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CS533
Modeling and Performance 
Evaluation of Network and 

Computer Systems

Statistics for Performance 
Evaluation

(Chapters 12-15)

Why do we need statistics?
1.  Noise, noise, noise, noise, noise!

OK – not really this type of noise

Why Do We Need Statistics?

2.  Aggregate data 
into meaningful 
information.

445 446 397 226
388 3445 188 1002
47762 432 54 12
98 345 2245 8839
77492 472 565 999
1 34 882 545 4022
827 572 597 364

...=x

Why Do We Need Statistics?
“Impossible things usually don’t happen.”

- Sam Treiman, Princeton University
• Statistics helps us quantify “usually.”

What is a Statistic?
• “A quantity that is computed from a 

sample [of data].”
Merriam-Webster

→ A single number used to summarize a 
larger collection of values.

What are Statistics?
• “Lies, damn lies, and statistics!”
• “A collection of quantitative data.”
• “A branch of mathematics dealing with 

the collection, analysis, interpretation, 
and presentation of masses of numerical 
data.”

Merriam-Webster
→ We are most interested in analysis and 

interpretation here.
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Objectives
• Provide intuitive conceptual background 

for some standard statistical tools.
– Draw meaningful conclusions in presence 

of noisy measurements.
– Allow you to correctly and intelligently 

apply techniques in new situations.
→ Don’t simply plug and crank from a 

formula!

Outline
• Introduction
• Basics
• Indices of Central Tendency
• Indices of Dispersion
• Comparing Systems
• Misc
• Regression
• ANOVA

Basics (1 of 3)
• Independent Events:

– One event does not affect the other
– Knowing probability of one event does not change 

estimate of another
• Cumulative Distribution (or Density) Function:

– Fx(a) = P(x<=a)
• Mean (or Expected Value):

– Mean µ = E(x) = Σ(pixi) for i over n
• Variance:

– Square of the distance between x and the mean 
• (x- µ)2

– Var(x) = E[(x- µ)2] = Σpi (xi- µ)2

– Variance is often σ.  Square root of variance, σ2, is 
standard deviation

Basics (2 of 3)
• Coefficient of Variation:

– Ratio of standard deviation to mean
– C.O.V. = σ / µ

• Covariance:
– Degree two random variables vary with each 

other
– Cov = σ2

xy = E[(x- µx)(y- µy)]
– Two independent variables have Cov of 0

• Correlation:
– Normalized Cov (between –1 and 1)
– ρxy = σ2

xy / σxσy
– Represents degree of linear relationship

Basics (3 of 3)
• Quantile:

– The x value of the CDF at α
– Denoted xα, so F(xα) = α
– Often want .25, .50, .75

• Median:
– The 50-percentile (or, .5-quantile)

• Mode:
– The most likely value of xi

• Normal Distribution
– Most common distribution used, “bell” curve

Outline
• Introduction
• Basics
• Indices of Central Tendency
• Indices of Dispersion
• Comparing Systems
• Misc
• Regression
• ANOVA
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Summarizing Data by a Single 
Number

• Indices of central tendency
• Three popular: mean, median, mode
• Mean – sum all observations, divide by num
• Median – sort in increasing order, take 

middle
• Mode – plot histogram and take largest 

bucket
• Mean can be affected by outliers, while 

median or mode ignore lots of info
• Mean has additive properties (mean of a 

sum is the sum of the means), but not 
median or mode

Relationship Between Mean, 
Median, Mode
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Guidelines in Selecting Index of 
Central Tendency

• Is it categorical?
– yes, use mode

•Ex: most frequent microprocessor
• Is total of interest?

– yes, use mean
•Ex: total CPU time for query (yes)
• Ex: number of windows on screen in query (no)

• Is distribution skewed?
– yes, use median
– no, use mean

Examples for Index of Central 
Tendency Selection

• Most used resource in a system?
– Categorical, so use mode

• Response time?
– Total is of interest, so use mean

• Load on a computer?
– Probably highly skewed, so use median

• Average configuration of number of disks, 
amount of memory, speed of network?
– Probably skewed, so use median

Common Misuses of Means (1 of 2)
• Using mean of significantly different values

– Just because mean is right, does not say it is 
useful
• Ex: two samples of response time, 10 ms and 

1000 ms.  Mean is 505 ms but useless.
• Using mean without regard to skew

– Does not well-represent data if skewed
•Ex: sys A: 10, 9, 11, 10, 10 (mean 10, mode 10)
•Ex: sys B: 5, 5, 5, 4, 31 (mean 10, mode 5)

Common Misuses of Means (2 of 2)
• Multiplying means

– Mean of product equals product of means if 
two variables are independent.  But:
• if x,y are correlated E(xy) != E(x)E(y)

– Ex: mean users system 23, mean processes 
per user is 2.  What is the mean system 
processes? Not 46!
Processes determined by load, so when load 

high then users have fewer.  Instead, must 
measure total processes and average.

• Mean of ratio with different bases (later)
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Geometric Mean (1 of 2)
• Previous mean was arithmetic mean

– Used when sum of samples is of interest
– Geometric mean when product is of interest

• Multiply n values {x1, x2, …, xn} and take nth root: 
x = (Πxi)1/n

• Example: measure time of network layer 
improvement, where 2x layer 1 and 2x layer 2 
equals 4x improvement.

