Automation Testbed for 3Com Internet
Protocol Testing Suites

Adam Fairbanks
Advisor: Professor Mark Claypool

Major Qualifying Project MQP-MLC-AT00
Computer Science Department, WPI
Terms E 2000

Abstract

3Com's Software Quality Assurance group needs automation, especidly in the Internet Protocol
teststhat are part of the SmartBits testing library. We designed and implemented a 3Com
Internet Protocol Automation Suite that was created as both an aid for Test Engineers at 3com
and as part of an Automated Testing System with other protocols automated tests. Our two-
part automation testbed solution satisfies dl of the requirements and goas for the project.

1 Introduction

The Software Qudity Assurance (SQA) Group of any networking company tests the
software released by the Development group of the company and reports bugs in the software
when they run a series of well sat-up and documented tests on the hardware the software runs
on. Thesetests are set up in bundles for specific protocols, and are designed to not only show
that the protocols works for some of the protocols capabilities, but that they perform under dl
conditions right up to the limits of what the hardware capabilities are aswell. The SQA groupis
usudly divided into teams for the different protocols that run on the specific hardware,
regardless of the networking layer they use. Then the Development group that coincides with
the group for SQA will work with them to try and resolve the bugs that occur for that protocol
or platform. An example of this would be the Open Shortest Path First (OSPF) teams from
both Development and SQA working together to resolve a bug in which the OSPF packet
coming out of the router does not advertise the right routes of its network.

A problem that arisesin SQA testing is that some of the commands and procedures
used are both tedious and monotonous, so that it takes up much of atesters day smply typing in
commands, waiting for the result, then typing in more commands and S0 on. Multitasking in
testing then becomes hard to do, as you are waiting for aresponse from an input to continue on
onetest, but it is not redly enough time to setup another test before the response comes back,
S0 the person must wait. Automating these procedures can solve multiple problems and it also
dlowsfor new avenuesin testing.

The amount of time saved can be s greet that it cuts testing from weeksto hours. A

script used at 3Com developed by Ben Douglas, an dumnus of WP, helped 3Com

Employees download the latest version of beta code from the directories they were in onto the
hardware. Normdly haf an employee' s day would be taken up if they had 20 or S0 pieces of
hardware to download the new code. The script’s main feature isthat is dynamic, and can
“look” at the individua blades usng SNMP, determine what type of hardware it was (a router,
a switch, how many ports, etc) and download the gppropriate code for them. Thistakesa
maximum of 2 hours, s0 it saves each individuad person around 4 hours (assuming it took 6
origindly). Multiplied by the number of peoplein SQA using the script at the time, which was
around 80, which comes to 320 manhours per beta code release saved. Beta code releases
happened every two weeks, and the time saved can be quite subgtantia and well worth the time
to develop the automation.

Multitasking with automeation becomes increasingly easy, as you can ether have the
scripts do multiple tasks, or set off multiple scripts. Y ou can even have scriptsthat set of f
scripts, and thisis where the opportunities for huge time saving takes place. The time saved by
automation can be used for other things such as non-automeatable tests (physica network

configurations, line switches, etc.) or to create or run other scripts.

1.1Networking

The main focus of the SQA group mentioned earlier isto test the routers and switches
and other hardware that will later be used by consumers and businesses to create and maintain
connections to the Internet. Networking, and more specificaly the Internet, has been around
snce 1969, when the Advanced Research Projects Agency Network (ARPANET) was first

formed by the U.S. government [Ner0O]. The idea was to have a decentraized network for

€electronic communication that would not only alow for remote access to computersin other
parts of the country, but could aso function the same if parts of it were destroyed, for example,
inanuclear bombing attack. Thisworked well for the government, and soon a select group of
universities were given permission to use the network aswell to exchange files for educationd
use. Eventudly thisled to more schools using it, and soon non-educationa and for- profit
agencies began to use the Internet, as protocols and formats for communication such as ftp and
the World Wide Web made communication rich and easier to use. Throughout the entire life of
the Internet, there have been companies who have created and improved upon the infrastructure
of hardware and software that is used. Therefore, having testing procedures and more
specificaly automation tools that are complimentary to thisgod of improvement of hardware

help to further the growth of the infrastructure of the Internet.

