
Program a Game Engine from Scratch

Mark Claypool

Chapter 1 - Introduction

This document is part of the book “Dragonfly – Program a Game Engine from Scratch”,
(Version 9.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright ©2012–2023 Mark Claypool and WPI. All rights reserved.



Chapter 1

Introduction

1.1 Goals

In working through the entire book, an aspiring game programmer will gain an in-depth
understanding of a game engine. Such a programmer will not only know how a game engine
is implemented, but also why it is implemented the way it is, understanding choices required
to achieve general purpose functionality to support a variety of games. Moreover, an aspiring
game programmer will understand game programming from the game programmer’s point of
view, being able to differentiate functionality in game code versus functionality provided by
the game engine. This understanding will be reinforced by making a game, albeit a simple
one, using a full-featured, fully functional game engine. Lastly, and for some perhaps most
importantly, an aspiring game programmer will have created a substantial body of code
potentially suitable for a portfolio, a showable record of what s/he can do. The built-from-
scratch engine itself can be shown, with one or more games demonstrating its functionality,
with the potential for an in-depth conversation (say, with a potential employer) about how,
exactly, the engine and game(s) are implemented. All of this achievable by programming a

game engine from scratch.
More specifically, the goals of this book are to provide an understanding of:

1. a game engine from the game programmer’s perspective;

2. the structure and design of a game engine;

3. the trade-offs between complexity, fidelity, and interactivity in game engines; and

4. software engineering techniques that can be applied to creating parts of a game engine.

In order to accomplish these goals, this book:

1. Gives detailed instructions on how to implement a game using Dragonfly.

2. Provides an overview of the Dragonfly architecture.

3. Provides the design of Dragonfly, in the form of header files with design rationale,
presented incrementally in order of implementation.

4. Details step-by-step how to fully implement Dragonfly following the design.

2



1.2. Game Engine Overview 3

1.2 Game Engine Overview

There are many experienced programmers that have played hours (and hours) of computer
games. These same programmers have used many game engines as players and may have
even heard the names of some game engines. Despite this, most game-playing programmers
probably still have questions as to what, exactly is a game engine and how it works. In
order to start describing what a game engine is, it is useful to first describe game engine
functionality from a user’s perspective. In particular, the user of a game engine – the game

programmer – is the programmer that is building the game – in contrast to the computer
that actually runs the code that makes the game happen.

First, consider a game from the game programmer’s perspective. The game programmer
is making a game with a goal (or a set of goals) for the player to achieve. For example, the
game goal may be to save the princess (with a sub-goal of finding the enchanted sword).
Rules govern the gameplay that moves the player closer (or further) from the goal. For
example, rules govern when a player can eat a ghost in a Pac-Man-type game, or how a
ball collides with blocks in a pong-type game. For the player, a game includes visual and
audible content, such as pretty graphics and catchy sound effects. The game programmer
needs to provide control techniques, such as the mapping of buttons and mouse clicks to
game actions, in order for the player to reach the goal.

Now, consider a game from the computer’s perspective (also, the perspective of the
game engine programmer). From the perspective of the computer, a game is set of resources
managed to support an entertainment application. The resources that need managing are:
1) the display graphics, such as the models and animations that need to be drawn to the
screen; 2) the sound device, such as playing an sound track to the speakers; 3) the user
interface, such as the keystrokes and mouse movements that need to be captured; 4) scripts
that need to be invoked at certain times; 5) events that need to be processed, such as
for collisions and timers; and 6) file input/output for reading and recording game data.
Additional resources that need to be managed by many games are networking, artificial
intelligence, and physics.

The line between game code and game engine code is often blurry. For example, for
one game engine, the engine may know how to “draw an ogre”. For this engine, the game
programmer would issue a command to the game engine having it draw an ogre at a certain
location and the game engine would handle the ogre drawing automatically. However, for
another game engine, the engine may only provide features for rendering and shading. The
game programmer would have to code “ogre-ness” drawing aspects entirely in the game
code. It may be tempting to assume that the ogre-drawing engine is better than the one
that does not draw ogres – after all, it does more of the game programmer’s work – but the
ogre-drawing engine may end up being less flexible than the non-ogre-drawing engine, only
able to make ogre-type games.

