
Program a Game Engine from Scratch

Mark Claypool

Development Checkpoint #10

Collisions & Views

This document is part of the book “Dragonfly – Program a Game Engine from Scratch”,
(Version 9.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright ©2012–2023 Mark Claypool and WPI. All rights reserved.

4.13. Boxes 177

4.13 Boxes

Boxes (also known as rectangles) are useful for providing a variety of 2d or 3d game features.
Boxes can be used to determine the bounds of an object for collisions, as discussed in
Section 4.10.1. Boxes can also be used to determine the boundary of the game world,
helping detect when a game object goes out of bounds and/or off the boundary of the
visual window. This latter feature is useful for when the game world is larger than what
can be seen on the window, such as is typically the case for adventure-type games that
feature exploring a large work, or for side-scrolling platformers. In this case, the player’s
view of the world is through a view window that moves with, say, the player’s avatar. In
order to support these features, Dragonfly has a Box class.

4.13.1 The Box Class

The definition for the Box class is provided in Listing 4.146. The Box uses a Vector attribute
(corner) for the upper left corner, with horizontal and vertical attributes stored as integers.
The default constructor creates an empty (zero width, zero height) box at (0,0). It is often
useful to create a Box with given attributes, so the other constructor allows specification
of position, horizontal and vertical attributes upon instantiation. Since the Box is just a
container, the rest of the methods just get and set the attribute values.

Listing 4.146: Box.h
✞ ☎

0 #include ” Vec to r . h”

1

2 class Box {

3

4 private:

5 Vector m_corner ; // Upper l e f t corner o f box .
6 float m_horizontal ; // Hor i z on ta l dimension .
7 float m_vertical ; // Ve r t i c a l dimension .
8

9 public:

10 // Create box wi th (0 , 0) f o r the corner , and 0 f o r h o r i z and v e r t .
11 Box();

12

13 // Create box wi th an upper− l e f t corner , h o r i z and v e r t s i z e s .
14 Box(Vector init_corner , float init_horizontal , float init_vertical);

15

16 // Set upper l e f t corner o f box .
17 void setCorner (Vector new_corner);

18

19 // Get upper l e f t corner o f box .
20 Vector getCorner () const;

21

22 // Set h o r i z o n t a l s i z e o f box .
23 void setHorizontal (float new_horizontal);

24

25 // Get h o r i z o n t a l s i z e o f box .
26 float getHorizontal () const;

27

28 // Set v e r t i c a l s i z e o f box .

4.13. Boxes 178

29 void setVertical (float new_vertical);

30

31 // Get v e r t i c a l s i z e o f box .
32 float getVertical () const;

33 };
✝ ✆

4.13.2 Bounding Boxes

Boxes are used for the “size” of an Object, also known as a bounding box since it bounds
the borders of a game object. The bounding box determines the region an Object occupies
and is used in the computation to figure out if an Object collides with another Object.

Extensions to the Object class to support bounding boxes are shown in Listing 4.147.
The bounding box is stored in the private attribute m box, with methods provided to get
and set it.

Listing 4.147: Object class extensions to support bounding boxes
✞ ☎

0 private:

1 Box m_box; // Box f o r s p r i t e boundary & c o l l i s i o n s .
2

3 public:

4 // Set Ob j ec t ’ s bounding box .
5 void setBox(Box new_box);

6

7 // Get Ob j ec t ’ s bounding box .
8 Box getBox () const;
✝ ✆

The Object bounding box is initialized to a unit square (a Box with horizontal and
vertical of 1), but typically the game programmer wants the bounding box to be the size
of the Object as drawn. Thus, by default, the setSprite() method from Listing 4.143
(page 175) sets m box to the width and height of the indicated sprite (as computed by the
Animation object, m animation). This can be done by adding the following line:
✞ ☎

0 setBox(m_animation .getBox ())
✝ ✆

to the end of the method in Listing 4.145, right before the return. Animation should be
extended with a getBox() method shown in Listing 4.148.

