
Program a Game Engine from Scratch

Mark Claypool

Chapter 3 - Tutorial

This document is part of the book “Dragonfly – Program a Game Engine from Scratch”,
(Version 9.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright ©2012–2023 Mark Claypool and WPI. All rights reserved.

Chapter 3

Tutorial

This chapter provides a tutorial to make a game from scratch using the Dragonfly game
engine. There are several goals for this chapter:

� Setup a development environment that is the same as the one needed to build the
Dragonfly engine.

� Build a game with Dragonfly to provide foundational knowledge, useful for under-
standing how the engine is build piece-by-piece in subsequent chapters.

� Become familiar with Dragonfly by making a game from the game programmer’s
perspective. The game is made from scratch, illustrating most of the functionality of
the dragonfly engine. For some, this may be the first game developed using a game
engine. As such, it also provides an example of where game code ends and game
engine code begins.

� Provide appropriate scope for ideas for subsequent Dragonfly games of one’s own
invention.

3.1 Overview

The game created in the tutorial is called Saucer Shoot, a 2-d shoot ’em up. True to the
nature of Dragonfly, Saucer Shoot uses the keyboard for input and provides text-based
graphics for output. It may be illustrative to see exactly what text-based graphics means.
Figure 3.1 depicts a screenshot of Saucer Shoot. The blue object on the left is the player-
controlled ship, while the green objects towards the right are saucers. The player has fired
some missiles, show blue slightly to the right of the ship, and the red explosion is the result
of a missile hitting a saucer. For an action visual, a video of the game is available on
YouTube at: http://youtu.be/rVIxygRactI.

Before beginning the tutorial, it may be helpful to have an overview of what game
programmer code using Dragonfly (and most engines) looks like. From 10,000 feet, game
programmer code looks like:

1. Startup Game Engine. This step initializes graphics, input devices and file logging.

12

3.1. Overview 13

Figure 3.1: Saucer Shoot screenshot

2. Populate World with Objects. This step puts initial game objects into the world, such
as a player object (e.g., the Hero) and bad-guy objects (e.g., the Saucers).

3. Run Game. Once initialized and the world populated, the game engine runs the
game by moving objects, getting input, sending events to objects (e.g., collisions),
and drawing on the screen

4. Shutdown. When the game is finished, the game engine cleanly shuts down services
and returns the computer to the original state.

Explicit attributes of the Dragonfly engine encountered in the tutorial include:

� Startup. Invoking the game engine managers needed to start the game.

� Resource loading. Getting the game sprites, such as the sequence of frames that make
a Saucer appear to rotate, into the game.

� Objects. Initial objects that are created once and persist, such as the Hero and Stars,
and dynamic objects that spawn throughout the game, such as Bullets, Saucers and
Explosions.

� Events. Built-in events, such as Keyboard and Collision events, as well as custom
events, such as Nuke.

� Debugging. While not explicit in the tutorial, invariably bugs in development code
will be encountered, and the game programmer exposed to debugging game code.

3.2. Text-based Graphics 14

--------------- --------------- ---------------

| Taking a Walk | | Taking a Walk | | Taking a Walk |

| 0 | | 0 | | 0 |

| | | | | | | | |

| | | | / \ | | | |

--------------- --------------- ---------------

Frame 1 Frame 2 Frame 3

Figure 3.2: Text-based animation of walk-cycle

3.2 Text-based Graphics

In making this game, and then making Dragonfly in later chapters, the question may arise
as to why only text-based graphics are supported. In a nutshell, creating and providing
support for text-based graphics is easy, much easier than 2d and especially 3d graphics.
The 2d, grid-based layout of text is conceptually easy to design and implement, allowing
the programmer, both the game programmer and the game engine programmer, to focus on
other aspects of development. Along these lines, text-based graphics has the added benefit
of making the size and scope of the programming effort to create a game engine from scratch
manageable, meaning it is more likely the aspiring programmer will complete the work.

Text graphics have basic (x,y) coordinates with a potential “canvas” as big as as the ter-
minal window.1 Text is supported by nearly all computers and there are even libraries solely
used for text graphical output. With text as the lowest common denominator, Dragonfly
can be developed in a mostly platform-independent fashion.

Lastly, during development, having art limited to just text characters is a blessing in
disguise for many development projects. Limited to text-only graphics, there is no need, nor
even the ability, to spend time making detailed graphics, much less realistic graphics, since
the underlying characters do not support them. And for many games, the visuals do not
make or break the game – a game that is boring with simple characters and test-based shapes
will not suddenly be fun with fancy graphics. Conversely, a game with interesting gameplay
and eye-popping graphics will still be fun with basic text-based graphics. Text-based games
reduce the temptation for the programmer to spend time on art, and the development
emphasis shifts to the game design and programming. In other words, “programmer art”
is perfectly fine for developing games with the Dragonfly game engine!

An immediate question may be how does animation occur with text-based graphics.
This can be answered with a simple example. Assume a basic walk-cycle animation of a
stick-figure is needed. Figure 3.2 illustrates 3 frames that show how such an animation
might be constructed with text graphics.

Frame 1 is displayed first, replaced by Frame 2 and then Frame 3. If done fast enough,
the eye is tricked into seeing motion. This is the same as a flip-book animation seen in
stores, or perhaps doodled on a notepad by bored kids in class. Only about 3 frames per
second are needed to approximate motion for the human eye, but a higher frame rate can
result in smoother-appearing motion. Typical game engines update animations from 30-60

1Traditionally 80x24, but can be much bigger if so desired.

3.3. Saucer Shoot 15

times per second. Refresh rates higher than 60 frames per second can be done, but are not
perceptible by human vision.

While text-based graphics may seem limiting, they are not as limiting as one might think.
The interested reader might check out some movies that have been written from scratch
with text-only, including Star Wars (Asciimation),2 or videos that have been converted to
text, such as the bullet-dodging scene from The Matrix movie.3

3.3 Saucer Shoot

The tutorial works through creating the Saucer Shoot game from scratch. The tutorial
is provided “cook-book” style, where the steps that are needed are given explicitly. De-
velopment is done in an “agile” fashion, meaning working versions of the game are made
throughout the tutorial that can be immediately be tried, debugged as necessary, and played
before proceeding to the next version.

An online version of the tutorial can be found at:
http://dragonfly.wpi.edu/tutorial/

3.3.1 Startup

Let’s get this party started!

Download and setup Dragonfly, appropriate for your development environment.
Create a C++ file called game.cpp that will hold your game code. It should contain:

Listing 3.1: Initial game.cpp
✞ ☎

0 // Engine i n c l u d e s
1 #include ”GameManager . h”
2 #include ”LogManager . h”
3

4 int main (int argc , char *argv []) {

5

6 // S t a r t up Game Manager .
7 if (GM.startUp ()) {

8 LM.writeLog (” E r r o r s t a r t i n g game manager ! ”);
9 GM.shutDown ();

10 return 1;

11 }

12

13 // Set f l u s h o f l o g f i l e dur ing deve lopment (when done , make f a l s e) .
14 LM.setFlush (true);

15

16 // Show s p l a s h screen .
17 df:: splash ();

18

19 // Shut e v e r y t h i n g down .
20 GM.shutDown ();

21

22 return 0;

2http://www.asciimation.co.nz/
3http://youtu.be/wQhGSu1V9TI

3.3. Saucer Shoot 16

23 }
✝ ✆

(It may be easier to download a zip file with the program template, with an accompa-
nying Makefile (for Linux) or Visual Studio project file (for Windows), described below,
at the game0.zip link below.)

Note the df:: tag in front of the Dragonfly-specific code elements. This is to access
the Dragonfly namespace. Namespaces provide a mechanism to prevent potential name
conflicts in large projects. Typically large, 3rd-party libraries (such as a game engine) will
use a namespace to help developers avoid conflicts in names their own code may use with
names the libraries use. In the case of Dragonfly, df:: is needed to access any Dragonfly-
specific code element.

The #includes at the top of the program are the game engine header files needed so
far. Basically, each header file is needed for each game engine service that is used (although
some are included by the engine services themselves).

The GameManager (and all game engine managers) are singletons, meaning there can be
one and only one instance of each for each game. Managers cannot be created via a normal
constructor (or assigned or copied), but must be accessed via a getInstance() call. After
that, the Managers’ methods can be accessed normally. For readability and convenience,
the one (and only one) instance of each manager can be accessed by a two-letter acronym.
Note, in the code above, “GM” is for the GameManager (manager of the game loop) and
“LM” is for the LogManager (manager of the logfile).

Here, the game manager starts up (via startUp()), enables all other engine services.
When the game is done, the game manager shuts down (via shutDown()), turning off all
game engine services. All Dragonfly games do the same, with the startUp() first and the
shutDown() last.

The LogManager is used by the engine to write to the log file, which is always named
“dragonfly.log”. During debugging and development, game programs should write messages
to the logfile via the LogManager, too. The LogManager supports C’s printf() notation,
providing flexibility in printing out the values of variables. In our code so far, if there is an
error in starting up the game manager, this is reported in the log file and the game engine
is shut down.

The line LM.setFlush(true) makes it so the LogManager flushes all output to local
storage immediately after a writeLog() call. This is useful when developing as that way if
a game crashes (e.g., a segfault), the logfile output is still written to local storage instead
of being lost in memory.

The splash() line invokes the Dragonfly splash screen, which includes zooming text
and a dragonfly that turns into a ‘y’. The splash screen is not strictly needed by any game,
but including it here in the first game is useful to help ensure the development environment
is setup and working properly.

Dragonfly games need to be compiled the path for includes to the Dragonfly header
files and the SFML header files. The Dragonfly library and the SFML libraries (graphics,
window, system and audio) need to be linked in. On Linux, the real-time library also needs
to be linked for timing.

