/F .\ ' J7
PI0E—d NN _JI1TTT
Fid il IIJlIJIIJIIIIIII'JI

Program a Game Engine from Scratch

Mark Claypool

Development Checkpoint #1

Manager & LogManager

This document is part of the book “Dragonfly — Program a Game Engine from Scratch”,
(Version 9.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright (©)2012-2023 Mark Claypool and WPI. All rights reserved.

4.2. Managers 52

4.2 Managers

Managers are the support systems for game engines, handling crucial tasks. This includes
handling input, rendering graphics, logging data, managing the game world and game ob-
jects and more. Logically, the different functions can be broken up into different managers.
The main class, Manager, is not instantiated. Instead, it serves as a base class for all derived
game engine managers. Refer to Table 4.1 on page 50 for details.

The interface for the Dragonfly Manager class is shown in Listing 4.1. The Manager class
provides startUp() and shutDown() methods, allowing the game programmer to control
initialization and termination of all derived manager objects. For the base Manager, in
Manager.cpp the startUp() sets is_started to true and shutDown() sets is_started
to false. The method isStarted() allows for a query to check if the manager has been
successfully started (via startUp()). As this is the base class, in Manager, the methods for
starting up and shutting do not do any “real” work — instead just manipulating the is_-
started boolean variable. The method setType () sets the private attribute type to the
name "Manager". The method is protected since only the base class and derived classes
are allowed to change a manager’s type (typically, this is done in the constructor for each
derived Manager).

Listing 4.1: Manager.h

ol namespace df {
2| class Manager {

i| private:

5 std::string m_type; // Manager type identifier.
6 bool m_is_started; // True when started successfully.

8| protected:
9 // Set type identifier of Manager.
10 void setType(std::string type);

12| public:
13 Manager () ;
14 virtual ~Manager () ;

16 // Get type identifier of Manager.
17 std::string getType() const;

| // Startup Manager.
200 // Return 0 if ok, else negative number
21 virtual int startUp();

231 // Shutdown Manager
24 virtual void shutDown () ;

26| // Return true when startUp () was executed ok, else false.
27 bool isStarted () const;
28| };

300y // end of namespace df

-
"ﬁ?,‘
.

* 0\

4.2. Managers 53

Tip 3! Naming in Dragonfly. Dragonfly uses the following naming convention:
classes always begin with an upper case letter (e.g., Manager), single word variables,
methods and functions use lower case (e.g., distance()), classes and methods that
are more than one word use upper case letters without underscores to separate
words (e.g., isStarted(), also known as “camel case”), variables use underscores
between words (e.g., is_started, also known as “snake case”), and class attributes
are prefixed with an “m_” (e.g., m_type).

Line 0 of Listing 4.1 defines the Dragonfly namespace using the df: : tag. This requires
code outside of the namespace (e.g., game code) to use df : : to access elements inside the
namespace (e.g., setSolidness (df::SPECTRAL)). Typically, large, 3rd-party libraries (such
as a game engine) use namespaces to help developers avoid conflicts in names their own
code may use with names the libraries use. The Dragonfly namespace is meant to prevent
potential name conflicts with game code.

Note, for brevity in all future Listings in this book (with the exception of Logfile.h),
the Dragonfly namespace df:: is not shown, but it does appear in the actual engine .h
files.

Tip 4! Dragonfly header files. The Dragonfly header files (.h) for all
engine classes and utilities are available for download at the book Web page
(http://dragonfly.wpi.edu/book). These headers are also shown in the Appendix
(page 278), provided in alphabetic order. These header files reveal the design of the
engine, providing the exact methods and attributes that need to be implemented.
Note, however, that these header files represent Dragonfly in its final, fully imple-
mented, full-featured form. For development, the recommended path is to build the
header files (and engine) by hand following the sections in Chapter 4 in order.