Listing 4.148: Animation class extensions to support bounding boxes
✞ ☎

0 // Get bounding box o f a s s o c i a t e d S p r i t e .
1 Box Animation :: getBox () const

2

3 // I f no Spr i t e , re turn un i t Box cen t e r ed a t (0 , 0) .
4 if not m_p_sprite then

5 Box box(Vector (-0.5 , -0.5), 0.99, 0.99)

6 return box

7 end if

8

9 // Create Box around cen t e r ed S p r i t e .
10 Vector corner(-1 * m_p_sprite ->getWidth ()/2.0,

11 -1 * m_p_sprite ->getHeight () /2.0)

12 Box box(corner , m_p_sprite ->getWidth (),

4.13. Boxes 179

13 m_p_sprite ->getHeight ())

14

15 // Return box .
16 return box
✝ ✆

A major change needed to support bounding boxes regards collisions. Instead of Objects
only colliding if their positions overlap, with boxes, Objects collide if their bounding boxes
overlap. The idea is to replace the call to positionsIntersect() in the WorldManager
moveObject() method (Listing 4.107 on page 146) with boxIntersectsBox().

Figure 4.5: Positional possibilities for two overlapping boxes

There are several positional possibilities that must be considered when devising an
algorithm to detect box overlap, as depicted by Figure 4.5. Any algorithm designed to
detect overlap between two boxes in general should be carefully checked against these cases,
both by hand and by coding up specific examples.

For the actual algorithm to test if two boxes overlap, while there are numerous possibil-
ities, an intuitive and fairly fast method is as follows: consider Figure 4.6, where the upper
left corner of a box is (x1, y1) and the bottom right corner is (x2, y2). An overlap of box
A and box B only occurs if the left edge of B is contained within the width of A and the
top edge of box B is contained within the height of box A. If both of those are true, then
the two boxes overlap, otherwise they do not. And vice versa for A within B.

Using this idea, a new function boxIntersectsBox() is created in utility.cpp, with
pseudo code shown in Listing 4.149.

Listing 4.149: boxIntersectsBox()
✞ ☎

0 // Return t ru e i f boxes i n t e r s e c t , e l s e f a l s e .
1 bool boxIntersectsBox (Box A, Box B)

2

3 // Test h o r i z o n t a l o v e r l a p (x o v e r l a p) .
4 Bx1 <= Ax1 && Ax1 <= Bx2 // E i t h e r l e f t s i d e o f A in B?
5 Ax1 <= Bx1 && Bx1 <= Ax2 // Or l e f t s i d e o f B in A?
6

4.13. Boxes 180

Figure 4.6: Corner notation used to determine if boxes overlap

7 // Test v e r t i c a l o v e r l a p (y o v e r l a p) .
8 By1 <= Ay1 && Ay1 <= By2 // E i t h e r top s i d e o f A in B?
9 Ay1 <= By1 && By1 <= Ay2 // Or top s i d e o f B in A?

10

11 if (x_overlap) and (y_overlap) then

12 return true // Boxes do i n t e r s e c t .
13 else

14 return false // Boxes do not i n t e r s e c t .
15 end if
✝ ✆

In replacing the call to positionsIntersect() in the WorldManager getCollisions()
method (Listing 4.106 on page 145) with boxIntersectsBox(), it is important to remember
that the bounding boxes for Objects are relative to the Objects themselves. For example,
the top left corner of a bounding box for an Object with a 1-character Sprite is (0,0) and
the top left corner of a bounding box for a 3x3 character Sprite (centered on the Object) is
(-1.5,-1.5). Neither of these boxes are in terms of the game world coordinates.

In order to compute collisions, the bounding box position needs to be converted to a
game world position. A useful utility (in utility.cpp) for this conversion is getWorldBox()
that converts the bounding box positioned relative to an Object to a bounding box posi-
tioned relative to the game world.

Listing 4.150: getWorldBox()
✞ ☎

0 // Convert r e l a t i v e bounding Box f o r Ob j ec t to a b s o l u t e wor ld Box .
1 Box getWorldBox (const Object *p_o)

2

3 Box box = p_o -> getBox ()

4 Vector corner = box.getCorner ()

4.13. Boxes 181

5 corner.setX(corner.getX () + p_o -> getPosition ().getX ())

6 corner.setY(corner.getY () + p_o -> getPosition ().getY ())

7 box.setCorner (corner)

8

9 return box
✝ ✆

In addition, a similar version can be made that converts a relative bounding box for an
Object to an absolute world Box at position where.
✞ ☎

0 // Convert r e l a t i v e bounding Box f o r Ob j ec t to a b s o l u t e wor ld Box .
1 Box getWorldBox (const Object *p_o , Vector where)
✝ ✆

For ease of implementation, the first getWorldBox() can call the second, providing
p o->getPosition() as the argument to where.

