
Program a Game Engine from Scratch

Mark Claypool

Development Checkpoint #13

View Objects

This document is part of the book “Dragonfly – Program a Game Engine from Scratch”,
(Version 9.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright ©2012–2023 Mark Claypool and WPI. All rights reserved.

4.16. View Objects 210

4.16 View Objects

Thus far, Dragonfly has been discussed in terms of game objects – objects that interact
with each other in the game world. Examples from the Saucer Shoot tutorial (Chapter 3)
include Saucers, Bullets and the Hero. Game objects are the basic building blocks for games
and so are the primary types of objects that a game engine must support.

However, most games include other types of objects that do not interact with other
objects in the game world. Such objects may display information or allow a player to
control game settings. For example, an object that displays a player’s score does not collide
with the hero, spaceships, rocks or any other typical game objects. Buttons and other menu
objects that let players choose settings, weapons or other game options do not interact with
game objects in the world.

In Dragonfly, supporting such view-only objects is done through a new engine object
type, a ViewObject. ViewObjects inherit from the base Object class. This allows the rest
of the engine code, such as the WorldManager and all the utilities such as lists and iterators,
handle ViewObjects as they would standard Objects without change. What ViewObjects
do have that is different are additional attributes that make it more convenient for game
programmers to create “heads-up display” (or HUD) types of interfaces.

While game objects are positioned in game world coordinates, ViewObjects are posi-
tioned relative to the screen coordinates. For example, the game programmer may want
to display the points in the upper right corner of the screen, or the health in the bottom
left corner of the screen. To support the abstraction of screen placement rather than game
world position, ViewObjects use an enum named ViewObjectLocation (as defined on line 8
of Listing 4.186) with positions of top or bottom and left, center and right.

Beyond what is available for Objects, ViewObjects have additional attributes shown
starting on line 24 of Listing 4.186. These include a string (view string) that provides a
text label for the ViewObject (e.g., “points”), an integer (value) to hold the ViewObject
value (e.g., the player’s points, say 150), a boolean (draw value) that indicates if said value
should be drawn or not, a boolean (border) that indicates if the ViewObject should be
drawn with a decorative border, and an integer (color) that provides an optional color for
the ViewObject (if different than the default color). Methods to get and set view string,
value, border, draw value, and color are provided.

The ViewObject has a custom eventHandler() (line 42) since ViewObjects respond to
special view events provided by the game programmer to, say, update the player’s points
or other game-specific value.

Listing 4.186: ViewObject.h
✞ ☎

0 // System i n c l u d e s .
1 #include <string >

2

3 // Engine i n c l u d e s .
4 #include ” Ob jec t . h”

5 #include ” Event . h”

6

7 // General l o c a t i o n o f ViewObject on screen .
8 enum ViewObjectLocation {

9 UNDEFINED =-1,

4.16. View Objects 211

10 TOP_LEFT ,

11 TOP_CENTER ,

12 TOP_RIGHT ,

13 CENTER_LEFT ,

14 CENTER_CENTER ,

15 CENTER_RIGHT ,

16 BOTTOM_LEFT ,

17 BOTTOM_CENTER ,

18 BOTTOM_RIGHT ,

19 };

20

21 class ViewObject : public Object {

22

23 private:

24 std:: string view_string ; // Labe l f o r va l u e (e . g . , ” Po in t s ”) .
25 int m_value; // Value d i s p l a y e d (e . g . , p o i n t s) .
26 bool m_draw_value ; // True i f shou l d draw va l u e .
27 bool m_border ; // True i f border around d i s p l a y .
28 Color m_color ; // Color f o r t e x t (and border) .
29 ViewObjectLocation m_location ; // Locat ion o f ViewObject .
30

31 public:

32 // Cons truc t ViewObject .
33 // Obj ec t s e t t i n g s : SPECTRAL, max a l t .
34 // ViewObject d e f a u l t s : border , t o p c en t e r , d e f a u l t co l o r , draw va lue .
35 ViewObject ();

36

37 // Draw view s t r i n g and va l u e .
38 virtual int draw () override ;

39

40 // Handle ‘ v i ew ’ even t i f tag matches v i e w s t r i n g (o t h e r s i gnored) .
41 // Return 0 i f i gnored , e l s e 1 i f hand led .
42 virtual int eventHandler (const Event *p_e) override ;

43

44 // General l o c a t i o n o f ViewObject on screen .
45 void setLocation (ViewObjectLocation new_location);

46

47 // Get g ene ra l l o c a t i o n o f ViewObject on screen .
48 ViewObjectLocation getLocation () const;

49

50 // Set v iew va l u e .
51 void setValue (int new_value);

52

53 // Get v iew va l u e .
54 int getValue () const;