Many managers depend upon each other, so the startup order of individual managers
matters. For example, a logfile manager is often needed first since all the other managers
write log messages upon startup, either noting successful startup in the logfile or reporting
errors in the logfile when there are problems. Or, a display manager may need memory
allocated for sprites, so a memory manager would need to be invoked before the display
managers.

In addition, unlike many game objects, it often makes sense to have only one instance
of each manager. For example, having two display managers simultaneously writing to
the graphics card/display device may not make sense nor even be supported by the hard-
ware/operating system. Similarly, having two independent managers handle input from the
keyboard and mouse may yield undesirable (or at least unpredictable) results.

Managers are generally global in scope because the service the manager provides may
be sought in many places in both game and engine code. For example, the engine code

-
- ,@;

o
-\‘
e\

\

w N = O

'

4.2. Managers 54

and game code may both write messages to the logfile via the LogManager, and both the
engine code and game code may draw characters on the screen via the DisplayManager.
Given this, a natural inclination may be to make the manager instances global variables, as
depicted in Listing 4.2.

Listing 4.2: Managers declared as global variables

// Outside main(), these are global wvariables.
df : :DisplayManager display_manager ;
df : : LogManager log_manager;

main () {

}

While declaring managers as global variables does provide for global scope, it does not
give control over the order of invocation. The order of instantiation of global variables is
determined by the compiler and not by the program order. For example, if the code in
Listing 4.2 is compiled and run, the log manager may be instantiated first and then the
display manager or vice versa. Moreover, using global variables from the engine — say, if
DisplayManager wanted to write to the logfile — would require the game programmer to use
the same names as expected by the engine, making the game code more brittle.

4.2.1 Singletons

The singleton design pattern can be used for the game engine manager to solve all the above
problems: 1) the singleton restricts instantiation of a class to one, and only one, object;
2) the singleton allows control of the order of manager initialization for dependency cases
where the order matters; and 3) the singleton allows for global access.

In order to restrict instantiation to one (and only one) instance, the singleton class
needs to disallow typical operations that enable object creation from a class. In particular,
access must be denied for public access to the constructor, copy and assignment operators —
otherwise, a programmer can use them to make additional instances of the class. Restricting
creation is done by making the specific operations private to the class.

In order to instantiate a singleton class in C++, the keyword static is used as a modifier
to the variable representing the one instance of the class. Remember, static variables retain
their value even after the function terminates — in effect, the lifetime extends across the
entire run of the program. However, a static variable is not allocated until the function is
first called. This last feature allows explicit control as to when the manager is started up.
Also remember, the keyword static in front of a method or function is quite different. A
static method does not require an instance of the class to use it, and a static function
(or a static global variable) has a scope that restricted to the .cpp file it is declared in.

Listing 4.3 depicts the class template for a singleton class.

Listing 4.3: A Singleton class

// Note, this would typically be defined in Singleton.h.
class Singleton {
private:
Singleton () ; // No constructing .

-
“fi:",
°

* 0\

4.8. Logfile Management 55

Singleton(Singleton const ©); // No copying.

void operator=(Singleton const &assign); // No assigning.
public:

static Singleton &getInstance (); // Return instance.

g

// Return the one and only instance of the class.
// Note, this would typically be defined in Singleton.cpp.
Singleton &Singleton::getInstance () {
// Note, a static wvariable persists after method ends.
static Singleton single;
return single;

}

While the singleton class guarantees there will be one and only one instance of the class,
when a manager is actually instantiated (the first time getInstance() is called for that
class), there can sometimes be a lot of work to be done. Thus, most of the initialization work
for any manager is done in the startUp() method, called after the first getInstance()
call.

Each specific manager class (e.g., DisplayManager) inherits from the base Manager class
using the singleton template. The virtual methods startUp() and shutDown() are defined
in the derived class and are specific to that particular manager. For example, the logfile
manager might open the logfile for writing, while the display manager might ready the
display for graphical output.