Once created, collision detection in the WorldManager getCollisions() method is
modified as in Listing 4.151.

Listing 4.151: WorldManager getCollisions() with bounding boxes✞ ☎

0 // Return l i s t o f Ob j e c t s c o l l i d e d wi th a t p o s i t i o n ‘ where ’ .
1 // C o l l i s i o n s on l y w i th s o l i d Ob j e c t s .
2 // Does not con s i d e r i f p o i s s o l i d or not .
3 ObjectList getCollisions (const Object *p_o , Vector where) const

4 ...

5

6 // World p o s i t i o n bounding box f o r o b j e c t a t where
7 Box b = getWorldBox (p_o , where)

8

9 // World p o s i t i o n bounding box f o r o t h e r o b j e c t
10 Box b_temp = getWorldBox (p_temp_o)

11

12 if boxIntersectsBox (b, b_temp) and p_temp_o ->isSolid () then

13 ...
✝ ✆

Tip 19! Visually Debugging Bounding Boxes. While debugging bounding
boxes can be done using writeLog() messages via the LogManager, sometimes it
is easier to see the problems with a bounding box rather than figure it out through
print messages. A fairly easy way to do this is to display part of the bounding box on
the screen, above any sprite that is drawn. Specifically, after in Object draw(), after
drawing a Sprite frame, place a symbol (e.g., a ‘+’) for each corner of the bounding
box, with an additional symbol for the Object position. Listing ?? provides code
to do just this. The visual bounding box can be compiled in and out of the engine
using conditional compilation (see Section 4.3.4 on page 58).

4.13.3 Utility Functions (optional)

The function boxIntersectsBox() is not only helpful for Dragonfly in detecting collisions,
it can be a generally useful utility for a game programmer. The name suggests other utilities

4.13. Boxes 182

shown in Listing 4.152 that are not necessarily used by the game engine but can be used by
game programmers. Line 1 has a simple function that tests whether a value lies between
the other two, useful in computing whether or not two Boxes intersect (see Listing 4.149).
Line 4 has a function that converts the relative bounding box of an Object along with its
position into a Box placed in the world (see Listing 4.150).

Listing 4.152: Utility functions
✞ ☎

0 // Return t ru e i f v a l u e i s between min and max (i n c l u s i v e) .
1 bool valueInRange (float value , float min , float max);

2

3 // Convert r e l a t i v e bounding Box f o r Ob j ec t to a b s o l u t e wor ld Box .
4 Box getWorldBox (const Object *p_o);

5 Box getWorldBox (const Object *p_o , Vector where);

6

7 // Return t ru e i f Box con ta i n s Pos i t i on .
8 bool boxContainsPosition (Box b, Vector p);

9

10 // Return t ru e i f Box 1 comp l e t e l y con ta i n s Box 2 .
11 bool boxContainsBox (Box b1 , Box b2);

12

13 // Return t ru e i f Line segments i n t e r s e c t .
14 // (P a r a l l e l l i n e segments don ’ t i n t e r s e c t) .
15 bool lineIntersectsLine (Line line1 , Line line2);

16

17 // Return t ru e i f Line i n t e r s e c t s Box .
18 bool lineIntersectsBox (Line line , Box b);

19

20 // Return t ru e i f C i r c l e i n t e r s e c t s or con ta i n s Box .
21 bool circleIntersectsBox (Circle circle , Box b);

22

23 // Return d i s t a n c e between any two p o s i t i o n s .
24 float distance (Vector p1 , Vector p2);
✝ ✆

The rest of the utility function prototypes shown in Listing 4.152 are not needed for
Dragonfly, but may be useful to game programmers. Lines 7 through 21 are variations of
the boxIntersectsBox() function, but with different shapes.19 Line 24 has a function that
returns the distance between any two positions.

19Classes for Line and Circle are not provided in this book, but are left as exercises for the aspiring

programmer.