1.2 3Com Corporation

Currently networking is among the most rapidly expanding industries in the world, with
annual sales expected to surpass US$50 billion by 2001 [3¢100]. 3Com holds leading market
positions in solutions for both consumers and business applications, dl with the common benefits
of amplicity and rdiability. They indude fixed-port and stackable Ethernet switches, Ethernet
hubs, multi- services access platforms, desktop modems, LAN and modem PC Cards, desktop
and server network interface cards (NICs), and handheld organizers. This coverage of
solutions gives customers the ability to buy complete networking solutions from 3Com for any

network application.

Totd network availability iswhat 3Com strivesto produce. Providing customers with
reliable networking solutions that support mission-critica voice, video and data E-business
gpplications. 3Com provides users with secure access to those applications, regardless of their
physica location.

3Com is aleader in the industry for Ethernet, Fast Ethernet, and Gigabit Ethernet

connectivity, specifically NICs, switches, and hubs.

1.3 Approach

A very time consuming testing environment with the potentia for streamlined automation
isthe area of IP packet testing using hardware packet generators to amulate network traffic. 1P
packet testing requires complicated tests that require many hours of user manipulated functions
that are very repetitive.

Begdesthe ahility to increase the speed of testing with automation, there is aneed to
integrate these tests into the UNIX based Automated Test Smulation environment at 3Com.
Bascdly, many different types of automated tests are joined in this environment conssting of
many different types of routers and switches, and they are run over these devicesfor each
release of beta code, making it easier to find some of the more critical bugsin the releases
fagter. By using software to automate the hardware that generates traffic into the routers and
switches, ahighly controlled and specific test can be performed for various types of protocols.
Having an IP automation Testbed in this environment will be auseful toal to diversfy the testing

in the automation environment, and help with test coverage over alarger area.

2 Background

The IP protocol is very large and is complex in design, but one that is the basis for much
of Internet traffic today. An explanation into how the Internet Protocol worksis detalled in
section 2.3. However, the I P packet tests that will be automated are the Packet L oss Rate Test
and the Throughput Test, both of which are included in Netcom's Smart Applications for the
SmartBits 2000 packet generator as stand aone tests for large core networking hardware.

To understand the automation of the hardware, some concepts must first be explained.
This section will introduce networking models and hardware, as well as both software that runs

the networking hardware and the software that will automate it.

2.1 Models of Networking
Within the world of networking, there are two modd s thet generally describe the scope

of the different protocols and the hardware and software that use them.

211 TCP/IPMode

Figure 2.1: OSl and TCP/IP models

OSl Model TCP/IP (Internet Moddl)
Application Application
Presentation

Session
Transport Transport
Network Internet
DaalLink Network Interface

Physica Physicd

Source: [Tan96]

The TCPIP mode was invented to help explain how different virtud layers of
networking could be put on top of one-another in order to be useful [Tan96]. The TCP/IP
mode has there are four distinct layers, representing the mgjor groups of networking. They are
virtua because each layer hasto go down to the physical layer before it goes out to another
piece of hardware, but it will come back up to the same layer that started in order to understand
what the first piece of hardware was tranamitting. Asillustrated in Figure 2.1, the lowest level
represents the physica wire and some of the very basic protocolsthat are used at that level. On
top of that is the Internet level, upon which the protocols that drive the Internet such asIP are

located. Thislayer is where the data is transported, and where computers and hardware

communicate with each other. The transport layer aboveit is used to primarily have protocols
that manage the ones on the Internet level for such things as managing errors, qudity of service
(the ability to have connections as a a guaranteed rate), and other such tasks. Thefind levd is
the gpplication leve, where the computer uses the information from the transport layer to
communicate with its programs and present it to the user.

Thismodd, dthough beneficid in its smplicity, has limited descriptive powers for the
complex world of networking, and some protocols smply don't fit right. An example of this
would be a protocol caled Ethernet a the Network Interface level, which needs a protocol
below it to go across awire. However, since the lower two levels are joined in the TCP/IP

model, Ethernet can not have anything below it.

2.1.2 Open Systems | nter connection model

Although more complicated, the OSl mode is flexible mode for understanding the
virtud layers of networking, and where hardware, software and the protocols that make them
connect are [Tan96]. OSl stands for Open Systems Interconnection, and it is divided up into

seven virtud layers.

Figure 2.2: OSl modd with protocols

Open Systems Interconnection (OSI]) Reference Model

Upper Layers Lower Layers

lication Presentation Session Transport Network Data Link Physical
yer (7} Layer (6) Layer (5) Layer (4) Layer (3) Layer (2 Layer (1)

POPSSMTP POP/25

Transmission
Control

File Transfer

3 H

=
—
=

!