However, as Saucer Shoot, and nearly all games, will have several .cpp files and different
compiler flags, it is much easier to Makefile (for Linux) or Visual Studio project file (for

3.3. Saucer Shoot 17

Windows).
Download a Makefile template (if developing in Linux), a Visual Studio Solution (if

developing in Windows), and the game template described above:

http://dragonfly.wpi.edu/tutorial/game0.zip

The Makefile/Solution (we will call this your “project” to be general) may need to be
adjusted (e.g., changing the path to wherever SFML is installed on your system), depending
upon your particular setup. As Saucer Shoot is developed, file names will be added to the
project corresponding to new C++ classes, such as Saucer.cpp and Bullet.cpp.

Compile your game and try it out!

Once setup, games can be compiled via make (if in Linux or Mac) or Build/F7 (if
in Windows). Doing so will ensure all 3rd party libraries are installed (e.g., SFML and
Dragonfly) and the Makefile/Project file is setup correctly properly. Once built, games can
be run from the shell via ./game (if in Linux or Mac) or via F5 from Visual Studio (if
in Windows). When run, the current game, such as it is, should pop-up a window, play
the Dragonfly splash screen, then exit. There should corresponding log messages in the file
“dragonfly.log” in the directory where the game was run.

3.3.2 Saucers

Your first party guests

Start by adding an object to the game, in this case a saucer - the main opponent the
player will shoot. The saucer has an animated sprite.

You can download the sprite pack for all the sprites used for this tutorial:

http://dragonfly.wpi.edu/tutorial/sprites.zip

Extract the sprites to a directory immediately under the location of the saucer shoot
executable (e.g., extract to game/, making sure it is named sprites/.

For the game code, the ResourceManager is used to load the sprite. Add:
✞ ☎

0 #include ” ResourceManager . h”
✝ ✆

to the top of the game.cpp code with the #includes. Since there will be several resources
by the time the game is complete, create a function called loadResources() that takes in
nothing (void) and returns nothing:
✞ ☎

0 void loadResources (void) {

1 ...

2 }
✝ ✆

Put a prototype for this function above main(). Most games have a lot of resources to
load, but for now only the Saucer sprite is loaded. Inside the loadResources() function
body, put:

Listing 3.2: Example of loading Sprite
✞ ☎

0 // Load saucer s p r i t e .
1 RM.loadSprite (” s p r i t e s / sauce r−s p r . t x t ”, ” s a u c e r ”);
✝ ✆

3.3. Saucer Shoot 18

The ResourceManager, is used to load and manage the sprites. Note, the ResourceMan-
ager was already started up by the GameManager in its startUp() call. The Resource-
Manager is used to load a saucer sprite from the text file named sprites/saucer-spr.txt,
giving it the label “saucer”. The sprite files are text and human-readable. Take a look at
saucer-spr.txt, if you’d like (using any editor you are comfortable with). The contents
are as below:

Listing 3.3: Saucer sprite file
✞ ☎

0 <HEADER >

1 frames 5

2 width 6

3 height 2

4 color green

5 slowdown 4

6 </HEADER >

7 <BODY >

8 ____

9 /____ \

10 end

11 ____

12 /___o \

13 end

14 ____

15 /__o_ \

16 end

17 ____

18 /_o__ \

19 end

20 ____

21 /o___ \

22 end

23 </BODY >

24 <FOOTER >

25 version 1

26 </FOOTER >
✝ ✆

The sprite file is divided into sections: HEADER, BODY and FOOTER. The top five
lines in the HEADER provide information on the number of frames, frame width, frame
height, sprite color, and animation slowdown, respectively. The subsequent BODY lines
provide the frames to be animated, each delimited by a single line with “end”. The last
FOOTER section has sprite version information. For this tutorial, you will not need to
modify or add any sprite files by hand, but can do so upon tutorial completion, if you’d
like, using any text editor.

Now, create a new file, Saucer.h which will contain the Saucer class definition:
✞ ☎

0 #include ” Ob jec t . h”
1

2 class Saucer : public df:: Object {

3

4 public:

5 Saucer ();

6 };
✝ ✆

3.3. Saucer Shoot 19

All game objects, including the Saucer, inherit from the Dragonfly Object class. Create
a new file called Saucer.cpp. It needs to #include your Saucer.h as well as engine header
files of LogManager.h, WorldManager.h, and ResourceManager.h. Define the constructor
(Saucer()) first. The constructor will look like:
✞ ☎

0 Saucer :: Saucer () {

1 ...

2 }
✝ ✆

The first piece of code handles associating the Saucer Sprite with the Saucer object.
The Sprite is associated with the Object via setSprite(). Note, by default this also sets
the Object’s bounding box (used for collisions) to the size of the Sprite and centers the
Sprite on the object location. The rate of Sprite animation is specified by the slowdown in
the sprite file (see above) - for the Saucer, it’s 4, meaning the animation is only advanced
once every 4 frame times. Dragonfly’s default frame time is 33 milliseconds, which provides
a frame rate (and update rate) of 30 frames per second, so a slowdown of 4 advances the
animation about once every 130 milliseconds.
✞ ☎

0 // Setup ” saucer ” s p r i t e .
1 setSprite (” s a u c e r ”);
✝ ✆

The last block of code sets some object properties. Indicating the type via setType() is
needed for collisions (for example, to determine what type of object a Bullet hits). Object
velocities are set by a Vector that indicates the magnitude of speed horizontally (x) and
vertically (y). For the Saucer, setting the x-velocity to a negative value moves the Saucer
to the left, while a positive value would move the Saucer to the right (similarly, an Object
could set the y-velocity to move up or down, but Saucers do not move vertically). The
units for velocity are the number of spaces moved each game step (again, with Dragonfly,
one step defaults to 33 milliseconds). Setting the Saucer value to -0.25 means the Saucer
moves one space to the left every 4 game steps.
✞ ☎

0 // Set o b j e c t type .
1 setType(” Sauce r ”);
2

3 // Set speed in h o r i z o n t a l d i r e c t i o n .
4 setVelocity (df:: Vector (-0.25 ,0)); // 1 space l e f t every 4 frames
✝ ✆

Lastly, set the starting location to be in the middle of the window. This can be obtained
from the WorldManager via getBoundary(). This returns a Box, which has horizontal and
vertical components (see

http://dragonfly.wpi.edu/include/classdf 1 1Box.html

for details). In general, the game world can be a different size (larger or smaller) than the
terminal window, but for Saucer Shoot the game world and the terminal window are the
same size.

Listing 3.4: Saucer starting in middle of window.
✞ ☎

0 // Set s t a r t i n g l o c a t i o n in the midd le o f window .
1 int world_horiz = (int) WM.getBoundary ().getHorizontal ();

2 int world_vert = (int) WM.getBoundary ().getVertical ();

3.3. Saucer Shoot 20

3 df:: Vector p(world_horiz /2, world_vert /2);

4 setPosition (p);
✝ ✆

The “WM” acronym is for the WorldManager, which manages the objects in the game
world.

Compile your program to make sure you have no errors. To do so, be sure to add
Saucer.cpp to your project. Running your game will not show any new output, however,
since although you have finished defining a basic Saucer, you have not added it to the game
world.

Since you generally populate a game with a lot of objects, create a method in game.cpp

called populateWorld() that returns void and takes in nothing along with a prototype.
✞ ☎

0 void populateWorld (void) {

1 ...

2 }
✝ ✆

Add a #include to Saucer.h since you will be adding your Saucer as an object. For
the method body, for now simply create a Saucer via a new call. Note, you do not need
to grab the value returned by new, which may look odd, because in the constructor for an
Object (the parent class of a Saucer), it automatically adds itself to the game world via the
WorldManager insertObject() call.
✞ ☎

0 new Saucer;
✝ ✆

In the body of main() after the GameManager has started up, first add a call to
loadResources(), then to populateWorld().
✞ ☎

0 // Load game re sou r c e s .
1 loadResources ();

2

3 // Populate game wor ld w i th some o b j e c t s .
4 populateWorld ();
✝ ✆

Now, you have your resources loaded and your world populated, so you are ready to run
the game from within main() in your game code. You do this by calling the run() method
from the GameManager.
✞ ☎

0 GM.run();
✝ ✆

The run() call blocks until setGameOver() is called in the GameManager. Since your
game does not yet do this, you will have to terminate it by hand.

Compile your game and try it out!

You should see a saucer start centered in the middle of the window and move off to the
left. If you got stuck with functionality or compiler errors, you can obtain a zipped version
of the source code:

http://dragonfly.wpi.edu/tutorial/game1.zip

Having a single saucer fly off and never be seen again is not what the player might
expect. Instead, when it leaves the left side of the window, make it re-appear on the right
side, as if it is a new Saucer. To do this, the Saucer will respond to the “outofbounds”

3.3. Saucer Shoot 21

event that Dragonfly generates when an game object moves from inside the game world to
outside (in this case, when the game object moves off the left edge of the window). To the
Saucer class definition (in Saucer.h), add a prototype for the event handler.
✞ ☎

0 int eventHandler (const df:: Event *p_e) override ;
✝ ✆

Note the override keyword. This helps the programmer by: 1) having the compiler
check that the method signature matches a virtual method (e.g., void eventHandler(...)

would cause an error), and 2) showing anyone reading the code that this is a virtual method,
overriding a virtual method of the base class.

Add EventOut.h to the list of includes in Saucer.cpp. Define the event handler next,
named eventHandler(). The eventHandler()method is inherited from the parent Object
class and gets invoked with every event the game world passes to the Object. The event
type is returned by getType(), a method in the Event class. The Saucer at this point will
only handle the “out” event. When the event is an OUT EVENT, the Saucer out() method
is called. If the event is something else, it is ignored by the Saucer.
✞ ☎

0 int Saucer :: eventHandler (const df:: Event *p_e) {

1

2 if (p_e ->getType () == df:: OUT_EVENT) {

3 out();

4 return 1;

5 }

6

7 return 0;

8 }
✝ ✆

Then, define the out() method:
✞ ☎

0 void Saucer :: out() {

1 ..