4.13. Boxes 183

Tip 20! Line of sight. Many games employ the use of line of sight to determine
if one object can “see” another. For example, can the hero see the treasure chest
behind a wall? Can the bad guy see the hero sneaking up? Can the mummy see
an intruder in the halls of its tomb? In order to check if a first object can “see” a
second object, a common technique is to draw a line from the first to the second.
If the line does not intersect any other objects, the second object is spotted. In
Dragonfly, the function lineIntersectsBox() can be used for this, checking each
Object to see if a line from the position of the first Object to the position of the
second Object for intersection with any other Object. If so, the intersected Object
occludes the vision. If not, there is a clear line of sight.

4.13.4 Views

In a game like Pac-Man, the entire game board is visible on the computer screen. However,
there are many games where this is not the case, games in which the game world is larger
than what can be seen on the screen. Think of a game where the player explores a game-
world, too vast to be contained to one, single computer screen. In such a case, the game
shows a “window” that acts as a “viewport” over the world, with the camera moving to
show different world views in response to player actions. Sometimes, the camera will move
with an avatar, say, keeping the avatar in the window as the world behind it moves. This
is what happens in a platformer such as Super Mario, where the player controls the main
avatar (Mario), jumping and falling vertically and running left and right in a large game
world while the camera follows the avatar. Similarly, in the case of an adventure game such
as The Legend of Zelda, the player controls the main avatar (Link), exploring a very large
world in the course of rescuing the princess. Omnipresent games, where the player has a
top-down view of part of the game world, such as is the case of many real time strategy
games, have the camera show part of the game world on the window while the entire game
world is much larger. For Dragonfly, since it uses text-based cells, the view afforded by the
camera is limited to the size of the initial window. When the game world is larger than this
window, the game engine needs to map the world coordinates to the window coordinates.

Extensions to the WorldManager to support views are shown in Listing 4.153. The limit
provided by the terminal window is called the view boundary and the limit provided by the
game world is called the world boundary. Both boundaries are stored as Box attributes,
privately kept in the WorldManager. Methods to get and set the boundaries are provided.
By default, in the WorldManager constructor, the size of both boundaries, length and width,
should be set to 0.

Listing 4.153: WorldManager extensions to support views
✞ ☎

0 private:

1 Box boundary ; // World boundary .
2 Box view ; // P layer v iew o f game wor ld .
3

4 public:

5 // Set game wor ld boundary .
6 void setBoundary (Box new_boundary);

4.13. Boxes 184

7

8 // Get game wor ld boundary .
9 Box getBoundary () const;

10

11 // Set p l a y e r v iew o f game wor ld .
12 void setView (Box new_view);

13

14 // Get p l a y e r v iew o f game wor ld .
15 Box getView () const;
✝ ✆

The GameManager sets the default world boundary and the view boundary to be the
size of the initial window, obtained from the DisplayManager via getHorizontal() and
getVertical() (see Section 4.8.2 on page 112).* The GameManager does this in its own
startUp() method, after both the DisplayManager and WorldManager have been success-
fully started.

The world boundary as a Box provides an immediate opportunity to refactor the “out of
bounds” event from Section 4.10.1.4 (page 148). Listing 4.154 depicts the new pseudo-code.

Listing 4.154: WorldManager moveObject() refactored for EventOut
✞ ☎

0 // Move Obj ec t .
1 // . . .
2 // I f moved from i n s i d e wor ld boundary to ou ts i de , g ene ra t e EventOut .
3 int WorldManager :: moveObject (Object *p_o , Vector where)

4

5 ...

6

7 // Do move .
8 Box orig_box = getWorldBox (p_o) // o r i g i n a l bounding box
9 p_o -> setPosition (where) // move o b j e c t

10 Box new_box = getWorldBox (p_o) // new bounding box
11

12 // I f o b j e c t moved from i n s i d e to o u t s i d e world , g ene ra t e
13 // ” out o f bounds” even t .
14 if boxIntersectsBox (orig_box , boundary) and // Was in bounds?
15 not boxIntersectsBox (new_box , boundary) // Now out o f bounds?
16 EventOut ov // Create ” out ” even t
17 p_o -> eventHandler (&ov) // Send to Ob j ec t
18 end if

19

20 ...
✝ ✆

Game objects’ positions are specified in relation to the world coordinates. In other
words, the position attribute in an Object that provides an (x,y) location means that object
should be at (x,y) in the world, but not necessarily at (x,y) on the window. With views,
the world (x,y) position need to be mapped to the view/window (x,y) position.