55

56 // Set v iew border (t ru e = d i s p l a y border) .
57 void setBorder (bool new_border);

58

59 // Get v iew border (t ru e = d i s p l a y border) .
60 bool getBorder () const;

61

62 // Set v iew c o l o r .
63 void setColor (Color new_color);

64

4.16. View Objects 212

65 // Get v iew c o l o r .
66 Color getColor () const;

67

68 // Set v iew d i s p l a y s t r i n g .
69 void setViewString (std :: string new_view_string);

70

71 // Get v iew d i s p l a y s t r i n g .
72 std:: string getViewString () const;

73

74 // Set t ru e to draw va l u e w i th d i s p l a y s t r i n g .
75 void setDrawValue (bool new_draw_value = true);

76

77 // Get draw va l u e (t ru e i f draw va l u e w i th d i s p l a y s t r i n g) .
78 bool getDrawValue () const;

79

80 };
✝ ✆

Listing 4.187 shows the ViewObject constructor. First, it makes Object settings ap-
propriate for a ViewObject. Specifically, it puts the Object at the highest altitude so it is
visible above any other game objects, makes the ViewObject spectral so it does not collide
with any other objects and sets its type to “ViewObject”. Second, the ViewObject-specific
settings are made, with a value of 0, a border being drawn, the location in the top center
of the screen and the default color. Lastly, the ViewObject registers for interest in a view
event, described in Section 4.16.1 on page 215.

Listing 4.187: ViewObject ViewObject()✞ ☎

0 // Cons truc t ViewObject .
1 // Obj ec t s e t t i n g s : SPECTRAL, max a l t i t u d e .
2 // ViewObject d e f a u l t s : border , t o p c en t e r , d e f a u l t co l o r , draw va lue .
3 ViewObject :: ViewObject ()

4

5 // I n i t i a l i z e Ob j ec t a t t r i b u t e s .
6 setSolidness (SPECTRAL)

7 setAltitude (MAX_ALTITUDE)

8 setType(” ViewObject ”)

9

10 // I n i t i a l i z e ViewObject a t t r i b u t e s .
11 setValue (0)

12 setDrawValue ()

13 setBorder (true)

14 setLocation (TOP_CENTER)

15 setColor (COLOR_DEFAULT)

16

17 // Reg i s t e r i n t e r e s t in view even t s .
18 registerInterest (VIEW_EVENT) // i f S e c t i on 4.15 implemented .
✝ ✆

Pseudo code for ViewObject setLocation() method is shown in Listing 4.188. Basi-
cally, the switch statement starting on line 4 determines the (x,y) location. Only the first 2
(of 9 total) entries of the statement are shown, with the missing pieces following the same
pattern. The y coordinate is at 1 if on the top of the window, or world manager.get-

View().getVertical()-1 if on the bottom.
The x coordinate is at 1/6th, 3/6th, and 5/6th the horizontal distance (world manager-

.getView().getHorizontal()), depending on if it is left, right or center, respectively. The

4.16. View Objects 213

y delta variable is used to adjust the vertical distance by -1 if the ViewObject is at the
top and does not have a border, and by +1 if the ViewObject is at the bottom and does
not have a border. On line 21, the position is actually shifted and on line 24 the position of
the ViewObject is moved to the new position. Note, as given, Listing 4.188 assumes new -

location is one of the nine valid locations whereas in actual code this should be checked
and no action should be taken if new location is invalid.

Listing 4.188: ViewObject setLocation()✞ ☎

0 // General l o c a t i o n o f ViewObject on screen .
1 ViewObject :: setLocation (ViewObjectLocation new_location)

2

3 // Set new po s i t i o n based on l o c a t i o n .
4 switch (new_location)

5 case TOP_LEFT :

6 p.setXY(WorldManager getView ().getHorizontal () * 1/6, 1)

7 if getBorder () is false then

8 y_delta = -1

9 end if

10 break;

11 case TOP_CENTER :

12 p.setXY(WorldManager getView ().getHorizontal () * 3/6, 1)

13 if getBorder () is false then

14 y_delta = -1

15 end if

16 break;

17 ...

18 end switch

19

20 // Sh i f t , as needed , based on border .
21 p.setY (p.getY () + y_delta)

22

23 // Set p o s i t i o n o f o b j e c t to new po s i t i o n .
24 setPosition (p)

25

26 // Set new l o c a t i o n .
27 location = new_location
✝ ✆

The corresponding ViewObject getLocation() is not shown, but should merely return
location.

ViewObject setBorder() does a bit more than just set border to the new value. As
shown in Listing 4.189, it also calls setLocation() since, if the border has changed, the
(x,y) location on the screen needs to be adjusted based on the new border value.

