

Why Do We Need Statistics?

"Impossible things usually don't happen."

- Sam Treiman, Princeton University
- Statistics helps us quantify "usually."

What is a Statistic?

- "A quantity that is computed from a

What are Statistics?

 sample [of data]."Merriam-Webster
$\rightarrow A$ single number used to summarize a larger collection of values.
"Lies, damn lies, and statistics!"

- "A collection of quantitative data."
- "A branch of mathematics dealing with the collection, analysis, interpretation, and presentation of masses of numerical data."
Merriam-Webster
\rightarrow We are most interested in analysis and interpretation here.

Basics (1 of 3)

- Independent Events:
- One event does not affect the other

Knowing probability of one event does not change estimate of another

- Cumulative Distribution (or Density) Function: $F_{x}(a)=P(x<=a)$
- Mean (or Expected Value):
- Mean $\mu=E(x)=\Sigma\left(p_{i} x_{i}\right)$ for i over n
- Variance:
- Square of the distance between \times and the mean - $(x-\mu)^{2}$
$-\operatorname{Var}(x)=E\left[(x-\mu)^{2}\right]=\sum p_{i}\left(x_{i}-\mu\right)^{2}$
- Variance is often σ. Square root of variance, σ^{2}, is standard deviation

Basics (2 of 3)

- Coefficient of Variation:
- Ratio of standard deviation to mean
- C.O.V. $=\sigma / \mu$
- Covariance:
- Degree two random variables vary with each other
- $\operatorname{Cov}=\sigma_{x y}^{2}=E\left[\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right]$
- Two independent variables have Cov of 0
- Correlation:
- Normalized Cov (between-1 and 1)
- $\rho_{x y}=\sigma_{x y}^{2} / \sigma_{x} \sigma_{y}$
- Represents degree of linear relationship WP

Outline

- Introduction
- Basics
- Indices of Central Tendency
- Indices of Dispersion
- Comparing Systems
- Misc
- Regression
- ANOVA

Guidelines in Selecting Index of Central Tendency

- Is it categorical?
$-\rightarrow$ yes, use mode
- Ex: most frequent microprocessor
- Is total of interest?
$-\rightarrow$ yes, use mean
- Ex: total CPU time for query (yes)
- Ex: number of windows on screen in query (no)
- Is distribution skewed?
$\rightarrow \rightarrow$ yes, use median
\rightarrow no, use mean

Examples for Index of Central Tendency Selection

- Most used resource in a system?
- Categorical, so use mode
- Response time?
- Total is of interest, so use mean
- Load on a computer?
- Probably highly skewed, so use median
- Average configuration of number of disks, amount of memory, speed of network?
- Probably skewed, so use median

Common Misuses of Means (1 of 2)

- Using mean of significantly different values
- Just because mean is right, does not say it is useful
- Ex: two samples of response time, 10 ms and 1000 ms . Mean is 505 ms but useless.
- Using mean without regard to skew
- Does not well-represent data if skewed
- Ex: sys $A: 10,9,11,10,10$ (mean 10 , mode 10)
- Ex: sys B: 5, 5, 5, 4, 31 (mean 10 , mode 5)

Common Misuses of Means (2 of 2)

- Multiplying means
- Mean of product equals product of means if two variables are independent. But:
- if x, y are correlated $E(x y)!=E(x) E(y)$
- Ex: mean users system 23, mean processes per user is 2. What is the mean system processes? Not 46!
\rightarrow Processes determined by load, so when load high then users have fewer. Instead, must measure total processes and average.
- Mean of ratio with different bases (later)

Mean of a Ratio (1 of 2)