Consider an example in Figure 4.7. The game world is 35x25 and the origin (0,0) is
in the upper left corner. There are three Objects in the world: A is at (15,10), B is at

* Did you know (#10)? The Globe Skimmer dragonfly has the longest migration of any insect, back and

forth across the Indian Ocean, about 11,000 miles. – “14 Fun Facts About Dragonflies”, Smithsonian.com,

October 5, 2011.

4.13. Boxes 185

(8,5) and C is at (25,2). The coordinates depicted for all the Objects are relative to the
game world. The view, 10x10, what the player sees on the window, is smaller than the
game world, 35x25. The view origin, position (0,0) on the window, is at position (10,3)
in game world coordinates. To correctly display Objects on the window, the view origin
position is subtracted from each Object’s position before drawing. For example, for Object
A, subtracting (10,3) from (15,10) puts A at location (5,7) on the window. For Object
B, subtracting (10,3) from (8,5) puts B at (-2,2). Since the x coordinate is negative, B is
not drawn. For Object C, subtracting (10,3) from (25,2) puts C at (15,-1). Since the y
coordinate is negative and 15 is greater than the window width, C is not drawn.

Figure 4.7: View boundary in relation to world boundary

This world-to-view translation is most easily done in the DisplayManager right before
drawing a character on the window. The utility.cpp method worldToView(), shown in
Listing 4.155, converts a world (x,y) position to a view (x,y) position on the window based
on the current view.

Listing 4.155: worldToView()
✞ ☎

0 // Convert wor ld p o s i t i o n to view po s i t i o n .
1 Vector worldToView (Vector world_pos)

2 view_origin = WorldManager getView (). getCorner ()

3 view_x = view_origin .getX ()

4 view_y = view_origin .getY ()

5 Vector view_pos (world_pos .getX ()-view_x , world_pos .getY ()-view_y)

6 return view_pos
✝ ✆

The DisplayManager drawCh() is re-factored to call worldToView() right before each
character is drawn, shown in Listing 4.156.

Listing 4.156: DisplayManager extensions to drawCh() to support views
✞ ☎

0 int DisplayManager :: drawCh(Vector world_pos , char ch , Color color) const

1 Vector view_pos = worldToView (world_pos)

4.13. Boxes 186

2 ...
✝ ✆

Then, the subsequent calls to draw (e.g., the rectangle and the character) use view pos

instead of world pos.
With views, not all Objects need to be drawn every loop. For example, in Figure 4.7,

objects B and C are off the visible window so while calling drawCh() would not cause
errors, it is a waste of time. In the WorldManager draw() method, instead of automatically
drawing all objects, first the bounding box for each object is checked for intersection with
the current view. If there is intersection, the Object is drawn. If there is not intersection, the
Object is not drawn. This logic, done inside the “altitude” loop, is shown in Listing 4.157.

Listing 4.157: WorldManager extensions to draw() to support views✞ ☎

0 ...

1 // Bounding box coo rd i na t e s are r e l a t i v e to Object ,
2 // so conver t to wor ld coo rd i na t e s .
3 temp_box = getWorldBox (p_temp_o)

4

5 // Only draw i f Ob j ec t would be v i s i b l e on window (i n t e r s e c t s v i ew) .
6 if boxIntersectsBox (temp_box , view) then

7 p_temp_o -> draw ()

8 end if

9 ...
✝ ✆

In order to give the game programmer control over the view, the WorldManager is
extended as indicated in Listing 4.158. The method setViewPosition() positions the view
at a specific (x,y) world coordinate, and setViewFollowing() automatically moves the view
to keep the indicated game object, stored in the private attribute p view following, in the
center of the window. The latter is useful when the game programmer wants the camera to
follow an avatar as it moves around the world, such as is typical in a platformer game.

