
Program a Game Engine from Scratch

Mark Claypool

Development Checkpoint #11

Sound & Music

This document is part of the book “Dragonfly – Program a Game Engine from Scratch”,
(Version 9.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright ©2012–2023 Mark Claypool and WPI. All rights reserved.

4.14. Audio 192

4.14 Audio

While sight and feel (interaction) are core elements of most games, sound is nearly as
important. Dragonfly supports audio* using the built-in capabilities of the Simple and Fast
Multimedia Library (SFML).

4.14.1 Simple and Fast Multimedia Library – Audio

SFML provides audio support and recognizes two distinct types: 1) sound effects, which
are typically small (fitting in the computer’s main memory) and, for games, are typically
played in response to a game action. Examples from Saucer Shoot (Section 3.3) include
the “fire” sound when the Hero shoots a Bullet and the “explode” sound when a Saucer is
destroyed. The class sf::Sound supports this type of audio (i.e., sound effects). 2) music,
which is typically longer (e.g., an entire song) and, for games, is often played continuously
in the background, either during game loading screens or as game action takes place. An
example from Saucer Shoot is the background music that plays during the initial game start
screen. The class sf::Music supports this type of audio. These differences between sound
effects and music influence how they are handled technically by the SFML classes. For
example, sound effects are usually small enough to load into memory, while music, being
larger, is streamed directly from disk. SFML supports most common audio file formats –
the full list can be found in online documentation. Note, <SFML/Audio.hpp> is needed as
an #include for all SFML audio.

For sf::Sound, the sound data is not stored directly in the object but via a separate
class called sf::SoundBuffer. The sound buffer holds the audio samples in an array of
16-bit integers. Each audio sample is the amplitude of the sound wave at a given point in
time. Sound data from a file (e.g., a .wav file) can be loaded into a sf::SoundBuffer with
the method loadFromFile(). Use of this method is shown in the top part of Listing 4.166.

Once the audio data is loaded, the buffer can be assigned to an sf::Sound object via
setBuffer() and then played via play(). The latter half of Listing 4.166 shows a code
fragment to do this. Note, sounds can also be played simultaneously without any issues.

Listing 4.166: SFML playing a sound
✞ ☎

0 #include <SFML /Audio.hpp >

1

2 sf:: SoundBuffer buffer;

3 if (buffer. loadFromFile (” sound . wav”) == false)

4 // Error !
5

6 sf:: Sound sound;

7 sound.setBuffer (buffer);

8 sound.play ();
✝ ✆

* Did you know (#11)? Dragonflies cannot hear, at least not the same way humans can. However,

dragonflies do have receptors in their antennae and legs that are sensitive to pressure changes, such as air

pressure changes from sounds. These receptors supplement their vision. – Ann Cooper. Dragonflies – Q&A
Guide: Fascinating Facts About Their Life in the Wild, Stackpole Books, September 2014.

4.14. Audio 193

Unlike sf::Sound, sf::Music does not pre-load audio data but instead streams directly
from a file. So, this means opening a file and then just playing it, as in Listing 4.167.

Listing 4.167: SFML playing music
✞ ☎

0 #include <SFML /Audio.hpp >

1

2 sf:: Music music;

3 if (music. openFromFile (”mus ic . wav”) == false)

4 // Error !
5

6 music.play ();
✝ ✆

Looping for both sound and music can be done with setLoop(), indicating true to
loop (repeat) the audio from the beginning when at the end and false to stop the audio
when at the end. Both sounds and music can be stopped with stop() and paused with
pause().

One key difference between sf::Music and sf::Sound is that SFML does not allow
copying of sf::Music objects (presumably, this is to help SFML manage resources more
efficiently). To illustrate how this constrains use, the code samples in Listing 4.168 provide
examples of compile-time errors, if tried.

Listing 4.168: SFML sf::Music not copyable
✞ ☎

0 sf:: Music music;

1 sf:: Music music_copy = music; // Error !
2

3 void makeItSo (sf:: Music music_parameter) {

4 ...