- Set of n ratios, how to summarize?
- Here, if sum of numerators and sum of denominators both have meaning, the average ratio is the ratio of averages
Average $\left(a_{1} / b_{1}, a_{2} / b_{2}, \ldots, a_{n} / b_{n}\right)$
$=\left(a_{1}+a_{2}+\ldots+a_{n}\right) /\left(b_{1}+b_{2}+\ldots+b_{n}\right)$
$=\left[\left(\Sigma \mathrm{a}_{\mathrm{i}}\right) / n\right] /\left[\left(\Sigma \mathrm{b}_{\mathrm{i}}\right) / n\right]$
- Commonly used in computing mean resource utilization (example next)

Mean of a Ratio (2 of 2)

- CPU utilization:
- For duration 1 busy 45\%, $1 \% 45,145 \%, 1$ 45\%, 100 20\%
- Sum 200%, mean ! $=200 / 5$ or 40%
- The base denominators (duration) are not comparable
- mean = sum of CPU busy / sum of durations
$=(.45+.45+.45+.45+20) /(1+1+1+1+100)$
$=21 \%$

Summarizing Variability (2 of 2)

- Indices of Dispersion

- Range - min and max values observed
- Variance or standard deviation
- 10- and 90-percentiles
- (Semi-)interquartile range
- Mean absolute deviation
(Talk about each next)

Sample Variance

- Sample variance (can drop word "sample" if meansing is clear)
$-s^{2}=[1 /(n-1)] \Sigma\left(x_{i}-\underline{x}\right)^{2}$
- Notice ($n-1$) since only $n-1$ are independent
- Also called degrees of freedom
- Main problem is in units squared so changing the units changes the answer squared
- Ex: response times of .5, .4, . 6 seconds Variance $=0.01$ seconds squared or 10000 msecs squared

Standard Deviation

- So, use standard deviation
- $s=\operatorname{sqrt}\left(s^{2}\right)$
- Same unit as mean, so can compare to mean
- Ex: response times of $.5, .4, .6$ seconds
- stddev .1 seconds or 100 msecs
- Can compare each to mean
- Ratio of standard deviation to mean?
- Called the Coefficient of Variation (C.O.V.)
- Takes units out and shows magnitude
- Ex: above is $1 / 5^{\text {th }}$ (or .2) for either unit

Indices of Dispersion Summary

- Ranking of affect by outliers
- Range
susceptible
- Variance (standard deviation)
- Mean absolute deviation
- Semi-interquartile range resistant
- Use semi-interquantile (SIQR) for index of dispersion whenever using median as index of central tendency
- Note, all only applied to quantitative data - For qualitative (categorical) give number of categories for a given percentile of samples

Indices of Dispersion Example

- First, sort
- Median $=\left[1+31^{\star} .5\right]=16^{\text {th }}=3.2$
- Q1 $=1+.31^{*} .25=9^{\text {th }}=3.9$
- Q3 $=1+.31^{*} .75=24^{\text {th }}=4.5$
- $\operatorname{SIQR}=(Q 3-Q 1) / 2=.65$
- Variance $=0.898$
- Stddev $=0.948$
- Range $=5.9-1.9=4$

Selecting Index of Dispersion

- Is distribution bounded
- Yes? \rightarrow use range
- No? Is distribution unimodal symmetric?
- Yes? \rightarrow Use C.O.V.
- No?
- Use percentiles or SIQR
- Not hard-and-fast rules, but rather guidelines
- Ex: dispersion of network load. May use range or even C.O.V. But want to accommodate 90% or 95% of load, so use percentile. Power supplies similar.

