CS533
Modeling and Performance
Evaluation of Network and
Computer Systems

Queuing Theory

(Chapter 30-31)

Introduction

“It is very difficult to make accurate predictions, especially
about the future.” - Niels Bohr

In computers, jobs share many resources:
CPU, disks, devices

Only one can access at a time, and others

must wait in queues

Queuing theory helps determine time jobs
spend in queue

- Can help predict response time
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Notation (2 of 4)

; ; @%} ° Number of servers

Notation (1 of 4)
; 2N
o 1

_ ° For queuing analysis,
%% need to specify:
Queue ). P Y‘
Servers Population size
Fomirn Number of servers
System capacity
- Arrival process
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* Imagine waiting for a PC in
the computer lab (or checking

out at a grocery store, or ...) - Service time
- Resources are "servers"” distribution
- People are "customers” - Service discipline

* If all servers busy, customers
wait in a “queue”
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Notation (3 of 4)

° Arrival process (cont.)

Customer
Population

° Population size
- Potential customers
who can enter
- Most real systems
finite but easier o
analyze if infinite

- Can be one or more

- Assume identical, but
if not then separate
queuing system for
each

° System capacity

- Number that can wait
plus be served

- Most systems have
finite queue length,
but easier to analyze
if infinite

Customer
Population
* Arrival process
- Students arrive a
tte,. Ty
- Interarrival times are
Tt
m - Usually assume
independent, identically

I distributed (IID)
6

Process - Most common are

Poisson arrivals
* IID and exponentially
distributed (f(x)=Ae*x)
° Service time distribution
- Amount of time each
customer at server
- Again, usually IID
- Most common are  i'=h
exponential




Notation (4 of 4)

> &
m
Queue )%)

Servers

° Service discipline

- Order customers
called for servicing

- Most common is FCFS

Kendall notation
- A/S/m/B/K/SD
A is Arrival time distro
- Sis Service time distro
- mis humber of servers
- B is number of buffers
- Kis population size
- SD is service discipline
* Some typical times used:
- M Exponential
* M means "memoryless” in
that current arrival
independent of past
- D Deterministic
- G General
* Valid for all
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Variables for All Queues

Previous
arrival Arrival

Time ¥ ' ¥ W

R

'@

Begin Servers

Service Service

h4 s hd

T = interarrival time
° A=meanarrival rate
- = 1/E[1]
- Can sometimes depend upon
jobs in system
s = service time per job

° n, = number of jobs waiting
in queue

° ng = number of jobs
receiving service
° n=number of jobsin

system
- nEng+ng
° r=response time
° w = waiting fime

M = mean service rate per
server

- =1/E[s], total rate mu

©

] Note, all except pand A are random [ L]

Rules for All Queues (2 of 4)

Number in System versus Number in Queue
- Number of jobs is equal to waiting and servicing
n=ng+ng
- Also means:
E[n] = E[n J+Eln,]
- So mean number of jobs is equal o mean number in
queue plus mean number being serviced
Var[n] = Var'[nq]+Var'[ns]

- Variance of jobs equal to variance of queue + svc
° Also, service rate of servers independent of jobs
in queue

Cov(nq,ns) =0

Notation Example

° M/M/3/20/1500/FCFS - single queue
system with:
- Exponentially distributed arrivals
- Exponentially distributed service times
- Three servers
- Capacity 20 (queue size is 20 - 3 = 17)
- Population is 1500 total
- Service discipline is FCFS
| Often, assume infinite queue and infinite
population and FCFS, so just > M/M/3
]

Rules for All Queues (1 of 4)

° Stability Condition

- If the number of jobs becomes infinite,
system unstable. For stability, mean arrival
rate less than mean service rate

A< mu

- Does not apply to finite queue or finite

population systems
* Finite population cannot have infinite queue

* Finite queue drops if too many arrive so
never has infinite queue

S

Rules for All Queues (3 of 4)