5 }

6 makeItSo (music); // Error !
✝ ✆

4.14.2 Dragonfly Audio

To add Dragonfly support for audio, SFML audio support is wrapped by two classes (Sound
and Music), with sound and and music assets managed by the ResourceManager. Wrapping
the SFML audio classes in this way provides for a simpler interface for game programming
and, equally important, means that if Dragonfly were to use an alternate library for audio
support, game code written for Dragonfly would not need to be changed. For game code
that wishes to exploit alternate features of SFML audio, the base SFML types (sf::Sound
and sf::Music) are exposed.

4.14.2.1 The Sound Class

Dragonfly provides a Sound class for supporting basic sound effects, with the header file
shown in Listing 4.169. The primary attributes provide for a sf::Sound (sound) and a
sf::SoundBuffer (sound buffer). The method loadSound() calls loadFromFile(), using
the indicated filename and then sets the sound buffer with setBuffer(). See Listing 4.166
for examples. The string label is text to identify the sound for the game programmer,
similar to the label used by the game programmer to identify a Sprite (see Listing 4.117 on

4.14. Audio 194

page 155). The methods setLabel() and getLabel() are used to set and get the label,
respectively. The methods play(), stop(), and pause(), call the corresponding methods
on the sound object. The method play() has an option to loop the sound, too, which is done
via setLoop(). Looping is off by default. To allow the game programmer to manipulate
the sf::Sound object directly, getSound() returns sound.

Important! If developing on Windows, a call to resetBuffer() needs to be made to
avoid a debug assertion when removing the sound. This call should be placed in the Sound
destructor (~Sound()).

Listing 4.169: Sound.h
✞ ☎

0 // System i n c l u d e s .
1 #include <string >

2 #include <SFML /Audio.hpp >

3

4 class Sound {

5

6 private:

7 sf:: Sound m_sound ; // The SFML sound .
8 sf:: SoundBuffer m_sound_buffer ; // SFML sound b u f f e r a s s o c i a t e d w i th

sound .
9 std:: string m_label ; // Text l a b e l to i d e n t i f y sound .

10

11 public:

12 Sound();

13 ~Sound();

14

15 // Load sound b u f f e r from f i l e .
16 // Return 0 i f ok , e l s e −1.
17 int loadSound (std:: string filename);

18

19 // Set l a b e l a s s o c i a t e d w i th sound .
20 void setLabel (std:: string new_label);

21

22 // Get l a b e l a s s o c i a t e d w i th sound .
23 std:: string getLabel () const;

24

25 // Play sound .
26 // I f l oop i s true , r ep ea t p l a y when done .
27 void play (bool loop =false);

28

29 // Stop sound .
30 void stop ();

31

32 // Pause sound .
33 void pause();

34

35 // Return SFML sound .
36 sf:: Sound getSound () const;

37 };
✝ ✆

4.14.2.2 The Music Class

4.14. Audio 195

Dragonfly provides a Music class for supporting music, with the header file shown in List-
ing 4.170. The primary attribute is sf::Music (music). The method loadMusic() calls
openFromFile(), using the indicated filename. See Listing 4.167 for examples.

Note, as mentioned above, SFML does not allow copying of sf::Music objects (See
Listing 4.168). That is why the Music copy and assignment operators are private. As a
note, making the non-private can work, too, but then exposes potentially confusing SFML
errors to the game program when linking.

The string label is text to identify the music for the game programmer, as for Sounds
(see Listing 4.169) and Sprites (see Listing 4.117 on page 155). The methods setLabel()
and getLabel() are used to set and get the label, respectively. The methods play(),
stop(), and pause(), call the corresponding methods on the music object. The method
play() has an option to loop the sound, too, which is done via setLoop(). Looping is on
by default. To allow the game programmer to manipulate the sf::Music object directly,
getMusic() returns a pointer to music. A pointer is used because SFML does not allow
music to be copied.