• Layer 7 improves 18%, 6 13%, 5, 11%, 4 8%, 3 10%, 
2 28%, 1 5%

• So, geometric mean per layer:
– [(1.18)(1.13)(1.11)(1.08)(1.10)(1.28)(1.05)]1/7 – 1
– Average improvement per layer is 0.13, or 13%

Geometric Mean (2 of 2)
• Other examples of metrics that work in a 

multiplicative manner:
– Cache hit ratios over several levels

•And cache miss ratios
– Percentage of performance improvement 

between successive versions
– Average error rate per hop on a multi-hop 

path in a network

Harmonic Mean (1 of 2)
• Harmonic mean of samples {x1, x2, …, xn} is:

n / (1/x1 + 1/x2 + … + 1/xn)
• Use when arithmetic mean works for 1/x
• Ex: measurement of elapsed processor 

benchmark of m instructions.  The ith 
takes ti seconds.  MIPS xi is m/ti
– Since sum of instructions matters, can use 

harmonic mean
= n / [1/(m/t1) + 1/(m/t2) + … + 1/(m/tn)]
= m / [(1/n)(t1 + t2 + … + tn)

Harmonic Mean (2 of 2)
• Ex: if different benchmarks (mi), then sum 

of mi/ti does not make sense
• Instead, use weighted harmonic mean

n / (w1/x1 + w2/x2 + … + w3/xn)
– where w1 + w2 + .. + wn = 1

• In example, perhaps choose weights 
proportional to size of benchmarks
– wi = mi / (m1 + m2 + .. + mn)

• So, weighted harmonic mean 
(m1 + m2 + .. + mn) / (t1 + t2 + .. + tn)

– Reasonable, since top is total size and 
bottom is total time

Mean of a Ratio (1 of 2)
• Set of n ratios, how to summarize?
• Here, if sum of numerators and sum of 

denominators both have meaning, the 
average ratio is the ratio of averages
Average(a1/b1, a2/b2, …, an/bn)
= (a1 + a2 + … + an) / (b1 + b2 + … + bn)
= [(Σai)/n] / [(Σbi)/n]

• Commonly used in computing mean resource  
utilization (example next)

Mean of a Ratio (2 of 2)
• CPU utilization: 

– For duration 1 busy 45%, 1 %45, 1 45%, 1 
45%, 100 20%

– Sum 200%, mean != 200/5 or 40%
•The base denominators (duration) are not 

comparable
– mean = sum of CPU busy / sum of durations
= (.45+.45+.45+.45+20) / (1+1+1+1+100)
= 21%
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Outline
• Introduction
• Basics
• Indices of Central Tendency
• Indices of Dispersion
• Comparing Systems
• Misc
• Regression
• ANOVA

Summarizing Variability (1 of 2)

• Summarizing by a single number is rarely 
enough need statement about variability
– If two systems have same mean, tend to 

prefer one with less variability

“Then there is the man who drowned crossing a stream
with an average depth of six inches.” – W.I.E. Gates
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Summarizing Variability (2 of 2)
• Indices of Dispersion

– Range – min and max values observed
– Variance or standard deviation
– 10- and 90-percentiles
– (Semi-)interquartile range
– Mean absolute deviation

(Talk about each next)

Range
• Easy to keep track of
• Record max and min, subtract
• Mostly, not very useful:

– Minimum may be zero
– Maximum can be from outlier

•System event not related to phenomena 
studied

– Maximum gets larger with more samples, so 
no “stable” point

• However, if system is bounded, for large 
sample, range may give bounds

Sample Variance
• Sample variance (can drop word “sample” if 

meansing is clear)
– s2 = [1/(n-1)] Σ(xi – x)2

• Notice (n-1) since only n-1 are independent
– Also called degrees of freedom

• Main problem is in units squared so 
changing the units changes the answer 
squared
– Ex: response times of .5, .4, .6 seconds  
Variance = 0.01 seconds squared or 10000 

msecs squared

Standard Deviation
• So, use standard deviation

– s = sqrt(s2)
– Same unit as mean, so can compare to mean

• Ex: response times of .5, .4, .6 seconds
– stddev .1 seconds or 100 msecs
– Can compare each to mean

• Ratio of standard deviation to mean?
– Called the Coefficient of Variation (C.O.V.)
– Takes units out and shows magnitude
– Ex: above is 1/5th (or .2) for either unit
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Percentiles/Quantile
• Similar to range
• Value at express percent (or fraction)

– 90-percentile, 0.9-quantile
– For α–quantile, sort and take [(n-1)α+1]th

• [] means round to nearest integer
• 25%, 50%, 75% quartiles (Q1, Q2, Q3)

– Note, Q2 is also the median
• Range of Q3 – Q1 is interquartile range

– ½ of (Q3 – Q1) is semi-interquartile range

Mean Absolute Deviation
• (1/n) Σ|xi – x|
• Similar to standard deviation, but requires 

no multiplication or square root
• Does not magnify outliers as much

– (Outliers are not squared)
• So, how susceptible are indices of 

dispersion to outliers?