4.3 Logfile Management

If a game is working well, meaning all game engine code and game programmer code is
doing what it is supposed to, all meaningful output typically goes to the screen in the
form of game actions — characters moving, bullets flying, menus popping up, etc. However,
during development this is often not the case, as code (even game engine code) can have
bugs, or confirmation of working code is needed before proceeding. While debuggers are
essential for effective programming, many game programmers do not have the luxury of
having the source code for the game engine so a debugger cannot trace through the engine
code. Moreover, some bugs are timing dependent meaning they only happen at full speed
or are caused by a long sequence of events, making them hard to trace by a debugger.

What is helpful in these cases is a game engine that provides meaningful output as to
the workings (or not) of the engine, and also provides a flexible, easy-to-use mechanism for
a game programmer to get output. However, standard methods of printing to the screen
can often interfere with the game itself or are not even possible when a display device
is in graphics mode. In order to get around this limitation, logfiles are often used, where
descriptive messages from the engine are written to a file, and the engine provides a flexible,
easy-to-use mechanism for their own messages. This is the essence of the LogManager, often
the first manager developed since all other engine components make use of it.

For base functionality, upon startup the LogManager opens up the logfile, making sure
writing is allowed to the appropriate directory. Advanced features could allow appending
or overwriting of previous logfiles, name the logfile with a timestamp, and check if there is

-
“fi:",
°

* 0\

4.8. Logfile Management 56

sufficient disk space for normal operations. Upon shutdown, the logfile is closed, effectively
flushing any outstanding data to the disk.

For attributes, the LogManager only needs a file structure (e.g., FILE *) for access to
the logfile.

4.3.1 Variable Number of Arguments

The most frequently used LogManager method is to support writing general-purpose mes-
sages to the logfile — whether the messages come from other parts of the engine or from
the game programmer — via a writeLog() method. For example, the game programmer
may want to write a string such as “Player is moving”, which is effectively one argument
to writeLog(). Or, the game programmer may want to write “Player is moving to (x,
y)” where x and y are float variables that are passed in. In other words, the number of
arguments that writeLog() supports is not known ahead of time, but can be one or more.

A function that supports a variable number of arguments is depicted in Listing 4.4.
Note the “...” characters in the parameter list for the function. Handling a variable number
of arguments in this way requires #including the system header file stdarg.h, and the
system header file stdio.h is needed for fprintf (). In the body of the function, a va_list
structure is created, then initialized with arguments in the va_start command, provided
with the name of the last known argument (fmt, in this case). At this point, the function
is ready to call a printf () to produce output, but instead of a fixed string, the va_list
structure has the formatting parameters, so viprintf () is used instead. When finished,
the va_end () must be called to clean up the stack.

Listing 4.4: Function taking variable number of arguments

#include <stdio.h>
#include <stdarg.h>

void writeMessage (const char *fmt, ...) {
fprintf (stderr, " Message: ");
va_list args;
va_start (args, fmt);
viprintf (stderr, fmt, args);
va_end (args) ;

Note, Listing 4.4 uses standard error (stderr), which typically defaults to the console
Window, while a game engine (e.g., Dragonfly) will usually write to a file. The code can be
adjusted, accordingly, to use a file.

4.3.2 Human-friendly Time Strings (optional)

For a long running game, it is often helpful to have timestamps associated with messages
in the logfile. These times can be in “game time”, such as game loop iterations, or in “wall-
clock time” corresponding to the actual time of the day. Dragonfly does both, displaying a
human-friendly time and game loop iteration in front of each message.

An easy way to associate a time with a written message is to have a function, say
getTimeString(), that writeLog() calls to get a string with a timestamp. The get-

-
“fi:",
°

* 0\

4.8. Logfile Management 57

TimeString () method uses the time () system call, which returns the number of seconds
since January 1, 1970. In order to turn that big number into something that is easier
for humans to read, the localtime () system call converts the seconds into calendar time,
allowing extraction of hours, minutes and seconds. Listing 4.5 depicts the getTimeString()
method. Note, no error checking is provided for the system calls.! The function sprintf ()
on line 12 is similar to printf (), but instead of printing to stdout, sprintf () prints to a
string,? in this case time_str.