2 }
✝ ✆

First, in the method body, if the Saucer is in this method not as a result of moving
off the edge of the window (instead, say, by spawning out of bounds) it does not want to
do anything. Check this by getting the position (a Vector) via getPosition() and then
looking at the x value via getX(). If it is greater than 0, the Saucer did not go out of
bounds on the left side of the window.
✞ ☎

0 if (getPosition ().getX () >= 0)

1 return;
✝ ✆

Otherwise, you want to move the Saucer back to the right edge of the game world. Move
it just beyond the window edge and it will look like it is a new Saucer flying into view. Since
this functionality will get invoked in more than one place (it gets called whenever a Saucer
spawns, too) create a method in Saucer.cpp called moveToStart().
✞ ☎

0 void Saucer :: moveToStart () {

1 ...

2 }
✝ ✆

Put the method prototype in the class definition in Saucer.h. In the method body,
move the saucer by creating a Vector object, and setting the x and y values to be randomly

3.3. Saucer Shoot 22

placed past the right of the window. In order to invoke the rand() function calls, put an
include to <stdlib.h> at the top of Saucer.cpp.
✞ ☎

0 df:: Vector temp_pos ;

1

2 float world_horiz = WM. getBoundary (). getHorizontal ();

3 float world_vert = WM. getBoundary (). getVertical ();

4

5 // x i s o f f r i g h t s i d e o f window
6 temp_pos .setX (world_horiz + rand () % (int) world_horiz + 3.0f);

7

8 // y i s in v e r t i c a l range
9 temp_pos .setY (rand () % (int) (world_vert -1) + 1.0f);
✝ ✆

Now that temp pos is a position to the right of the visible window, tell the WorldManager
to actually move the Saucer there.
✞ ☎

0 WM.moveObject (this , temp_pos);
✝ ✆

Since this code starts the Saucer in a random location, replace the code in the Saucer con-
structor that places the Saucer in the middle of the window with a call to moveToStart().

Compile your game and try it out!

You should see the saucer start past the right edge of the window (it may take a moment
to appear, depending upon the location), moving on to the window as it moves right to left,
whereupon after leaving the left edge of the window it re-appears a short time later back
on the right.

If you get stuck adding your own code, you can download a zipped version of this game
up to this point:

http://dragonfly.wpi.edu/tutorial/game2.zip

3.3.3 Hero

Here to save the day!

Games are all about interaction, so add a game object the player can control. Make a
class definition called Hero inside of Hero.h. Like all game objects, Class Hero will inherit
from the Object class. It is going to respond to “keyboard” events, which are generated by
the InputManager, since the player will control the Hero via the keyboard. So, Hero.h will
need to include Object.h and EventKeyboard.h.
✞ ☎

0 class Hero : public df :: Object {

1

2 private:

3 void kbd(const df:: EventKeyboard * p_keyboard_event);

4 void move(int dy);

5

6 public:

7 Hero ();

8 int eventHandler (const df:: Event *p_e) override ;

9 };
✝ ✆

3.3. Saucer Shoot 23

In Hero.cpp, add an include to Hero.h as well as includes for LogManager.h, World-
Manager.h, and ResourceManager.h - these latter Managers will be used shortly. Define
the Hero constructor:
✞ ☎

0 Hero :: Hero () {

1 ..

2 }
✝ ✆

First, write code to associate the “ship” sprite with the Hero. This should look familiar
after the Saucer constructor code you wrote above.
✞ ☎

0 // Link to ” sh i p ” s p r i t e .
1 setSprite (” s h i p ”);
✝ ✆

Each Object needs to register for the events it is interested in via registerInterest().
At this point, the Hero is interested in “keyboard” events.
✞ ☎

0 registerInterest (df:: KEYBOARD_EVENT);
✝ ✆

Set the Object type and the Hero location and the constructor is complete. For location,
put the Hero on the left edge of the window, mid-way down vertically.
✞ ☎

0 setType(”Hero ”);
1 df:: Vector p(7, WM.getBoundary ().getVertical () /2);

2 setPosition (p);
✝ ✆

The Hero eventHandler() method is going to respond to only the “keyboard” event at
this point. To do so, it casts a generic Event object pointer as an EventKeyboard object
pointer, then calls the Hero kbd() method.
✞ ☎

0 int Hero :: eventHandler (const df:: Event *p_e) {

1 if (p_e ->getType () == df:: KEYBOARD_EVENT) {

2 const df:: EventKeyboard *p_keyboard_event =

3 dynamic_cast <const df :: EventKeyboard *> (p_e);

4 kbd(p_keyboard_event);

5 return 1;

6 }

7 return 0;

8 }
✝ ✆

Next, write the Hero kbd() method. It will inspect the key that is pressed, obtained
via the getKey() method from the EventKeyboard, and act accordingly.
✞ ☎

0 // Take app rop r i a t e a c t i on accord ing to key p r e s s ed .
1 void Hero ::kbd(const df:: EventKeyboard *p_keyboard_event) {

2

3 switch(p_keyboard_event ->getKey ()) {

4

5 ...

6

7 }

8 }
✝ ✆

First off, during the game, and during development, it is useful for the player to hit
‘Q’ to exit. Do this by adding code to the Hero kdb() method to tell the game to via the
setGameOver() method.

3.3. Saucer Shoot 24

✞ ☎

0 case df:: Keyboard ::Q: // q u i t
1 if (p_keyboard_event -> getKeyboardAction () == df :: KEY_PRESSED)

2 GM.setGameOver ();

3 break;
✝ ✆

If the key pressed is a ‘W’ or ‘S’ and the key is still being pressed down, the Hero will
move up or down, as appropriate.
✞ ☎

0 case df:: Keyboard ::W: // up
1 if (p_keyboard_event -> getKeyboardAction () == df :: KEY_DOWN)

2 move (-1);

3 break;

4 case df:: Keyboard ::S: // down
5 if (p_keyboard_event -> getKeyboardAction () == df :: KEY_DOWN)

6 move (+1) ;

7 break;
✝ ✆

And other keys and other actions (such as a key release) are ignored at this point.
With the movement keys in place, you need to write the Hero move() method. It

basically creates a new Vector object, setting the location either 1 up or 1 down from the
Hero’s current position. If the desired move keeps the Hero completely inside the window,
a call to moveObject() in the WorldManager actually moves it.
✞ ☎

0 // Move up or down .
1 void Hero :: move (int dy) {

2

3 // I f s t a y s on window , a l l ow move .
4 df:: Vector new_pos(getPosition ().getX (), getPosition ().getY () + dy);

5 if ((new_pos .getY () > 3) &&

6 (new_pos .getY () < WM.getBoundary ().getVertical () -1))

7 WM.moveObject (this , new_pos);

8 }
✝ ✆

The above code will work fine to move the Hero up and down. However, since it moves
the Hero as long as either the ‘W’ or ‘S’ key is pressed, this means the Hero will move
every game loop (“step”), so up to 30 spaces per second - too fast for this game. You
can use a common “countdown” technique to limit how often a player can move the Hero.
Declare two private integer variables in Hero.h called move slowdown and move countdown

and initialize them in the Hero constructor:
✞ ☎

0 move_slowdown = 2;

1 move_countdown = move_slowdown ;
✝ ✆

The countdown variables are used in move() to limit the rate of movement by not doing
anything unless the Hero has counted down to 0 since the last move. To do this, at the top
of move() add:
✞ ☎

0 // See i f t ime to move .
1 if (move_countdown > 0)

2 return;

3 move_countdown = move_slowdown ;
✝ ✆

3.3. Saucer Shoot 25

The move countdown variable gets decreased every game step. Include EventStep.h

in the Hero.cpp header section. Modify the Hero constructor to register for “step” events
(STEP EVENT) and update the eventHandler() to call a new Hero method, step().

Listing 3.5: Hero step()
✞ ☎

0 // Decrease ra t e r e s t r i c t i o n counter s .
1 void Hero :: step () {

2 // Move countdown .
3 move_countdown --;

4 if (move_countdown < 0)

5 move_countdown = 0;

6 }
✝ ✆

Now, add code to your game.cpp to put a Hero into the world. Add Hero.h to the list
of includes. In loadResources(), add ship-spr.txt with a label of “ship” to be loaded
by the ResourceManager. And to populateWorld(), add new Hero to instantiate a Hero
object. Make sure to add Hero.cpp to your project so it will be compiled.

Compile your game and try it out!

In addition to the Saucer functionality, you should see a Hero ship spawn on the window
and should be able to move it up and down via the ‘W’ and ‘S’ keys. Pressing ‘Q’ should
quit and end the game.

If you need it, this version of the game can be downloaded:

http://dragonfly.wpi.edu/tutorial/game3.zip

3.3.4 Bullets

Let the action begin!