Listing 4.170: Music.h
✞ ☎

0 // System i n c l u d e s .
1 #include <string >

2 #include <SFML /Audio.hpp >

3

4 class Music {

5

6 private:

7 Music(Music const&); // SFML doesn ’ t a l l ow music copy .
8 void operator =(Music const&); // SFML doesn ’ t a l l ow music ass i gnment .
9 sf:: Music m_music ; // The SFML music .

10 std:: string m_label ; // Text l a b e l to i d e n t i f y music .
11

12 public:

13 Music();

14

15 // As soc i a t e music b u f f e r w i th f i l e .
16 // Return 0 i f ok , e l s e −1.
17 int loadMusic (std:: string filename);

18

19 // Set l a b e l a s s o c i a t e d w i th music .
20 void setLabel (std:: string new_label);

21

22 // Get l a b e l a s s o c i a t e d w i th music .
23 std:: string getLabel () const;

24

25 // Play music .
26 // I f l oop i s true , r ep ea t p l a y when done .
27 void play (bool loop =true);

28

29 // Stop music .
30 void stop ();

31

32 // Pause music .
33 void pause();

34

4.14. Audio 196

35 // Return po i n t e r to SFML music .
36 sf:: Music * getMusic ();

37 };
✝ ✆

4.14.2.3 Extending the ResourceManager for Audio

With Sound and Music in place, the ResourceManager is extended to manage sound and
music resources. The needed extensions are shown in Listing 4.171. Audio is handled
similarly to Sprites, with fixed sized arrays for Sound and Music objects and count variables
for each. The counts should be initialized to 0 upon startUp(). The “load” methods load
the Sound and Music resources from files and the “unload” methods do the reverse. Two
“get” methods provide pointers to both Sound and Music objects identified by a label.

Listing 4.171: ResourceManager extensions to support audio
✞ ☎

0 const int MAX_SOUNDS = 50;

1 const int MAX_MUSICS = 50;

2

3 private:

4 Sound sound[MAX_SOUNDS]; // Array o f sound b u f f e r s .
5 int sound_count ; // Count o f number o f l oaded sounds .
6 Music music[MAX_MUSICS]; // Array o f music b u f f e r s .
7 int music_count ; // Count o f number o f l oaded musics .
8

9 public:

10 // Load Sound from f i l e .
11 // Return 0 i f ok , e l s e −1.
12 int loadSound (std:: string filename , std :: string label);

13

14 // Remove Sound wi th i n d i c a t e d l a b e l .
15 // Return 0 i f ok , e l s e −1.
16 int unloadSound (std:: string label);

17

18 // Find Sound wi th i n d i c a t e d l a b e l .
19 // Return po i n t e r to i t i f found , e l s e NULL.
20 Sound *getSound (std:: string label);

21

22 // As soc i a t e f i l e w i th Music .
23 // Return 0 i f ok , e l s e −1.
24 int loadMusic (std:: string filename , std :: string label);

25

26 // Remove l a b e l f o r Music w i th i n d i c a t e d l a b e l .
27 // Return 0 i f ok , e l s e −1.
28 int unloadMusic (std:: string label);

29

30 // Find Music w i th i n d i c a t e d l a b e l .
31 // Return po i n t e r to i t i f found , e l s e NULL.
32 Music *getMusic (std:: string label);
✝ ✆

The loadSound() method to load a sound from a file is shown in Listing 4.172. Error
checking is done to ensure the sound array is not filled. On line 9, the call to Sound

loadSound() is made. If successful, the Sound is added to the array. Any error condition
returns -1, while success returns 0.