Listing 4.5: Function to provide human-readable time string

// Return a nicely—formatted time string: HH:MM:SS
char *getTimeString () {

// String to return , made ‘static’ so persists.
static char time_str [30];

// System calls to get time.

time_t now;

time (&now) ;

struct tm *p_time = localtime (&now) ;

// ‘027 gives two digits, ‘%d’ for integers.
sprintf (time_str, "%02d:%02d:%02d",

p_time -> tm_hour,

p_time -> tm_min,

p_time -> tm_sec);

return time_str;

A complementary message in the logfile is the “game clock” — the number of iterations
of the game loop — obtained from the GameManager. This can be displayed as an integer
pre-pended to the log message. See the GameManager in Section 4.4.4 on page 4.4.4 for
details.

The presence of both the time string and the game clock in the logfile can be setup to be
controlled by the game programmer by having the LogManager keep two boolean variables,
log time _string and log step_count, which, if true, pre-pend the time string or game
clock, respectively, to the game programmer’s log message.

While the printing of time has been presented in the context of the logfile, functions
like getTimeString() are useful beyond the LogManager class and do not access any at-
tributes of the class. As such, they should be placed in a file called utility.cpp (with a
corresponding utility.h). Other functions that provide utility services, but are not part
of any class definitions, will reside in utility.cpp as they are created.

4.3.3 Flushing Output

Generally, writing data to a file does not immediately write the data out to the disk.
The operating system typically buffers data, writing when the device is idle or when in-

L All system calls should be error-checked, and errors handled appropriately, in case they fail.
2The ‘s’ in front of printf () is for ‘string.’

-
‘Oﬁﬁ,‘
°

* 0\

4.8. Logfile Management 58

ternal memory buffers are filled. Such buffering generally improves overall system perfor-
mance, but can cause unexpected output (or, more precisely, lack of it) if a program, say
a game engine, crashes before all data is written. For example, if the line log manager.-
writeLog("Doing stuff") is executed and then the program crashes (e.g., from a segfault),
the string “Doing stuff” may not appear in the logfile even though that line has been exe-
cuted. This can make it hard to trace where, exactly, the error (in this case, the error that
caused the segfault) might have occurred.

To force the operating system to immediately write out buffered data to the disk, the
fflush() system call can be used after each write. Used during development, this helps
provide complete logfiles even during system crashes. Note, this does decrease efficiency
(speed) somewhat, so might not be used when game development (or game engine devel-
opment) is complete. Thus, the LogManager can provide the game programmer with an
option to flush the logfile after each disk, or not.

The attributes and methods for the LogManager can now be described in Listing 4.6.
The destructor closes the file if m_p_f is not NULL.

Listing 4.6: LogManager attributes and methods

private:
bool m_do_flush; // True if fflush after each write.
FILE *m_p_f; // Pointer to logfile structure.
public:

// If logfile is open, close it.
~“LogManager () ;

// Start up the LogManager (open logfile ”dragonfly.log”).
int startUp();

// Shut down the LogManager (close logfile).
void shutDown () ;

// Set flush of logfile after each write.
void setFlush(bool do_flush=true) ;

// Write to logfile. Supports printf() formatting.
// Return number of bytes written , —1 if error.
int writelog(const char *fmt, ...);

4.3.4 Conditional Compilation

Once implemented, using the newly-minted LogManager throughout the engine (or in game
code) will quickly reveal a problem — the LogManager header file, LogManager .h, likely gets
included by the compiler pre-processor multiple times, resulting in compiler warnings about
“redeclaration of class LogManager”. In order to fix this, directives to the pre-processor can
limit class (and other) definitions to be included only once by having code only compiled
during certain conditions. For the LogManager (and other Dragonfly header files), this
is done by using an #ifndef wrapper and a unique identifier. Consider the sample code
in Listing 4.7. When foo.h is seen by the compiler the first time, FILE FOO_SEEN is not
defined, so the pre-processor defines it in the next line and proceeds to parse and processes

-
‘Oﬁﬁ,‘
°

* 0\

4.8. Logfile Management 59

the foo file (and defining class Foo), normally. The next time foo.h is seen by the pre-
processor, FILE_FOO_SEEN is already defined so the contents of the foo file are not included,
avoiding a duplicate definition of class Foo.