Listing 4.189: ViewObject setBorder()✞ ☎

0 // Set v iew border (t ru e = d i s p l a y border) .
1 void ViewObject :: setBorder (bool new_border)

2

3 if border != new_border then

4

5 border = new_border

6

7 // Reset l o c a t i o n to account f o r border s e t t i n g .
8 setLocation (getLocation ())

4.16. View Objects 214

9

10 end if
✝ ✆

The ViewObject draw() method is shown in Listing 4.190. The first code block con-
structs the string to draw, created from the display string and the integer holding the
value. The second block of code actually draws the string, invoking the drawString()

(see Listing 4.82 on page 121) method from the DisplayManager, along with a border (if
appropriate). Note, since the ViewObject’s (x,y) location is in screen (or window) coordi-
nates, as opposed to game world coordinates like most Objects, the ViewObject position
needs to be translated to world coordinates via the utility function viewToWorld(). The
function viewToWorld() does the reverse translation as worldToView(), in Listing 4.155
on page 185.

Listing 4.190: ViewObject draw()✞ ☎

0 // Draw view s t r i n g and va l u e .
1 int ViewObject :: draw ()

2

3 // Di sp l ay v i e w s t r i n g + va l u e .
4 if border is true then

5 temp_str = ” ” + getViewString () + ” ” + toString (value) + ” ”

6 else

7 temp_str = getViewString () + ” ” + toString (value)

8 end if

9

10 // Draw cen t e r ed a t p o s i t i o n .
11 Vector pos = viewToWorld (getPosition ())

12 DisplayManager drawString (pos , temp_str , CENTER_JUSTIFIED ,

13 getColor ())

14 if border is true then

15 // Draw box around d i s p l a y .
16 ...

17 end if
✝ ✆

The toString() function used in Listing 4.190 on line 5 and line 7 is a useful utility
function to put in utility.cpp. Basically, it creates a stringstream, adds a number to
it, and return a string with the new contents. The full function is shown in Listing 4.191.

Listing 4.191: Utility toString()✞ ☎

0 #include <sstream >

1 using std:: stringstream ;

2

3 // Convert i n t to a s t r i n g , r e tu rn i n g s t r i n g .
4 std:: string toString (int i) {

5 std:: stringstream ss; // Create s t r i n g s t r e am .
6 ss << i; // Add number to stream .
7 return ss.str (); // Return s t r i n g w i th con t en t s o f stream .
8 }
✝ ✆

While thus far, view objects could be done entirely outside the engine in “game pro-
grammer” code space, there is one part of the engine that is aware of ViewObjects – the
WorldManager’s draw() method. The extension required of the WorldManager to support
views is shown in Listing 4.192. Without views, the draw() method checked each Object to

4.16. View Objects 215

see if they intersect the visible screen (see Listing 4.157 on page 186). ViewObjects may fail
this check since their positions are relative to the screen, not the game world. So, instead,
after checking for intersection, a dynamic cast is made to see if the Object is a ViewObject.
If so, it is drawn. In other words, all ViewObjects are drawn each game loop, regardless of
position.

Listing 4.192: WorldManager extensions to draw() to support ViewObjects
✞ ☎

0 ...

1 // Only draw i f Ob j ec t would be v i s i b l e (i n t e r s e c t s v i ew) .
2 if boxIntersectsBox (box , view) or // Obj ec t in view ,
3 dynamic_cast <ViewObject *> (p_temp_o)) // or i s ViewObject .
4 p_temp_o -> draw ()

5 end if

6 ...
✝ ✆

Tip 22! Dynamic cast. Dynamic casts can be used to ensure that a type con-
version is valid. When a class is polymorphic (it is a derived class with a virtual
function), a dynamic cast to the derived class returns the address of the derived
object, which can be interpreted as true, otherwise it returns NULL, which can be
interpreted as false. For example, consider Listing ??. In the first if-then, the
pointer p o points to the base Object so the dynamic cast returns false. In the
second if-then, the pointer p o points to the derived ViewObject so the dynamic
cast returns true. Note! A dynamic cast will fail if there is not at least one method
marked as virtual in the base class. Having at least one virtual method makes
the class polymorphic.

4.16.1 View Event

View events are used by game programmers to signal the change in a view value. For
example, if the player scored 10 points, say by destroying a Saucer, a view event would be
created, given a value of 10, and passed to all ViewObjects (using onEvent()). Listing 4.193
provides the header file for the EventView class, derived from the Event class (Listing 4.49
on page 94). Remember, in the constructor of a ViewObject, the Object already registered
for interest in a VIEW EVENT (see Listing 4.187 on page 212). VIEW EVENT is defined in
Listing 4.193 on line 2.