Indices of Dispersion Summary
• Ranking of affect by outliers

– Range susceptible
– Variance (standard deviation)
– Mean absolute deviation
– Semi-interquartile range resistant

• Use semi-interquantile (SIQR) for index of 
dispersion whenever using median as index 
of central tendency

• Note, all only applied to quantitative data
– For qualitative (categorical) give number of 

categories for a given percentile of samples

Indices of Dispersion Example

• First, sort
• Median = [1 + 31*.5] = 16th = 3.2
• Q1 = 1 + .31 * .25 = 9th = 3.9
• Q3 = 1 + .31*.75 = 24th = 4.5
• SIQR = (Q3–Q1)/2 = .65
• Variance = 0.898
• Stddev = 0.948
• Range = 5.9 – 1.9 = 4

3.9
3.9
4.1
4.1
4.2
4.2
4.4
4.5
4.5
4.8
4.9
5.1
5.1
5.3
5.6
5.9

1.9
2.7
2.8
2.8
2.8
2.9
3.1
3.1
3.2
3.2
3.3
3.4
3.6
3.7
3.8
3.9

(Sorted)
CPU Time

Selecting Index of Dispersion
• Is distribution bounded

– Yes? use range
• No? Is distribution unimodal symmetric?

– Yes? Use C.O.V.
• No? 

– Use percentiles or SIQR
• Not hard-and-fast rules, but rather 

guidelines
– Ex: dispersion of network load. May use 

range or even C.O.V.  But want to 
accommodate 90% or 95% of load, so use 
percentile.  Power supplies similar.

Determining Distribution of Data
• Additional summary information could be 

the distribution of the data
– Ex: Disk I/O mean 13, variance 48. Ok. 

Perhaps more useful to say data is uniformly 
distributed between 1 and 25.

– Plus, distribution useful for later simulation 
or analytic modeling

• How do determine distribution?
– First, plot histogram
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Histograms
• Need: max, min, size of 

buckets
• Determining cell size is a 

problem
– Too few, hard to see distro
– Too many, distro lost
– Guideline:

• if any cell > 5 then split

Cell  # Histogram (size 1)
1       1 X
2       5 XXXXX
3       12 XXXXXXXXXXXX
4       9 XXXXXXXXX
5       5 XXXXX

Cell   # Histogram (size .2)
1.8      1       X
2.6      1       X
2.8      4       XXXX
3.0      2       XX
3.2      3       XXX
3.4      1       X
3.6      2       XX
3.8      4       XXXX
4.0      2       XX
4.2      2       XX
4.4      3       XXX
4.8      2       XX
5.0      2       XX
5.2      1       X
5.6      1       X
5.8      1       X

Distribution of Data
• Instead, plot observed quantile versus 

theoretical quantile
– yi is observed, xi is theoretical
– If distribution fits, will have line

Sa
m

pl
e

Q
ua

nt
ile

Theoretical
Quantile

Need to invert CDF:
qi = F(xi), or xi = F-1(qi)

Where F-1?  Table 28.1 for
many distributions

Normal distribution:
xi = 4.91[qi

0.14 – (1-qi)0.14]

Table 28.1

Normal distribution:
xi = 4.91[qi

0.14 – (1-qi)0.14]

Outline
• Introduction
• Basics
• Indices of Central Tendency
• Indices of Dispersion
• Comparing Systems
• Misc
• Regression
• ANOVA

Measuring Specific Values

Mean of measured values
(sample mean)

True value
(population mean)

Resolution
(determined by tools)

Precision
(influenced by 

errors)

Accuracy

Comparing Systems Using Sample 
Data

• The word “sample” comes from the same 
root word as “example”

• Similarly, one sample does not prove a 
theory, but rather is an example

• Basically, a definite statement cannot be 
made about characteristics of all systems

• Instead, make probabilistic statement 
about range of most systems
– Confidence intervals

“Statistics are like alienists – they will testify for 
either side.” – Fiorello La Guardia
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Sample versus Population
• Say we generate 1-million random numbers

– mean µ and stddev σ.
– µ is population mean

• Put them in an urn draw sample of n
– Sample {x1, x2, …, xn} has mean x, stddev s

• x is likely different than µ!
– With many samples, x1 != x2!= …

• Typically, µ is not known and may be 
impossible to know
– Instead, get estimate of µ from x1, x2, …

Confidence Interval for the Mean
• Obtain probability of µ in interval [c1,c2]

– Prob{c1 < µ < c2} = 1-α
• (c1, c2) is confidence interval
•α is significance level
• 100(1- α) is confidence level

• Typically want α small so confidence level 
90%, 95% or 99% (more later)

• Say, α =0.1. Could take k samples, find 
sample means, sort
– Interval: [1+0.05(k-1)]th and [1+0.95(k-1)]th

• 90% confidence interval
• We have to take k samples, each of size n?

Central Limit Theorem

• Do not need many samples.  One will do.
x ~ N(µ, σ/sqrt(n))

• Standard error = σ /sqrt(n)
– As sample size n increases, error decreases

• So, a 100(1- α)% confidence interval for a 
population mean is:

(x-z1-α/2s/sqrt(n), x+z1-α/2s/sqrt(n))
• Where z1-α/2 is a (1-α/2)-quantile of a unit 

normal (Table A.2 in appendix, A.3 common)

Sum of a “large” number of values from any 
distribution will be normally distributed.