Listing 4.7: Once-only header files

o // File foo.h
i| #ifndef FILE_FOO_SEEN
2| #define FILE_FOO_SEEN

// The entire foo file appears next.
class Foo {};

7| #endif // !FILE_FOO_SEEN

Such conditional compilation directives are often used for platform-specific parts of code.
Listing 4.8 shows a code stub that would compile Linux-specific code if LINUX was defined
(say, with a ~-DLINUX flag to a g++ compiler), or Windows-specific code if either _WIN32 or
_WIN64 was defined.

Listing 4.8: Conditional compilation for platform-specific code

#if defined(_WIN32) || defined(_WIN64)

N =

// Windows specific code here.

#elif defined (LINUX)

Gl W

// Linuz specific code here.

8| #endif

Note, there is no real functional difference between #ifdef NAME and #if defined(NAME),
but #ifdef can only use a single condition while #if defined can use compound conditions
(as in the example in Listing 4.8).

When using #define directives in Dragonfly for literal replacement (e.g., for the engine
version number), the convention is to prefix names with a DF_ (e.g., DF_VERSION). This
naming convention is to reduce the risk of potential namespace conflicts between the engine
programmer and the game programmer.

When using conditional compilation for header files, the convention is for system utili-
ties to use underscores before and after the name (e.g., STRING H_), while user code (game
code) should never use initial/post underscores. This naming convention is to avoid po-
tential namespace conflicts between the engine developer and the game programmer. For
Dragonfly, a double initial underscore and double post underscore is used.

4.3.5 The LogManager

The complete header file for the LogManager is shown in Listing 4.9. Notice the #ifndef
and #define statements at the top for conditional compilation.?

3For brevity, subsequent Dragonfly header files are not shown with #ifndef directives.

-
‘Oﬁﬁ,‘
°

* 0\

16

19

4.8. Logfile Management 60

The #include <stdio.h> on line 6 is for the FILE variable, m_p_f. LOGFILE_NAME on
line 13 provides the name of the logfile, “dragonfly.log”.

The methods in the private section that allow implementation of the singleton pattern.
The attributes provide the file descriptor and whether or not to flush output after each write.
Whether flushing is done or not is specified in the setFlush() method, but defaults to not
flushing (m_do_flush is false).

The LogManager constructor should set the type of the Manager to “LogManager”
(i.e., setType("LogManager"). As in most classes, the constructor should also initialize all
attributes, in this case m_p_f to NULL and m_do_flush to false.

While startUp() and shutDown() are defined in the Manager class, they are redefined
in the LogManager to open the logfile and close the logfile, respectively. Manager startUp ()
and Manager shutDown () should be called from LogManager startUp() and LogManager
shutDown (), respectively. Remember, in C++ even if a method is defined in a derived class
(e.g., startUp() in the LogManager), the parent method can still be called explicitly (e.g.,
Manager: :startUp()).

Listing 4.9: LogManager.h

// The logfile manager.

#ifndef __LOG_MANAGER_H__
#define __LOG_MANAGER_H__

// System includes.
#include <stdio.h>

// Engine includes.
#include " Manager.h"

namespace df {

const std::string LOGFILE_NAME = "dragonfly.log";
5| class LogManager : public Manager {

private:

LogManager () ; // Private since a singleton.
LogManager (LogManager consté&); // Don’t allow copy.

void operator=(LogManager const&); // Don’t allow assignment.

bool m_do_flush; // True if flush to disk after each write.
FILE *m_p_f; // Pointer to logfile struct.

public:

// If logfile is open, close it.
~“LogManager () ;

// Get the ome and only instance of the LogManager.
static LogManager &getInstance ();

// Start up the LogManager (open logfile ”dragonfly.log”).
int startUp();

// Shut down the LogManager (close logfile).

