Measuring the Annoyance in Streaming Media Caused by Buffers and Interrupts

Andrew Roskuski Joshua Allard

Introduction

- Streaming media is very important to today's culture
 - Online videos

- Annoyance with streaming media
 - Associated with the defects in the playback
 - Lacking research into the matter

Introduction – Buffers

• Buffers: Wait time at the beginning of the video

Introduction – Interrupts

• Interrupts: Pauses during the playback

Introduction – Motion

 The level of motion in a video is the amount of the image that changes over time

Outline

- Problem Statement
- Hypotheses
- Methodology
- Results and Analysis
- Conclusion

Problem Statement

Assuming annoyance in streaming media is unavoidable, how do minimize it?

- How do Buffers and Interrupts annoy the user?

- Does the level of motion in the video have any affect on this annoyance?

Hypotheses

Hypotheses

Methodology

- Prepared videos
 - Found videos to fill our motion categories
 - Inserted Buffers and Interrupts into videos
- Created survey to display videos to users and ask about their perceived annoyance
 - Demographic Questions
 - Video Questions

Methodology – Survey (Demographic Page)

3

4

5

2

Questions: • Age

- Gender
- Major
- Streaming
 Video
 Experience

Methodology – Survey (Video Page)

atch: Control						
ow annoyed were	e you by th	e quality	of Control?			Control
	Less Annoyed			More Annoyed		Video 0/16
	1	2	3	4	5	Play Video
ow did you feel a	bout the c	ontent of	Control?			
	Disliked N		Neutral	Veutral Liked		
	1	2	3	4	5	Contraction of the second

Results – Demographics

13

Results – Buffers

Results – Interrupts

Results – Interrupts and Motion

Low Motion had the highest annoyance rating

16

Results – Theoretical Impact

$$f_{\text{estimated-total-annoyance}} = Min(f_{\text{buffer}}(x) + f_{\text{interrupt}}(y), 5)$$

$$f_{\text{min-annoyance}} = Max(f_{\text{buffer}}(x), f_{\text{interrupt}}(y))$$

Conclusions

- Annoyance vs buffer time fits to a degree-2 polynomial
 - The value does not vary with motion level

- Annoyance vs interrupt count fits to a logarithmic function
 - The value is highest with the low motion category

Future Work

 Understand the combined annoyance relationship between buffers and interrupts

- Look for other factors that might affect a user's annoyance
 - Video Content
 - Sound

The End

Are there any questions?