
1

The Game Development
Process:

Artificial IntelligenceArtificial Intelligence

Introduction to AI
Opponents that are challenging, or allies

that are helpful
Unit that is credited with acting on own

Human-level intelligence too hard

2

g
But under narrow circumstances can do pretty

well
 Ex: chess and Deep Blue

Artificial Intelligence
Around in CS for some time

Based on Chapter 5.3, Introduction to Game Development

AI for CS different than AI for Games
Must be smart, but purposely flawed

 Lose in a fun, challenging way

 No unintended weaknesses
 No "golden path" to defeat
 Must not look dumb

Must perform in real time (CPU)

3

Must perform in real time (CPU)
 Configurable by designers

 Not hard coded by programmer

 "Amount" and type of AI for game can vary
 RTS needs global strategy, FPS needs modeling of

individual units at "footstep" level
 RTS most demanding: 3 full-time AI programmers
 Puzzle, street fighting: 1 part-time AI programmer

Based on Chapter 5.3, Introduction to Game Development

AI for Games:
Mini Outline
Introduction (done)
Agents (next)
Finite State Machines

4

Game Agents (1 of 3)
Most AI focuses around game agent

 Think of agent as NPC, enemy, ally or neutral

 Loops through: sense-think-act cycle
 Acting is event specific, so talk about sense+think

5
Based on Chapter 5.3, Introduction to Game Development

Game Agents (2 of 3)
Sensing
Gather current world state: barriers,

opponents, objects
Need limitations: avoid "cheat" of looking at

game data

6

game data
 Typically, same constraints as player (vision,

hearing range)
Often done simply by distance direction (not

computed as per actual vision)
Model communication (data to other agents)

and reaction times (can build in delay)

2

Game Agents (3 of 3)
Thinking
 Evaluate information and make a decision
As simple or elaborate as required
 Two ways:

P d d t k l d t i ll h d

7

 Pre-coded expert knowledge, typically hand-
crafted if-then rules + randomness to make
unpredictable

Search algorithm for best (optimal) solution

Based on Chapter 5.3, Introduction to Game Development

Game Agents:
Thinking (1 of 3)
 Expert Knowledge

 Finite state machines, decision trees, … (FSM most
popular, details next)

 Appealing since simple, natural, embodies common
sense

8

Ex: if you see enemy weaker than you, attack. If
you see enemy stronger, then flee!

 Often quite adequate for many AI tasks
 Trouble is, often does not scale

Complex situations have many factors
Add more rules
Becomes brittle

Based on Chapter 5.3, Introduction to Game Development

Game Agents:
Thinking (2 of 3)
Search
 Look ahead and see what move to do next
 Ex: piece on game board, pathfinding

Machine learning

9

g
 Evaluate past actions, use for future
 Techniques show promise, but typically too

slow
Need to learn and remember

Based on Chapter 5.3, Introduction to Game Development

Game Agents:
Thinking (3 of 3)
Making agents stupid

 Many cases, easy to make agents dominate
Ex: bot always gets head-shot

 Dumb down by giving "human" conditions, longer
reaction times, make unnecessarily vulnerable

10

 Agent cheating
 Ideally, don't have unfair advantage (such as more

attributes or more knowledge)
 But sometimes might, to make a challenge

Remember, that's the goal, AI lose in challenging way
 Best to let player know how agent is doing

Based on Chapter 5.3, Introduction to Game Development

AI for Games:
Mini Outline
Introduction (done)
Agents (done)
Finite State Machines (next)

11

Group Exercise
Consider game where hero is in a pyramid

full of mummies.
 Mummy wanders around maze
When hero gets close, can “sense” and moves

quicker

12

quicker
When mummy sees hero and rushes to attack
 If mummy wounded, it flees

What “states” can you see? What are the
transitions? Can you suggest appropriate
code?

3

Finite State Machines (1 of 2)

Wander Attack

See Enemy

Low
 H

ea
lthNo Enem

y

No Enemy

13

 Abstract model of computation
 Formally:

 Set of states
 A starting state
 An input vocabulary
 A transition function that maps inputs and the

current state to a next state

Flee L

m
y

Based on Chapter 5.3, Introduction to Game Development

Finite State Machines (2 of 2)
Most common game AI software pattern

 Natural correspondence between states and
behaviors

 Easy to understand
 Easy to diagram

14

 Easy to program
 Easy to debug
 Completely general to any problem

 Problems
 Explosion of states
 Often created with ad-hoc structure

Based on Chapter 5.3, Introduction to Game Development