Determining Distribution of Data

- Additional summary information could be the distribution of the data
- Ex: Disk I/O mean 13, variance 48. Ok. Perhaps more useful to say data is uniformly distributed between 1 and 25 .
- Plus, distribution useful for later simulation or analytic modeling
- How do determine distribution?
- First, plot histogram

Distribution	$\mathrm{CDF} F(x)$	Inverse
Exponential	$1-e^{-x / a}$	$-a \ln (u)$
Extreme value	$1-e^{-e^{\frac{x-a}{b}}}$	$a+b \ln \ln u$
Geometric	$1-(1-p)^{x}$	$\left[\frac{\ln (u)}{\ln (1-p)}\right.$
Logistic	$1-\frac{1}{1+e^{\frac{x-\mu}{b}}}$	$\mu-b \ln \left(\frac{1}{u}-1\right)$
Pareto	$1-x^{-a}$	$1 / u^{1 / a}$
Weibull	$1-e^{(x / a)^{b}}$	$a(\ln u)^{1 / b}$

Normal distribution:
$\mathrm{x}_{\mathrm{i}}=4.91\left[\mathrm{q}_{\mathrm{i}}^{0.14}-\left(1-\mathrm{q}_{\mathrm{i}}\right)^{0.14}\right]$

Outline

Comparing Systems Using Sample Data

"Statistics are like alienists - they will testify for either side." - Fiorello La Guardia

- The word "sample" comes from the same root word as "example"
- Similarly, one sample does not prove a theory, but rather is an example
- Basically, a definite statement cannot be made about characteristics of all systems
- Instead, make probabilistic statement about range of most systems
- Confidence intervals

Sample versus Population

- Say we generate 1-million random numbers
- mean μ and stddev σ.
- μ is population mean
- Put them in an urn draw sample of n
- Sample $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ has mean \underline{x}, stddev s
- \underline{x} is likely different than μ !
- With many samples, $\underline{x}_{1}!=\underline{x}_{2}!=$...
- Typically, μ is not known and may be impossible to know
- Instead, get estimate of μ from $\underline{x}_{1}, \underline{x}_{2}, \ldots$

Confidence Interval for the Mean

- Obtain probability of μ in interval $\left[c_{1}, c_{2}\right]$
$-\operatorname{Prob}\left\{c_{1} \leq \mu \leq c_{2}\right\}=1-\alpha$
- ($c 1, \mathrm{c} 2$) is confidence interval
- α is significance level
- $100(1-\alpha)$ is confidence level
- Typically want a small so confidence level $90 \%, 95 \%$ or 99% (more later)
- Say, $\alpha=0.1$. Could take k samples, find sample means, sort
- Interval: $[1+0.05(k-1)]^{\text {th }}$ and $[1+0.95(k-1)]^{\text {th }}$ - 90% confidence interval
- We have to take k samples, each of size n? WPI

Central Limit Theorem

Sum of a "large" number of values from any distribution will be normally distributed.

- Do not need many samples. One will do.

$$
\underline{x} \sim N(\mu, \sigma / \operatorname{sqrt}(n))
$$

- Standard error $=\sigma /$ sqrt (n)
- As sample size n increases, error decreases
- So, a 100(1- α)\% confidence interval for a population mean is:
$\left(\underline{x}-z_{1-\alpha / 2} s / \operatorname{sqrt}(n), \underline{x}+z_{1-\alpha / 2} s / \operatorname{sqrt}(n)\right)$
- Where $z_{1-\alpha / 2}$ is a $(1-\alpha / 2)$-quantile of a unit normal (Table A. 2 in appendix, A. 3 common)

Confidence Interval Example

CPU Time - $\underline{x}=3.90$, stddev $s=0.95, n=32$
\qquad

- A 90% confidence interval for the population mean (μ): 3.90 +- (1.645)(0.95)/sqrt(32) $=(3.62,4.17)$
- With 90% confidence, μ in that interval. Chance of error 10\%.
- If we took 100 samples and made confidence intervals as above, in 90 cases the interval includes μ and in 10 cases would not include μ

How does the Interval Change?

- 90% CI $=[6.5,9.4]$
- 90% chance real value is between 6.5, 9.4
- 95% CI = [6.1, 9.7]
- 95% chance real value is between 6.1, 9.7
- Why is the interval wider when we are more confident?