Like many other Events, the EventView is mostly a container, holding a string (tag)
which is a label associated with a specific ViewObject, an integer (value) that is used
to modify the value in the ViewObject, and a boolean (delta) that determines whether
the value either adjusts the ViewObject value (if delta is true) or replaces it (if delta
is false). Methods are provided to get and set these values. The default constructor
assigns VIEW EVENT, 0 and false to tag, value and delta, respectively, and an alternate
constructor is provided to create an EventView with attribute values specified.

4.16. View Objects 216

Listing 4.193: EventView.h
✞ ☎

0 #include ” Event . h”

1

2 const std:: string VIEW_EVENT = ” d f : : v i ew ”;

3

4 class EventView : public Event {

5

6 private:

7 std:: string m_tag; // Tag to a s s o c i a t e .
8 int m_value; // Value f o r v iew .
9 bool m_delta ; // True i f change in va lue , e l s e r e p l a c e va l u e .

10

11 public:

12 // Create v iew even t w i th tag VIEW EVENT, va l u e 0 and d e l t a f a l s e .
13 EventView ();

14

15 // Create v iew even t w i th tag , v a l u e and d e l t a as i n d i c a t e d .
16 EventView (std :: string new_tag , int new_value , bool new_delta);

17

18 // Set tag to new tag .
19 void setTag(std:: string new_tag);

20

21 // Get tag .
22 std:: string getTag () const;

23

24 // Set va l u e to new va l u e .
25 void setValue (int new_value);

26

27 // Get va l u e .
28 int getValue () const;

29

30 // Set d e l t a to new d e l t a .
31 void setDelta (bool new_delta);

32

33 // Get d e l t a .
34 bool getDelta () const;

35 };
✝ ✆

With EventView specified, the ViewObject eventHandler() can now be defined as
shown in Listing 4.194. The first if statement confirms that the event is a VIEW EVENT.
If so, line 7 needs to cast the generic Event pointer as an EventView pointer. This cast
could either be a dynamic cast (i.e., dynamic cast <const EventView *>) (as described
in Section 4.5.5.3, page 97) or a static cast (i.e., static cast <const EventView *>) –
the latter is a compile-time cast that performs conversions that are safe and well-defined,
and it can often be faster than other types of casts Remember, the EventView * used here
needs to be declared const, too, in order to match the incoming type for p e. This const
restriction is to ensure the eventHandler() is not modifying the attributes of the Event.

An EventView is then be checked to see if its tag matches the view string associated with
this ViewObject – if so, this event was intended for this ViewObject. At that point, the two
options are for delta to indicate that the EventView value is to change the ViewObject’s
value by that amount (if true), or that the EventView value is to replace the ViewObject’s
value (if false). Either way, the event his handled and ok is returned at line 20. If line 27

4.16. View Objects 217

is reached, the event was not handled so 0 is returned.21.

Listing 4.194: ViewObject eventHandler()✞ ☎

0 // Handle ‘ v i ew ’ e v en t s i f tag matches v i e w s t r i n g (o t h e r s i gnored) .
1 // Return 0 i f i gnored , e l s e 1 (ok) i f hand led .
2 int ViewObject :: eventHandler (const Event *p_e)

3

4 // See i f t h i s i s ‘ v i ew ’ even t .
5 if p_e ->getType () is VIEW_EVENT then

6

7 EventView *p_ve = p_e

8

9 // See i f t h i s even t i s meant f o r t h i s o b j e c t .
10 if p_ve -> getTag () is getViewString () then

11

12 if p_ve -> getDelta () then

13 setValue (getValue () + p_ve ->getValue ()) // Change in va l u e .
14 else

15 setValue (p_ve ->getValue ()) // New va l u e .
16

17 end if

18

19 // Event was handled , re turn ok .
20 return ok

21

22 end if

23

24 end if

25

26 // I f here , even t was not handled . Ca l l paren t even tHand l er () .
27 return error
✝ ✆

An example helps illustrate the use of ViewObjects and EventViews. Say a game pro-
grammer wants to have points associated with player achievements in a game and have
the points displayed in the top right of the screen. The game programmer might use the
code in Listing 4.195 at the top to create the view object, before the game actually starts.
This code creates a ViewObject, associates “points” with the object, initializes the value
to 0, positions it at the top right of the screen and makes it yellow. The ViewObject code
automatically registers the object for interest in view events.

To change the value of the points ViewObject, say when an enemy object is destroyed,
the game programmer places the second block of code (starting on line 8) into the enemy
object destructor. When the enemy object is destroyed and the destructor is called, an
EventView is created, intended for the points ViewObject, providing a value of 10 that will
be added to the ViewObject value, since delta, the last parameter, is true. The event is
given to the ViewObject (actually all ViewObjects, but only the “points” ViewObject will
react) via the onEvent() call in the WorldManager.

