
Program a Game Engine from Scratch

Mark Claypool

Development Checkpoint #9

Sprite Animation

This document is part of the book “Dragonfly – Program a Game Engine from Scratch”,
(Version 9.0). Information online at: http://dragonfly.wpi.edu/book/

Copyright ©2012–2023 Mark Claypool and WPI. All rights reserved.

4.12. Resource Management 173

4.12.5 Using Sprites and the Animation Class

At this point, the game programmer can load sprites into the ResourceManager in a few
simple steps. The first step is to create a sprite file, such as the one in Listing 3.3 on
page 18. The second is to load the sprite into the ResourceManager so the game can make
use of it. Example code to load the saucer sprite for Saucer Shoot (Section 3.3) is shown
in Listing 3.2 on page 17.

To actually use Sprites, say to draw them in an animated fashion on the window,
Dragonfly needs to be extended in a couple of ways. A Sprite holds the “static” properties of
an animation in that they are fixed for all Objects that use the sprite. To actually animate
the Sprite, an Animation class is created to provide control of the Sprite animation for each
associated Object.

Animation is shown in Listing 4.141. The class needs Sprite.h as well as <string>.
The attribute m p sprite indicates what Sprite is associated with the Animation and m name

the corresponding name. The attribute m index keeps track of which frame is currently be-
ing drawn. The attribute m slowdown count is a counter used in conjunction with the Sprite
slowdown rate (see Section 4.12.2 on page 154) to provide animation through cycling the
frames. Methods to get and set each attribute are also provided. The setSprite()methods
also sets the bounding box for the Object (described in the upcoming Section 4.13.2).

Listing 4.141: Animation.h✞ ☎

0 // System i n c l u d e s .
1 #include <string >

2

3 // Engine i n c l u d e s .
4 #include ” S p r i t e . h”

5

6 class Animation {

7

8 private:

9 Sprite *m_p_sprite ; // Sp r i t e a s s o c i a t e d w i th Animation .
10 std:: string m_name; // Sp r i t e name in ResourceManager .
11 int m_index; // Current index frame f o r S p r i t e .
12 int m_slowdown_count ; // Slowdown counter .
13

14 public:

15 // Animation con s t ru c t o r
16 Animation ();

17

18 // Set a s s o c i a t e d S p r i t e to new one .
19 // Note , S p r i t e i s managed by ResourceManager .
20 // Set S p r i t e index to 0 (f i r s t frame) .
21 void setSprite (Sprite * p_new_sprite);

22

23 // Return po i n t e r to a s s o c i a t e d S p r i t e .
24 Sprite *getSprite () const;

25

26 // Set S p r i t e name (in ResourceManager) .
27 void setName (std:: string new_name);

28

29 // Get S p r i t e name (in ResourceManager) .
30 std:: string getName () const;

4.12. Resource Management 174

31

32 // Set index o f cu r r en t S p r i t e frame to be d i s p l a y e d .
33 void setIndex (int new_index);

34

35 // Get index o f cu r r en t S p r i t e frame to be d i s p l a y e d .
36 int getIndex () const;

37

38 // Set animation slowdown count (−1 means s t op animation) .
39 void setSlowdownCount (int new_slowdown_count);

40

41 // Set animation slowdown count (−1 means s t op animation) .
42 int getSlowdownCount () const;

43

44 // Draw s i n g l e frame cen t e r ed a t p o s i t i o n (x , y) .
45 // Drawing accounts f o r slowdown , and advances S p r i t e frame .
46 // Return 0 i f ok , e l s e −1.
47 int draw (Vector position);

48 };
✝ ✆

The Animation draw() method, shown in Listing 4.142, basically makes a call to Sprite
draw() then advances the sprite index to the next frame. Line 12 asks the Sprite to draw
the current frame at the indicated position. The block of code at line 15 checks if the
sprite slowdown count is set to -1 – if so, this indicates the animation is frozen, not to be
advanced, so the method is done. Otherwise, the slowdown counter is advanced ,and on
line 24 checked against the slowdown value to see if it is time to advance the sprite frame.
Advancing increments the index, with the code starting at line 31 taking care of looping
from the end of the animation sequence to the beginning. The last two actions at the end
of the method set the slowdown counter and the sprite indices to their values for the next
call to draw().