WP

Testing for a Zero Mean

- Common to check if a measured value is significantly different than zero
- Can use confidence interval and then check if 0 is inside interval.
- May be inside, below or above

$$
\begin{aligned}
& \text { Note, can extend this to include testing for different than } \\
& \text { any value } a
\end{aligned}
$$

Example: Testing for a Zero Mean

- Seven workloads
- Difference in CPU times of two algorithms
$\{1.5,2.6,-1.8,1.3,-0.5,1.7,2.4\}$
- Can we say with 99% confidence that one algorithm is superior to another?
- $n=7, \alpha=0.01$
- mean $=7.20 / 7=1.03$
- variance $=2.57$ so stddev $=\operatorname{sqrt}(2.57)=1.60$
- $C I=1.03+$ tx $1.60 / \mathrm{sqrt}(7)=1.03+-0.605 \mathrm{t}$
- $1-\alpha / 2=.995$, so t[0.995;6] $=3.707$ (Table A.4)
- 99% confidence interval $=(-1.21,3.27)$
\rightarrow With 99\% confidence, algorithm performances are identical

Paired Observations

- If n experiments such that 1-to-1 correspondence from test on A with test on B then paired
- (If no correspondence, then unpaired)
- Treat two samples as one sample of n pairs
- For each pair, compute difference
- Construct confidence interval for difference
- If CI includes zero, then systems are not significantly different

Example: Paired Observations

- Measure different size workloads on A and B
$\{(5.4,19.1),(16.6,3.5),(0.6,3.4),(1.4,2.5),(0.6,3.6)(7.3,1.7)\}$
- Is one system better than another?
- Six observed differences
- $\{-13.7,13.1,-2.8,-1.1,-3.0,5.6\}$
- Mean $=-.32$, stddev $=9.03$
- $C I=-0.32+-t[$ sqrt $(81.62 / 6)]=-0.32+-t(3.69)$
- The .95 quantile of t with 5 degrees of freedom $=2.015$
- 90% confidence interval $=(-7.75,7.11)$
- Therefore, two systems not different

Unpaired Observations

- Systems A, B with samples n_{a} and n_{b}
- Compute sample means: $\underline{x}_{a}, \underline{x}_{b}$
- Compute standard devs: s_{a}, s_{b}
- Compute mean difference: $\underline{x}_{a}-\underline{x}_{b}$
- Compute stddev of mean difference: - $S=\operatorname{sqrt}\left(s_{a}{ }^{2} / n_{a}+s_{b}{ }^{2} / n_{b}\right)$
- Compute effective degrees of freedom
- Compute confidence interval
- If interval includes zero, not a significant difference

Approximate Visual Tes \dagger

- Compute confidence interval for means
- See if they overlap

Example: Approximate Visual Test

- Processor time for task on two systems
- A: $\{5.36,16.57,0.62,1.41,0.64,7.26\}$
- B: $\{19.12,3.52,3.38,2.50,3.60,1.74\}$
- t-value at $90 \%, 5$ is 2.015
- 90% confidence intervals
$-A=5.31+-(2.015) \operatorname{sqrt}(37.92 / 6)=(0.24,10.38)$
$-B=5.64+-(2.015) \operatorname{sqrt}(44.11 / 6)=(0.18,11.10)$
- The two confidence intervals overlap and the mean of one falls in the interval of another. Therefore the two systems are not different without unpaired t test

What Confidence Level to Use?

- Often see 90% or 95% (or even 99%)
- Choice is based on loss if population parameter is outside or gain if parameter inside
- If loss is high compared to gain, use high confidence
- If loss is low compared to gain, use low confidence
- If loss is negligible, low is fine
- Example:
- Lottery ticket $\$ 1$, pays $\$ 5$ million
- Chance of winning is 10^{-7} (1 in 10 million)
- To win with 90% confidence, need 9 million tickets
- No one would buy that many tickets!
- So, most people happy with 0.01% confidence