4.14. Audio 197

Listing 4.172: ResourceManager loadSound()
✞ ☎

0 // Load Sound from f i l e .
1 // Return 0 i f ok , e l s e −1.
2 int ResourceManager :: loadSound (std:: string filename , std :: string label)

3

4 if sound_count is MAX_SOUNDS then

5 writeLog (”Sound a r r a y f u l l . ”)

6 return error

7 end if

8

9 if sound[sound_count]. loadSound (filename) is -1 then

10 writeLog (” Unab le to l o a d from f i l e ”)

11 return error

12 end if

13

14 // A l l i s w e l l .
15 sound[sound_count]. setLabel (label)

16 increment sound_count

17 return ok
✝ ✆

The complement of loadSound() is unloadSound(), shown in Listing 4.173. The
method loops through the Sounds in the ResourceManager. If the label being looked for
(label) matches the label of one of the Sounds (getLabel()) then that is the Sound to be
unloaded. SFML does not have a method to actually free up memory for sounds, so the rest
of the Sounds in the array are moved down one. Lastly, the sound count is decremented by
one. If the loop terminates without a label match, the sound to be unloaded is not in the
ResourceManager and an error is returned.

Listing 4.173: ResourceManager unloadound()
✞ ☎

0 // Remove Sound wi th i n d i c a t e d l a b e l .
1 // Return 0 i f ok , e l s e −1.
2 int ResourceManager :: unloadSound (std:: string label)

3

4 for i = 0 to sound_count -1

5

6 if label is sound[i]. getLabel () then

7

8 // Scoot over remaining sounds
9 for j = i to sound_count -2

10 sound[j] = sound[j+1]

11 end for

12

13 decrement sound_count

14

15 return ok

16

17 end if

18

19 end for

20

21 return error // Sound not found .
✝ ✆

The final method needed by the ResourceManager for sound is getSound(), with pseudo

4.14. Audio 198

code show in Listing 4.174. The method loops through all the Sounds in the ResourceMan-
ager. The first Sound that matches label is returned. If line 10 is reached, the label was
not found and an error (NULL) is returned.

Listing 4.174: ResourceManager getSound()
✞ ☎

0 // Find Sound wi th i n d i c a t e d l a b e l .
1 // Return po i n t e r to i t i f found , e l s e NULL.
2 Sound *getSound (std:: string label);

3

4 for i = 0 to sound_count -1

5 if label is sound[i]. getLabel () then

6 return (& sound[i])

7 end if

8 end for

9

10 return NULL // Sound not found .
✝ ✆

Methods to loadMusic(), unloadMusic() and getMusic() are similar to loadSound(),
unloadSound() and getSound(), respectively. The exception is that since Music is not
copyable, the elements cannot be “scooted over” in the array. Instead, the found label is
just set to empty (""). This means that the empty label is not allowed in loadMusic() to
distinguish from an unloaded Music.

4.14.3 Using Audio

At this point, the game programmer can load sounds and music into the ResourceManager
in a few simple steps. The first step is to obtain/create an audio file, such as those provided
by the Dragonfly tutorial (see Section 3). The second step is to load the audio file, as a
Sound or Music, into the ResourceManager so the game can make use of it. Example code
to load sound effects for Saucer Shoot is shown in Listing 3.7 on page 44 and example code
to load music is shown in Listing 3.9 on page 45.

Once loaded, the game programmer can play audio at an appropriate point. For example,
Saucer Shoot plays music during the game start screen (see Listing 3.8 on page 44) and
plays a sound effect when the player fires a bullet (see Listing 3.10 on page 45).

4.14.4 Development Checkpoint #11!

Continue Dragonfly development to support audio. Steps:

1. Make the Sound and Music classes, referring to Listings 4.169 and 4.170, respectively.
Separately implement and test both classes outside of the game engine. This means
playing various sound effects and music. The audio files from the Saucer Shoot tutorial
(see Section 3.3.12 on page 43) can be used for this. Make sure to test error conditions
(e.g., the file cannot be found), too.

2. Extend the ResourceManager to support sound effects, referring to Listing 4.171 as
needed. Write and test methods to loadSound(), unloadSound(), and getSound().
Refer to Listings 4.172, 4.173, and 4.174, as needed.

4.14. Audio 199

3. Extend the ResourceManager to support music, referring to Listing 4.171 as needed.
Write and test methods to loadMusic(), unloadMusic(), and getMusic(). Base
the music support implementation off the corresponding sound support previously
implemented.