Listing 4.195: Using ViewObjects
✞ ☎

0 // Before s t a r t i n g game . . .

21If the parent Object eventHandler() did any work, it should be called but in the case of the engine at

this point, it does not

4.16. View Objects 218

1 df:: ViewObject *p_vo = new df:: ViewObject ; // Used f o r p o i n t s .
2 p_vo -> setViewString (” Po i n t s ”);

3 p_vo -> setValue (0);

4 p_vo -> setLocation (df:: TOP_RIGHT);

5 p_vo -> setColor (df:: COLOR_YELLOW);

6 ...

7

8 // In d e s t r u c t o r o f enemy o b j e c t . . .
9 df:: EventView ev(” Po i n t s ”, 10, true);

10 df:: WorldManager onEvent (&ev);
✝ ✆

4.16.2 Buttons (optional)

A common user interface option is the button, represented graphically on the screen and
selected with a mouse. Computer users and game players are familiar with buttons, using
them for all sorts of game-related input. Buttons can provide in-game input, for example
for casting a spell, or before the game starts, for example for choosing what character to
be.

For Dragonfly, the button is similar to a ViewObject in that it is drawn on top of the
rest of the game objects and does not interact with the game world. The button needs to
respond to the mouse, too, so that it can recognize when the mouse hovers over it and when
it has been clicked.

Listing 4.196 shows the Button class, derived from the ViewObject class. The Button
adds two attributes for colors – one for the Button color when the button is highlighted
(the mouse is over it) (highlight color, and one to keep track of the default color when
the button is not highlighted (default color). Methods to get and set these attributes are
provided. The constructor needs to set default attribute values and register for interest in
mouse events.

Listing 4.196: Button.h
✞ ☎

0 class Button : public ViewObject {

1

2 private:

3 Color m_highlight_color ; // Color when h i g h l i g h t e d .
4 Color m_default_color ; // Color when not h i g h l i g h t e d .
5

6 public:

7 Button ();

8

9 // Handle ”mouse” ev en t s .
10 // Return 0 i f i gnored , e l s e 1 .
11 int eventHandler (const Event *p_e) override ;

12

13 // Set h i g h l i g h t (when mouse over) c o l o r f o r Button .
14 void setHighlightColor (Color new_highlight_color);

15

16 // Get h i g h l i g h t (when mouse over) c o l o r f o r Button .
17 Color getHighlightColor () const;

18

19 // Set c o l o r o f Button .

4.16. View Objects 219

20 void setDefaultColor (Color new_default_color);

21

22 // Get c o l o r o f Button
23 Color getDefaultColor () const;

24

25 // Return t ru e i f mouse over Button , e l s e f a l s e .
26 bool mouseOverButton (const EventMouse *p_e) const;

27

28 // Ca l l e d when Button c l i c k e d .
29 // Must be d e f i n ed by de r i v ed c l a s s .
30 virtual void callback () = 0;

31 };
✝ ✆

The mouseOverButton()method is a helper to facilitate the Button in changing between
the highlight (when the mouse moves over it) and default colors (when the mouse is not
over it). Its functionality is depicted in Listing 4.197. A pointer to EventMouse event
is a parameter, with the return type boolean as true if the mouse is inside the button,
otherwise false.

The first block of code creates a bounding box for the Button which is wide enough for
the string and adjusted for with width and height if the Button has borders (an attribute
of the parent ViewObject). The next block of code simply calls boxContainsPosition()
(see Listing 4.152 on page 182) using the newly constructed Box and the mouse’s position,
and returns the appropriate boolean.

Listing 4.197: Button mouseOverButton()
✞ ☎

0 // Return t ru e i f mouse over Button , e l s e f a l s e .
1 bool MouseOverButton :: mouseOverButton (const EventMouse *p_e) const

2

3 // Create Box f o r Button .
4 width = getViewString ().size ()

5 height = 1

6 if getBorder () then // i f Button has border
7 width = width + 4 // box wider by 2 spaces and |
8 height = height + 2 // box t a l l e r by 2 rows o f −−−
9 end if

10 Vector corner(getPosition ().getX () - width/2,

11 getPosition ().getY () - height /2)

12 Box b(corner , width , height)

13

14 // I f mouse i n s i d e bu t ton box , re turn true , e l s e f a l s e .
15 if boxContainsPosition (b, p_e -> getMousePosition ())

16 return true

17 else

18 return false
✝ ✆

With that method in place, the eventHandler() method, shown in Listing 4.198, is
ready to handle mouse actions. Since the Button only handles mouse events, this is checked
at the start, and any non-mouse event is not handled (return 0).