Confidence Interval Example
• x = 3.90, stddev s=0.95, n=32
• A 90% confidence interval for the 

population mean (µ):
3.90 +- (1.645)(0.95)/sqrt(32)
= (3.62, 4.17)

• With 90% confidence, µ in that 
interval.  Chance of error 10%.
– If we took 100 samples and made 

confidence intervals as above, in 90 
cases the interval includes µ and in 
10 cases would not include µ

3.9
3.9
4.1
4.1
4.2
4.2
4.4
4.5
4.5
4.8
4.9
5.1
5.1
5.3
5.6
5.9

1.9
2.7
2.8
2.8
2.8
2.9
3.1
3.1
3.2
3.2
3.3
3.4
3.6
3.7
3.8
3.9

(Sorted)
CPU Time

Meaning of Confidence Interval

Sample Includes µ?
1 yes
2 yes
3 no
…
100 yes
Total yes >100(1-α)
Total no <100α

f(x)

µ

How does the Interval Change?
• 90% CI = [6.5, 9.4]

– 90% chance real value is between 6.5, 9.4
• 95% CI = [6.1, 9.7]

– 95% chance real value is between 6.1, 9.7
• Why is the interval wider when we are 

more confident?

c1 c2

x

1−α

α/2α/2
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What if n not large?
• Above only applies for large samples, 30+
• For smaller n, can only construct 

confidence intervals if observations come 
from normally distributed population
– Is that true for computer systems?
(x-t[1-α/2;n-1]s/sqrt(n), x+t[1-α/2;n-1]s/sqrt(n)) 

• Table A.4. (Student’s t distribution.  
“Student” was an anonymous name)

Again, n-1
degrees freedom

Testing for a Zero Mean
• Common to check if a measured value is 

significantly different than zero
• Can use confidence interval and then check 

if 0 is inside interval.
• May be inside, below or above

m
ea

n

0

Note, can extend this to include testing for different than
any value a

Example: Testing for a Zero Mean
• Seven workloads
• Difference in CPU times of two algorithms

{1.5, 2.6, -1.8, 1.3,-0.5, 1.7, 2.4}
• Can we say with 99% confidence that one 

algorithm is superior to another?
• n = 7, α = 0.01
• mean = 7.20/7 = 1.03
• variance = 2.57 so stddev = sqrt(2.57) = 1.60
• CI = 1.03 +- tx1.60/sqrt(7) = 1.03 +- 0.605t
• 1 - α/2 = .995, so t[0.995;6] = 3.707 (Table A.4)
• 99% confidence interval = (-1.21, 3.27)

With 99% confidence, algorithm performances 
are identical

Comparing Two Alternatives

• Often want to compare system
– System A with system B
– System “before” and system “after”

• Paired Observations
• Unpaired Observations
• Approximate Visual Test

Paired Observations
• If n experiments such that 1-to-1 

correspondence from test on A with test 
on B then paired
– (If no correspondence, then unpaired)

• Treat two samples as one sample of n pairs
• For each pair, compute difference
• Construct confidence interval for 

difference
• If CI includes zero, then systems are not 

significantly different

Example: Paired Observations
• Measure different size workloads on A and B

{(5.4, 19.1), (16.6, 3.5), (0.6,3.4), (1.4,2.5), (0.6, 3.6) (7.3, 1.7)}

• Is one system better than another?
• Six observed differences

– {-13.7, 13.1, -2.8, -1.1, -3.0, 5.6}
• Mean = -.32, stddev = 9.03
• CI = -0.32 +- t[sqrt(81.62/6)] = -0.32 +- t(3.69)

• The .95 quantile of t with 5 degrees of freedom
= 2.015

• 90% confidence interval = (-7.75, 7.11)
• Therefore, two systems not different
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Unpaired Observations
• Systems A, B with samples na and nb
• Compute sample means: xa, xb
• Compute standard devs: sa, sb
• Compute mean difference: xa-xb
• Compute stddev of mean difference:

– S = sqrt(sa
2/na + sb

2/nb)
• Compute effective degrees of freedom
• Compute confidence interval
• If interval includes zero, not a significant 

difference

Example: Unpaired Observations
• Processor time for task on two systems

– A: {5.36, 16.57, 0.62, 1.41, 0.64, 7.26}
– B: {19.12, 3.52, 3.38, 2.50, 3.60, 1.74}

• Are the two systems significantly different?
• Mean xa = 5.31, sa

2 = 37.92, na=6
• Mean xb = 5.64, sb

2 = 44.11, nb =6
• Mean difference xa-xb = -0.33
• Stddev of mean difference = 3.698
• t is 1.71
• 90% confidence interval = (-6.92, 6.26)

– Not different

Approximate Visual Test
• Compute confidence interval for means
• See if they overlap

m
ea

n A

B

m
ea

n

A
B

m
ea

n

A

B

CIs do not overlap
A higher than B

CIs do overlap and
Mean of one in another

Not different

CIs do overlap but
mean of one not
in another

Do t test

Example: Approximate Visual Test
• Processor time for task on two systems

– A: {5.36, 16.57, 0.62, 1.41, 0.64, 7.26}
– B: {19.12, 3.52, 3.38, 2.50, 3.60, 1.74}

• t-value at 90%, 5 is 2.015
• 90% confidence intervals

– A = 5.31 +-(2.015)sqrt(37.92/6) = (0.24,10.38)
– B = 5.64 +-(2.015)sqrt(44.11/6) = (0.18,11.10)

• The two confidence intervals overlap and the 
mean of one falls in the interval of another. 
Therefore the two systems are not 
different without unpaired t test

Outline
• Introduction
• Basics
• Indices of Central Tendency
• Indices of Dispersion
• Comparing Systems
• Misc
• Regression
• ANOVA

What Confidence Level to Use?
• Often see 90% or 95% (or even 99%)
• Choice is based on loss if population parameter is 

outside or gain if parameter inside
– If loss is high compared to gain, use high confidence
– If loss is low compared to gain, use low confidence
– If loss is negligible, low is fine