Listing 4.158: WorldManager extensions to support view following Object✞ ☎

0 private:

1 Object * p_view_following ; // Obj ec t v i ew i s f o l l o w i n g .
2

3 public:

4 // Set v iew to c en t e r window on po s i t i o n v i ew pos .
5 // View edge w i l l not go beyond wor ld boundary .
6 void setViewPosition (Vector view_pos);

7

8 // Set v iew to c en t e r window on Obj ec t .
9 // Set to NULL to s t op f o l l o w i n g .

10 // I f p n ew v i ew f o l l ow i n g not l e g i t , r e turn −1 e l s e re turn 0 .
11 int setViewFollowing (Object *p_new_view_following);
✝ ✆

Pseudo code for the method setViewPosition() is shown in Listing 4.159. The method
takes in a position in the game world and sets the view to be centered on that position. In
the first two blocks of code, the method makes sure that the edges of the view do not go
outside of the edges of the game world, horizontally and then vertically. If it does, then the
boundary is moved to flush with the edge.

Listing 4.159: WorldManager setViewPosition()

4.13. Boxes 187

✞ ☎

0 // Set v iew to c en t e r window on po s i t i o n v i ew pos .
1 // View edge w i l l not go beyond wor ld boundary .
2 void WorldManager :: setViewPosition (Vector view_pos)

3

4 // Make sure h o r i z o n t a l not out o f wor ld boundary .
5 x = view_pos .getX () - view .getHorizontal ()/2

6 if x + view. getHorizontal () > boundary . getHorizontal () then

7 x = boundary .getHorizontal () - view . getHorizontal ()

8 end if

9 if x < 0 then

10 x = 0

11 end if

12

13 // Make sure v e r t i c a l not out o f wor ld boundary .
14 y = view_pos .getY () - view .getVertical ()/2

15 if y + view. getVertical () > boundary . getVertical () then

16 y = boundary .getVertical () - view . getVertical ()

17 end if

18 if y < 0 then

19 y = 0

20 end if

21

22 // Set v iew .
23 Vector new_corner (x, y)

24 view .setCorner (new_corner)
✝ ✆

Pseudo code for the method setViewFollowing() is shown in Listing 4.160. The first
block of code starting on line 6 checks if p new view following is NULL – if so, this indicates
the game programmer intends to stop having the view follow any particular Object.

The second block of code starting on line 12 iterates over all the Objects in the world.
Each Object is compared to the p new view following to make sure the game programmer
has requested to follow a legitimate object. The boolean variable found is set to true if the
Object is matched with one of the known game objects.

The third block of code starting on line 17 sets the p view following variable if the
Object has been found and, if so, sets the view position to be centered on that Object.

If the Object is not found, the method returns -1 (an error).

Listing 4.160: WorldManager setViewFollowing()
✞ ☎

0 // Set v iew to f o l l o w Obj ec t .
1 // Set to NULL to s t op f o l l o w i n g .
2 // I f p n ew v i ew f o l l ow i n g not l e g i t , r e turn −1 e l s e re turn 0 .
3 int WorldManager :: setViewFollowing (Object *p_new_view_following)

4

5 // Set to NULL to turn ‘ o f f ’ f o l l o w i n g .
6 if p_new_view_following is NULL then

7 p_view_following = NULL

8 return ok

9 end if

10

11 // . . .
12 // I t e r a t e over a l l Ob j e c t s . Make sure p n ew v i ew f o l l ow i n g
13 // i s one o f the Objects , then s e t found to t ru e .

4.13. Boxes 188

14 // . . .
15

16 // I f found , a d j u s t a t t r i b u t e a c c o r d i n g l y and s e t v i ew po s i t i o n .
17 if found then

18 p_view_following = p_new_view_following

19 setViewPosition (p_view_following -> getPosition)

20 return ok

21 end if

22

23 // I f we ge t here , was not l e g i t . Don ’ t change cu r r en t v iew .
24 return error
✝ ✆

The last adjustment is to the WorldManager moveObject() method. Here, at the very
end of the method, if the Object has been successfully moved and the Object being moved
is the same as the Object being followed, then the view is adjusted to the new position of
the Object. This logic is shown in Listing 4.161.

Listing 4.161: WorldManager extensions to moveObject() to support views
✞ ☎

0 ...

