

Introduction (2 of 3)

- Key assumption is non-zero cost
- Takes time and effort to gather data
- Takes time and effort to analyze and draw conclusions
\rightarrow Minimize number of experiments run
- Good experimental design allows you to:
- Isolate effects of each input variable
- Determine effects due to interactions of input variables
- Determine magnitude of experimental error
- Obtain maximum info with minimum effort

Outline

- Introduction
- Terminology
- General Mistakes
- Simple Designs
- Full Factorial Designs
- 2^{k} Factorial Designs
- $2^{k} r$ Factorial Designs

Terminology (1 of 4)

(Will explain terminology using example)

- Study PC performance
- CPU choice: 6800, z80, 8086
- Memory size: 512 KB, 2 MB, 8 MB
- Disk drives: 1-4
- Workload: secretarial, managerial, scientific
- Users: high school, college, graduate
- Response variable - the outcome or the measured performance
- Ex: throughput in tasks/min or response time for a task in seconds

Outline

Common Mistakes in Experiments (1 of 2)

- Variation due to experimental error is ignored.
- Measured values have randomness due to measurement error. Do not assign (or assume) all variation is due to factors.
- Important parameters not controlled.
- All parameters (factors) should be listed and accounted for, even if not all are varied.
- Effects of different factors not isolated.
- May vary several factors simultaneously and then not be able to attribute change to any one.
- Use of simple designs (next topic) may help but have their own problems.

WP

Common Mistakes in Experiments (2 of 2)

- Interactions are ignored.
- Often effect of one factor depend upon another. Ex: effects of cache may depend upon size of program. Need to move beyond one-factor-at-atime designs
- Too many experiments are conducted.
- Rather than running all factors, all levels, at all combinations, break into steps
- First step, few factors and few levels
- Determine which factors are significant
- Two levels per factor (details later)
- More levels added at later design, as appropriate

Full Factorial Designs

- Every possible combination at all levels of all factors
- Given k factors, with ith having n_{i} levels

$$
\text { Total }=\Pi n_{i} \text { for } i=1 \text { to } k
$$

- Example: in CPU design study
(3 CPUs)(3 mem) (4 disks) (3 loads) (3 users)
$=324$ experiments
- Advantage is can find every interaction component
- Disadvantage is costs (time and money), especially since may need multiple iterations (later)
- Can reduce costs by: reduce levels, reduce factors, run fraction of full factorial

> (Next, reduce levels)
${ }^{17}$

2^{k} Factorial Designs

Twenty percent of the jobs account for 80% of the resource consumption. Pareto's Law

- Very often, many levels at each factor
- Ex: effect of network latency on user response time \rightarrow there are lots of latency values to test
- Often, performance continuously increases or decreases over levels
- Ex: response time always gets higher
- Can determine direction with min and max
- For each factor, choose 2 alternatives at each level
- 2^{k} factorial designs
- Then, can determine which of the factors impacts performance the most and study those further ${ }_{18}$ WP

Allocation of Variation (1 of 3)

- Importance of a factor measured by proportion of total variation in response explained by the factor
- Thus, if two factors explain 90% and 5% of the response, then the second may be ignored
- Ex: capacity factor (768 Kbps or 10 Mbps) versus TCP version factor (Reno or Sack)
- Sample variance of y

$$
s_{y}^{2}=\Sigma\left(y_{i}-y\right)^{2} /\left(2^{2}-1\right)
$$

- With numerator being total variation, or Sum of Squares Total (SST) $S S T=\Sigma\left(y_{i}-y\right)^{2}$ WP

Allocation of Variation (2 of 3)

- For a 2^{2} design, variation is in 3 parts:
- SST $=2^{2} q^{2}{ }_{a}+2^{2} q^{2}{ }_{b}+2^{2} q^{2}{ }_{a b} \quad$ (Derivation 17.1,p.287)
- Portion of total variation:
- of a is $2^{2} q^{2} a$
- of b is $2^{2} q^{2} b$
- of $a b$ is $2^{2} q^{2} a b$
- Thus, SST = SSA + SSB + SSAB
- And fraction of variation explained by a:

$$
=S S A / S S T
$$

- Note, may not explain the same fraction of variance since that depends upon errors+

24

Allocation of Variation (3 of 3)

- In the memory-cache study

$$
y=\frac{1}{4}(15+55+25+75)=40
$$

- Total variation

$$
=\Sigma\left(y_{i}-y\right)^{2}=\left(25^{2}+15^{2}+15^{2}+35^{2}\right)
$$

$$
=2100=4 \times 20^{2}+4 \times 10^{2}+4 \times 5^{2}
$$

- Thus, total variation is 2100
- 1600 (of $2100,76 \%$) is attributed to memory
- 400 (of $2100,19 \%$) is attributed to cache
- Only 100 (of $2100,5 \%$) is attributed to interaction
- This data suggests exploring memory further and not spending more time on cache (or interaction)
(That was for 2 factors. Extend to k next)

General 2^{k} Factorial Designs (1 of 4)

- Can extend same methodology to k factors, each with 2 levels \rightarrow Need 2^{k} experiments
- k main effects
- (k choose 2) two factor effects
- (k choose 3) three factor effects...
- Can use sign table method
(Show with example, next)

26
WPI

General 2^{k} Factorial Designs (3 of 4)