Hypothesis Testing

- Most stats books have a whole chapter
- Hypothesis test usually accepts/rejects - Can do that with confidence intervals
- Plus, interval tells us more ... precision
- Ex: systems A and B
- CI $(-100,100)$ we can say "no difference"
- CI(-1, 1) say "no difference" loudly
- Confidence intervals easier to explain since units are the same as those being measured

Ex: more useful to know range 100 to 200 than that the probability of it being less than 110 is 3%

One-Sided Confidence Intervals

- At 90% confidence, 5% chance lower than limit and 5\% chance higher than limit
- Sometimes, only want one-sided comparison
- Say, test if mean is greater than value

$$
\left(\underline{x}-t_{[1-\alpha ; n-1]} s / \operatorname{sqrt}(n), \underline{x}\right)
$$

- Use 1- α instead of $1-\alpha / 2$
- Similarly (but with +) for upper confidence limit
- Can use z-values if more than 30

Confidence Intervals for

Proportions

- Categorical variables often has probability with each category \rightarrow called proportions - Want CI on proportions
- Each sample of n observations gives a sample proportion (say, of type 1)
- n_{1} of n observations are type 1

$$
\mathrm{p}=n_{1} / n
$$

- CI for p: $p+-z_{1-\alpha / 2} \operatorname{sqrt}(p(1-p) / n)$
- Only valid if $n p \geq 10$
- Otherwise, too complicated. See stats book.

Example: CI for Proportions

- 10 of 1000 pages printed are illegible

$$
p=10 / 1000=0.01
$$

- Since $n p \geq 10$ can use previous equation
$C I=p+-z(\operatorname{sqrt}(p(1-p) / n))$
$=0.01+-z(\operatorname{sqrt}(0.01(0.99) / 1000)$
$=0.01+-0.003 z$
$90 \% C I=0.01+-(0.003)(1.645)=(0.005,0.015)$
- Thus, at 90% confidence we can say 0.5% to
1.5% of the pages are illegible.
- There is a 10% chance this statement is in error

Determining Sample Size

- The larger the sample size, the higher the confidence in the conclusion
- Tighter CIs since divided by sqrt(n)
- But more samples takes more resources (time)
- Goal is to find the smallest sample size to provide the desired confidence in the results
- Method:
- small set of preliminary measurements
- use to estimate variance
- use to determine sample size for accuracy

Sample Size for Mean

- Suppose we want mean performance with accuracy of $+-r \%$ at $100(1-\alpha) \%$ confidence
- Know for sample size $n, C I$ is

$$
\underline{x}^{+-} z(s / \operatorname{sqrt}(n))
$$

- CI should be $[\underline{x}(1-r / 100), \underline{x}(1+r / 100)]$
$\underline{x}+-z(s / \operatorname{sqr} t(n))=\underline{x}(1+-r / 100)$
$z(s / s q r t(n))=\underline{x}(r / 100)$ $n=[(100 \mathrm{zs}) /(r \underline{x})]^{2}$

Example: Sample Size for Mean

- Preliminary test:
- response time 20 seconds
- stddev = 5 seconds
- How many repetitions to get response time accurate within 1 second at 95% confidence $\underline{x}=20, s=5, z=1.960, r=5(1 \mathrm{sec}$ is 5% of 20$)$

$$
n=[(100 \times 1.960 \times 5) /(5 \times 20)]^{2}
$$

$$
=(9.8)^{2}
$$

$$
=96.04
$$

- So, a total of 97 observations are needed
- Can extend to proportions (not shown)

Outline

- Introduction
- Basics
- Indices of Central Tendency
- Indices of Dispersion
- Comparing Systems
- Misc
- Regression
- ANOVA