* Number versus Time
- If jobs not lost due to buffer overflow the
mean jobs is related fo response time as:

mean jobs in system = arrival rate x mean
response time
- Similarly
mean jobs in queue = arrival rate x mean
waiting time
- Above equations known as “Little's Law"
(derivation in 30.3, next)
| - For finite buffers can use effective arrival
rate (ignoring drops)
I 12




Rules for All Queues (4 of 4)

* Time in System versus Time in Queue
- Time spent in system is sum of queue and
service time
r=w+s
- In particular:
E[r]= E[w] + E[s]
- If service rate independent of jobs in queue
Cov(w,ss)=0
Var[r] = Var[w] + Var[s]
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- No new jobs created, no new jobs lost

- If lost, can adjust arrival rate to mean only those
not lost

* Intuition: suppose monitor system and keep log of
arrival and departures. If long enough, arrivals
about the same as departures.

- Let there be N arrivals in long time T. Then:
arrival rate = total arrivals / total time = N/T

Little's Law (1 of 2)
] Mean jobs in system = arrival rate x mean response time [
° Very commonly used in theorems
‘ ° Applies if jobs entering equals jobs serviced
[ |
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* Example:

- server satisfies I/0 request in average of 100 msec.
I/0 rate is about 100 requests/sec. What is the
mean number of requests at the server?

- Mean number at server = arrival rate x response time
= (100 requests/sec) x (0.1 sec)
= 10 requests

Applying Little's Law
° Can be applied to subsystem, too
- mean time in queue = arrival rate x waiting time
- mean time being serviced = arrival rate x service time
\
|
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Little's Law (2 of 2)

Can plot data gathered in 3 ways (Fig30.4a-c)
Area in each is same, call it J
30.4¢c > mean time in system = J/N
30.4b > mean number in system is J/T
- Multiply by N/N:
=N/Tx J/N
= arrival rate x mean time in system
O Little's Law
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Types of Stochastic Processes
(1 of B)

* Number of jobs at CPU of computer
system at time t is a random variable (n(t))

* To specify such random variables, need
probability distribution function for each t
- Same with waiting time (w(t))

° These random functions of time or
sequences are called stochastic processes

° Useful for describing state of queuing
systems

I 0

Types of Stochastic Processes
(2 of B)

* Discrete-State and Continuous-State Process
- Depends upon values its state can take
- If finite or countable - discrete
- Ex: jobs in system n(t) can only take values O, 1, 2 ...
countable, so discrete-state process
* Also called a stochastic chain
- Ex: waiting time w(t) can take any real value, so
continuous-state process
* Markov Process
- If future states depend only on the present and are
independent of the past then called markov process
- Makes it easier to analyze since do not need past
trajectory, only present state

- Also memory-less in that don't need length of time in
current state

Types of Stochastic Processes
(3 0f B)

° Birth-Death Process
= Markov in which transitions restricted to
neighboring states only are called birth-death
process
- Can represent states by integers, s.t. process in
state n can only go to state n+1 or n-1
- Ex: jobs in queue with single server can be
represented by birth-death process
* Arrival (birth) causes state to change by +1 and
departure after service (death) causes state to
change by -1
* Only if arrive individually, not in batch

TANER!
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Types of Stochastic Processes
(4 of )
* Poisson Processes (continued)
- Also

* If Poisson stream split into k substreams
with probability p;, each substream is Poisson
with mean rate Ap; (Figure 30.6b)

* If arrivals to single server with exponential
service times are Poisson with mean A,
departures are also Poisson with mean A, if
(A<p) (Figure 30.6¢)

- Same relationship holds for m servers as long

as total arrival rate less than total service
rate (Figure 30.6d)
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Types of Stochastic Processes
(4 of B)

* Poisson Processes
- If interarrival times are IID and
exponentially distributed, then number of
arrivals over interval [t,1+x] has a Poisson
distribution > Poisson Process
- Popular because arrivals are memoryless
- Also:
* Merging k Poisson streams with mean rate A;
gives another Poisson stream with mean rate:
A= 2N
(See Figure 30.6a)

Types of Stochastic Processes
(5 of B)

Birth-death
Processes




Questions

° M/D/10/5/1000/LCFS

- What can you say about i+?