To make the “shoot” part of “Saucer Shoot”, you will add the ability for the player’s Hero
ship to shoot bullets. First, make a Bullet class, with the ability to respond to “outofbounds”
events, for moving, and to “collision” events for hitting Saucers. The #includes need to be
“Object” and “EventCollision” in the Bullet.h file.
✞ ☎

0 class Bullet : public df :: Object {

1

2 private:

3 void out ();

4 void hit(const df:: EventCollision * p_collision_event);

5

6 public:

7 Bullet(df:: Vector hero_pos);

8 int eventHandler (const df:: Event *p_e) override ;

9 };
✝ ✆

In Bullet.cpp, define the constructor similar to the Saucer and Hero constructors. The
Bullet constructor should link to the sprite “bullet”, and set the object type (setType())
to “Bullet” (note, both the spite label and the object type are case-sensitive). A major
difference in the Bullet constructor is it takes in the position of the Hero (a Vector) as an
argument and uses it for the Bullet’s initial location - this makes sense since the Hero is

3.3. Saucer Shoot 26

the one that fired the bullet. In the Bullet constructor, the Bullet sets its location just to
the right of the Hero’s location.
✞ ☎

0 // Set s t a r t i n g l o ca t i on , based on hero ’ s p o s i t i o n passed in .
1 df:: Vector p(hero_pos .getX ()+3, hero_pos .getY ());

2 setPosition (p);
✝ ✆

Also in the constructor, set the bullet speed. Bullets are relatively fast, moving 1 space
every game loop (so, 30 spaces per second). Unlike for Saucers that always move to the left,
the Hero sets each each Bullet’s direction when it fires to move towards the mouse reticle.
✞ ☎

0 // Bu l l e t s move 1 space each game loop .
1 // The d i r e c t i o n i s s e t when the Hero f i r e s .
2 setSpeed (1);
✝ ✆

The Bullet eventHandler() should look like the Saucer’s, handling an OUT EVENT. In
addition, the Bullet will want to react when it hits a Saucer by handling the “collision”
event.
✞ ☎

0 if (p_e ->getType () == df:: COLLISION_EVENT) {

1 const df:: EventCollision *p_collision_event =

2 dynamic_cast <const df :: EventCollision *> (p_e);

3 hit(p_collision_event);

4 return 1;

5 }
✝ ✆

Like all Dragonfly eventHandler() methods, it should return 1 when the event is han-
dled (i.e., “collision” and “outofbounds” events) and return 0 when not.

With the above code in place, you next need to write methods for out(), and hit().
For out(), since this method is called when the Bullet leaves the window (moves off

the right edge), you want to destroy the Bullet. In Dragonfly, this is done by calling
markForDelete() in the WorldManager. All Objects that are scheduled for deletion in the
course of one iteration of the game loop are deleted at the same time.
✞ ☎

0 // I f Bu l l e t moves o u t s i d e world , mark s e l f f o r d e l e t i o n .
1 void Bullet :: out() {

2 WM.markForDelete (this);

3 }
✝ ✆

For hit(), if the Bullet has hit a Saucer it marks itself and the Saucer for deletion.
The two Objects involved in a collision can be obtained from the methods getObject1()
and getObject2() in the EventCollision class. The Object that moved that initiated the
collision is always object 1.
✞ ☎

0 // I f Bu l l e t h i t s Saucer , mark Saucer and Bu l l e t f o r d e l e t i o n .
1 void Bullet :: hit(const df:: EventCollision *p_collision_event) {

2 if ((p_collision_event -> getObject1 () -> getType () == ” Sauce r ”) ||

3 (p_collision_event -> getObject2 () -> getType () == ” Sauce r ”)) {

4 WM. markForDelete (p_collision_event -> getObject1 ());

5 WM. markForDelete (p_collision_event -> getObject2 ());

6 }

7 }
✝ ✆

3.3. Saucer Shoot 27

Now that you have defined a fully-functional working Bullet object, you need to add
capability for the Hero object to fire bullets. First, it needs to include the new Bullet.h

class definition. For the Hero constructor, you will want to limit the fire rate of the player
(so s/he cannot just spam bullets) using a technique similar to controlling movement speed.
Declare two private integer variables in Hero.h called fire slowdown and fire countdown

and initialize them in the Hero constructor:
✞ ☎

0 fire_slowdown = 15;

1 fire_countdown = fire_slowdown ;
✝ ✆

The player will be able to aim the bullet with the mouse, so in the Hero constructor,
register for interest in mouse events (df::MSE EVENT), similar to registering for interest in
keyboard events. You will need to #include EventMouse.h, too.

Next, define a new method related to firing - fire() that creates a Bullet object. The
player will be able to aim the bullet with the mouse, so the fire() method will take in a
target position (a Vector) as input.
✞ ☎

0 void Hero :: fire (df:: Vector target) {

1 ...

2 }
✝ ✆

The Hero uses the countdown and slowdown variables to limit the rate of fire by not
creating a new Bullet unless the Hero has counted down to 0 since the last time a Bullet
was fired.
✞ ☎

0 if (fire_countdown > 0)

1 return;

2 fire_countdown = fire_slowdown ;
✝ ✆

In the Hero step() method, decrease the fire countdown variable every game step.
✞ ☎

0 // NOTE − in s t e p ()
1 // Fire countdown .
2 fire_countdown --;

3 if (fire_countdown < 0)

4 fire_countdown = 0;
✝ ✆

Back in the fire() method, when actually firing, a Bullet is created via new, passing in
the position of the Hero (a Vector). Then, the target position passed in to fire() is used
to adjust the y-velocity to move the bullet vertically towards the target.
✞ ☎

0 // Fire Bu l l e t towards t a r g e t .
1 // Compute norma l i zed v e c t o r to po s i t i on , then s c a l e by speed (1) .
2 df:: Vector v = target - getPosition ();

3 v.normalize ();

4 v.scale (1);

5 Bullet *p = new Bullet(getPosition ());

6 p->setVelocity (v);
✝ ✆

One subtle code addition is to make the Bullets SOFT in the Bullet constructor to allow
them to pass through the Hero if firing backwards.
✞ ☎

0 // Note : in B u l l e t c on s t ru c t o r
1 // Make the Bu l l e t s s o f t so can pass through Hero .

3.3. Saucer Shoot 28

2 setSolidness (df:: SOFT);
✝ ✆

The fire() method is finished, but needs to be invoked when the player wants to fire.
This is done by clicking the left mouse button with the mouse cursor where the player wants
to fire the bullet. To do this, a mouse event must be handled in the Hero’s eventHandler()
method.
✞ ☎

0 if (p_e ->getType () == df:: MSE_EVENT) {

1 const df:: EventMouse * p_mouse_event =

2 dynamic_cast <const df:: EventMouse *> (p_e);

3 mouse(p_mouse_event);

4 return 1;

5 }
✝ ✆

If there is a mouse event, this invokes the mouse() method you will define next.
✞ ☎

0 // Take app rop r i a t e a c t i on accord ing to mouse ac t i on .
1 void Hero :: mouse(const df:: EventMouse * p_mouse_event) {

2 ...

3 }
✝ ✆

The body of mouse() examines the mouse event first, to see if a button was clicked, and
if so, second, to see if the button is the left mouse button. If so, the fire() is invoked,
passing in the (x,y) position of the mouse.
✞ ☎

0 // Pressed bu t ton ?
1 if ((p_mouse_event -> getMouseAction () == df:: CLICKED) &&

2 (p_mouse_event -> getMouseButton () == df:: Mouse:: LEFT))

3 fire (p_mouse_event -> getMousePosition ());
✝ ✆

Lastly, in game.cpp, make sure to modify loadResources() to have the resource man-
ager load the sprite bullet-spr.txt with a label of “bullet”.

Make sure to add Bullet.cpp to your project so it will be compiled.

Compile your game and try it out!

You should be able to click the mouse and have your ship shoot bullets. (Note, you will
not actually see the mouse cursor - we will fix that next). If the bullets strike the Saucer,
it should destroy both of them and they will disappear.

The version of the game up to this point can be downloaded:

http://dragonfly.wpi.edu/tutorial/game4.zip

3.3.5 Reticle

Ready! Fire! Aim!

Playing the game as-is will find that shooting using the mouse is difficult when you
cannot see the mouse cursor. We will fix this by creating a sight (a reticle) that shows the
mouse in the Dragonfly window. Define a Reticle class in Reticle.h. It will need to include
Object.h.

3.3. Saucer Shoot 29

✞ ☎

0 #define RETICLE_CHAR ’+ ’
1

2 class Reticle : public df:: Object {

3

4 public:

5 Reticle ();

6 int draw (void) override ;

7 int eventHandler (const df:: Event *p_e) override ;

8 };
✝ ✆

In Reticle.cpp, add includes for EventMouse.h, DisplayManager.h and WorldManager.h
and, of course, Reticle.h. The, create a constructor that will setup the initial Reticle at-
tributes.
✞ ☎

0 Reticle :: Reticle () {

1 ...

2 }
✝ ✆

In the constructor, set the Object type to “Reticle”.
Unlike a default Object, the Reticle should not collide with other Objects. You can

make this happen via the solidness attribute of an Object. Objects can be HARD, SOFT
or SPECTRAL. Hard objects will generate a collision and impede movement. Soft objects
will generate a collision, but not impede movement. Spectral objects do not generate
collisions nor impede movement. So, the Reticle should be SPECTRAL.
✞ ☎

0 setSolidness (df:: SPECTRAL);
✝ ✆

The Reticle should always be drawn on top in the foreground so as not to be “hidden”
behind Saucers or other Objects. This can be done with Dragonfly layering. While the
world view is only 2D, Dragonfly supports 5 visual layers, where the bottom layers are
drawn first followed by the top layers. The altitude variable controls the visual layering.
Values can range from 0 to 4 (MAX ALTITUDE) with the lowest altitudes drawn first. The
default altitude for all Objects is 2. Note, for purposes of collisions, there is only 1 layer -
the values discussed here are only for display.

To always be drawn in the foreground, the Reticle should have the maximum altitude.
✞ ☎

0 setAltitude (df:: MAX_ALTITUDE); // Make Re t i c l e in f oreground .
✝ ✆

Like the Hero, the Reticle should also register for interest in the mouse event since it is
going to move whenever the mouse moves.

Lastly, the Reticle should start centered in the middle of the window, as the Saucer did
initially. (See Listing 3.4).

The Reticle eventHandler() responds to mouse events, with all other events being
ignored. If there is a mouse event and the event is that the mouse has moved, the Reticle
position is changed to the mouse’s new location.
✞ ☎

0 int Reticle :: eventHandler (const df:: Event *p_e) {

1

2 if (p_e ->getType () == df:: MSE_EVENT) {

3 const df:: EventMouse *p_mouse_event =

4 dynamic_cast <const df :: EventMouse *> (p_e);

3.3. Saucer Shoot 30

5 if (p_mouse_event -> getMouseAction () == df:: MOVED) {

6 // Change l o c a t i o n to new mouse p o s i t i o n .
7 setPosition (p_mouse_event -> getMousePosition ());

8 return 1;

9 }

10 }

11

12 // I f g e t here , have i gnored t h i s even t .
13 return 0;

14 }
✝ ✆

Unlike other Objects, the Reticle does not use a Sprite. Instead, it overrides the draw()
method in the Object parent class and draw itself as a single character, defined as RETICLE -

CHAR.
✞ ☎

0 // Draw r e t i c l e on window .
1 int Reticle :: draw () {

2 return DM.drawCh(getPosition (), RETICLE_CHAR , df::RED);

3 }
✝ ✆

The “DM” acronym is for the DisplayManager, which manages display to the graphics
device (e.g., the screen).