1 // I f v i ew i s f o l l o w i n g t h i s o b j e c t , a d j u s t v i ew .
2 if p_view_following is p_o then

3 setViewPosition (p_o -> getPosition ())

4 end if

5 ...
✝ ✆

4.13.4.1 Advanced View Control (optional)

As implemented, when following an Object with the view, the camera keeps the Object
dead-center on the screen at all times (subject to the world boundaries, of course). For the
player, a camera locked in this mode can be tedious for a game where the player is moving
the view a lot. There are a variety of advanced camera control techniques that could
be incorporated into Dragonfly to provide for more advanced camer control techniques,
including zoning, blending and rails. The interested developer is encouraged to see Phil
Wilkins excellent talk on dynamic camera systems [9] with many more details in Mark
Haigh-Hutchinson’s book on real-time cameras [5].

An additional camera technique shown here is dynamics. With dynamics, the camera
still follows an Object, but does not require the Object to be strictly in the middle of the
screen. Instead, the Object can stay within a smaller rectangle inside the screen without
the camera moving. This provides some “slack” that allows the Object to be within a center
area before the camera needs to move.

To support these dynamics, the WorldManager is extended with a view slack attribute
which is a Vector representing the (x, y) dimensions of the inner rectangle. The default
value for view slack, set in the WorldManager constructor, should be (0, 0). Attributes to
get and set view slack, (getViewSlack() and setViewSlack(), respectively) should also
be created.

Then, WorldManager moveObject() is re-factored to support dynamics, as shown in
Listing 4.162.

4.13. Boxes 189

Listing 4.162: WorldManager extensions to moveObject() to support view dynamics
✞ ☎

0 ...

1 // I f v i ew i s f o l l o w i n g t h i s o b j e c t , a d j u s t v i ew as app rop r i a t e .
2 if p_view_following is p_o then

3

4 // Get c en t e r o f v i ew .
5 view_center_x = view .getCorner ().getX () + view . getHorizontal ()/2

6 view_center_y = view .getCorner ().getY () + view . getVertical () /2

7

8 // Compute inner ” s l a c k ” Box edges .
9 left = view_center_x - view .getHorizontal () * view_slack .getX ()/2

10 right = view_center_x + view .getHorizontal () * view_slack .getX ()/2

11 top = view_center_y - view .getVertical () * view_slack .getY () /2

12 bottom = view_center_y + view .getVertical () * view_slack .getY ()/2

13

14 new_pos = p_o -> getPosition ()

15

16 // Move view r i g h t / l e f t ?
17 if (new_pos .getX () < left)

18 view_center_x -= left - new_pos.getX ()

19 else if (new_pos .getX () > right)

20 view_center_x += new_pos .getX () - right

21

22 // Move up/down?
23 if (new_pos .getY () < top)

24 view_center_y -= top - new_pos.getY ()

25 else if (new_pos .getY () > bottom)

26 view_center_y += new_pos .getY () - bottom

27

28 // Set new view po s i t i o n .
29 setViewPosition (Vector(view_center_x , view_center_y))

30 end if // f o l l o w i n g p o
31 ...
✝ ✆

The first block of code, lines 4 to 12, compute the edges of the inner Box (the “slack”
in the camera dynamics). The next block of code, lines 16 to 26, compare the position of
the Object the camera is following to these edges, moving the edge as appropriate to keep
the Object within the inner Box. The last bit of code, line 29, actually adjusts the view to
the new location.

4.13.4.2 Using Views

The view support added to Dragonfly can be used by the game programmer to provide the
player with a game world larger than the window. Assume, for example, that in Saucer
Shoot (see Section 3.3 on page 15), the game programmer wants the game world to be
about twice as large vertically as a window. This can be done by explicitly setting the
world boundary in game.cpp, as shown in Listing 4.163, setting the view boundary to be
the typical size of 80x24.

Listing 4.163: Explicitly setting game world boundaries
✞ ☎

0 // Set wor ld boundar i e s to 80 h o r i z o n t a l , 50 v e r t i c a l .
1 Vector corner (0,0)

4.13. Boxes 190

2 Box world_boundary (corner , 80, 50)

3 WorldManager setBoundary (world_boundary)

4

5 // Set v iew to 80 h o r i z o n t a l , 24 v e r t i c a l .
6 Box view (corner , 80, 24)

7 WorldManager setView (view)
✝ ✆

With the WorldManager controlling the world boundaries, code that generates the out
event (see Section 4.10.1.4 on page 148) should be refactored to use the WorldManager
getBoundary() instead of the DisplayManager window limits.