1M
J0e]

—
Source: [Wha00]

As can be seenin Figure 2.2, there are many different protocols within the seven layers.
An example that could show some of these would be if there were a TCP connection going on
between a computer and a networking hardware, which is the Transport layer. A packet would
originate from computer on layer four, but it would be split up into 1P packets (Network layer).
These packets would then be split up into Ethernet packets (Data Link layer), which would then
be split up into any number of Physical layer packet designs, and go out over the wire to the

networking hardware. The hardware would then receive these packets, and assemble them to

form Ethernet packets, which would assemble to form | P packets, which would findly form
TCP packets, which would give the hardware the packets the computer sent out on the origina
leve it was sending on. From both the hardware and computer’ s perspectives, the layers do
not redly exist, asalayer 4 packet gets from the computer to the hardware asif it’ sdirectly
going layer 4 the entire time, even though in redlity it's going dl the way down to layer 1 before

it goes out.

2.2 Routing and Switching

Sincethe IP protocol isin the Network Layer as can be seen in Figure 2.2, and the fact
that there are many different types of hardware that do functionsin both Data Link Layer and
the Network Layer, it isimportant to understand specifically what is the function of both routers

and switches.

2.2.1 Switches

A switch directs Data Link Layer traffic from different Media Access Control (MAC)
addresses to their respective destinations [Dav00]. The job of aswitch isfarly smple: it reads
the Data Link Layer packet’s destination MAC address, looks up the addressin atable it has
stored on the hardware, and then sends the packet out the port that that addressis associated

with.

10

Figure 2.3: Data Link Layer Switching

Client 1 Sends: Client 2sMAC:
Source 00:00:00:00:00:01 00:00:00:00:00:12
Destination 00:00:00:00:00:12

Switches

L] i D/ = L]

L] \
\ D
Client 1 Client 2
Switch 1 MAC table: Switch 4 MAC table
00: 00: 00: 00: 00: 03 port 1 00: 00: 00: 00: 00: 23 port 1
00: 00: 00: 00: 00: 05 port 2 00: 00: 00: 00: 00: 12 port 3

00: 00: 00: 00: 00: 12 port 5

Switch 7 MAC table:
00: 00: 00: 00: 00: 12 port 9

Source: [Dav0Q]

Figure 2.3 shows how the address tables do not necessarily tell the switch where the
end point destination of the packet will be, but rather tells it the port to send the packet out,

possibly to another switch (each table above isfor its own repective switch labeled in the

11

diagram). So following the example above, Client 1 sends out a packet with a destination
address of 00:00:00:00:00:12 to switch 1. Switch 1 seesthat that address should go out port 5
(look at MAC table for switch 1), and forwards that packet out that port. In the diagram we
see that port 5 goes on to switch 4, which determines based on its table that the packet should
be forwarded out port 3. Port 3 leads to switch 7, who forwards the packet out port 9 (again,
based onits MAC table). Thisfina forward sendsiit to the second client, the packets fina
degtination. As you can see, this system is Smple and effective, as the entire route does not need
to be known by every switch, and works very effectively in forwarding the packets to their
proper place. Typicaly, aswitchisonly concerned with addresses that are insde its own Local

Area Network (LAN).

2.2.2 Routers

A router issmilar to what aswitch would beif it involved Network Layer packet
movement, only much more complex (in fact that movement of packets is sometimes referred to
as Layer 3 switching). Therouter'sjob isto move a Network Layer packet to the destination
|P address of the packet [Say00]. Thisisnowhere near as easy as it seems however, asthe IP
packets are constrained by more than just their address. To better understand how a router

works, the Internet Protocol needs to be better understood.

2.3 ThelInternet Protocol
The early ARPANET protocols were very dow and subject to crashes, and anew

more dependable protocol was needed to remedy the Situation [Fei97]. By 1974, anew set of

protocols had been developed, and over the next 6 years, hardware that ran the networks were
converted over to run the Transmission Protocol and Internet Protocol (TCP/IP). TCP/IP has
characteristics that make it an ideal choice for networks to use, as it connects different networks
together seamlesdy, so that to the end user, it gppears as though the entire Internet is one giant
network directly connected. The TCP portion of TCP/IP is the Transmission Control Protocol,
which is on the Transmisson Layer, the layer that connects clients together in peer-to-peer,
reliable connection oriented communications. However, thisis the Layer above the one that we
will test, the Network Layer, on which IP resides. IPisthe carrier of most of the traffic on the
Internet today and is the basis for many other protocols on levels above and below it.