Lastly, since the Hero uses the Reticle to aim, it makes sense to have the Hero create
the Reticle when the Hero first spawns. Add an attribute to the Hero class for holding the
Reticle.
✞ ☎

0 private:

1 Reticle *p_reticle ;
✝ ✆

Then, in the Hero constructor, add code to create a new Reticle.
✞ ☎

0 // Create r e t i c l e f o r f i r i n g b u l l e t s .
1 p_reticle = new Reticle ();

2 p_reticle ->draw ();
✝ ✆

Make sure to add Reticle.cpp to your project so it will be compiled, and include the
Reticle.h header file, where needed.

Compile your game and try it out!

The game functionality will be as before, but you should now see the mouse in the form
of the Reticle (a red ‘+’) that moves where the mouse moves.

The version of the game up to this point can be downloaded:

http://dragonfly.wpi.edu/tutorial/game5.zip

3.3.6 Explosions

Saucer, meet Bullet

You may notice the Saucer disappears without so much as a whimper. You can fix that
by making an explosion object that gets created whenever a Saucer is destroyed. Define an
Explosion class in Explosion.h. Unlike other game objects, this one will live for a finite

3.3. Saucer Shoot 31

amount of time then destroy itself. To do this, it will have a “time to live” counter that
gets decremented each game step.
✞ ☎

0 class Explosion : public df:: Object {

1

2 private:

3 int time_to_live ;

4 void step ();

5

6 public:

7 Explosion ();

8 int eventHandler (const df:: Event *p_e) override ;

9 };
✝ ✆

In Explosion.cpp, create a constructor that links to a “explosion” sprite. In addi-
tion, the time to live variable needs to be set. It should be set to provide a countdown
long enough for the Explosion animation to play, which is equivalent to the number of
frames in the sprite. This can be obtained from the Animation and Sprite objects via
getFrameCount(). Note, the below code also illustrates error checking the setSprite()

method, which returns -1 if the indicated sprite label is not found.
✞ ☎

0 // Link to ” e x p l o s i o n ” s p r i t e .
1 if (setSprite (” e x p l o s i o n ”) == 0)

2 // Set l i v e time as l ong as s p r i t e l e n g t h .
3 time_to_live = getAnimation ().getSprite () ->getFrameCount ();

4 else

5 time_to_live = 0;
✝ ✆

Like the Reticle, Explosions should be SPECTRAL. Also, have the Explosion register
for a “step” event (df::STEP EVENT) in the constructor.

The Explosion eventHandler() should call the step() method when it gets a “step”
event. In step(), the Explosion decrements the time to live variable. When this reaches
0, it will mark itself for deletion with the WorldManager.
✞ ☎

0 void Explosion :: step () {

1 time_to_live --;

2 if (time_to_live <= 0)

3 WM. markForDelete (this);

4 }
✝ ✆

An Explosion is created when a Saucer is destroyed. In the Saucer’s event handler, add
the same code that responds to a collision event as you have in the Bullet class, calling a
hit() method in the Saucer. Put a prototype of the hit() method in Saucer.h along with
a #include to the EventCollision.h header file. Next, define the Saucer’s hit method:
✞ ☎

0 void Saucer :: hit(const df:: EventCollision *p_c) {

1 ...

2 }
✝ ✆

In the body, there are a couple of scenarios to consider. First, if a Saucer runs into
another Saucer, that should be ignored.
✞ ☎

0 // I f Saucer on Saucer , i gno r e .
1 if ((p_c -> getObject1 () -> getType () == ” Sauce r ”) &&

3.3. Saucer Shoot 32

2 (p_c -> getObject2 () -> getType () == ” Sauce r ”))
3 return;
✝ ✆

If a Saucer runs into a Bullet, however, there should be fireworks! Namely, you want to
create an Explosion by using new and then setting the Explosion position to the Saucer’s
position. Remember, the Bullet collision handler will already mark the Saucer for deletion.
In order to continually give the player Saucer’s to shoot at, have the Saucer spawn a new
Saucer when it is hit by the Bullet.
✞ ☎

0 // I f Bu l l e t . . .
1 if ((p_c -> getObject1 () -> getType () == ” B u l l e t ”) ||

2 (p_c -> getObject2 () -> getType () == ” B u l l e t ”)) {

3

4 // Create an e x p l o s i o n .
5 Explosion *p_explosion = new Explosion ;

6 p_explosion -> setPosition (this -> getPosition ());

7

8 // Saucers appear s t a y around p e r p e t u a l l y .
9 new Saucer;

10 }
✝ ✆

Make sure you have the ResourceManager load sprites/explosion-spr.txtwith label
“explosion” in game.cpp.

Compile your game and try it out!

You should be able to shoot Saucers, whereupon hitting one you get a nice, if brief,
explosion animation. The Saucer should respawn, too, giving you infinite target practice.
If you are stuck, the version of the game up to this point can be downloaded:

http://dragonfly.wpi.edu/tutorial/game6.zip

3.3.7 End of Game

All good things must come to an end

You have most of the functionality needed for gameplay at this point, but the game
aspects could use a bit of work.

You’ll want to spawn more Saucers at the beginning of the game, say 16. In game.cpp,
in populateWorld(), add a loop creating Saucers.
✞ ☎

0 // Spawn some saucers to shoo t .
1 for (int i=0; i <16; i++)

2 new Saucer;
✝ ✆

Once there are a lot of Saucers spawning in random locations, they may end up landing
on top of one another. In such a case, Dragonfly generates a “collision” event, thereby
causing the Saucers to move back their original location (all Objects spawn at (0,0), by
default). You need to add some code to the Saucer moveToStart() method to prevent this.
The idea is to check if there is a collision at the Saucer’s randomly chosen location. If so,
the Saucer is inched over to the right and the location checked again, repeating until a free
location is obtained.

3.3. Saucer Shoot 33

✞ ☎

0 // I f c o l l i s i o n , move r i g h t s l i g h t l y u n t i l empty space .
1 df:: ObjectList collision_list = WM. getCollisions (this , temp_pos);

2 while (! collision_list .isEmpty ()) {

3 temp_pos .setX (temp_pos .getX () +1);

4 collision_list = WM. getCollisions (this , temp_pos);

5 }
✝ ✆

You will also want a way to make the game get more difficult for the player as time
progresses. While there are many ways to do this, adding a “new Saucer” call to the end
of the Saucer out() method works pretty well for just increasing the number of enemies
as the player lets them get by. You can do this by creating a new one each time a Saucer
moves past the Hero on the left edge of the window. At the very end of the Saucer out()
method, add code to make a new Saucer.
✞ ☎

0 // Spawn new Saucer to make the game ge t harder .
1 new Saucer;
✝ ✆

You will want to add an end-of-game condition next. This should happen when the
Hero collides with a Saucer or vice versa. On such a collision, a “collision” event is sent to
both objects. Handle it in the Saucer in the hit() method. The Saucer will check if either
Object involved in the collision is the Hero. If so, it schedules both Objects for deletion.
✞ ☎

0 // I f Hero , mark bo th o b j e c t s f o r d e s t r u c t i o n .
1 if (((p_collision_event -> getObject1 () -> getType ()) == ”Hero ”) ||

2 ((p_collision_event -> getObject2 () -> getType ()) == ”Hero ”)) {

3 WM.markForDelete (p_collision_event -> getObject1 ());

4 WM.markForDelete (p_collision_event -> getObject2 ());

5 }
✝ ✆

In order to make the collision with the Hero end the game, the GameManager needs
to be told to end the game loop via the setGameOver() method. This code should be put
in the Hero destructor (which is not defined yet, so it will need a method definition in the
Hero class in Hero.h, first).
✞ ☎

0 GM.setGameOver ();
✝ ✆

Compile your game and try it out!

You should now have lots of Saucers to shoot, and they should keep coming in increasing
numbers as they slip by. If the Hero is hit by a Saucer the game should end.

The version of the game up to this point can be downloaded:

http://dragonfly.wpi.edu/tutorial/game7.zip

3.3.8 Nukes

Desperate times call for desperate measures

As you may find, the game can get pretty hard once a few Saucers slip by. To illustrate
a user-defined event (and to give the player a fighting chance) you are going to add the
capability for a single “nuke” event usable by the player. Launching the nuke will destroy

3.3. Saucer Shoot 34

all the Saucers currently in the game (of course, we’ll make more since each will spawn
another Saucer when destroyed). Still, the player will have a momentary respite from the
onslaught.

Dragonfly provides standard events, such as “step,” “collision” and “outofbounds”.
However, it also provides the mechanism to let game programmers define their own, game-
specific events. You will use this for creating a “nuke” event.

To do so, create a class called EventNuke (in EventNuke.h) that inherits from the Event
class with a string constant NUKE EVENT string to “nuke”.
✞ ☎

0 const std :: string NUKE_EVENT = ”nuke ”;
1

2 class EventNuke : public df:: Event {

3

4 public:

5 EventNuke ();

6 };
✝ ✆

It will need to include Event.h.
In EventNuke.cpp, only the constructor needs to be defined, setting the type of the

Event to NUKE EVENT.
✞ ☎

0 EventNuke :: EventNuke () {

1 setType(NUKE_EVENT);

2 };
✝ ✆

Add EvenNuke.cpp to your project so it will be compiled. Although simple, compile it
and make sure it builds without error.