• Example:
– Lottery ticket $1, pays $5 million
– Chance of winning is 10-7 (1 in 10 million)
– To win with 90% confidence, need 9 million tickets

• No one would buy that many tickets!
– So, most people happy with 0.01% confidence
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Hypothesis Testing 
• Most stats books have a whole chapter
• Hypothesis test usually accepts/rejects

– Can do that with confidence intervals
• Plus, interval tells us more … precision
• Ex: systems A and B

– CI (-100,100) we can say “no difference”
– CI(-1, 1) say “no difference” loudly

• Confidence intervals easier to explain since units 
are the same as those being measured
– Ex: more useful to know range 100 to 200 than that 

the probability of it being less than 110 is 3%

One-Sided Confidence Intervals
• At 90% confidence, 5% chance lower than 

limit and 5% chance higher than limit
• Sometimes, only want one-sided comparison

– Say, test if mean is greater than value
(x-t[1-α;n-1]s/sqrt(n),x)

– Use 1-α instead of 1-α/2
• Similarly (but with +) for upper confidence 

limit
• Can use z-values if more than 30

Confidence Intervals for 
Proportions

• Categorical variables often has probability 
with each category called proportions
– Want CI on proportions

• Each sample of n observations gives a 
sample proportion (say, of type 1)
– n1 of n observations are type 1

p = n1 / n
• CI for p: p+-z1-α/2sqrt(p(1-p)/n)
• Only valid if np > 10

– Otherwise, too complicated.  See stats 
book.

Example: CI for Proportions
• 10 of 1000 pages printed are illegible

p = 10/1000 = 0.01
• Since np>10 can use previous equation
CI = p +- z(sqrt(p(1-p)/n))
= 0.01 +- z(sqrt(0.01(0.99)/1000)
= 0.01 +- 0.003z
90% CI = 0.01 +- (0.003)(1.645) = (0.005, 0.015)
• Thus, at 90% confidence we can say 0.5% to 

1.5% of the pages are illegible.  
– There is a 10% chance this statement is in 

error

Determining Sample Size
• The larger the sample size, the higher the 

confidence in the conclusion
– Tighter CIs since divided by sqrt(n)
– But more samples takes more resources 

(time)
• Goal is to find the smallest sample size to 

provide the desired confidence in the 
results

• Method: 
– small set of preliminary measurements
– use to estimate variance
– use to determine sample size for accuracy

Sample Size for Mean
• Suppose we want mean performance with 

accuracy of +-r% at 100(1-α)% confidence
• Know for sample size n, CI is

x +- z(s/sqrt(n))
• CI should be [x(1-r/100), x(1+r/100)]

x +- z(s/sqrt(n)) = x(1 +- r/100)
z(s/sqrt(n)) = x(r/100)

n = [(100zs)/(rx)]2
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Example: Sample Size for Mean
• Preliminary test: 

– response time 20 seconds
– stddev = 5 seconds

• How many repetitions to get response time 
accurate within 1 second at 95% confidence
x=20, s=5, z=1.960, r=5 (1 sec is 5% of 20)

n = [(100 x 1.960 x 5) / (5 x 20)]2

= (9.8)2

= 96.04
• So, a total of 97 observations are needed
• Can extend to proportions (not shown)

Example: Sample Size for 
Comparing Alternatives

• Need non-overlapping confidence intervals
• Algorithm A loses 0.5% of packets and B loses 0.6%
• How many packets do we need to state that alg A is 

better than alg B at 95%?
CI for A: 0.005 +- 1.960[0.005(1-0.005)/n)]½

CI for B: 0.006 +- 1.960[0.006(1-0.006)/n)]½

• Need upper edge of A not to overlap lower edge of B
0.005 + 1.960[0.005(1-0.005)/n)]½ <

0.006 - 1.960[0.006(1-0.006)/n)]½

solve for n: n > 84,340
• So, need 85000 packets

Summary
• Statistics are tools

– Help draw conclusions
– Summarize in a meaningful way in presence 

of noise
• Indices of central tendency and Indices of 

central dispersion
– Summarize data with a few numbers

• Confidence intervals

Outline
• Introduction
• Basics
• Indices of Central Tendency
• Indices of Dispersion
• Comparing Systems
• Misc
• Regression
• ANOVA

Regression

• Expensive (and sometimes impossible) to 
measure performance across all possible 
input values

• Instead, measure performance for limited 
inputs and use to produce model over range 
of input values
– Build regression model

“I see your point … and raise you a line.”
– Elliot Smorodinksy

Linear Regression (1 of 2)
• Captures linear relationship between input 

values and response
– Least-squares minimization

• Of the form:
y = a + bx

• Where x input, y response and we want to 
know a and b

• If yi is measured for input xi, then each pair 
(xi, yi) can be written:

yi = a + bxi + ei
• where ei is residual (error) for regression 

model
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Linear Regression (2 of 2)
• The sum of the errors squared:

SSE = Σei
2 = Σ(yi - a - bxi)2

• Find a and b that minimizes SSE
• Take derivative with respect to a and then b 

and then set both to zero
na + bΣxi = Σyi (1)

aΣxi + bΣxi
2 = Σxiyi

• Solving for b gives:
b = nΣxiyi – (Σxi)(Σyi)

nΣxi
2 – (Σxi)2

• Using (1) and solving for a:
a = y – bx

(two equations
in two unknowns)

