

WP

- Indices of central tendency
- Three popular: mean, median, mode
- $\hfill \bullet$ Mean sum all observations, divide by num
- Median sort in increasing order, take middle
- Mode plot histogram and take largest bucket
- Mean can be affected by outliers, while median or mode ignore lots of info
- Mean has additive properties (mean of a sum is the sum of the means), but not median or mode

Linear	Regress	sion Example (3 of 3)
File Size (bytes) 10 50 100 500 1000 5000 10000	Time (μsec) 3.8 8.1 11.9 55.6 99.6 500.2 1006.1	Read Time versus File Size 1200
<mark>y</mark> = 2.24	+ 0.1002×	0 2000 4000 6000 8000 10000 File Size (in bytes)
Ex: pr	edict time t	o read 3k file is 303 µsec 🏭 WPI

• Colum measu – Av	nn means urement: erage pe	Colur are aver s within a erforman	nn Me rage valu a single c ce of on	es of all lternative alternative	tive \overline{y}_{j}	$=\frac{\sum_{i=1}^{n} y_{ij}}{n}$
			Alterr	natives		
Measure- ments	1	2		j		k
1	Y 11	<i>Y</i> 12		Уц		Y _{k1}
2	Y 21	Y ₂₂		Y2j		Y _{2k}
i	<i>Y</i> _{i1}	<i>Y</i> _{i2}		, Yij		Y _{ik}
n	Y _{n1}	Y _{n2}		y nj		Ynk
Column mean	<i>Y</i> ,1	Y.2		<i>Y</i> ,		<i>Y</i> .k
Effect	α ₁	α2		α _j		Λία _k WP

E	rror = • y _{ij} = y • Wher	Deviat _j + e _{ij} re e _{ij} = e	rion Fro error in	om Col	umn M rement:	ean s
			Alterr	natives		
Measure- ments	1	2		j		k
1	y 11	<i>Y</i> 12				Yk1
2	<i>Y</i> ₂₁	Y ₂₂		1/25		Y _{2k}
i	<i>Y</i> _{i1}	Y _{i2}		Y		Y _{ik}
n	Y _{n1}	Yn2		, nj		Y _{nk}
Column mean	Y.1	Y.2		Y.j		Y.k
Effect	α1	α2		αj		Γία _k
						We can be factorized and the

• Avera altern	ge of all latives	Over measure	rall Mo ments m	<mark>ean</mark> ade of a	$\ \overline{y}_{} = \sum_{i=1}^{n}$	$\frac{\sum_{j=1}^{k} \sum_{i=1}^{n} \mathcal{Y}_{ij}}{kn}$
			Altern	atives		
Measure- ments	1	2		j		k
1	<i>Y</i> 11	<i>Y</i> 12		Уıj		y _{k1}
2	y 21	Y 22		y 2j		Y2k
i	Ŋi	Yiz		Иј		Yik
n	Y _{n1}	Yn2		Ynj		Ynk
Column mean	<i>Y</i> .1	<i>Y</i> .2		Y.j		Y.k
Effect	α ₁	α ₂		α _j		α _k
	1	1				WP

	Effe • y _j = y • a _j = d	ect = D + a_j eviation	of colum	on Froi n mean f	n Over	rall Me	an
	- e	1160101	unennu	Altern	atives		
	Measure- ments	1	2		j		k
	1	Y 11	<i>Y</i> 12		<i>Y</i> 1j		Y _{k1}
	2	Y ₂₁	Y ₂₂		<i>Y</i> _{2j}		Y _{2k}
-							
	i	Y _{i1}	Y _{i2}		Y _{ij}		Y _{ik}
-							
	n	Y _{n1}	Yn2		Ynj		Ynk
	Col mean	Y .1	Y.2		Y.j		Y _k
	Effect				⁴ J		WP
							No

Deg • df(ss	TEES 5A) = k-1,	of Fre since Kal	eedom ternatives	i for E	ffect	ts
			Alterr	natives		
Measure- ments	1	2		j		k
1	Y 11	<i>Y</i> 12		<i>Y</i> 1j		y _{k1}
2	Y ₂₁	Y ₂₂		<i>Y</i> 2j		y _{2k}
i i	Y _{i1}	Y i2		Y _{ij}		Yik
n	Y _{n1}	Yn2		Y nj		Y _{nk}
Column mean	<i>Y</i> ₁	Y.2		<i>Y</i> .j		Y.k
Effect	AR A	1 1		a,		α _k
				•		WP

• df(s	55E) = k(i	n - 1), since	e <i>k</i> alterno	atives, each	with (<i>n</i> ·	- 1) <i>df</i>
			Alter	natives		
Measure- ments	1	2		j		k
1	Y 11	Y 12		1		Y _{k1}
2	Y 21	Y 22		Y23		Y₂k
				1 991 993 99		
i i	y_{i1}	y i2		Yij		Yik
n	Y _{n1}	Y _{n2}		Ynj		Y _{nk}
Column mean	Y .1	Y.2		Уj		Y.k
Effect	α,	α2		α,		a

	AN	NOVA E	Example	(1 of 2)
			Alternatives		
	Measurements	1	2	3	Overall mean
	1	0.0972	0.1382	0.7966	
	2	0.0971	0.1432	0.5300	
	3	0.0969	0.1382	0.5152	
	4	0.1954	0.1730	0.6675	
	5	0.0974	0.1383	0.5298	
-	Column mean	0.1168	0.1462	0.6078	0.2903
	Effects	-0.1735	-0.1441	0.3175	

AN	IOVA Examp	ole (2 of	2)
Variation	Alternatives	Error	Total
Sum of squares	SSA = 0.7585	SSE = 0.0685	SST = 0.8270
Deg freedom	k - 1 = 2	k(n-1) = 12	kn - 1 = 14
Mean square	$s_a^2 = 0.3793$	$s_e^2 = 0.0057$	
Computed F	0.3793/0.0057 = 66.4		
Tabulated F	$F_{[0.95;2,12]} = 3.89$		
 SSA/SST: → 91.7% c differe SSE/SST: → 8.3% of measure Computed / → 95% co statisti 	= 0.7585/0.8270 = 0. of total variation in m nces among alternativ = 0.0685/0.8270 = 0.6 f total variation in me ements F statistic > tabulatec nfidence that differe cally significant.	917 easurements is es 283 asurements is I Fstatistic ences among alt	due to due to noise in ternatives are

ANOVA Summary

- Useful for partitioning total variation into components
 - Experimental error
 - Variation among alternatives
- Compare more than two alternatives
- Note, does not tell you where differences may lie
 - Use confidence intervals for pairs
 - Or use contrasts