The Nuke event is triggered when the player presses the spacebar. Since the Hero
already handles keyboard events, extend the Hero class to support nukes. First off, add
EventNuke.h to the includes for Hero.cpp. Then, modify the Hero kdb() method to detect
the spacebar and invoke the nuke() method.
✞ ☎

0 void Hero :: nuke () {

1 ...

2 }
✝ ✆

In the body of nuke(), first check if the player has any nukes left. Do this by keeping
a nuke count variable for the Hero object and see if it is greater than zero. If not, there
is nothing to be done, so return. If so, decrement nuke count and proceed. Note, nuke -

count should be declared as a private integer in Hero.h and initialize it to 1 in the Hero
constructor.
✞ ☎

0 // Check i f nukes l e f t .
1 if (! nuke_count)

2 return;

3 nuke_count --;
✝ ✆

If the nuke is allowed, the Hero creates a “nuke” event and sends it to every Object
that has registered for interest in it in the WorldManager. This is done by calling the
WorldManager onEvent() method, passing in the address of the EventNuke.
✞ ☎

0 // Create ”nuke” even t and send to i n t e r e s t e d Ob j e c t s .

3.3. Saucer Shoot 35

1 EventNuke nuke ;

2 WM.onEvent (& nuke);
✝ ✆

The Saucer objects are the ones affected by the Nuke. Add EventNuke.h to the
Saucer.cpp’s included headers. The constructor for the Saucer needs to register for in-
terest in a NUKE EVENT. Then, in the Saucer eventHandler(), add a check for event type
NUKE EVENT. If found, the Saucer creates an Explosion (as it does when it hits a Bullet),
marks itself for deletion with the WorldManager, and spawns another Saucer.
✞ ☎

0 if (p_e ->getType () == NUKE_EVENT) {

1 ...

2 }
✝ ✆

Compile your game and try it out!

The game should play as before, but the player should be allowed to hit the spacebar
and destroy all the Saucer’s in the game. They will all respawn, of course, and the player
can only do this “nuke” action one time, but it should temporarily clear the window of all
baddies.

As usual, the version of the game up to this point can be downloaded:

http://dragonfly.wpi.edu/tutorial/game8.zip

3.3.9 Game On!

It doesn’t matter if you win or lose ... until you lose

Your game should have some nice interaction going, but it isn’t really a game. Why not?
Because there is no obvious score, no real incentive to live longer or shoot more Saucers.
So, you will next add some points to your game and display them for the player.

Dragonfly has a ViewObject that is a special type of Object used for displaying values,
such as “score” or “lives”. You will use this for the game score. Create a new object of
type Points (in Points.h) that inherits from ViewObject.
✞ ☎

0 #define POINTS_STRING ” Po i n t s ”
1

2 class Points : public df:: ViewObject {

3

4 public:

5 Points ();

6 };
✝ ✆

It will need to #include ViewObject.h and Event.h.
In Points.cpp, create a constructor.

✞ ☎

0 Points :: Points () {

1 ...

2 }
✝ ✆

Set some attributes of the base ViewObject to display the score in the top right of the
window, with the color yellow.

3.3. Saucer Shoot 36

✞ ☎

0 setLocation (df:: TOP_RIGHT);

1 setViewString (POINTS_STRING);

2 setColor (df:: YELLOW);
✝ ✆

The game will reward the player with 1 point for every second survived, keeping track
of this by checking the step count (number of game loop iterations). To do this, register to
receive the “step” event from the GameManager in the constructor.
✞ ☎

0 // Need to update score each second , so count ” s t ep ” ev en t s .
1 registerInterest (df:: STEP_EVENT);
✝ ✆

Next, add a public method in Points.h for handling events.
✞ ☎

0 int eventHandler (const df:: Event *p_e) override ;
✝ ✆

In Points.cpp, define the event handler method.
✞ ☎

0 int Points :: eventHandler (const Event *p_e) {

1 ...

2 // I f g e t here , have i gnored t h i s even t .
3 return 0;

4 }
✝ ✆

In the method body, at the top, add a call to the parent class (the ViewObject)
eventHandler() when there is a score update.
✞ ☎

0 // Parent hand l e s even t i f s core update .
1 if (df:: ViewObject :: eventHandler (p_e)) {

2 return 1;

3 }
✝ ✆

If this is not a score update, then if a “step” event arrives, Points checks if it is evenly
divisible by 30 - if so, one second has elapsed and the player has earned a point! The points
are stored in the base ViewObject, accessed by getValue() and setValue().
✞ ☎

0 // I f s tep , increment score every second (30 s t e p s) .
1 if (p_e ->getType () == df:: STEP_EVENT) {

2 if (dynamic_cast <const df:: EventStep *> (p_e)

3 -> getStepCount () % 30 == 0)

4 setValue (getValue () + 1);

5 return 1;

6 }
✝ ✆

Next, the game should reward the player for shooting Saucer’s, too. To do this, make
use of Dragonfly’s EventView objects, which are Events that ViewObjects are automatically
registered to receive. Create a Saucer destructor, defined in the .h file and the body in the
.cpp file. Add code to create an EventView and send it to all interested objects.
✞ ☎

0 // Send ” view” even t w i th p o i n t s to i n t e r e s t e d ViewObjects .
1 // Add 10 p o i n t s .
2 df:: EventView ev(POINTS_STRING , 10, true);

3 WM.onEvent (&ev);
✝ ✆

3.3. Saucer Shoot 37

The parameters “10” and “true” tell the Points object that it should add 10 to its value
when it handles the events. To compile, you need to add EventView.h to the list of includes
in Saucer.cpp. In order to recognize POINTS STRING, you also need to include Points.h.

Lastly, you want to create the Points object at the beginning of the game. In game.cpp,
after the code for spawning a Hero, add code to spawn a Points object.
✞ ☎

0 // Setup heads−up d i s p l a y .
1 new Points; // p o i n t s d i s p l a y
✝ ✆

You need #include Points.h at the top of game.cpp. You can compile your game and
try it out. You should see the player Points displayed at the top center of window, with
rewards given for time alive (1 point per second) and destroying enemies (10 points per
saucer).

You can use the same ViewObject mechanism to keep track of the number of nukes
the player has, too. Since this display does not need to define any new behaviors, unlike
the Points object, you can use a standard ViewObject and define some attributes without
creating a separate class. In game.cpp, right after creating the Points object, add code to
create another ViewObject for the Nukes display.
✞ ☎

0 df:: ViewObject *p_vo = new df:: ViewObject ; // Count o f nukes .
✝ ✆

After creation, set the attributes to display it in the top left of the window, with the
display string of “Nukes”, an initial value of 1, and drawn in yellow.
✞ ☎

0 p_vo ->setLocation (df:: TOP_LEFT);

1 p_vo ->setViewString (”Nukes”);
2 p_vo ->setValue (1);

3 p_vo ->setColor (df:: YELLOW);
✝ ✆

You need to include Color.h in order to recognize df::YELLOW. In the Hero, at the end
of the nuke() method, add code to send an EventView to the display, decrementing the
nuke value.
✞ ☎

0 // Send ” view” even t w i th nukes to i n t e r e s t e d ViewObjects .
1 df:: EventView ev(”Nukes”, -1, true);

2 WM.onEvent (&ev);
✝ ✆

Compile your game and try it out!

You should see a display for points and nukes, with all Objects traveling behind them.
The version of the game up to this point can be downloaded:

http://dragonfly.wpi.edu/tutorial/game9.zip

3.3.10 Stars

Billions and billions of ’em

Your game is nearly there, but a few tweaks will make it look more refined. One visual
problem is that the window background is rather plain. Saucer Shoot is supposed to be in
space, but there are no stars!

3.3. Saucer Shoot 38

To make some stars, you utilize the visual layers that placed the Reticle in front, but
this time making the stars behind the scenes as a backdrop. Create a Star class in Star.h

that inherits from Object. It will have event handling the “outofbounds” events, so a
corresponding out() method.

Like the Reticle, the star overrides the draw() method and draws itself as a single
character, defined as STAR CHAR.
✞ ☎

0 #define STAR_CHAR ’ . ’
1

2 class Star : public df :: Object {

3

4 private:

5 void out ();

6

7 public:

8 Star ();

9 int draw (void) override ;

10 int eventHandler (const df:: Event *p_e) override ;

11 };
✝ ✆

Star.cpp needs to include Star.h, and <stdlib.h> for random placement. It also
needs WorldManager.h and EventOut.h.

Create the Star constructor.
✞ ☎

0 Star :: Star () {

1 ...

2 }
✝ ✆

The Star constructor should set the type to “Star” and set itself to be SPECTRAL.
✞ ☎

0 setType(” S t a r ”);
1 setSolidness (df:: SPECTRAL);
✝ ✆

In movies, as a spaceship travels through space stars closer to the camera appear to
move faster than stars further away. To achieve this motion parallax affect, set the velocity
to a random value, one of 10 different speeds.
✞ ☎

0 setVelocity (df:: Vector ((float) -1.0 /(rand () %10 + 1), 0));
✝ ✆

Since we want Stars in the background, give them an altitude of 0.
✞ ☎

0 setAltitude (0); // Make S ta r s in background .
✝ ✆

Lastly, set the position of the Star to be randomly chosen over the whole window.
✞ ☎

0 df:: Vector p((float) (rand ()%(int)WM. getBoundary (). getHorizontal ()),

1 (float) (rand ()%(int)WM. getBoundary (). getVertical ()));

2 setPosition (p);
✝ ✆

When the draw() method for Stars are called (once each game loop done by the game
manager), the Star will invoke the drawCh() method of the DisplayManager, giving it the
position of the Star and the character to be drawn.

