
ignored
•Ex: capacity factor (768 Kbps or 10 Mbps) 

versus TCP version factor (Reno or Sack)
• Sample variance of y

sy
2 = Σ(yi – y)2 / (22 – 1)

• With numerator being total variation, or 
Sum of Squares Total (SST)

SST = Σ(yi – y)2 
24

Allocation of Variation (2 of 3)
• For a 22 design, variation is in 3 parts:

– SST = 22q2
a + 22q2

b + 22q2
ab

• Portion of total variation:
– of a is 22q2

a
– of b is 22q2

b
– of ab is 22q2

ab
• Thus, SST = SSA + SSB + SSAB
• And fraction of variation explained by a: 

= SSA/SST
– Note, may not explain the same fraction of 

variance since that depends upon errors+

(Derivation 17.1, p.287)
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Allocation of Variation (3 of 3)
• In the memory-cache study

y = ¼ (15 + 55 + 25 + 75) = 40
• Total variation

= Σ(yi-y)2 = (252 + 152 + 152 + 352)
= 2100 = 4x202 + 4x102 + 4x52

• Thus, total variation is 2100 
– 1600 (of 2100, 76%) is attributed to memory
– 400 (of 2100, 19%) is attributed to cache
– Only 100 (of 2100, 5%) is attributed to interaction

• This data suggests exploring memory further and 
not spending more time on cache (or interaction)

(That was for 2 factors.  Extend to k next)
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General 2k Factorial Designs (1 of 4)
• Can extend same methodology to k factors, 

each with 2 levels Need 2k experiments 
– k main effects
– (k choose 2) two factor effects
– (k choose 3) three factor effects…

• Can use sign table method

(Show with example, next)
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General 2k Factorial Designs (2 of 4)
• Example: design LISP machine

– Cache, memory and processors
Factor Level –1 Level 1
Memory (a) 4 Mbytes 16 Mbytes
Cache (b) 1 Kbytes 2 Kbytes
Processors (c) 1 2

• The 23 design and MIPS perf results are:
4 Mbytes Mem(a) 16 Mbytes Mem

Cache (b)  One proc (c) Two procs One proc  Two procs
1 KB  |    14 46 22 58
2 KB |    10 50 34 86
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General 2k Factorial Designs (3 of 4)
• Prepare sign table:
i a b c ab ac bc abc y
1 -1 -1 -1 1 1 1 -1 14
1 1 -1 -1 -1 -1 1 1 22
1 -1 1 -1 1 -1 -1 -1 10
1 1 1 -1 1 -1 -1 -1 34
1 -1 1 1 -1 -1 1 -1 46
1 1 -1 1 -1 1 -1 -1 58
1 -1 1 1 -1 -1 1 -1 50
1 1 1 1 1 1 1 1 86
320 80 40 160 40 16 24 9 Ttl
40 10 5 20 5 2 3 1 Ttl/8

qa =10, qb=5, qc=20 and qab=5, qac=2, qbc=3 and qabc=1
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General 2k Factorial Designs (3 of 4)
• qa=10, qb=5, qc=20 and qab=5, qac=2, qbc=3 and qabc=1
• SST = 23 (qa

2+qb
2+qc

2+qab
2+qac

2+qbc
2+qabc

2)
= 8 (102+52+202+52+22+32+12)
= 800+200+3200+200+32+72+8
= 4512

• The portion explained by the 7 factors are:
mem = 800/4512 (18%) cache = 200/4512 (4%)
proc = 3200/4512 (71%) mem-cache =200/4512 (4%)
mem-proc = 32/4512 (1%) cache-proc = 72/4512 (2%)
mem-proc-cache = 8/4512 (0%)
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2kr Factorial Designs

• With 2k factorial designs, not possible to estimate 
error since only done once

• So, repeat r times for 2kr observations
• As before, will start with 22r model and expand
• Two factors at two levels and want to isolate 

experimental errors
– Repeat 4 configurations r times

• Gives you error term:
– y = q0 + qaxa + qbxb + qabxaxb + e
– Want to quantify e

(Illustrate by example, next)

No amount of experimentation can ever prove me right; a single experiment
can prove me wrong. -Albert Einstein
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22r Factorial Design Errors (1 of 2)
• Previous cache experiment with r=3
i a b ab y mean y
1 -1 -1 1 (15, 18, 12) 15
1 1 -1 -1 (45, 48, 51) 48
1 -1 1 -1 (25, 28, 19) 24
1 1 1 1 (75, 75, 81) 77
164 86 38 20   Total
41 21.5 9.5 5 Ttl/4
• Have estimate for each y

– yi = q0 + qaxai + qbxbi + qabxaixbi + ei
• Have difference (error) for each repetition