Next, the mouse event is checked to see if the mouse is inside the Button using mouseOverButton().
If it is not, then the Button color is changed to the default and the method returns (having
still handled the event).

4.16. View Objects 220

If the mouse is inside the Button, the Button color is changed to the highlight color and
if the mouse action is CLICKED, then the Button callback() is invoked.

Remember, although not shown, the Event pointer p e needs to be casted when used as
an EventMouse (see Section 4.5.5.3 on page 97).

Listing 4.198: Button eventHandler()
✞ ☎

0 // Handle ”mouse” ev en t s .
1 // Return 0 i f i gnored , e l s e 1 .
2 int Button :: eventHandler (const Event *p_e)

3

4 // Check i f mouse even t .
5 if p_e -> getType () is not MSE_EVENT then

6 return 0 // not handled
7 end if

8

9 // Check i f mouse over bu t ton .
10 if mouseOverButton (p_e) then

11

12 // H i g h l i g h t on .
13 setColor (highlight_color)

14

15 // Check i f c l i c k e d .
16 if p_e -> getMouseAction () is CLICKED then

17

18 // Invoke c a l l b a c k .
19 callback ()

20

21 end if

22

23 // H i g h l i g h t o f f .
24 setColor (default_color)

25

26 // Event handled .
27 return 1
✝ ✆

Lastly, note that the callback() method on line 30 of Listing 4.196 is declared as
pure virtual (=0) meaning callback() must be defined before Button can be used. This is
because there is really no generic behavior common for all buttons when clicked, but instead
the game programmer must implement the button-specific behavior wanted.

An example can help illustrate how the Button class can be used. Consider a typical
start screen in a game, such as the start screen for Saucer Shoot in Section 3.3.11 on page 39,
where the player can choose to either “play” or “quit”. A quit button can be made as in
Listings 4.200 (header file) and 4.199 (code). In the header file, QuitButton is derived from
Button. The only method that must be defined is callback(), but in this case there is a
default constructor since some Button defaults are changed (such as the button text).

Listing 4.199: QuitButton.h – Example Quit button for game start screen
✞ ☎

0 #include ”Button . h”

1

2 class QuitButton : public df:: Button {

3

4 public:

4.16. View Objects 221

5 QuitButton ();

6 void callback ();

7 };
✝ ✆

In the source code (Listing 4.199), the constructor sets the text displayed in the button to
“quit” and places the button in the bottom center of the screen. Other options could include
changing the button’s color(s) and the presence of a border. The callback() method is
invoked when the button is clicked. In this case, it sets game over to true, which causes the
game loop to exit and the game engine to shutdown (see Section 4.4.4 on page 71).

Listing 4.200: QuitButton.cpp – Example Quit button for game start screen✞ ☎

0 #include ”GameManager . h”

1 #include ”Qu itBut ton . h”

2

3 QuitButton :: QuitButton () {

4 setViewString (”Qu it ”);

5 setLocation (df:: BOTTOM_CENTER);

6 }

7

8 // On ca l l b a c k , s e t game over to t ru e .
9 void QuitButton :: callback () {

10 GM.setGameOver();
✝ ✆

4.16.3 Text Entry (optional)

Another common user interface option is the text entry widget, typically represented as a
blank box that allows players to type in a string. Text entry is sometimes used for in-game
options, such as typing in an action for a classic text adventure, but more often for extra-
game options, such as entering the network address of a server in a multi-player game or
typing in player initials in a high score table.

Like buttons, text entry widgets are presented to the player above the rest of the game
objects and do not interact with the game world, like the Dragonfly ViewObject. Unlike
the Button, the text entry widget does not need a mouse, but does need to respond to
keyboard input as keys are pressed.

Listing 4.201 shows the TextEntry class, derived from the ViewObject class. TextEntry
adds three attributes related to the text – text for the text characters, limit to limit how
many characters can be entered and numbers only, a boolean that if true, indicates that
only numbers are accepted. Methods to get and set these attributes are provided. The
constructor needs to set default attribute values and register for interest in keyboard events
and step events (the latter to handle blinking the cursor). The text attribute needs to be
initialized with all spaces (up to length limit) so that the text entry box is drawn properly
– this is done in setLimit(), in case the game programmer changes the limit.

Listing 4.201: TextEntry.h✞ ☎

0 // Engine i n c l u d e s .
1 #include ”EventMouse . h”

2 #include ” ViewObject . h”

3

4 class TextEntry : public ViewObject {

4.16. View Objects 222

5

6 private:

7 std:: string m_text; // Text en tered .
8 int m_limit; // Character l i m i t in t e x t .
9 bool m_numbers_only ; // True i f on l y numbers .