Listing 3.6: Star draw()
✞ ☎

3.3. Saucer Shoot 39

0 int Star :: draw () {

1 return DM.drawCh(getPosition (), STAR_CHAR , df:: WHITE);

2 }
✝ ✆

The Star eventHandler() should be done as for Saucers, only handling the “out” event
via the Star out()method. The Star out() method should move the Star back to a random
vertical location on the right of the window and also randomize the velocity, as it already
does in the constructor.
✞ ☎

0 // I f S tar moved o f f window , move back to f a r r i g h t .
1 void Star ::out () {

2 df:: Vector p((float) (WM.getBoundary ().getHorizontal () + rand () %20) ,

3 (float) (rand ()%(int)WM.getBoundary ().getVertical ()));

4 setPosition (p);

5 setVelocity (df:: Vector (-1.0 /(rand ()%10 + 1), 0));

6 }
✝ ✆

All the Stars should be created right at the beginning of the game. In game.cpp, add
Star.h to the list of includes. In populateWorld(), add a loop creating 16 Stars.
✞ ☎

0 // Create some S ta r s .
1 for (int i=0; i <16; i++)

2 new Star ;
✝ ✆

Compile your game and try it out!

You should see many stars moving at different speeds in the backdrop of your Saucer
Shoot game.

The version of the game up to this point can be downloaded:

http://dragonfly.wpi.edu/tutorial/game10.zip

3.3.11 Polish

Along with spit, this will make the game shine

You are nearly done – two more objects will make the whole game a little more game-
like. First, the end of game event is rather abrupt. Rather than have the end come so
quickly, it would be better to display a message and let the player collect his/her breath
before terminating. Likewise, it would be better if there was a pause before the start of the
game, where the game name and instructions could be shown.

To achieve these effects, you will create a new object called a GameOver. It will behave
much like an Explosion in that stays around only until its Sprite animation is complete.
However, rather than being part of the game itself, GameOver will be a ViewObject like
“Points” and “Nukes”.

Declare GameOver.h and define the GameOver class to be like the Explosion class, except
make it derived from a ViewObject instead of a Object.
✞ ☎

0 class GameOver : public df:: ViewObject {

1 ...

2 };
✝ ✆

3.3. Saucer Shoot 40

In GameOver.cpp, the GameOver constructor needs to set its type to “GameOver”
and link the “gameover” Sprite to the object. As for other Sprites, the Sprite in sprites/-

gameover-spr.txtmust be loaded via the ResourceManager in loadResources() in game.cpp.
✞ ☎

0 RM.loadSprite (” s p r i t e s / gameover−s p r . t x t ”, ” gameover ”);
✝ ✆

Note, the GameOver sprite uses transparency, with the sprite file HEADER indicating
all ’#’ characters should not be drawn.
✞ ☎

0 transparency #
✝ ✆

Like the Explosion above, the GameOver object has a time to live equal to the frame
count, multiplied by the sprite slowdown (set to 15 in the sprite file). This can be done by
querying the Sprite object getFrameCount() and getSlowdown() methods:
✞ ☎

0 // Link to ”message ” s p r i t e .
1 if (setSprite (” gameover ”) == 0)

2 time_to_live = getAnimation ().getSprite () ->getFrameCount () *

getAnimation ().getSprite () ->getSlowdown ();

3 else

4 time_to_live = 0;
✝ ✆

GameOver should register interest in the “step” event (STEP EVENT) and center itself in
the window:
✞ ☎

0 // Put in c en t e r o f window .
1 setLocation (df:: CENTER_CENTER);

2

3 // Reg i s t e r f o r s t e p even t .
4 registerInterest (df:: STEP_EVENT);
✝ ✆

The GameOver eventHandler() should recognize the “step” event, whereupon it calls
step() to decrease the time to live. When time to live reaches zero, it marks itself for
deletion with the WorldManager.
✞ ☎

0 // Count down to end o f ”message ” .
1 void GameOver :: step () {

2 time_to_live --;

3 if (time_to_live <= 0)

4 WM. markForDelete (this);

5 }
✝ ✆

In the GameOver destructor, indicate to the GameManager that the game is over via
setGameOver() (remember to include GameManager.h at the top of the file).
✞ ☎

0 // When o b j e c t e x i t s , i n d i c a t e game over .
1 GameOver ::~ GameOver () {

2 GM.setGameOver ();

3 }
✝ ✆

Since GameOver does not want to display any values associated with the default ViewOb-
ject , override the draw() method in GameOver.h.
✞ ☎

0 int draw () override ;
✝ ✆

3.3. Saucer Shoot 41

In GameOver.cpp, define the overridden draw() to just call the parent Object draw()
method to display the Sprite.
✞ ☎

0 // Overr ide d e f a u l t draw so as not to d i s p l a y ” va l u e ” .
1 int GameOver :: draw () {

2 return df:: Object :: draw ();

3 }
✝ ✆

To hook in the GameOver object, the Hero object no longer ends the game in its
destructor. Instead, it creates a GameOver object.
✞ ☎

0 // Create GameOver o b j e c t .
1 new GameOver ;
✝ ✆

The Hero destructor should also ask the WorldManager to delete the Reticle.
✞ ☎

0 // Mark Re t i c l e f o r d e l e t i o n .
1 WM.markForDelete (p_reticle);
✝ ✆

You may want to add code to create a really big explosion too, for a nice effect. Rather
than a fixed animation like the Explosion, we’ll use particle effects for a contrast.
✞ ☎

0 // Make a b i g e x p l o s i o n wi th p a r t i c l e s .
1 df:: addParticles (df:: SPARKS , getPosition (), 2, df :: BLUE);

2 df:: addParticles (df:: SPARKS , getPosition (), 2, df :: YELLOW);

3 df:: addParticles (df:: SPARKS , getPosition (), 3, df ::RED);

4 df:: addParticles (df:: SPARKS , getPosition (), 3, df ::RED);
✝ ✆

With the end of the game finished, it is time to turn attention to the start of the game.
Create a GameStart class for when the game begins that looks like GameOver except it
replaces the private method step() with the private method start(). And GameStart
does not have a time to live attribute nor a destructor.
✞ ☎

0 class GameStart : public df:: ViewObject {

1

2 private:

3 void start();

4

5 public:

6 GameStart ();

7 int eventHandler (const df:: Event *p_e) override ;

8 int draw () override ;

9 };
✝ ✆

The GameStart constructor should set the Object type to “GameStart”, place itself
in the center of the window, and link to the “gamestart” sprite. Make sure to have the
ResourceManager load the appropriate Sprite in loadResources() in game.cpp GameStart
also registers for keyboard events since it has the user press keys to start or quit the game.

The GameStart eventHandler() only needs to handle keyboard events. It should check
for a ‘P’, then call start() which starts the game or ‘Q’ which quits by setting the game
to be over in the GameManager.
✞ ☎

0 int GameStart :: eventHandler (const df :: Event *p_e) {

1

3.3. Saucer Shoot 42

2 if (p_e ->getType () == df:: KEYBOARD_EVENT) {

3 df:: EventKeyboard * p_keyboard_event = (df:: EventKeyboard *) p_e;

4 switch (p_keyboard_event ->getKey ()) {

5 case df:: Keyboard ::P: // p l a y
6 start();

7 break;

8 case df:: Keyboard ::Q: // q u i t
9 GM. setGameOver ();

10 break;

11 default: // Key i s not handled .
12 break;

13 }

14 return 1;

15 }

16

17 // I f g e t here , have i gnored t h i s even t .
18 return 0;

19 }
✝ ✆

Now, when the user hits ‘Q’ during the game, the game should return to the main menu.
Do this by changing the code in the Hero kdb() method to destroy the Hero.
✞ ☎

0 case df:: Keyboard ::Q: // q u i t
1 if (p_keyboard_event -> getKeyboardAction () == df :: KEY_PRESSED)

2 WM. markForDelete (this);

3 break;
✝ ✆

The definition of the GameStart draw() method should be the same GameOver draw().
With GameStart, instead of having all the game objects spawn in populateWorld() in

game.cpp, have the Saucers and the Hero spawn in the GameStart start() method. The
populateWorld() function still creates the Stars and also spawns the GameStart object.
✞ ☎

0 // Populate wor ld w i th some o b j e c t s .
1 void populateWorld () {

2

3 // Spawn some S ta r s .
4 for (int i=0; i<16; i++)

5 new Star ;

6

7 // Spawn GameStart o b j e c t .
8 new GameStart ();

9 }
✝ ✆

In the GameStart start() method, move the code currently in populateWorld() to
create the Hero, Saucers and display objects.
✞ ☎

0 // Create hero .
1 new Hero ;

2

3 // Spawn some saucers to shoo t .
4 for (int i=0; i <16; i++)

5 new Saucer;

6

7 // Setup heads−up d i s p l a y .
8 new Points; // Poin t s d i s p l a y .

3.3. Saucer Shoot 43

9 df:: ViewObject *p_vo = new df:: ViewObject ; // Count o f nukes .
10 p_vo ->setLocation (df:: TOP_LEFT);

11 p_vo ->setViewString (”Nukes”);
12 p_vo ->setValue (1);

13 p_vo ->setColor (df:: YELLOW);
✝ ✆

At the end of the start() method, when the game is ready to start, the GameStart
object becomes inactive.
✞ ☎

0 // When game s t a r t s , become i n a c t i v e .
1 setActive (false);
✝ ✆

Add the needed #includes (e.g., GameStart.h to game.cpp) to all files.
The last bit of work to do is in the GameOver destructor, where it needs to re-activate the

GameStart object. Before doing this, however, the GameOver object has some housekeeping
to do. It needs to remove all the Saucers and the ViewObjects (i.e., “Nukes” and “Points”).
It can do this by getting all the objects from the WorldManager and iterating through
them, deleting the ones it does not want. When it sees the GameStart object, it sets it to
be active.
✞ ☎

0 GameOver ::~ GameOver () {

1

2 // Remove Saucers and ViewObjects , re−a c t i v a t e GameStart .
3 df:: ObjectList object_list = WM. getAllObjects (true);

4 df:: ObjectListIterator i(& object_list);

5 for (i.first(); !i.isDone (); i.next ()) {

6 df:: Object *p_o = i. currentObject ();

7 if (p_o -> getType () == ” Sauce r ” || p_o -> getType () == ” ViewObject ”)
8 WM. markForDelete (p_o);

9 if (p_o -> getType () == ”GameStart ”)
10 p_o -> setActive (true);

11 }

12 }
✝ ✆

Compile your game and try it out!