- What is bad about it?
* Which has better performance:
M/M/3/300/100 or M/M/3/100/100?
During 1 hour, name server received 10,800
requests. Mean response time 1/3 second.

- What is the mean number of queries in
system?

Utilization Law (should be slide 18)

Given average arrival rate A.

Average utilization of a system is time busy over
total fime

U=b/T

Factor into:

U=b/T=(b/d) (d/T)
where d is number of departures and arrivals
during time T

Notice, (b/d) is average time ?en‘r servicing each
of the d jobs. Callits (s = b/d)

Since balanced (in == out), A = d/T
* So:

U=As  (Utilization Law)

Applying Utilization Law

* Consider I/0 system with one disk and one
controller. If average time required to
service each request is 6 msec, what is

[ |

maximum request rate it can tolerate?
Maximum will occur when 100% utilized, so
U=1
Substituting U = As, we get:

1 = >\|’I’\CIXS

50, Apax= 17 (6 x 10-3) = 167 requests/sec

Operational Analysis

Using Little's Law and Utilization Law can say
things about average behavior

- Requires no assumptions about distribution times of
arrivals or servicing

- High level view

But can not say things about, say, maximum or
worst case

For example, cannot use it to determine needed
buffer space to enqueue incoming requests

Will use stochastic distributions and queuing
theory to get more detailed analysis

L DS W .

Utilization Law

Notice, utilization law U= As can be written as:
U=Nu
where | is the average service rate
Ratio A/u is often called traffic intensity
- Given own symbol p = A/p
If (p>1) then A > p (arrival rate greater than
service rate)
- Jobs arrive faster than can be processed
- Queue grows to infinity
- Unstable
Must have (p < 1) for stability (so U never > 100%)
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Single Queue, Single Server -
M/M/1 Queue (1 of 6)
° Only one queue, exponentially distributed
arrivals and service time
- Ex: CPU in a system, processes in queue
* No buffer or population limitations
° Can often be modeled as birth-death
process
- Jobs arrive individually (not batch)
- Changes state to n+1 (birth), n-1 (death)
@ ° Transitions depend only on current state

1. ove

Notation: probability
of being in state
nisP,

Single Queue, Single Server -
M/M/1 Queue (3 of 6)
* All probabilities add to 1, so:
P, =ZpPy=1 n=0,1,.. 0
° Expanding:
pOPy+ plPy+ p2Py+ .. = 1
Po=1/ (pP+pl+p2.) = 1/Zp"
° Since p < 1 for stability, can be shown that
sum converges:
Po=1-p  and P,=(1-p)p"
M ° Can now derive many useful performance
I parameters for M/M/1 queue

Single Queue, Single Server -
M/M/1 Queue (5 of 6)
° Mean jobs in queue (use n-1 since at most one
Eln,] = Z(n-1)P, = Z(n-1)(1-p)p" = p?/(1-p)
‘ - When no jobs in system, idle

° Utilization
- Server is busy when 1 or more jobs in system
|

serviced)

- When jobs in system, busy

- Average load, or average utilization
U=1-P=1-(1-p)=p

- (Note, same as before)
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Single Queue, Single Server -
M/M/1 Queue (2 of 6)

At any state, probability of going up same
as probability coming down (balanced)

AP, =uP,, or

Pn= (WP, = PP
We have: P, = pPy, P, = pPy, ..
In general, probability of exactly n jobs in
the system is:
Pn = pnPO

We want a closed form for P, (with no Py)

.

.

Single Queue, Single Server -
M/M/1 Queue (4 of 6)

Mean jobs in system
E[n] = ZnP, = Zn(1-p)p"= 1/(1-p) n=0,...

Variance of jobs in system

Var[n] = E[(n - E[n])?] = E[n?] - (E[n])?

Zn2(1-p)p™ - (Zn(1-p)p"Y = p/(1-p)?