Linear Regression Example (1 of 3)
File Size Time
(bytes) (µsec)
10 3.8
50 8.1
100 11.9
500 55.6
1000 99.6
5000 500.2
10000 1006.1

Develop linear regression 
model for time to read 
file of size bytes

Linear Regression Example (2 of 3)
File Size Time
(bytes) (µsec)
10 3.8
50 8.1
100 11.9
500 55.6
1000 99.6
5000 500.2
10000 1006.1

Develop linear regression 
model for time to read 
file of size bytes

• Σxi = 16,660.0
• Σyi = 1685.3
• Σxiyi = 12,691,033.0
• Σxi

2 = 126,262,600.0
• x = 2380
• y = 240.76
• b =    (7)(12691033) 

- (16660)(1685.3)
(7)(126262600)

– (16660)2

• a = 240.76–.1002(2380)
= 2.24

• y = 2.24 + 0.1002x

Linear Regression Example (3 of 3)
File Size Time
(bytes) (µsec)
10 3.8
50 8.1
100 11.9
500 55.6
1000 99.6
5000 500.2
10000 1006.1

y = 2.24 + 0.1002x

Ex: predict time to read 3k file is 303 µsec

Confidence Intervals for 
Regression Parameters (1 of 2)

• Since parameters a and b are based on 
measured values with error, the predicted 
value (y) is also subject to errors

• Can derive confidence intervals for a and b
• First, need estimate of variance of a and b

s2 = SSE / (n-2)
– With n measurements and two variables, the 

degrees of freedom are n-2
• Expand SSE

= Σei
2 = Σ(yi-a-bxi)2 = Σ[(yi-y)-b(xi-x)]2

Confidence Intervals for 
Regression Parameters (2 of 3)

• Helpful to represent SSE as:
SSE = Syy – 2bSxy + b22Sxx = Syy-bSxy

• Where
Sxx= Σ(xi-x)2 = Σxi

2 – (Σxi)2 / n
Syy= Σ(yi-y)2 = Σyi

2 – (Σyi)2 / n
Sxy = Σ(xi-x) (yi-y) = Σxiyi – (Σxi) (Σyi) / n

• So, s2 = SSE / (n-2) 
= Syy-bSxy / (n-2)
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Confidence Intervals for 
Regression Parameters (3 of 3)

• Conf interval for slope (b) and y intercept 
(a):

[b1,b2] = b ± t[1-α/2;n-2]s / sqrt(Sxx)
[a1,a2] = a ± t[1-α/2;n-2]s x sqrt(Σxi

2)
sqrt(nSxx)

• Finally, for prediction yp can determine 
interval [yp1, yp2]:
= yp ± t[1-α/2;n-2]s x sqrt (1 + 1/n + (xp-x)2/Sxx)

Regression Conf Interval Example 
(1 of 2)

• Σxi = 16,660.0
• Σyi = 1685.3
• Σxiyi = 12,691,033.0
• Σxi

2 = 126,262,600.0
• x = 2380
• y = 240.76
• b =    (7)(12691033) 

- (16660)(1685.3)
(7)(126262600)

– (16660)2

• a = 240.76–.1002(2380)
= 2.24

• y = 2.24 + 0.1002x

• Sxx = 126262600 –166602/7
= 86,611,800

• Syy = 1275670.43 – (1685.3)2 / 7
= 869,922.42

• Sxy = 12691033–(16660)(1685.3)/7 
= 8,680,019

• s2 = 869922.42 – 0.1002(8680019)
(7-2)

• Std dev s = sqrt(36.9027) = 6.0748
• 90% conf interval

– [b1,b2] = [0.099, 0.102]
– [a1,a2] = [-3.35, 7.83]

y = 2.24 + 0.1002x

Regression Conf Interval Example 
(2 of 2)

(Zoom)

Another Regression Conf Interval 
Example (1 of 2)

Another Regression Conf Interval 
Example (2 of 2)

Note, values
outside measured
range have larger
interval!
Beware of large
extrapolations

(Zoom out)

Another Regression Conf Interval 
Example

Note, values
between measured
values may have
small confidence
values.
But should verify
makes sense for
system
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Correlation
• After developing regression model, useful 

to know how well the regression equation 
fits the data
– Coefficient of determination

•Determines how much of the total variation 
is explained by the linear model

– Correlation coefficient
•Square root of the coefficient of 

determination

Coefficient of Determination
• Earlier: SSE = Syy – bSxy
• Let: SST = Syy and SSR = bSxy
• Now: SST = SSR + SSE

– Total variation (SST) has two components
• SSR portion explained by regression
• SSE is model error (distance from line)

• Fraction of total variation explained by model line:
r2 = SSR / SST = (SST – SSE) / SST

– Called coefficient of determination
• How “good” is the regression model? Roughly:

– 0.8 <= r2 <= 1 strong
– 0.5 <= r2 <   0.8 medium
– 0 <= r2 < 0.5 weak

Correlation Coefficient
• Square root of coefficient of determination 

is the correlation coefficient. Or:
r = Sxy / sqrt(SxxSyy)

• Note, equivalently:
r = b sqrt(Sxx/Syy) = sqrt(SSR/SST)

– Where b = Sxy/Sxx is slope of regression 
model line

• Value of r ranges between –1 and +1
– +1 is perfect linear positive relationship

•Change in x provides corresponding change in y
– -1 is perfect linear negative relationship