Example: Sample Size for Comparing Alternatives

- Need non-overlapping confidence intervals
- Algorithm A loses 0.5% of packets and B loses 0.6%
- How many packets do we need to state that alg A is better than alg B at 95% ?
$C I$ for $A: 0.005+-1.960[0.005(1-0.005) / n)]^{\frac{1}{2}}$
$C I$ for $B: 0.006+-1.960[0.006(1-0.006) / n)]^{\frac{1}{2}}$
- Need upper edge of A not to overlap lower edge of B $0.005+1.960[0.005(1-0.005) / n)]^{\frac{1}{2}}<$ $0.006-1.960[0.006(1-0.006) / n)]^{\frac{1}{2}}$ solve for n : $n>84,340$
- So, need 85000 packets

Linear Regression (1 of 2)

- Captures linear relationship between input values and response
- Least-squares minimization
- Of the form:

$$
y=a+b x
$$

- Where x input, y response and we want to know a and b
- If y_{i} is measured for input x_{i}, then each pair (x_{i}, y_{i}) can be written:

$$
y_{i}=a+b x_{i}+e_{i}
$$

- where e_{i} is residual (error) for regression model

Linear Regression (2 of 2)

- The sum of the errors squared:

$$
\text { SSE }=\Sigma e_{i}^{2}=\Sigma\left(y_{i}-a-b x_{i}\right)^{2}
$$

- Find a and b that minimizes SSE
- Take derivative with respect to a and then b and then set both to zero

$$
\begin{gathered}
n a+b \Sigma x_{i}=\Sigma y_{i} \\
a \Sigma x_{i}+b \Sigma x_{i}^{2}=\Sigma x_{i} y_{i}
\end{gathered}
$$

(1)

- Solving for b gives:

$$
b=\frac{n \Sigma x_{i} y_{i}-\left(\Sigma x_{i}\right)\left(\Sigma y_{i}\right)}{n \Sigma x_{i}-\left(\Sigma x_{i}\right)^{2}}
$$

- Using (1) and solving for a:

$$
a=y-b \underline{x}
$$

Confidence Intervals for

 Regression Parameters (1 of 2)- Since parameters a and b are based on measured values with error, the predicted value (y) is also subject to errors
- Can derive confidence intervals for a and b
- First, need estimate of variance of a and b

$$
s^{2}=S S E /(n-2)
$$

- With n measurements and two variables, the degrees of freedom are $n-2$
- Expand SSE
$=\Sigma e_{i}^{2}=\Sigma\left(y_{i}-a-b x_{i}\right)^{2}=\Sigma\left[\left(y_{i}-\underline{y}\right)-b\left(x_{i}-\underline{x}\right)\right]^{2}$

Coefficient of Determination

- Earlier: $S S E=S_{y y}-b S_{x y}$
- Let: $S S T=S_{y y}$ and $S S R=b S_{x y}$
- Now: SST = SSR + SSE
- Total variation (SST) has two components
- SSR portion explained by regression
- SSE is model error (distance from line)
- Fraction of total variation explained by model line: $r^{2}=S S R / S S T=(S S T-S S E) / S S T$
Called coefficient of determination
- How "good" is the regression model? Roughly:
- $0.8 \ll r^{2}<=1 \quad$ strong
- $0.5<=r^{2}<0.8$ medium
- $0<=r^{2}<0.5$ weak

Correlation Coefficient

- Square root of coefficient of determination is the correlation coefficient. Or:

$$
r=S_{x y} / \operatorname{sqrt}\left(S_{x x} S_{y y}\right)
$$

- Note, equivalently:

$$
r=b \operatorname{sqrt}\left(S_{x x} / S_{y y}\right)=\operatorname{sqrt}(S S R / S S T)
$$

- Where $b=S_{x y} / S_{x x}$ is slope of regression model line
- Value of r ranges between -1 and +1
-+1 is perfect linear positive relationship
- Change in \times provides corresponding change in y --1 is perfect linear negative relationship