Probability of n or more jobs

Pr (= n jobs insystem) = 2P;  j=n,..

= 2(1-p)pi = p"
Mean response time
- Using Little's law
* mean jobs = mean arrv rate x mean resp time
E[n] = AE[r]
Elr] = E[n)/A = (p/(1-p))(1/N) = (1/1) / (1-p)

Single Queue, Single Server -
M/M/1 Queue (6 of 6)

As utilization
increases beyond o

85%, queue rises s |-

P

sharply i o

- Corresponding 7 ss -
sharp rise in ECHS

response fime £ os |
Utilization must  « =0 |-
be under 100%, . s+
but often lower 10+

Jobs

Numbe:

- Ex: OS CPU ST ~
scheduler often o ! ST L :
has 60-80% " server Utidization
heuristic ’ e




Example of M/M/1 Queue Analysis
(1of 2)
°* Network gateway, 4 Mbps, packet size
1000 bytes, Arrival rate of 125
packets/sec

- What is the probability of overflow with
only 12 buffers?

- How many buffers are needed fo keep
packet loss to 1 in 1,000,000?

Example of M/M/1 Queue Analysis

(2 of 2)

° Arrival rate A=125 pps  * Probability of n packets in
* Service rate: gateway

4000000/8 Pr(n) = (1-p)p"=.75(.25)"

= 500000 Mbytes/sec ° Mean time in gateway:

500000/1000 = 500 pps (/w7 (1-p)

So, =500 pps = (1/500)/(1-.25) = 2.66ms
* Utilization (traffic ° Prob of overflow = Pr(13+)

intensity): = pi3 = 2513=149x108

p=A/u=125/500 = .25
° Mean packets in

= 15 packets/billion
° To limit to less than 10-¢

gateway: pr<10-6
p/(1-p)=.25/.75 = .33 n > log(10)/log(.25)
>9.96

- So, 10 buffers

g

Another Example of M/M/1 Queue
Analysis (1 of 2)

° Web server. Time between requests
exponential with mean time between 8 ms.
Time to process exponential with average
service time 5 ms.

A) What is the average response time?

B) How much faster must the server be to
halve this average response time?

C) How big a buffer so only 1in 1,000,000,000
requests are lost?

39 L]
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Another Example of M/M/1 Queue
Analysis (2 of 2)

° Request rate

A=1000/8=0125 ° Tohalve want

requests per ms
* Service rate

u=1000/5=0.2
requests per ms

° Utilization
p=My= .125/.2 = 625
- S0, 62.5% of capacity

1/n) / (1-p) = 6.665

- Assume A fixed, so
change p

u=1/6.665 +0.125 = .257

B) So, (.275-.2)/.2 * 100
= 37.5% faster

* 1lin1billion errors
- Buffer size k:

A) Avg response fime Pr(k) <10°
/) / (1-p) C)°§ =107
= (1/.2)/(1-.625) o
_ k > log(10-%) / log(.625)
=13.33 ms . aa
o wes

Single Queue, Multiple Servers -
M/M/c Queue (1 of 4)

° Model multiple servers

- Model multiprocessor (SMP) systems

* All “ready to run” processes in one queue

- Model Web server "farm"

- Model grocery store with single queue
* 'cis the number of servers (Jain uses ‘'m’)
° Assume arrival rate A is the same
° Each server now can serve | jobs per time

- Mean service rate cu

- Note, assumes ho "cost” for determining server
* If any server idle (fewer than c jobs in system,

say h), job serviced immediately

° If all c servers are busy, job waits in queue

-
42




Single Queue, Multiple Servers -
M/M/c Queue (2 of 4)

QDO - Paae -

* From above: * Find P, since sum must be 1

AN 00, * 3P,z Z[(cp)/niTPo (1 1o c)
Mmoo n=l e + S[(cpI/(clem) Py (c+1 to )
Ha=CH n=c,.., -1

* Using balanced equations:
P, = [(cp)"/nlIPy n=1,..c
P, = [(cp)/(clcm)IPy n>c
* Where pis traffic intensity
- Also, utilization of each
server

* Solve for Py=
1
Z[(cp)/nl] + (cp)/(cl(1-p))
(n=1to cin first term)
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Single Queue, Multiple Servers -
M/M/c Queue (3 of 4)
* Newly arriving job will wait if all servers are
busy. Happens if more than c jobs.