» 0%
"B,

16

4.8. Logfile Management 61

void shutDown () ;

// Set flush of logfile after each write.
void setFlush(bool do_flush=true);

// Write to logfile. Supports printf() formatting of strings.
// Return number of bytes written , —1 if error.
int writelog(const char *fmt, ...) const;

g

5| Y // end of namespace df
| #endif // __LOG.MANAGER_H..

Tip 5! Writing logfile messages. When calling writeLog(), it is often helpful
to include information on from where the call is being made. This is especially
important when Dragonfly gets large and there are lots of logfile messages written.
A good convention to follow is to include the class name and the method name as
part of the log message. An example is shown in Listing 4.10, with the corresponding
expected output at the bottom of the Listing starting on line 19.

Listing 4.10: Example of using the LogManager writelog()

// Get singleton instance of LogManager.
df :: LogManager &log_manager = df::LogManager::getInstance ();

// Ezample call with 1 argument.
log_manager .writeLog(
"DisplayManager::startUp(): Current window set”);

// Ezample call with 2 arguments.
log_manager .writeLog(
"WorldManager::isValid (): WorldManager does not handle "%s'",
event_name .c_str());

// Ezample call with 8 arguments.
log_manager .writeLog(
"DisplayManager::startUp(): max X is %d, max Y is %d”,
max_x, max_y);

// Sample logfile output:

LogManager started

DisplayManager ::startUp () : Current window set

WorldManager ::isValid () : WorldManager does not handle 'mud event'

DisplayManager ::startUp(): max X is 80, max Y is 24

Note, for code readability, from here on, a macro is created for each derived manager,
providing a two letter acronym for accessing the singleton instance of each manager. For

» 0%
"B,

"\

4.8. Logfile Management 62

example, Listing 4.11 shows the definition for the LM acronym, which should be placed in
the LogManager.h header file. With this in place, a game programmer could then invoke
LM.writeLog() without needing to call getInstance().

Listing 4.11: Two-letter acronym for accessing LogManager singleton

ol // Two—letter acronym for easier access to manager.
1| #define LM df::LogManager::getInstance ()

4.3.6 Controlling Verbosity (optional)

Logfile messages can be invaluable for debugging, performance tuning or verifying that
engine code or game code is working properly. However, logfiles can also be “noisy,” with
many, many innocuous lines of information hiding the ones that may offer true value. This
is especially true of messages that are printed each step of the game loop (typically, 30
times per second), or for messages printed each step of a loop that iterates through all
game objects!

While messages can be removed to decrease some of this noise, sometimes messages are
useful during later debugging and take time to put back into place. So, instead of removing
messages what is often better is to control the verbosity level of messages written to the
log — with low verbosity, only essential messages are printed, while with high verbosity, all
messages are printed. One way to do this is to have an explicit verbosity setting, depicted in
Listing 4.12, via an attribute named log_level, with get/set methods, in the LogManager.
Verbosity is controlled by changing the log level, even dynamically during run time, with
logfile messages only written out when the LogManager log level is greater than or equal to
that of the message.

Listing 4.12: Controlling verbosity with log level
o // (attribute of LogManager)
1| private:
2 int log_level; // Logging level.

51 // (Modify writeLog to take log level as a parameter.)

6| // Write to logfile.

71 // Only write if indicated log level >= LogManager log level.

8| // Supports printf() formatting of strings.

of // Return number of bytes written (excluding pre—pends), —1 if error.
10| void LogManager::writeLog(int log_level, char x*fmt, ...)

12 // Only print message when verbosity level high enough.
13 if log_level > this.log_level then

14 va_list args

16 end if

In order to avoid repeating code, the version of writeLog() without the log level
should just invoke the writeLog() in Listing 4.12, providing INT_MAX, the maximum integer
(found in limits.h), as the log level.