IP worksin many different ways but there are afew generd ideas. Unlike the Data Link
Layer, whichistypicaly concerned with MAC addresses, the Internet Protocol uses IP
addresses, which are used to make connections from one point to another, based on those
addresses. For example, if one client with an |P address of 150.1.1.19 connects to one at
200.1.1.14, dl the packets from the first client will have a source addressin the packet of
150.1.1.19 and a destination of 200.1.1.14. The reverse would then be true of the second
client. During communication, packets would go back and forth for different reasons, from
tranamitting data or reestablishing connections to managing flow as sometimes packets are going
too fast for the hardware to handle, so some get dropped and have to be resent. So the packets
contain 1P addresses in them and varying amounts of data after. But generdly speaking, the two

| P addresses are what the connection is based on, and determines where the connection is.

13

3 Approach
Now that the background information has been introduced and explained, this next
section discusses the gpproach that will be used to create the automation, and how the software

and hardware will be used.

3.1 Software

The automation isusng Tcl/Tk 8.0 asthe platform. This scripting language was chosen
both for its ease of writing and debugging but dso because it will be easy to integrate into the
ATS that 3Com hasin its current sate, asdl of the scripts there are currently in Tcl [Rou0Q].

The scripts for the automation is set up into two different parts, abackend in Tcl and a
front-end in Tk. Thefront-end isin Tk, becauseit is grgphical and has the ability to configure
which parts of the scripts will run, the different addresses for the hardware, and other
configuration information for the user to set up and run thetests. All of thisinformation is stored
in afile that the backend uses. The back-end will be written in Tdl, which is command line
oriented, and uses the text file saved by the front-end to determine how to connect, what tests
to run, and other configurationstold to it by thefile. Both of the parts of the automation are
bundled together by a shdl script that smply runs them in success on with some environment
variables set up to dlow for multiple usersto run the Testbed a once, from the same location.

The two-part approach alows for the back-end to only need the text file written by the
front-end to run. Therefore, by smply editing that file for the configuration needed, the back-

end can run stand aone without the front-end, and can then be eadlly integrated into the

14

Automated Testing System (ATS) a 3Com (which tries to use no graphica configuration, just

graight command line scripting).

3.2Hardware
The hardware used will comprise of three distinct groups of devices:
Workstations/Clients, Packet Generators, and Routers/Switches. Each group has different

connections physcdly linked by different types of media

3.3.1 Workstations
There are severd different types of computers that could be used to perform the task of
Setting off the automation, but the platform of choiceis UNIX. The specific workstation used is

a Sun Microsystems Ultra 60 running Solaris 2.6, which will dlow for ease of use with Td/Tk.

3.3.2 Packet Generators

The Packet Generators that will be used are the SmartBits 2000 Multi-User Family.

Figure 3.1 SmartBits 2000 Packet Generator

15

Source: [NetOQ]

Figure 3.1 shows the generator, which uses multiple dots in which SmartCards dide into and
lock in place. Different cards can have different media speeds: Ethernet, Fast Ethernet and
Gigabit Ethernet (10, 100 and 1000 Megabits per second respectively). The ability to switch
between different cards dlows for more flexibility when testing. A console connection or a
telnet connection controls the SmartBits Generator, with the generator able to have itsown IP
address. These features coupled with the SmartBits library, abundle of software that allows for
direct communication between the generator and a Sun Workstation in Tcl or C++ , dlow for

this hardware to be automated with rative ease.

3.3.3 Routersand Switches

The 3Com hardware that will be tested is fairly complex, as it combines both switches

and routers into one salf contained unit.

16

Figure 3.2: 3Com Switch 4007

Source: [3c2 00]

The 3Com 4007 Switch pictured in Figure 3.2 is 7 dot chassis that alows for many
different types of modulesto be connected into the dots. Each moduleis actudly arouter or
switch that is controlled by the Enterprise Management Entity (EME), a smadler module that
alowsfor ether aconsole or telnet connection [3c300]. Once connected to the EME, it then
alows you to connect to each blade and both configure them and check gatistics on the
operations the hardware is performing (such as types of packets being forwarded, rate of
peed, etc). Not only can these modules use the connections on the front of them, but when

they snap into each dot, they aso make connections through the back of the chassis, or the

17

backplane, that can dso be configured and controlled through a specid module caled afabric.

Thefabric is dso controlled by the EME, and dlows for configuration smilar to any other blade.