10 int m_cursor ; // Cursor l o c a t i o n .
11 char m_cursor_char ; // Cursor cha rac t e r .
12 int m_blink_rate ; // Cursor b l i n k ra t e .
13

14 public:

15 TextEntry ();

16

17 // Set t e x t en tered .
18 void setText (std:: string new_text);

19

20 // Get t e x t en tered .
21 std:: string getText () const;

22

23 // Handle ” keyboard ” ev en t s .
24 // Return 0 i f i gnored , e l s e 1 .
25 int eventHandler (const Event *p_e) override ;

26

27 // Ca l l e d when TextEntry en t e r h i t .
28 // Must be d e f i n ed by de r i v ed c l a s s .
29 virtual void callback () = 0;

30

31 // Set l i m i t o f number o f cha ra c t e r s a l l owed .
32 void setLimit (int new_limit);

33

34 // Get l i m i t o f number o f cha ra c t e r s a l l owed .
35 int getLimit () const;

36

37 // Set cursor to l o c a t i o n .
38 void setCursor (int new_cursor);

39

40 // Get cursor l o c a t i o n .
41 int getCursor () const;

42

43 // Set b l i n k ra t e f o r cursor (in t i c k s) .
44 void setBlinkRate (int new_blink_rate);

45

46 // Get b l i n k ra t e f o r cursor (in t i c k s) .
47 int getBlinkRate () const;

48

49 // Return t ru e i f on l y numbers can be en tered .
50 bool numbersOnly () const;

51

52 // Set to a l l ow on l y numbers to be en tered .
53 void setNumbersOnly (bool new_numbers_only = true);

54

55 // Set cursor cha rac t e r .
56 void setCursorChar (char new_cursor_char);

57

58 // Get cursor cha rac t e r .
59 char getCursorChar () const;

4.16. View Objects 223

60

61 // Draw v i ew s t r i n g + t e x t en tered .
62 virtual int draw () override ;

63 };
✝ ✆

The callback() method on line 29 is as for the Button class – declared as pure virtual
(=0) meaning callback() must be defined before TextEntry can be used. As for a Button,
the text entry specific behavior wanted must be implemented by the game programmer.

Most of the methods are implemented in a straightforward manner, with the exception
of the eventHandler(), shown in Listing 4.202.

If the event is a step event, the code block from lines 7 to 17 handles the cursor blinking
–the cursor in this case, is a character that toggles between an underscore (or whatever the
cursor character is set to) and a space. The method uses a static variable to keep track of
the blink count, counting up from a negative value. When the count passes zero, it toggles
the cursor (blinks it).

Listing 4.202: TextEntry eventHandler()
✞ ☎

0 // Handle ” keyboard ” ev en t s .
1 // Return 0 i f i gnored , e l s e 1 .
2 int TextEntry :: eventHandler (const Event *p_e)

3

4 // I f s t e p event , b l i n k cursor .
5 if p_e -> getType () is df:: STEP_EVENT then

6

7 // B l ink on or o f f based on ra t e .
8 static int blink = -1 * getBlinkRate ()

9 if blink >= 0 then

10 text .replace (cursor , 1, 1, getCursorChar ())

11 else

12 text .replace (cursor , 1, 1, ’ ’)

13 end if

14 blink = blink + 1

15 if blink == getBlinkRate () then

16 blink = -1 * getBlinkRate ()

17 end if

18

19 return 1

20

21 end if

22

23 // I f keyboard event , hand l e .
24 if p_e -> getType () is KEYBOARD_EVENT and

25 p_e -> getKeyboardAction () is KEY_PRESSED then

26

27 // I f re turn key pressed , then c a l l b a c k .
28 if p_e -> getKey () is Keyboard :: RETURN then

29 callback ()

30 return 1

31 end if

32

33 // I f backspace , remove cha rac t e r .
34 if p_e -> getKey () is Keyboard :: BACKSPACE then

35 if cursor > 0 then

4.16. View Objects 224

36 if cursor < limit then

37 text .replace (cursor , 1, 1, ’ ’)

38 end if

39 cursor = cursor - 1

40 text .replace (cursor , 1, 1, ’ ’)

41 end if

42 return 1

43 end if

44

45 // I f no room , cannot add cha rac t e r s .
46 if cursor >= limit then

47 return 1

48 end if

49

50 // Get key as s t r i n g .
51 std:: string str = toString (p_k -> getKey ())

52

53 // I f en try shou l d be number , conf i rm .
54 if numbers_only && not isdigit (str [0]) then

55 return 1

56 end if

57

58 // Replace spaces w i th cha rac t e r s .
59 text .replace (cursor , 1, str)

60 cursor ++

61

62 // A l l i s w e l l .
63 return 1

64 end if

65

66 // I f we ge t here , even t i s not handled .
67 return 0
✝ ✆

If the event is a keyboard event, there are several possible actions. Remember, although
not shown, the Event pointer p e needs to be casted when used as an EventKeyboard (see
Section 4.5.5.3 on page 97).

