
Operating Systems

CPU Scheduling

ENCE 360

Operating System Schedulers
Short-Term

“Which Ready process to
Running ?”

CPU Scheduler

Medium-Term
“Which Ready process to

memory?”
Memory scheduler

Long-Term (batch)
“Which requested process

into Ready Queue?”
Admission scheduler

This deck about
CPU scheduler

Outline
• Introduction (done)
• Scheduling Policies (next)

– FIFO
– SJF
– SCTF
– RR
– SOS
– MLFQ

• Other topics

Chapter 2.4
MODERN OPERATING SYSTEMS (MOS)

By Andrew Tanenbaum

Chapters 7 & 8
OPERATING SYSTEMS: THREE EASY PIECES

By Arpaci-Dusseau and Arpaci-Dusseau

A CPU Scheduling Scenario
• Assume:

1. Fixed number of processes
2. All “ready” at same time
3. Non-preemptive scheduling
4. All need same processing time
5. No process use I/O

• Have:
– 3 process (A, B, C)

Running

?

Ready

Each needs 10 seconds of CPU

What is
simplest
policy?

First In, First Out – Easy, Peasy!

Average turn around time = (10 + 20 + 30) / 3 = 10

Relax assumption #4 (equal time).
When might this perform poorly?

First In, First Out – Uh, oh!

Average turn around time = (100 + 110 + 120) / 3 = 110

How to do better?
(Hint: think about grocery stores)

The “convoy” affect

Shortest Job First (SJF)

Average turn around time = (120 + 10 + 20) / 3 = 50

Given assumptions,
SJF is provably optimal

Job = Process

Relax assumption #2 (same starting time).
When might this perform poorly?

Shortest Job First – Uh, oh!

Average turn around time = (100 + 110-10 + 120-10) / 3 = 103

Relax assumption #3 (pre-emption).
How can we make this better?

Shortest Time-to-Completion First
(STCF)

Average turn around time = (120-0 + 20-10 + 30-20) / 3 = 50

Given assumptions,
provably optimal

What if we consider users in interactive system?
In other words, instead of turnaround time, what might they want?

Response Time Woes

How can we make response time better?

Average response time = (0 + 5 + 10) / 3 = 5

Round Robin (RR) to the Rescue!

Let’s relax assumption #5 – of course processes do I/O!

Average response time = (0 + 5 + 10) / 3 = 5

Average response time = (0 + 1 + 2) / 3 = 1

“time slice”

RR Plays Nicely with I/O, Too!!

Round Robin
(with overlap)

No Round
Robin

How big should time slice be? What are tradeoffs?

Scheduling – Process Behavior

• Broadly, two kinds of processes
a. CPU-bound
b. I/O-bound

Which kind are there more of?

Scheduling – Process Behavior

add
read
(I/O Wait)
store
increment
write
(I/O Wait)

Burst Duration

Fr
eq

ue
nc

y

I/O Bound Processes

How long should
RR timeslice be?

Scheduling – Process Behavior

Fr
eq

ue
nc

y

“knee”
in curve

Set timeslice so most I/O bound processes finish in once slice
Still protects against CPU bound!

Burst Duration

add
read
(I/O Wait)
store
increment
write
(I/O Wait)

I/O Bound Processes

SOS: Dispatcher

• What scheduling policy does it follow?
• There is no “return” from Dispatcher()

… Why not?
– Hint: think of the OS system stack

• There is a while(1); This is an infinite
loop! … Why is this ok?
– Hint: consider other options

See: “dispatcher.c”

Outline

• Introduction (done)
• Scheduling Policies

– FIFO (done)
– SJF (done)
– SCTF (done)
– RR (done)
– SOS (done)
– MLFQ (next)

• Other topics

Priority Scheduling
• Want system that is responsive

– User enters commands, gets feedback

• Want system that is efficient
– Run processes to completion as quickly as possible

THE CRUX OF THE PROBLEM:
HOW TO SCHEDULE WITHOUT PERFECT KNOWLEDGE?

Minimize response time for interactive processes AND minimize
turnaround time for higher throughput, without a priori
knowledge about burst length?

Priorities via Multi-Level Queue

Rule 1: If A > B,
then run A
Rule 2: If A = B,
then RR

Need to “learn”, adapt based on behavior (feedback)
Multi-level Feedback Queue

• Put interactive processes in high priority
• Put long-running, CPU-bound processes in low priority
• But … how do we know this? What if process changes?

Adapt to Long Running Processes

(Long running
process over time)

Rule 3: New process at
highest priority

Rule 4: If process uses
all of slice, reduce
priority

Prioritizes Short Processes
(Short (interactive)

process arrives)

Rule 3: New process at
highest priority

Rule 4: If process uses
all of slice, reduce
priority

Supports I/O-Bound Processes

Problems?
Hint: think of many

interactive processes

(I/O Bound process
makes progress)

(Doesn’t interfere
with CPU-bound
process much)

I’m Starving!

• Process may never get
CPU (aka “starvation”)

• And may have
changed!
– Was CPU-bound
– Now I/O-bound

Starvation!

(Many short
processes

arrive)

Fixes?
Hint: movement does

not have to be one-way

Gimme a Boost!

No boost Boost

Starvation!

Rule 5: after some time,
all processes move to top

Tuning Possible – e.g., Different
Quanta Sizes for Improved Throughput

• Lots more
possibilities!
– Move up one

level
– Not RR for

some queues …

Rule 6: timeslice
inversely proportional
to priority

Other Scheduling Topics
• Linux

– Good overview
– Details

• Completely Fair Scheduler
• sched_fair.c

• Windows
– Multi-level feedback queue
– Starvation prevention
– Details

• Multiprocessors
–

http://www.cs.montana.edu/~chandrima.sark
ar/AdvancedOS/SchedulingLinux/index.html

https://en.wikipedia.org/wiki/
Completely_Fair_Scheduler

Disk

Registers

CPU1
Registers

CPU1

Mem
Chapter10

OPERATING SYSTEMS: THREE EASY PIECES
By Arpaci-Dusseau and Arpaci-Dusseau

https://www.microsoftpressst
ore.com/articles/article.aspx?

p=2233328&seqNum=7

Outline
• Introduction (done)
• Scheduling Policies (done)

– FIFO (done)
– SJF (done)
– SCTF (done)
– RR (done)
– SOS (done)
– MLFQ (done)

• Other Topics (done)