Correlation Example
• From Read Size vs. Time model, correlation:

r = b sqrt(Sxx/Syy)
= 0.1002 sqrt(86,611,800 / 869,922.4171)
= 0.9998

• Coefficient of determination:
r2 = (0.9998)2 = 0.9996

• So, 99.96% of the variation in time to read a file is 
explained by the linear model

• Note, correlation is not causation!
– Large file maybe does cause more time to read
– But, for example, time of day does not cause message 

to take longer

Correlation Visual Examples
(1 of 2)

(http://peace.saumag.edu/faculty/Kardas/Courses/Statistics/Lectures/C4CorrelationReg.html)

Correlation Visual Examples
(2 of 2)

r = 1.0 r = .85

r = -.94

r = .17

(http://www.psychstat.smsu.edu/introbook/SBK17.htm)
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Multiple Linear Regression (1 of 2)
• Include effects of several input variables 

that are linearly related to one output
• Straight-forward extension of single 

regression
• First, consider two variables.  Need:

y = b0 + b1x1 + b2x2
• Make n measurements of (x1i, x2i, yi) and:

yi = b0 + b1x1i + b2x2i + ei• As before, want to minimize sum square of 
residual errors (the ei’s):

SSE = Σei
2 = Σ(yi-b0-b1x1i-b2x2i)2

Multiple Linear Regression (2 of 2)
• As before, minimal when partial derivatives 0

nb0 + b1Σx1i + b2Σx2i = Σyi
b0Σx1i + b1Σx1i

2 + b2Σx1ix2i = Σx1iyi
b0Σx2i + b1Σx1ix2i + b2Σx2i

2 = Σx2iyi
• Three equations in three unknowns (b0, b1, b2)

– Solve using wide variety of software
• Generalize:

y = b0 + b1x1 + … + bkxk• Can represent equations as matrix and solve 
using available software

Verifying Linearity (1 of 2)
• Should do by visual check before regression

(http://peace.saumag.edu/faculty/Kardas/Courses/Statistics/Lectures/C4CorrelationReg.html)

Verifying Linearity (2 of 2)
• Linear regression may not be best model

(http://peace.saumag.edu/faculty/Kardas/Courses/Statistics/Lectures/C4CorrelationReg.html)

Outline
• Introduction
• Basics
• Indices of Central Tendency
• Indices of Dispersion
• Comparing Systems
• Misc
• Regression
• ANOVA

Analysis of Variance (ANOVA)
• Partitioning variation into part that can be 

explained and part that cannot be 
explained

• Example:
– Easy to see regression that explains 70% of 

variation is not as good as one that explains 
90% of variation

– But how much of the explained variation is 
good?

• Enter: ANOVA

(Prof. David Lilja, ECE Dept., University of Minnesota)
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Before-and-After Comparison

483876
-391885
-595904
490943
-588832
-186851

Difference
(di = bi – ai)

After
(ai)

Before
(bi)

Measurement
(i)

b a

Mean of differences d = -1, Standard deviation sd = 4.15

Before-and-After Comparison

• From mean of differences, appears that 
system change reduced performance

• However, standard deviation is large
• Is the variation between the two systems 

(alternatives) greater than the variation 
(error) in the measurements?

• Confidence intervals can work, but what if 
there are more than two alternatives?

Mean of differences d = -1
Standard deviation sd = 4.15

Comparing More Than Two 
Alternatives• Naïve approach

– Compare confidence intervals

• Need to do for all pairs.  Grows quickly. 
• Ex- 7 alternatives would require 21 pair-wise comparisons

[(7 choose 2) = (7)(6) / (2)(1) = 42]
• Plus, would not be surprised to find 1 pair differed (at 95%)

ANOVA – Analysis of Variance 
(1 of 2)

• Separates total variation observed in a set 
of measurements into:
– (1) Variation within one system

•Due to uncontrolled measurement errors
– (2) Variation between systems

•Due to real differences + random error
• Is variation (2) statistically greater than  

variation (1)?

ANOVA – Analysis of Variance 
(2 of 2)

• Make n measurements of k alternatives
• yij = ith measurement on jth alternative
• Assumes errors are:

– Independent
– Normally distributed

(Long example next)

All Measurements for All 
Alternatives

αk…αj…α2α1Effect

y.k…y.j…y.2y.1Column 
mean

ynk…ynj…yn2yn1n
…………………

yik…yij…yi2yi1i
…………………

y2k…y2j…y22y212

yk1…y1j…y12y111

k…j…21Measure-
ments

Alternatives
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Column Means

αk…αj…α2α1Effect

y.k…y.j…y.2y.1Column 
mean

ynk…ynj…yn2yn1n
…………………

yik…yij…yi2yi1i
…………………

y2k…y2j…y22y212

yk1…y1j…y12y111

k…j…21Measure-
ments

Alternatives

• Column means are average values of all 
measurements within a single alternative
– Average performance of one alternative n

y
y

n

i ij
j
∑== 1

.

Error = Deviation From Column Mean

αk…αj…α2α1Effect

y.k…y.j…y.2y.1Column 
mean

ynk…ynj…yn2yn1n
…………………

yik…yij…yi2yi1i
…………………

y2k…y2j…y22y212

yk1…y1j…y12y111

k…j…21Measure-
ments

Alternatives

• yij= yj + eij
• Where eij = error in measurements

Overall Mean

αk…αj…α2α1Effect

y.k…y.j…y.2y.1Column 
mean

ynk…ynj…yn2yn1n
…………………

yik…yij…yi2yi1i
…………………

y2k…y2j…y22y212

yk1…y1j…y12y111

k…j…21Measure-
ments

Alternatives

• Average of all measurements made of all 
alternatives kn

y
y

k

j

n

i ij∑ ∑= == 1 1
..