In general, there is no definitive separation of game code and game engine code since
many “built-in” components of a game engine could be done in game code. For example,
animating a sprite could be done in game code, with the game programmer providing images
for the game engine to render at the appropriate times. Or, animating a sprite could be done
by the game engine, where the game programmer specifies the images ahead of time and
the game engine renders them automatically. As another example, the game programmer



1.2. Game Engine Overview 4

could compute whether or not two objects are at the same location, handling a collision if
they do so. Or, the game engine could do the same computation, with the collision between
the objects being pre-defined, say, by having solid objects bounce off of each other. In
other words, if an engine does not provide needed functionality (because, say, the engine
didn’t envision supporting that functionality), the game programmer can often implement
equivalent functionality in game code. There is no single, right way for the engine to behave
nor single, correct set of services an engine should provide.

Given that there is no clear functionality as to what must (or must not) be in a game
engine, the question may arise as to what, exactly a game engine is for. A major goal of
a game engine could be that it be reusable, allowing game programmers to make many
different games from one engine, even if they are of a similar variety (e.g., different variants
of first person shooter games). Such generality can be supported through the ability to allow
game programmers to modify the base game content, such as by providing new models and
textures in addition to levels and gameplay rules, giving rise to “mods”.

However, many game engines are created with the sole intent of making exactly one
game – the current game the developers (and publishers) have in mind. In this case,
the functionality of the game engine is designed to be efficient, tuned to optimize the
performance of the most common operations (e.g., rendering a textured, 3d model on the
screen) quickly. This may be exactly the case for the ogre-drawing engine mentioned above.
In addition to efficiency, game engines support many general-purpose functions, such as
allowing game programmers to be able to check the state of an object easily.

In nearly every case, a game engine is designed with a certain game genre in mind.
Even if the game engine is somewhat general purpose, it will best support games created
in the intended genre. For example, the target game for an engine may be a side-scrolling
platformer. As such, the engine may support keyboard input (say, arrow keys to move
and jump) and isomorphic, 2d sprite animations. Using the same engine for a first person
shooter, where the mouse is used extensively for aiming and shooting, and the graphics
need a linear perspective and 3-dimensions, may be prohibitive. As an exercise one might
consider the differences in features for a game engine designed for one of each common
genre: Arcade (e.g., Tetris), Side-scroller (e.g., Super Mario), 3d isometric (e.g., Diablo),
first person (e.g., Call of Duty), Massively-multiplayer role playing (e.g., World of Warcraft),
Turn-based (e.g., Civilizations), and Story-based (e.g., Heavy Rain).

While game engines vary in the depth and breadth of game services they provide, there
are some components that are common to most game engines that can be identified.

Even game engines that are built from scratch are almost never coded entirely by hand.
Writing code directly to the hardware used to be possible and even desirable in early
computer games in order to get the maximum performance out of the underlying computer
system. However, in today’s computer systems, writing directly to the hardware means
re-inventing the functionality provided by the many software system layers (e.g., device
drivers and memory management). Moreover, given the optimizations modern software
may already have in place, doing such replication may often not result in the intended
performance speedup after all, while certainly adding the risk of introducing unintended
bugs into the system.

Instead, game engines make use of a rich software substrate on most computer platforms.
In particular, desktop computers have rich operating system services that can help manage



1.2. Game Engine Overview 5

hardware functionality (e.g., file I/O and networking). Even console systems have software
layers that make game programming much easier than writing to the hardware. Robust
3rd-party software libraries exist for graphics, providing a programmer a common interface
for simple graphics primitives, as in OpenGL or Microsoft DirectX. User-level libraries,
such as the Standard Template Libraries, often provide cross-platform, powerful, efficient
utilities for common data manipulations, such as lists and iterators, and math functions.
However, for some select features, some game engines make use of core systems that have
been developed in-house by the game development team. These core systems may provide
low-level services, such as memory management, game engine configuration, parsing (for
configuration files), debugging and performance testing (unit testing, profiling and error
logging), and system startup (initialization) and shutdown (final state).

Building upon the software substrate, core aspects of a game engine include:

Representation of the world. All games have a game world, whether this is a fixed
grid with limited topology (e.g., a tic-tac-toe board) or a rich, 3-dimensional, textured,
alien landscape (e.g., an massive, outdoor setting). Fundamental to most game world rep-
resentations are game objects and their locations in the world, given as position attributes,
such as (x,y) coordinates, along with their orientations. Positions and orientations can be
absolute to the game world, or they can also be relative to other objects, such as a tank
turret being at an (x,y) location relative to the tank treads.

Timing support. Most computer games operate in real-time, meaning events that hap-
pen in the game immediately make a difference to the gameplay, whether an object ex-
ploding, a door closing or a player moving an avatar. As such, support for precise timing,
often fine grained (e.g., at the millisecond level) is a core game engine fundamental. While
some events just need to be relative to other game events (e.g., a grenade explosion that
happens 3 seconds after the pin is pulled), other events need to be absolute (e.g., a boss
spawning at 9:57pm, 1 minute after the player pulls the switch), and still others need to be
synchronized across computers (e.g., a monster dropping treasure at the same time on two
different players’ computers).