You should see a blinking banner that gets displayed until the player hits ‘P’ or ‘Q’.
When the player hits ‘P’, the core gameplay commences, letting the player shoot Saucers
until the Hero dies, then the game return to the start menu. This continues until the player
hits ‘Q’ from the start menu.

The version of the game up to this point can be downloaded:

http://dragonfly.wpi.edu/tutorial/game11.zip

3.3.12 Audio

Sound is one-third the experience

In space, no one can hear you scream. While perhaps true, computer games set in
virtual space, such as Saucer Shoot, are certainly more enjoyable with some sound effects.
In fact, as WPI game audio professor Keith Zizza often says, “sound is one-third of the
experience” (the other two-thirds being graphics and gameplay).

3.3. Saucer Shoot 44

There are two different kinds of audio supported by Dragonfly - sound effects and music.
First, you will add some sound effects for bullets and explosions. Like sprites, sounds are
loaded and managed by the ResourceManager.

Download the sound pack used for this tutorial:

http://dragonfly.wpi.edu/tutorial/sounds.zip

Extract the sounds to a directory immediately under the location of the Saucer Shoot
executable (e.g., game/), making sure it is named sounds/. Add code to populateWorld()

in game.cpp that loads in the sound files.

Listing 3.7: Example of loading sound
✞ ☎

0 RM.loadSound (” sounds / f i r e . wav”, ” f i r e ”);
1 RM.loadSound (” sounds / e xp l od e . wav”, ” e xp l od e ”);
2 RM.loadSound (” sounds / nuke . wav”, ”nuke ”);
3 RM.loadSound (” sounds /game−ov e r . wav”, ”game ove r ”);
✝ ✆

The “fire” sound is played when a bullet is fired. Do this by adding a call to the Sound
play() method at the end of the Hero fire() method.

Listing 3.8: Example of playing sound
✞ ☎

0 // Play ” f i r e ” sound .
1 df:: Sound *p_sound = RM.getSound (” f i r e ”);
2 if (p_sound)

3 p_sound ->play ();
✝ ✆

The “explode” sound is triggered when a Saucer is destroyed. At the end of the Saucer
hit() method, add code to play the explosion sound.
✞ ☎

0 // Play ” exp l od e ” sound .
1 df:: Sound *p_sound = RM.getSound (” e xp l od e ”);
2 if (p_sound)

3 p_sound ->play ();
✝ ✆

The Hero should play the “nuke” sound at the end of the Hero nuke() method.
✞ ☎

0 // Play ”nuke” sound .
1 df:: Sound *p_sound = RM.getSound (”nuke ”);
2 if (p_sound)

3 p_sound ->play ();
✝ ✆

When the Hero is destroyed, the “gameover” sound is played. There are several places
this code could be added, but putting it in the constructor of the GameOver object works
well.
✞ ☎

0 // Play ”game over ” sound .
1 df:: Sound *p_sound = RM.getSound (”game ove r ”);
2 if (p_sound)

3 p_sound ->play ();
✝ ✆

You might compile your game and try it out so see if the sound effects are working -
firing sounds, explosion sounds, big nuclear explosion around and a big explosion when the
game is over.

3.3. Saucer Shoot 45

In addition to the game sound effects, Saucer Shoot could benefit from some music -
specifically, music that plays in the starting menu. Given the continuous nature of music,
it is treated somewhat differently by Dragonfly than the typically shorter sound effects.
Because of this, the ResourceManager has different methods for sounds versus music. For
example, loading the music for Saucer Shoot in loadResources() looks similar, but with
a different method name.

Listing 3.9: Example of loading music✞ ☎

0 RM.loadMusic (” sounds / s t a r t −music . wav”, ” s t a r t mus ic ”);
✝ ✆

For Saucer Shoot, the music plays when the GameStart object is active and displaying
the Saucer Shoot banner, but does not play when the GameStart object is not active (i.e.,
when the game is in progress). To enable this, create a new public method for GameStart
called playMusic() and a new attribute called p music for handling the music.
✞ ☎

0 private:

1 df:: Music *p_music ;

2 ...

3 public:

4 void playMusic ();
✝ ✆

GameStart.h needs to include Music.h for this.
In GameStart.cpp, in the GameStart constructor, add code to get the music from the

ResourceManager and play it.

Listing 3.10: Example of playing music✞ ☎

0 // Play s t a r t music .
1 p_music = RM.getMusic (” s t a r t mus ic ”);
2 playMusic ();
✝ ✆

In the GameStart start() method, when the GameStart object becomes inactive, the
music is paused.
✞ ☎

0 // Pause s t a r t music .
1 p_music ->pause();
✝ ✆

Then, in the GameOver destructor, when GameStart is re-activated, the music is re-
sumed.
✞ ☎

0 if (p_o -> getType () == ”GameStart ”) {

1 p_o -> setActive (true);

2 dynamic_cast <GameStart *> (p_o) -> playMusic (); // Resume s t a r t music .
3 }
✝ ✆

Compile your game and try it out!

Saucer Shoot should start with the main menu banner and some music. When the game
is in progress, the music should stop and there should be action sound effects. When the
game ends, the music should resume.

The version of the game up to this point can be downloaded:

http://dragonfly.wpi.edu/tutorial/game12.zip

3.3. Saucer Shoot 46

3.3.13 Final Touches

Look, something shiny!

For one of the final adjustments, it would be nice if the Hero and the Saucers both stay
below the display objects (Points and Nukes). To do this, adjust the move() method of the
Hero to be 3.

Listing 3.11: Hero move()
✞ ☎

0 // I f s t a y s on window , a l l ow move .
1 if ((new_pos .getY () > 3) &&

2 (new_pos .getY () < WM. getBoundary (). getVertical ()))

3 WM.moveObject (this , new_pos);
✝ ✆

Then, adjust the Saucer moveToStart() method by 3 also.
✞ ☎

0 // y i s in v e r t i c a l range .
1 temp_pos .setY (rand ()%(int)(world_vert -4) + 4.0f);
✝ ✆

Also, for the player, it can be useful to pause the game to attend to something in real
life (e.g., answering the phone). In Dragonfly, this is done by instantiating a special Pause
object in game.cpp right after the call to populateWorld().
✞ ☎

0 // Enable p l a y e r to pause game .
1 new df:: Pause(df:: Keyboard :: F10);
✝ ✆

A #include to Pause.h is needed at the top of the file for this. Once enabled, the player
can press ‘F10’ to pause the game.

The final version of the game can be downloaded:

http://dragonfly.wpi.edu/tutorial/game-final.zip

3.3.14 Where to From Here?

The sky is the limit!

Hopefully, you have been able to follow the tutorial all the way through, both to un-
derstand how to use Dragonfly and to provide a foundation for developing additional game
enhancements. You can probably already think of a bunch of ways of extending the Saucer
Shoot game. In case you need more ideas, here are a few ...

You could add additional weapon types. This might best be done by making a parent
Projectile class that Bullet and other weapons inherit from. Lazers might be fast and
destroy many Saucers in a line and Missiles might explode in a damage radius. You may
need an additional event to handle the Missile explosion, in that case.

The final explosion of the Hero is made up of a bunch of little explosions. This works,
but could look better with a bit of work. You could make a new Explosion sprite with
a single, really big explosion animation. You could then generalize the Explosion class to
take the sprite name of the explosion Sprite to be use as a parameter, probably in the
constructor. When adding new sprites, the list of colors Dragonfly supports can be found
in the Color.h header file.

3.3. Saucer Shoot 47

The Hero could have multiple lives and/or with health. Health would be decreased upon
being hit, with loss of life at zero health. The health could be displayed with a ViewObject,
similar to “Points” and “Nukes”.

While Stars have a parallax effect in their movement, they are all the same size. Stars
closer to the camera should move faster and should be larger. This can be done using the
Dragonfly Shape class. The code below shows how the Shape class can be used to make
Stars use a white circle (besides CIRCLE, other supported shapes are TRIANGLE and SQUARE).

Listing 3.12: Star draw() modification to use Shapes.
✞ ☎

0 // Draw S ta r s w i th c i r c l e .
1 // C loser S ta r s are b i g g e r and move f a s t e r .
2 df:: Shape s;

3 s.setColor (df:: WHITE);

4 s.setType(df:: CIRCLE);

5 s.setSize (5 * getVelocity ().getMagnitude ());

6 setShape (s);
✝ ✆

You would put the code above in the Star constructor and also at the end of the Star
out() method. You would lastly need to remove the Star draw() method, since drawing
the shapes would be handled automatically by Dragonfly.

Having the screen “shake” during major events, such as a Nuke or Hero destruction, is
another neat visual effect. To the Hero destructor, try adding:
✞ ☎

0 // Shake screen (s e v e r i t y 20 p i x e l s x&y , dura t i on 10 frames) .
1 DM.shake(20, 20, 10);
✝ ✆

If you like it, you can also add a DM.shake() with about 3/4 the severity and 1/2 the
duration to the Hero nuke() method.

You could extend scores to a High Score table that was stored (say, to local storage)
past a single game.

You could have a way for the player to launch the game from an initial menu. A game-
difficulty setting, such as number of initial Saucers or Hero fire rate could be set. You
would create objects for these interactions that were spawned first, similarly to how the
GameStart object is, leading into the main game when done.

These are just some of what are many ideas you could use to extend Saucer Shoot.
Of course, even more ambitious work would create a different game, perhaps a Pac-Man-,
Tetris-, or Chess-type game or even something totally new.

Have fun!