Correlation Example

- From Read Size vs. Time model, correlation:
$r=b \operatorname{sqrt}\left(S_{x x} / S_{y y}\right)$
$=0.1002 \operatorname{sqrt}(86,611,800 / 869,922.4171)$
$=0.9998$
- Coefficient of determination: $r^{2}=(0.9998)^{2}=0.9996$
- So, 99.96% of the variation in time to read a file is explained by the linear model
- Note, correlation is not causation!
- Large file maybe does cause more time to read
- But, for example, time of day does not cause message to take longer

Multiple Linear Regression (2 of 2)

- As before, minimal when partial derivatives 0

$$
n b_{0}+b_{1} \Sigma x_{1 i}+b_{2} \Sigma x_{2 i}=\Sigma y_{i}
$$

$$
b_{0} \Sigma x_{1 i}+b_{1} \Sigma x_{1 i}{ }^{2}+b_{2} \Sigma x_{1 i} x_{2 i}=\Sigma x_{1 i} y_{i}
$$

$$
\mathrm{b}_{0} \Sigma x_{2 i}+\mathrm{b}_{1} \Sigma x_{1 i} x_{2 i}+b_{2} \Sigma x_{2 i}^{2}=\Sigma x_{2 i} y_{i}
$$

- Three equations in three unknowns $\left(b_{0}, b_{1}, b_{2}\right)$
- Solve using wide variety of software
- Generalize:

$$
y=b_{0}+b_{1} x_{1}+\ldots+b_{k} x_{k}
$$

- Can represent equations as matrix and solve using available software

Outline

- Introduction
- Basics
- Indices of Central Tendency
- Indices of Dispersion
- Comparing Systems
- Misc
- Regression
- ANOVA

Analysis of Variance (ANOVA)

- Partitioning variation into part that can be explained and part that cannot be explained
- Example:
- Easy to see regression that explains 70% of variation is not as good as one that explains 90\% of variation
- But how much of the explained variation is good?
- Enter: ANOVA

Before-and-After Comparison

Mean of differences $d=-1$
Standard deviation $s_{d}=4.15$

- From mean of differences, appears that system change reduced performance
- However, standard deviation is large
- Is the variation between the two systems (alternatives) greater than the variation (error) in the measurements?
- Confidence intervals can work, but what if there are more than two alternatives?

ANOVA - Analysis of Variance
$(1$ of 2$)$

- Separates total variation observed in a set of measurements into:
- (1) Variation within one system
- Due to uncontrolled measurement errors
- (2) Variation between systems
- Due to real differences + random error
- Is variation (2) statistically greater than variation (1)?

ANOVA - Analysis of Variance (2 of 2)

- Make n measurements of k alternatives
- $y_{i j}=i$ th measurement on jth alternative
- Assumes errors are:
- Independent
- Normally distributed
(Long example next)

Effects and Errors

- Effect is distance from overall mean Horizontally across alternatives
- Error is distance from column mean
- Vertically within one alternative

Error across alternatives, too

- Individual measurements are then:

$$
y_{i j}=\bar{y}_{. .}+\alpha_{j}+e_{i j}
$$

Variances from Sum of Squares

 (Mean Square Value)$$
\begin{aligned}
& s_{a}^{2}=\frac{S S A}{k-1} \\
& s_{e}^{2}=\frac{S S E}{k(n-1)}
\end{aligned}
$$

ANOVA Example (1 of 2)				
	Alternatives			
Measurements	1	2	3	Overall mean
1	0.0972	0.1382	0.7966	
2	0.0971	0.1432	0.5300	
3	0.0969	0.1382	0.5152	
4	0.1954	0.1730	0.6675	
5	0.0974	0.1383	0.5298	
Column mean	0.1168	0.1462	0.6078	0.2903
Effects	-0.1735	-0.1441	0.3175	

ANOVA Summary

- Useful for partitioning total variation into components
- Experimental error
- Variation among alternatives
- Compare more than two alternatives
- Note, does not tell you where differences may lie
- Use confidence intervals for pairs
- Or use contrasts