Low-level utilities. Much of the time spent executing in a game engine is doing basic,
but fundamental, services in support of the game. These included handling resources in/out
of files (e.g., reading in a sprite), logging progress and error messages, managing memory,
encrypting data for transmission over a network, and more.

Components that are fundamental to a game engine include:

Graphics system. The graphics (or rendering) system manages how to display a game
scene to the player. This may include resolving issues in lighting, occlusion, and textures.
Many game engines support variable camera positions and views over the whole game world.
Special effects features (e.g., particles) may also be part of a rendering system. For example,
a graphics system may be in charge of rendering a game room filled with 3d objects, complete
with textures and lights, from a top-down camera.



1.2. Game Engine Overview 6

Input management. Games require input from the user, whether through a keyboard
and mouse, a game controller, a touchscreen, or a motion-recognition device. Game en-
gine input management maps specific, often hardware-dependent actions, to game-specific
commands. For example, on one platform, pressing the left mouse button may be mapped
to a command to move an avatar left, while on a different platform, moving the thumb
stick on a gamepad left may be mapped to the same command. Input management must
“understand” the differences between hardware types.

Resource management. Many game-related assets can be large and have asset-specific
formats. As such, one component in a game engine typically manages loading in all assets
needed for the game, recognizing their formats and getting them in a form usable by the
game. Resource management also manages the lifetime of an asset, keeping assets around
when they are in use (e.g., a typical texture for the level) but discards them when no longer
needed (e.g., the player progresses to the next level). For example, a game engine may have
a particular texture (e.g., a brick wall) that is used when the player is inside a building,
but discard the wall texture when the player goes outside. Or, a game may have different
background music that needs to be played for the home screen versus during the game.

Gameplay foundations. At the heart of a game engine are the foundations that allow a
game to be played. Often, this is in the form of game objects that can either be static (not
changing over the course of the game) or dynamic (modifying themselves or being modifiable
in response to game events). Events that happen in the game (e.g., a player pressing a
button) trigger actions in the game, often enacted by messages being sent from one object
to another. For example, a player may press the “A” button, causing an “A-button-press”
event to be generated by the input manager. This event, in turn, gets delivered to the
player’s avatar object where it “translates” the A-button to a jump action, moving the
object.

Physics system. Newtonian physics governs how objects move and interact in many
games. To calculate these physical interactions, game engine objects usually have states,
providing for location, velocity, orientation and more. Basic interactions need to determine
if there is a collision between two moving objects and, if so, what the appropriate reaction
is. For example, a typical platformer game may provide “gravity” which gives constant
acceleration towards the bottom of the screen. If a movable object (e.g., the player’s avatar)
encounters a non-movable object underneath it (e.g., a platform), the moving object may
stop falling or may even bounce up to a height proportional to the downward velocity.

The above components are all part of the Dragonfly* game engine and provide enough
support to develop rich, full-featured games. However, many game engines have additional
components.

* Did you know (#1)? Dragonflies were among the first winged insects 300 million years ago. Modern
dragonflies typically have wingspans of two to five inches, but fossilized dragonflies have been found with
wingspans of up to two feet. – “14 Fun Facts About Dragonflies”, Smithsonian.com, October 5, 2011.



1.2. Game Engine Overview 7

Sound system. While a game programmer’s emphasis may often be on visuals, sound
should not be overlooked – sound can be thought as one-third of the player’s experience!
Nearly all games have sound. A game engine sound system handles playing music along
with dialog and sound effects, often needing to combine sounds as appropriate. Formats
along with timing and resource management are often part of a sound system, too.

Online support. Computers are increasingly networked, as are the applications that run
on them. Games are no exception. Even games that are not multiplayer across multiple
computers often have online components, where games connect to a server to obtain player
profile information or download new content. Real-time, multiplayer games have specific
services that may be provided, facilitating connections to servers or other players over a
variety of network devices.

Artificial intelligence system. As games get closer and closer to photo-realistic graphics
and full-featured sound effects, what many consider the next great frontier for games is in
the realm of artificial intelligence (AI). In short, AI is a way of making “smart” objects, such
as an opponent that employs a particular strategy or an NPC with which the player can
converse. But AI also includes more low-level, but important, behaviors such as pathfinding1

which can be part of an AI system.

Tip 1! AI programming for games. The interested student, and most game
programmers, will want to learn more about AI for games. There are many good
resources on this topic, but a couple of good places to start are Artificial Intelligence
for Games by Millington and Funge [7] and Programming Game AI by Example by
Buckland [1]. The latter is programming-centric, akin to the flavor of this book.