– eij = yij – yi = yij - q0 - qaxai - qbxbi - qabxaixbi
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22r Factorial Design Errors (2 of 2)
• Use sum of squared errors (SSE) to compute variance 

and confidence intervals
SSE = ΣΣe2

ij for i = 1 to 4 and j = 1 to r
• Example
i a b ab yi yi1 yi2 yi3 ei1 ei2 ei3
1 -1 -1 1 15 15 18 12 0   3  -3
1 1 -1 -1 48 45 48 51 -3  0  3
1 -1 1 -1 24 25 28 19 1   4  -5 
1 1 1 1 77 75 75 81 -2  -2 4
• Ex: y1 = q0-qa-qb+qab = 41-21.5-9.5+5 = 15
• Ex: e11 = y11 – y1 = 15 – 15 = 0
• SSE = 02+32+(-3)2+(-3)2+02+32+12+42+(-5)2

+(-2)2+(-2)2+42

= 102 34

22r Factorial Allocation of Variation
• Total variation (SST)

SST = Σ(yij – y..)2

• Can be divided into 4 parts:
Σ(yij – y..)2 = 22rq2

a + 22rq2
b + 22rq2

ab + Σe2
ij

SST = SSA    + SSB   + SSAB + SSE
• Thus

– SSA, SSB, SSAB are variations explained by 
factors a, b and ab

– SSE is unexplained variation due to experimental 
errors

• Can also write SST = SSY-SS0 where SS0 is sum 
squares of mean

(Derivation 18.1, p.296)
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22r Factorial Allocation of 
Variation Example

• For memory cache study:
– SSY = 152+182+122+ … +752 + 812 = 27,204
– SS0 = 22rq2

0 = 12x412 = 20,172
– SSA = 22rq2

a = 12x(21.5)2 = 5547
– SSB = 22rq2

b = 12x(9.5)2 = 1083
– SSAB = 22rq2

ab = 12x52 = 300
– SSE = 27,204-22x3(412+21.52+9.52+52)=102
– SST = 5547 + 1083 + 300 + 102 = 7032

• Thus, total variation of 7032 divided into 4 parts: 
– Factor a explains 5547/7032 (78.88%), b explains 

15.40%, ab explains 4.27%
– Remaining 1.45% unexplained and attributed to error

36

Confidence Intervals for Effects
• Assuming errors are normally distributed, 

then yijs are normally distributed with 
same variance

• Since qo, qa, qb, qab are all linear 
combinations of yij’s (divided by 22r), then 
they have same variance (divided by 22r)

• Variance s2 = SSE /(22(r-1))
• Confidence intervals for effects then:

– qi±t[1-α/2; 2
2

(r-1)]sqi
• If confidence interval does not include 

zero, then effect is significant
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Confidence Intervals for Effects 
(Example)

• Memory-cache study, std dev of errors:
se = sqrt[SSE / (22(r-1)] = sqrt(102/8) = 3.57

• And std dev of effects:
sqi = se / sqrt(22r) = 3.57/3.47 = 1.03

• The t-value at 8 degrees of freedom and 
95% confidence is 1.86

• Confidence intervals for parameters:
qi ±(1.86)(1.03) = qi ±1.92

– q0 (39.08,42.91), qa (19.58,23,41), 
qb (7.58,11.41), qab (3.08,6.91)

– Since none include zero, all are statistically 
significant

38

Confidence Intervals for Predicted 
Responses (1 of 2)

• Mean response predicted
– y = q0 + qaxa + qbxb + qabxaxb

• If predict mean from m more experiments, 
will have same mean but confidence interval 
on predicted response decreases

• Can show that std dev of predicted y with 
me more experiments
– sym = sesqrt(1/neff + 1/m)
– Where neff = runs/(1+df)

• In 2 level case, each parameter has 1 df, so 
neff = 22r/5
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Confidence Intervals for Predicted 
Responses (2 of 2)

• A 100(1-α)% confidence interval of 
response:
– yp±t[1-α/2; 2

2
(r-1)]sym

• Two cases are of interest.  
– Std dev of one run (m=1)

• sy1 = sesqrt(5/22r + 1)
– Std dev for many runs (m=∞)

• sy1 = sesqrt(5/22r)
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Confidence Intervals for Predicted 
Responses Example (1 of 2)

• Mem-cache study, for xa=-1, xb=-1
• Predicted mean response for future 

experiment
– y1 = q0-qa-qb+qab = 41-21.5+1=15
– Std dev = 3.57 x sqrt(5/12 + 1) = 4.25

• Using t[0.95;8] = 1.86, 90% conf interval
15±1.86x4.25 = (8.09,22.91)

• Predicted mean response for 5 future 
experiments
– Std dev = 3.57(sqrt 5/12 + 1/5) = 2.80

15±1.86x2.80 = (9.79,20.29)
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Confidence Intervals for Predicted 
Responses Example (2 of 2)

• Predicted Mean Response for Large 
Number of Experiments
– Std dev = 3.57xsqrt(5/12) = 2.30
– The confidence interval:

15±1.86x2.30=(10.72,19.28)


