
1

Interactive Media and
Game Development

Debugging

Debugging Introduction

• Debugging is methodical process for removing
mistakes in program

• So important, whole set of tools to help. Called
“debuggers”
– Trace code, print values, profile
– New Integrated Development Environments (IDEs)

(such as Game Maker) have it built in
• But debugging still frustrating

– Beginners not know how to proceed
– Even advanced can get “stuck”

• Don’t know how long takes to find
– Variance can be high

• What are some tips? What method can be
applied?

2

Outline

• 5-step debugging process
• Prevention
• Game Maker specifics
• Debugging tips

Step 1: Reproduce the Problem
Consistently

• Find case where always occurs
– “Sometimes game crashes after kill boss”

doesn’t help much
• Identify steps to get to bug

– Ex: start single player, room 2, jump to top
platform, attack left, …

– Produces systematic way to reproduce

3

Step 2: Collect Clues

• Collect clues as to bug
– Clues suggest where problem might be
– Ex: if crash using projectile, what about that code

that handles projectile creation and shooting?
• And beware that some clues are false

– Ex: if bug follows explosion may think they are
related, but may be from something else

• Don’t spend too long - get in and observe
– Ex: see reference pointer from arrow to unit that

shot arrow should get experience points, but it is
NULL

– That’s the bug, but why is it NULL?

Step 3: Pinpoint Error
1) Propose a hypothesis and prove or disprove

– Ex: suppose arrow pointer corrupted during flight. Add
code to print out values of arrow in air. But equals same
value that crashes. Hypothesis is wrong. But now have
new clue.

– Ex: suppose unit deleted before experience points added.
Print out values of all in camp before fire and all deleted.
Yep, that’s it.

Or 2), divide-and-conquer method (note, can use in
conjunction with hypothesis test above, too)
– Sherlock Holmes: “when you have eliminated the

impossible, whatever remains, however improbably, must
be the truth”

– Setting breakpoints, look at all values, until discover bug
– The “divide” part means break it into smaller sections

• Ex: if crash, put breakpoint ½ way. Is it before or after?
Repeat.

– Look for anomalies, NULL or NAN values

4

Step 4: Repair the Problem
• Propose solution. Exact solution depends upon

stage of problem.
– Ex: late in code cannot change data structures. Too

many other parts use.
– Worry about “ripple” effects.

• Ideally, want original coder to fix.
– If not possible, at least try to talk with original

coder for insights.
• Consider other similar cases, even if not yet

reported
– Ex: other projectiles may cause same problem as

arrows did

Step 5: Test Solution

• Obvious, but can be overlooked if
programmer is sure they have fix (but
programmer can be wrong!)

• So, test that solution repairs bug
– Best by independent tester

• Test if other bugs introduced (beware
“ripple” effect)

5

Debugging Prevention
• Add infrastructure, tools to assist

– Alter game variables on fly (speed up)
– Visual diagnostics (maybe on avatars)
– Log data (events, units, code, time stamps)

• Always initialize variables when declared
• Indent code, use comments
• Use consistent style, variable names
• Avoid identical code – harder to fix if bug found

– Use a script
• Avoid hard-coded (magic numbers) – makes brittle
• Verify coverage (test all code) when testing

Game Maker – Print Messages

• Display a Message
– object main2 info

• Or, in code
– show_message(‘Executed this code’)
– show_message(‘num:’ + string(num_here))

• Beware if done every step!
– Save code ahead of time

6

Game Maker – Debug Mode

• Ex: 1945
– obj_plane.x
– obj_plane.can_shoot

• Save/load
• Look at instances, global

variables, local variables
• Execute code
• Set speed

Game Maker – Print Debug Messages

• Like show_message()
but in debug mode only
– Note, doesn’t pause

• In code
– show_debug_message
(‘Executed this
code’)

• Need to run in debug
mode

• Debug information
Tools
Show messages

7

Game Maker – Log Messages
• Write messages to file
• Example:

– At beginning (maybe create log object)
•global.log_name = “logfile“;
global.fid = file_text_open_write(global.log_name);

– Then, where needed:
• file_text_write_string(global.fid,”Debug message here”) ;

– Close when done (object event other game end):
•file_text_close(global.fid)

• More file operations at:
– http://www.gamemaker.nl/doc/html/410_01_files.html
– Note: files also useful for save/load game, etc.

Game Maker – Script/Code Syntax

8

Game Maker – Error Messages (1 of 2)

• Help pinpoint problem
– Refer to object and method and offending code

Pay attention!
Refers to:
-Object
-Event
-Line number
-Variable name

Game Maker – Error Messages (2 of 2)

• Can write messages to
log file

• Can ignore messages
– Use “error_last” and

“error_occurred” for
custom handling

– Typically, use only in
release

9

Debugging Tips (1 of 3)

• Fix one thing at a time – don’t try to fix multiple
problems

• Change one thing at a time – tests hypothesis.
Change back if doesn’t fix problem.

• Start with simpler case that works - then add
more complex code, one thing at a time

• Question your assumptions – don’t even assume
simple stuff works, or “mature” products
– Ex: libraries and tutorials can have bugs

• Minimize interactions – systems can interfere,
make slower so isolate the bug to avoid
complications

Debugging Tips (2 of 3)
• Minimize randomness –

– Ex: can be caused by random seed or player input.
Fix input (script player) so reproducible

• Break complex calculations into steps – may be
equation that is at fault or “cast” badly

• Check boundary conditions – classic “off by one”
for loops, etc.

• Use debugger – breakpoints, memory watches,
stack …

• Check code recently changed – if bug appears, may
be in latest code (not even yours!)

10

Debugging Tips (3 of 3)
• Take a break – too close, can’t see it.

Remove to provide fresh prospective
• Explain bug to someone else – helps retrace

steps, and others provide alternate
hypotheses

• Debug with partner – provides new
techniques
– Same advantage with code reviews, peer

programming
• Get outside help – tech support for

consoles, Web examples, libraries, …