Pr(>c jobs) = p+ pe.gt Peizt... = ZP, (n from c+1 to w)
= Py(cp)/cl x Zpre
= [(cp)V/[cl(1-p)] Py

- Known as Erlang’s C formula ()

° Mean jobs in system

E[n] = ZnP, = [Po(cp)V/[c!(1-p)?] + cp

= cp + px/(1-p)

(n from c+1 to )

44
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Single Queue, Multiple Servers -
M/M/c Queue (4 of 4)

° Mean jobs in queue
Elny] = Z(n-c)P, = Py(cp)</c! x Z(n-c)p"*
= [Pop(cp))/[c!(1-p)?] = pr/(1-p)
° Mean response time
- Using Little's law
* mean jobs = mean arrv rate x mean resp time
E[n] = AE[r]
Elr]l= E[n)/ A
Elr]= 1/u+«/[cp(1-p)]
* Mean waiting time E[w] = E[n,]/ A
= [pK/(1-p)V/A = k/[cp(1-p)]
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M/M/c Example (2 of 2)

° Request rate A=0.125
° Service rate p=0.2

° Erlang's C formula

- K = (4x0.1563)*(0.5352)

° Traffic intensity 41(1-.01563)
- p=u/(ch) = 0.1563 =.0040326
P=U e * So, average response

* Probability of idle time:

* Po= 1 Elr] = 1/ + k/cu(1-p)
S[(cp)/ni] + =1/.2 + .004326/(4)(:2)(1-
(cp)</(c!(1-p)) Py 1563)

= 0532 =5.01ms

° Thus, increasing servers
by 4 reduces response
time by appx 62%

47

M/M/c Example (1 of 2)

° How does response time for previous
M/M/1 Web server change if number of
servers increased to 4?

- Can model as M/M/4
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Another M/M/c Example (1 of 2)

° Students arrive at computer lab, 10 per
hour. Spend 20 minutes at a terminal
(assume exponentially distributed) and
then leave. Center has 5 terminals.

A) How many terminals can go down and still
be able to service the students?

B) What is the probability all terminals are
busy?

C) How long is the average student in center?




Another M/M/c Example (2 of 2)

° Arrival rate A=.167 per min, u=.05 per min
° Utilization = N/(uc) = .167/(.05x5) = .67
A)Findcst.U>1,s01>A/(uc) > c>A/u=4
- One terminal only can go down
° Prob all idle, Py
= [1+(5x.67)%/[5\(1-.67)] + (5x.67)!/1!
+(5x.67)2/21 + (5x.67)3/3! + + (5x.67)*/4I]!
=0.0318
B) Prob busy > Erlang’s € formula (k)
Pr(>c jobs) = [(cp)V/[cl(1-0)] P,
= [(5x.67)7] / [5!(1-.67)] x .0318 = .33
- So, 1/3 of the time you'll need to wait upon arriving
C) Time to wait: E[w] = k/[mp(1- p)]
49 =.33/(5x.05x(1-.67)) = 4 minutes

M/M/c versus M/M/1 (1 of 2)

® Consider what would happen if the
terminals were distributed in separate
labs, one per lab, across campus.
A) Would you wait longer?

° Can model as separate M/M/1 systems and
compare to M/M/c system

M/M/c versus M/M/1 (2 of 2)

* For M/M/1 =167 / 5 = .0333 and p=.05
- p=.0333/.05= .67
° Expected waiting time:
Elw] = ElngV/A = [p? / (1-p)]/ A
= [(.67)%/(1-.67)]/ (.033)
= 41 minutes
A) Yes. A lot longer.

* What is the model ignoring that may make
the answer seem better?
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