With the world larger than the window, the intent is probably to always keep the Hero
centered vertically in the window. This could be done by extending the original move()
method (Listing 3.11 on page 46) with the code defined in Listing 4.164. Basically, when
the Hero moves vertically, the new code adjusts the view by the same vertical amount.

Listing 4.164: Example Hero extension to move() to support views✞ ☎

0 // Always keep Hero cen t e r ed in window .
1 void Hero :: move (float dy)

2 // Move as b e f o r e . . .
3

4 // Adjust v i ew .
5 Box new_view = WorldManager getView ();

6 Vector corner = new_view . getCorner ();

7 corner.setY(corner.getY () + dy);

8 new_view .setCorner (corner);

9 WorldManager setView(new_view);
✝ ✆

Alternatively, the WorldManager can just be told to follow the Hero by calling @@
setViewFollowing() in the Hero’s constructor, as in Listing 4.165.

Listing 4.165: Example Hero extension to support views✞ ☎

0 // Always keep Hero cen t e r ed in window .
1 void Hero :: Hero ()

2 // . . .
3 WorldManager setViewFollowing (this);
✝ ✆

Tip 21! Player camera control. Game programmers can give the player camera
control without having an avatar with the following trick: a SPECTRAL game object
is created without a sprite. The Object is programmed to respond to mouse or
arrow keys by changing position – left, right, up, down. Then, Dragonfly is told to
follow the game object via setViewFollowing(). To the player, it appears as if the
controls are changing the camera!

4.13.5 Development Checkpoint #10!

Continue Dragonfly development, using Boxes to first provide bounding boxes for Objects
and next to provide view and world boundaries. Steps:

4.13. Boxes 191

1. Add the Box class, referring to Box.h in Listing 4.146. Add Box.cpp to the project
and stub out each method so it compiles. The Box is really just a container, but test
the Box class thoroughly, anyway. Do this outside of the engine, making sure that
the attributes can all be get and set properly and that the constructor with corner,
horizontal and vertical dimensions specified works.

2. Extend the Object class support bounding Boxes, referring to Listing 4.147. Test
that Object bounding boxes can be set and retrieved properly. Be sure to extend
setSprite() to set the Object Box to the dimensions of the associated Sprite, linked
to the Animation attribute (m animation).

3. Write the utility function boxIntersectsBox() (Listing 4.149) that determines if two
Boxes overlap. Test this with a program that uses Boxes of a variety of dimensions and
locations with all sorts of intersection combinations (including containment). Verify
all test cases work before proceeding – this function gets called a lot in a typical game.

4. Replace positionsIntersect() with boxIntersectsBox() in the WorldManager.
First, verify using former test code that the engine still works with single character
Objects. Then, create test code with multi-character Sprites, testing a variety of
Objects and collisions. Use one non-moving Object with one moving Object at first
to make debugging simpler.

5. Add views, starting by extending the WorldManager to support views as in List-
ing 4.153. Test the get and set methods for the view and boundary attributes.

6. Write and test the DisplayManager worldToView(), referring to Listing 4.155 as
needed. Put calls to worldToView in the DisplayManager drawCh(), as per List-
ing 4.156. Test that previous code without views still works, then test that having a
view that is not positioned at the world’s origin works as expected. At this point, use
just a hard-coded view in the WorldManager.

7. Extend the WorldManager draw() method to only draw Objects that are in the
view, as shown in Listing 4.157. Test with a variety of Objects that are in the view,
completely out of the view, and partially in/out of the view.

8. Add settings to the WorldManager that enable setting the view, including attributes
and methods from Listing 4.158. Refer to details from Listing 4.159 and Listing 4.160,
as needed. Extend WorldManager moveObject() as in Listing 4.161.

9. For an integrated test, modify the Saucer Shoot tutorial to use views. First, set the
game world boundaries as in Listing 4.163, then modify the Hero move() method as
in Listing 4.164. Test thoroughly, making sure the window is smaller than the game
world settings. Once convinced all works, revert back to the former move() method
and have the view follow the Hero() as in Listing 4.165. Test this thoroughly, too.