-
"ﬁ?,‘
.

* 0\

4.8. Logfile Management 63

Tip 6! Naming global variables. Global variables should be used sparingly.
However, when they are used, given that their declarations do not appear in the
local block of code (e.g., not in the method or class body), it is helpful to have a
naming convention that indicates which variables are global variables. A suggestion
is to use the prefix ‘g ’, with ‘g’ standing for “global”. Also, the use of extern, while
not strictly needed for scoping, is helpful to indicate to the programmer that the
variable is declared outside the block of code (e.g., see extern int g verbosity in
Listing 4.12).

The method of controlling verbosity in Listing 4.12 is effective but does have a bit
of additional overhead, notably a comparison check against the global variable holding the
verbosity level for each call. It is not likely this overhead is onerous, but it can be significant,
particularly for messages written each step and for each iteration of an object list.

An alternative method is to use conditional compilation, as described in Section 4.3.4
(page 58), with #ifdef directives used to decide whether or not to compile in logfile mes-
sages. An example is shown in Listing 4.13.

Listing 4.13: Controlling verbosity with conditional compilation

#ifdef DEBUG_1
LogManager &log_manager = LogManager::getInstance ();
2| log_manager .writeLog (" WorldManager:: markForDelete(): deleting object %d”,
: p_o -> getId());
#endif

The first line indicates the following lines (that actually write the logfile message) are to
be compiled in only if DEBUG_1 is defined. The developer can define DEBUG_1 when testing
code, looking for bugs, verifying functionality and so on. When the game is ready to ship,
DEBUG_1 can be left undefined and the code is not compiled into the game. This approach
has none of the overhead in Listing 4.12 when messages are not to be written since the
messages to write to the logfile are not included at all. As a downside, code can be slightly
less readable if there are many #ifdef messages.

4.3.7 Development Checkpoint #1!

At this point, development of Dragonfly should commence! The setup from Chapter 2, used
for the tutorial, can be used to setup the development environment for your engine. Steps:

1. Setup your development environment, as specified in Chapter 2. Successfully compil-
ing the first tutorial game in Section 3.3.1 on page 15 will ensure that the necessary
tools are in place and configured.

2. Discard the pre-compiled Dragonfly libraries and header files from step 1 and prepare
a directory structure for your own engine development.

3. Create a Manager base class, both Manager.h and Manager.cpp. See Listing 4.1 for
details on the class definition.

-
- «a}:

o
o\‘
e\

\

4.3.

8.

Logfile Management 64

. Create a LogManager derived class, inheriting from the Manager class. Use Listing 4.9

as a reference.

. Implement a writeLog() function, initially, not part of the LogManager. Have

writeLog() just produce output to the screen (standard output). Test thoroughly,
with no arguments, single arguments and multiple arguments. Be sure to test with
different data types (ints, floats, etc.), too.

. Move writeLog() into the LogManager class as a method. In game . cpp, have #include

"LogManager.h" at the top of the file to include the class definition. Then, instanti-
ate (via getInstance()) and start up (via startUp()) the LogManager. Check the
return values to ensure the calls are working.

. Test with various calls to writeLog() in the LogManager are working, testing single

and multiple arguments with different types. Verify that the expected output appears
in the logfile, “dragonfly.log”.

Implement and test any optional elements (e.g., getTimeString()), as desired.

Make sure all the code is working thoroughly and is clearly written (indented and com-
mented). As suggested earlier, the LogManager is used heavily during development, both
for engine code and for game code, and needs to be robust and reliable before moving
forward. This is true of each Development Checkpoint — make sure code is debugged and
tested thoroughly before proceeding!

Tip 7! Testing. Testing is critical for complex software development. A good
software development process will have testing proceed hand-in-hand with coding.
Designing test cases and implementing and maintaining code that runs tests on an
existing code base will pay-off in the long run. See Section 6.1 on page 257 for more
details, including a possible unit testing framework that may be of use.

-
- .‘@:

o
o\‘
e\

\