Listing 4.142: Animation draw()
✞ ☎

0 // Draw s i n g l e frame cen t e r ed a t p o s i t i o n (x , y) .
1 // Drawing accounts f o r slowdown , and advances S p r i t e frame .
2 // Return 0 i f ok , e l s e −1.
3 int Animation :: draw ()

4

5 // I f s p r i t e not de f i ned , don ’ t con t inue f u r t h e r .
6 if m_p_sprite is NULL then

7 return

8 end if

9

10 // Ask Sp r i t e to draw cu r r en t frame .
11 index = getIndex ()

12 Sprite draw(index , pos)

13

14 // I f slowdown count i s −1, then animation i s f r o z en .
15 if getSlowdownCount () is -1 then

16 return

17 end if

18

19 // Increment counter .
20 count = getSlowdownCount ()

21 increment count

4.12. Resource Management 175

22

23 // Advance s p r i t e index , i f a pp rop r i a t e .
24 if count >= getSlowdown () then

25

26 count = 0 // Reset counter .
27

28 increment index // Advance frame .
29

30 // I f a t l a s t frame , l oop to b e g i nn i ng .
31 if index >= p_sprite -> getFrameCount () then

32 index = 0

33 end if

34

35 // Set index f o r nex t draw () .
36 setIndex (index)

37

38 end if

39

40 // Set counter f o r nex t draw () .
41 setSlowdownCount (count)
✝ ✆

With Frame, Sprite and Animation defined, Object can be extended to support sprite
animations. The Object is provided with an Animation object (m animation) with corre-
sponding setAnimation() and getAnimation() methods, and a method to set the associ-
ated sprite (setSprite()). Up until now, game objects needed to define their own draw()

methods to display something on the window. But with a Sprite now associated with an
Object, the draw() method can now be defined to draw the animated sprite.

Listing 4.143: Object class extensions to support Sprites
✞ ☎

0 private:

1 Animation m_animation ; // Animation a s s o c i a t e d w i th Ob j ec t .
2

3 public:

4

5 // Set S p r i t e f o r t h i s Ob j ec t to animate .
6 // Return 0 i f ok , e l s e −1.
7 int setSprite (std:: string sprite_label);

8

9 // Set Animation f o r t h i s Ob j ec t to new one .
10 // Set bounding box to s i z e o f a s s o c i a t e d S p r i t e .
11 void setAnimation (Animation new_animation);

12

13 // Get Animation f o r t h i s Ob j ec t .
14 Animation getAnimation () const;

15

16 // Draw Obj ec t Animation .
17 // Return 0 i f ok , e l s e −1.
18 virtual int draw ();
✝ ✆

The revised Object draw() method shown in Listing 4.144 method simply calls the
Animation draw() method, passing in the Object position.

Listing 4.144: Object draw()
✞ ☎

4.12. Resource Management 176

0 // Draw Obj ec t Animation .
1 // Return 0 i f ok , e l s e −1.
2 int Object :: draw ()

3 pos = getPosition ()

4 return m_animation .draw (pos)
✝ ✆

Note, draw() is still defined as virtual. This allows a derived class (a game object) to
define its own draw()method, should it so choose. In such a case, the game object’s draw()
would get called. The game programmer could write code for object-specific functionality
(say, displaying a health bar above an avatar), and still call the built-in Object draw()

explicitly, via Object::draw()).
The setSprite() method is shown in Listing 4.145. The first block of code retrieves

the Sprite by name (sprite label) from the Resource Manager, checking that the Sprite
can be found. Then, the Sprite is associated with the m animation object.

Listing 4.145: Object setSprite()✞ ☎

0 // Set S p r i t e f o r t h i s Ob j ec t to animate .
1 // Return 0 i f ok , e l s e −1.
2 int Object :: setSprite (std :: string sprite_label)

3

4 p_sprite = RM.getSprite (sprite_label)

5 if p_sprite == NULL then

6 return error

7 end if

8

9 m_animation . setSprite (p_sprite)

10

11 // A l l i s w e l l .
12 return ok
✝ ✆

4.12.6 Development Checkpoint #9!

Continue Dragonfly development, getting the engine to support Sprites. Steps:

1. Create an Animation class, following Listing 4.141 and stubbing out the methods.
Make sure that it compiles, first. Then, implement the methods to get and set the
simple attributes

2. Next, implement Animation draw() as per Listing 4.142 testing it carefully.

3. Extend the Object class to support Sprites, as per Listing 4.143.

4. Write the code for the revised Object draw() in Listing 4.144 that uses Animation
to draw. Write code for a game object (inherited from Object) that associates with
a Sprite. Integrate this game object into a game and test the functionality of the
Object draw(). Debugging can be visual (what is seen on the screen), but use logfile
messages to help determine when/where there are problems.

5. Test a variety of game objects with a variety of Sprites (from the Saucer Shoot tutorial
or created by hand). Verify the Sprites can be advanced, slowed down and stopped
and are drawn without visual glitches. Test and debug thoroughly before proceeding.