- $q_{a}=10, q_{b}=5, q_{c}=20$ and $q_{a b}=5, q_{a c}=2, q_{b c}=3$ and $q_{a b c}=1$
- SST $=2^{3}\left(q_{a}{ }^{2}+q_{b}{ }^{2}+q_{c}{ }^{2}+q_{a b}{ }^{2}+q_{a c}{ }^{2}+q_{b c}{ }^{2}+q_{a b c}{ }^{2}\right)$

$$
=8\left(10^{2}+5^{2}+20^{2}+5^{2}+2^{2}+3^{2}+1^{2}\right)
$$

$$
=800+200+3200+200+32+72+8
$$

$$
=4512
$$

- The portion explained by the 7 factors are:

$$
\text { mem }=800 / 4512(18 \%)
$$

$$
\text { proc }=3200 / 4512(71 \%)
$$

mem-proc $=32 / 4512(1 \%)$ cache = 200/4512 (4\%) mem-proc-cache $=8 / 4512(0 \%)$ mem-cache $=200 / 4512(4 \%)$
cache-proc $=72 / 4512(2 \%)$

WPI

$2^{2 r}$ Factorial Design Errors (2 of 2)

- Use sum of squared errors (SSE) to compute variance and confidence intervals

$$
\text { SSE }=\Sigma \Sigma e^{2}{ }_{i j} \text { for } \mathrm{i}=1 \text { to } 4 \text { and } \mathrm{j}=1 \text { to } \mathrm{r}
$$

- Example

	a	b	$a b$	y_{i}	$y_{i 1} y_{i 2} y_{i 3}$	$e_{i 1} e$	$e_{i 2} e_{i 3}$
1	-1	-1	1	15	151812		3-3
1	1	-1	-1	48	454851		03
1	-1	1	-1	24	252819		4-5
1	1	1	1	77	757581	-2	-2 4
- $E x: y_{1}=q_{0}-q_{a}-q_{b}+q_{a b}=41-21.5-9.5+5=15$ - Ex: $e_{11}=y_{11}-y_{1}=15-15=0$ - SSE $=0^{2}+3^{2}+(-3)^{2}+(-3)^{2}+0^{2}+3^{2}+1^{2}+4^{2}+(-5)^{2}$							
$+(-2)^{2}+(-2)^{2}+4^{2}$							

$2^{2 r}$ Factorial Allocation of Variation

- Total variation (SST)

$$
S S T=\Sigma\left(y_{i j}-y\right)^{2}
$$

- Can be divided into 4 parts:
$\Sigma\left(y_{i j}-y\right)^{2}=2^{2} r q^{2}{ }_{a}+2^{2} r q^{2}{ }_{b}+2^{2} r q^{2}{ }_{a b}+\Sigma e^{2}{ }_{i j}$
$S S T=S S A+S S B+S S A B+S S E$
- Thus

SSA, SSB, SSAB are variations explained by factors a, b and $a b$

- SSE is unexplained variation due to experimental errors
- Can also write SST = SSY-SSO where SSO is sum squares of mean

Confidence Intervals for Effects

- Assuming errors are normally distributed, then $y_{i j}$ s are normally distributed with same variance
- Since $q_{0}, q_{a}, q_{b}, q_{a b}$ are all linear combinations of $y_{i j}$'s (divided by $2^{2} r$), then they have same variance (divided by $2^{2} r$)
- Variance $s^{2}=S S E /\left(2^{2}(r-1)\right)$
- Confidence intervals for effects then: - $\left.q_{i} \pm t_{11-\alpha / 2:} 2^{2}(r-1)\right)_{q i}$
- If confidence interval does not include zero, then effect is significant

Confidence Intervals for Predicted Responses (2 of 2)

- A 100(1- α)\% confidence interval of response:
$\left.-y_{p} \pm t_{[1-\alpha / 2 ;} 2^{2}(r-1)\right] S_{y m}$
- Two cases are of interest.
- Std dev of one run ($m=1$)
- $s_{y 1}=s_{e} s q r t\left(5 / 2^{2} r+1\right)$
- Std dev for many runs ($m=\infty$)
- $s_{y 1}=s_{e} \operatorname{sqrt}\left(5 / 2^{2} r\right)$

```
Confidence Intervals for Predicted Responses Example (1 of 2)
- Mem-cache study, for \(x_{a}=-1, x_{b}=-1\)
- Predicted mean response for future experiment
\(-y_{1}=q_{0}-q_{a}-q_{b}+q_{a b}=41-21.5+1=15\)
Std dev \(=3.57 \times \operatorname{sqrt}(5 / 12+1)=4.25\)
- Using \(+[0.95 ; 8]=1.86,90 \%\) conf interval \(15 \pm 1.86 \times 4.25=(8.09,22.91)\)
- Predicted mean response for 5 future experiments
- Std dev \(=3.57(\) sqrt \(5 / 12+1 / 5)=2.80\) \(15 \pm 1.86 \times 2.80=(9.79,20.29)\)

Confidence Intervals for Predicted Responses Example (2 of 2)
- Predicted Mean Response for Large Number of Experiments
- Std dev \(=3.57 \times \operatorname{sqrt}(5 / 12)=2.30\)
- The confidence interval:
\(15 \pm 1.86 \times 2.30=(10.72,19.28)\)```