The code starting on Line 27 checks if the return key is pressed. If so, the callback()
method is invoked.

The code starting on Line 33 checks if the backspace key is pressed. If so, there is
an additional check if the cursor is at the beginning of the string. If not, the character
immediately to the left of the cursor is replaced.

The code on Line 45 makes sure that there is still room to add more text. If not (the
limit is reached) the method ends.

Otherwise, the code at the bottom of the method adds the keyboard character pressed
by replacing the space in the string at cursor with the character pressed.

The TextEntry draw() method also has a bit of work to do beyond the ViewObject
draw() method. The required logic is shown in Listing 4.203. Basically, the original
ViewObject text (set to “Enter text:” or something similar in the child class construc-
tor) is loaded, the text entered so far is added, and then drawn.

Listing 4.203: TextEntry draw()
✞ ☎

4.16. View Objects 225

0 // Draw v i ew s t r i n g + t e x t en tered .
1 int TextEntry :: draw ()

2

3 // Get o r i g i n a l v i ew s t r i n g .
4 std:: string view_str = getViewString ()

5

6 // Add t e x t .
7 setViewString (view_str + text)

8

9 // Draw .
10 ViewObject :: draw ()

11

12 // Restore o r i g i n a l v i ew s t r i n g .
13 setViewString (view_str)
✝ ✆

An example can help illustrate how the TextEntry class can be used. Consider a high
score table where the player, upon hitting a score worthy of the table, is asked to enter
his/her initials (3 characters). A text entry widget can be made as in Listings 4.204 (header
file) and 4.205 (code). In the header file, NameEntry is derived from TextEntry. The only
method that must be defined is callback(), but in this case the limit (3 characters) needs
to be set, too.

Listing 4.204: NameEntry.h – Example TextEntry for player initials✞ ☎

0 #include ” TextEn t ry . h”

1

2 class NameEntry : public df:: TextEntry {

3

4 public:

5 NameEntryButton ();

6 void callback ();

7 };
✝ ✆

In the source code, the constructor sets the text entry widget in the center of the
screen and indicates the player should enter initials (setting the character limit to 3). The
callback() method is invoked when the return key is pressed – in this case, a message is
written to the logfile, but probably the game programmer would do something else with the
initials, such as add them to a table.

Listing 4.205: NameEntry.cpp – Example TextEntry for player initials✞ ☎

0 #include ”LogManager . h”

1 #include ”NameEntry . h”

2

3 NameEntry :: NameEntry () {

4 setViewString (” En t e r i n i t i a l s ”);

5 setLocation (df:: CENTER_CENTER);

6 setLimit (3);

7 }

8

9 // On ca l l b a c k , w r i t e i n i t i a l s to l o g f i l e .
10 void QuitButton :: callback () {

11 LM.writeLog (”High s c o r e : %s ”, getText ().c_str());

12 }
✝ ✆

4.16. View Objects 226

4.16.4 Development Checkpoint #13!

Continue development of Dragonfly, incorporating ViewObjects. Steps:

1. Create a ViewObject class (ViewObject.h and ViewObject.cpp), inheriting from
Object, based on Listing 4.186. Add ViewObject.cpp to the project. Stub out all
the methods first and get it to compile.

2. Write the ViewObject constructor, based on Listing 4.187 and then setLocation(),
based on Listing 4.188. Get your code to compile and verify by visual inspection of
code.

3. Based on Listing 4.191, write the utility function toString() and put it in utility.cpp
and utility.h. Test with a stand alone program, outside of any other aspect of the
game engine, to be sure it properly converts a range of integers to string values.

4. Write the ViewObject draw() method, referring to Listing 4.190. Remember, since
draw() gets called automatically in WorldManager draw(), first test your code by
creating a ViewObject (via new) before calling the GameManager run() method.
Verify that the ViewObject appears, testing its location in all six fixed locations
around the screen, for arbitrary strings and values.

5. Create a EventView class, based on Listing 4.193. Add EventView.cpp to the project.
Define the eventHandler() based on Listing 4.194. Verify the code compiles and use
visual inspection on the methods.

6. Referring to Listing 4.195, construct an example that uses a ViewObject with a test
program that changes the value of the object. Test with a variety of view events, with
different values and deltas. Verify that a ViewObject only handles events that are
targeted toward it, ignoring others.