Effect = Deviation From Overall Mean

αk…αj…α2α1Effect

y.k…y.j…y.2y.1Col mean

ynk…ynj…yn2yn1n
…………………

yik…yij…yi2yi1i
…………………

y2k…y2j…y22y212

yk1…y1j…y12y111

k…j…21Measure-
ments

Alternatives

• yj = y + αj

• αj = deviation of column mean from overall mean
= effect of alternative j

Effects and Errors

• Effect is distance from overall mean
– Horizontally across alternatives

• Error is distance from column mean
– Vertically within one alternative
– Error across alternatives, too

• Individual measurements are then:

ijjij eyy ++= α..

Sum of Squares of Differences
• SST = differences 

between each 
measurement and 
overall mean

• SSA = variation due to 
effects of 
alternatives

• SSE = variation due to 
errors in 
measurements

( )

( )

( )
2

1 1
..

2

1 1
.

2

1
...

∑∑

∑∑

∑

= =

= =

=

−=

−=

−=

k

j

n

i
ij

k

j

n

i
jij

k

j
j

yySST

yySSE

yynSSA

SSESSASST +=
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ANOVA

• Separates variation in measured values 
into:

1. Variation due to effects of alternatives
• SSA – variation across columns

2. Variation due to errors
• SSE – variation within a single column

• If differences among alternatives are due 
to real differences:
SSA statistically greater than SSE

Comparing SSE and SSA
• Simple approach

– SSA / SST = fraction of total variation 
explained by differences among alternatives

– SSE / SST = fraction of total variation due to 
experimental error

• But is it statistically significant?
• Variance = mean square values

= total variation / degrees of freedom
sx

2 = SSx / df(SSx)
• (Degrees of freedom are number of 

independent terms in sum)

Degrees of Freedom for Effects

αk…αj…α2α1Effect

y.k…y.j…y.2y.1Column 
mean

ynk…ynj…yn2yn1n
…………………

yik…yij…yi2yi1i
…………………

y2k…y2j…y22y212

yk1…y1j…y12y111

k…j…21Measure-
ments

Alternatives

• df(SSA) = k – 1, since k alternatives 
Degrees of Freedom for Errors

αk…αj…α2α1Effect

y.k…y.j…y.2y.1Column 
mean

ynk…ynj…yn2yn1n
…………………

yik…yij…yi2yi1i
…………………

y2k…y2j…y22y212

yk1…y1j…y12y111

k…j…21Measure-
ments

Alternatives

• df(SSE) = k(n – 1), since k alternatives, each with (n – 1) df

Degrees of Freedom for Total

αk…αj…α2α1Effect

y.k…y.j…y.2y.1Column 
mean

ynk…ynj…yn2yn1n
…………………

yik…yij…yi2yi1i
…………………

y2k…y2j…y22y212

yk1…y1j…y12y111

k…j…21Measure-
ments

Alternatives

• df(SST) = df(SSA) + df(SSE) = kn - 1

Variances from Sum of Squares 
(Mean Square Value)

)1(

1
2

2

−
=

−
=

nk
SSEs

k
SSAs

e

a
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Comparing Variances
• Use F-test to compare ratio of variances

– An F-test is used to test if the standard deviations of 
two populations are equal. 

 valuescritical tabulated)](),(;1[

2

2

=

=

− denomdfnumdf

e

a

F
s
sF

α

• If Fcomputed > Ftable for a given α
→ We have (1 – α) * 100% confidence that 
variation due to actual differences in alternatives, 
SSA, is statistically greater than variation due to 
errors, SSE.

ANOVA Summary

)]1(),1(;1[

22

22

 Tabulated
 Computed

)]1([)1(squareMean 
1)1(1freedom Deg

squares of Sum
TotalErroresAlternativVariation

−−−

−=−=
−−−

nkk

ea

ea

FF
ssF

nkSSEskSSAs
knnkk
SSTSSESSA

α

(Example next)

ANOVA Example (1 of 2)

0.3175-0.1441-0.1735Effects

0.29030.60780.14620.1168Column mean

0.52980.13830.09745

0.66750.17300.19544

0.51520.13820.09693

0.53000.14320.09712

0.79660.13820.09721

Overall mean321Measurements

Alternatives

ANOVA Example (2 of 2)

89.3 Tabulated
4.660057.03793.0 Computed

0057.03793.0squareMean 
14112)1(21freedom Deg

8270.00685.07585.0squares of Sum
TotalErroresAlternativVariation

]12,2;95.0[

22

=
=

==
=−=−=−

===

FF
F

ss
knnkk

SSTSSESSA

ea

• SSA/SST = 0.7585/0.8270 = 0.917
→ 91.7% of total variation in measurements is due to 

differences among alternatives
• SSE/SST = 0.0685/0.8270 = 0.083

→ 8.3% of total variation in measurements is due to noise in 
measurements

• Computed F statistic > tabulated F statistic
→ 95% confidence that differences among alternatives are 

statistically significant.

ANOVA Summary
• Useful for partitioning total variation into 

components
– Experimental error
– Variation among alternatives

• Compare more than two alternatives
• Note, does not tell you where differences 

may lie
– Use confidence intervals for pairs
– Or use contrasts