To support these, and other, game components, game engines often provide some basic
data structures used by many parts of the game engine and by game programmers. Exam-
ples include: array lists for fast indexing, fast insertion/deletion at the end; linked lists for
slower indexing, fast insertion/deletion in the middle; and maps (or hash tables) for fast
searching and insertion. Sometimes these data structures are custom-built for the specific
engine, while other times they may be provided by standard or third-party libraries (e.g.,
C++ Standard Template Libraries, or Boost C++ Libraries).

As mentioned earlier, at the heart of a game engine is an object management system.
A key functionality provided by the system is run-time type information, which allows the
same engine code to handle a variety of objects. For example, a game engine would want
the same code to move both a falling mouse and a falling elephant. In C++, this means
polymorphism at run-time. Consider a game engine that wants to execute code for a gun
to make it shoot. A general-purpose game engine does not want to have special code for
shooting a shotgun versus shooting a pistol – such an implementation becomes too tied to
the game at hand and is “brittle” if changes need to be made. Instead, the game engine

1Computation of the shortest (or best) route between two points.



1.2. Game Engine Overview 8

just knows how to invoke “shoot” and the gun object (created by the game programmer),
for example, knows how to perform the appropriate shoot action. In C++, this is done
with inheritance and then run-time polymorphism. Consider the code in Listing 1.1.2

Listing 1.1: Run-time polymorphism in C++✞ ☎

0 class gun {

1 virtual void shoot();

2 };

3

4 class shotgun : public gun {

5 virtual void shoot();

6 };

7

8 gun *p_gun = new shotgun ();

9 p_gun -> shoot(); // i n voke s shotgun : : shoo t ( )
✝ ✆

The last line in Listing 1.1 is the code that triggers the shooting of the gun.* In this case,
when the pointer p gun gets dereferenced, since the object type is a shotgun, the shoot()

method for the shotgun gets executed. If at a later time, p gun changes and points to, say,
a pistol, then the same invocation of p gun->shoot() would execute the shoot() method
for the pistol.

Note, languages such as Java and C++ do run-time typing of objects automatically. A
language that does not support run-time typing (such as C) can still do so, but support
must be handled by the game programmer.

The focus of this book is on the programming required to create a game engine. This
includes:

� How to build core engine components

� How to support player interaction

� How to set rules of play and control

� How to use a game engine to make a custom game

This chapter has provided an overview of what a game engine does. What it has not

done is provided information about the design and implementation of an engine. For exam-
ple, take some of the components listed above. How should software be designed to support
them? How can game-independent components be separated from game-dependent compo-
nents? How should the components be defined and organized? Assuming an object-oriented
approach (as in this book), what class structures should be used for the various game engine
elements?

In addition, there are lots of aspects of game development that are not covered, such as
nearly all art (e.g., modeling and animation), most audio (e.g., sound effects and music) as

2Note, this is the first code “Listing”. There will be many more! All such listings are available for
download as a .zip file from the Dragonfly book web page (http://dragonfly.wpi.edu/book).

* Did you know (#2)? The dragonfly has one of the highest success rate of any predator, catching
95% of the prey (mosquitoes!) it stalks. – “Dragonflies: Nature’s Most Successful Predator”, Sarah Busby,
2022.



1.2. Game Engine Overview 9

well as game design. However, there are many other books on those topics which can be
used in conjunction with the material in this book.

Similarly, there are many aspects of C++ that are relevant, as well as many, many
books that cover them. However, in this book and in the implementation of Dragonfly,
some useful C++ mechanisms are illustrated with code, including (but not limited to):

� Conditional compilation (Section 4.3.4).

� Casting (Listing 4.53).

� Operator overloading (Listing 4.38).

� Dynamically-sized arrays (Section 4.5.2.3).

as well as several different software design patterns, such as singleton, iterator, observer,
flyweight and chain of responsibility.

In short, keep reading to hear more details on all that, and more.

Tip 2! C++ Programming. C++ is still the language of choice for developing
game engines and, in many cases, programming games to work with these same
engines. Aspiring game programmers would be well-served to be proficient at C++
and own a good book (or two) on C++ programming. Perhaps the “go to” book for
answering questions about C++ is C++ How to Program, by Dietel and Dietel [2], a
book dense with code examples, but also with clear explanations for most anything
C++. Another good book to have at hand is Head First Design Patterns by Freeman
et al [3]. Much of game development involves identification and use of software
patterns and Freeman’s book shows how to analyze, design, and write serious object-
oriented software.