3.3.4 Networking Media

For the different connections that will be made, RJ45 connectors (for Ethernet
standards) on Category 5 twisted pair copper wire cablesisused. They vary in length, but dl
of them are able to tranamit in speeds over 100 Megabits per second. These are used both for
the console connection from the Sun Workgtation to the SmartBits Packet Generator but also

from the SmartBits to the Switch 4007 Network.

18

4 I ntroduction to M ethodology
Now that the generd groundwork for both the networking protocols and the hardware
and software that will be used has been completed, the generd way the tests are performed can

now be explained.

4.1 Network Setup

Next isagenerd example of how the test setup will be, including the hardware and

software.

Figure4.1: Generd Test Network Setup

SmartBits 2000
Console connection .nartBits Packet Generator
I:I Cat. 5/RM5 wires
to and from SmartBits and
Telnet connection switch 4007
Sun Workstation
(where the Td and Tk 3Com Switch 4007

will be crested and st off)

The flow of the script dynamics can be seen in Figure 4.1. The script connects to the
SmartBits Packet Generator from the Sun Workgtation, communicate it and starts the packet

flow from the SmartBits to the Switch 4007. At the same time, it communicates with the 3Com

19

Switch 4007 through a telnet connection, and monitor different information from it such as

packet loss rate (if any), speed of transmission, if dl packets are being recaived, etc.

4.2 Test Methodology
The following sections introduce how the tests will work, and what limits and boundaries

they have for both norma and abnorma behavior for the hardware being tested.

4.2.1 Throughput Test M ethodology

The Throughput test finds the fastest rate at which a device can forward packets without
dropping any. If asingle packet is dropped the test fails and the test is repeated at alower
throughput rate.

The throughput test satisfies the terminology criteria of RFC 1242 and the test
methodology specified in RFC 1944. From RFC 1242, throughput is "the maximum rate at
which none of the offered packets are dropped by the device" From RFC 1944, the
methodology to measure throughput isto " Send a specific number of packets at a specific rate
through the Device Under Test (DUT) and then count the packets that are transmitted by the
DUT."

If theinitid rate is 100%, the first throughput test trid packet rate for a given packet
length is the maximum rate at for the topology and speed of the tranamitting SmartCard. If the
recelving port receives al packets from the transmitting SmartBits port, no further trids are

attempted and the maximum packet rate is recorded as the throughput.

20

If thefird trid fails (if even asingle packet islogt), the second tria packet rate dropsto
20% lower than the rate a which it falled. The third and each subsequent trail use abinary
search to determine arate that is hdfway between the faled rate and the last successful rate.
The does not finish until the packet loss percent is less than or equd to the resolution vaue in the
test setup.

Reaults of the test are logged to afile showing the maximum data rate by port and the

packet datarate. The percentage of the maximum possible packet datarate is also recorded.

4.2.2 Packet L oss Rate Test M ethodology

This test measures the percentage of packets lost by the Device Under Test (DUT) that
should have been forwarded.

The Packet Loss Rate test satisfies the terminology criteria of RFC 1242 and the test
methodology specified in RFC 1944. From RFC 1242, Packet Loss Rate is the “ Percentage of
packets that should have been forwarded by a network device under steady State (constant)
load that were not forwarded due to alack of resources.” Thetest dlows for varying packet
szesfrom 64 bytes to 1518 bytes. From RFC 1944, the methodology to measure packet 10ss
isto "Send a specific number of packets at a specific rate through the DUT to be tested and
count the packets that are transmitted by the DUT.

Packets are vaidated by counting only packets generated by the sending port, not any
packets sent by the switch. Keep-dive and routing update packets are not counted as received

packets.

21

The Packet Loss Rate test operates by a packet burst being sent out a the maximum
possible rate for a user-specified period of time. After al packets are sent, the receiving port is
gueried to determine how many packets were received. The number of packets not received is
determined and the percentage of lossis caculated. The resultsfor thistest are recorded in the

same manner as the ones for the Throughput test.

5 Execution and Results
The following sections discuss how the task of automation was accomplished, aswell as

the results and any future enhancements that could be made to the system.

5.1 Interface
The Interface for the automation was made using Tcl and Tk as previoudy mentioned,
with three main scripts run in successon from ashell script. They are explained herein the

order that they are run.

5.1.1 Automation Setup Window

The first script runisasetup screenin Tk as pictured in Figure 5.1.

Figure 5.1 Automation Setup Screenshot

23

Automated IP Testbed 1.0

Automated IP Testbed 1.0

SmertBits [P address: |1
BmartCard [P address
SmarCard [P addre

Device Under Test IP

Asyou can see, the screen is composed of severd different parts. First, the title and 3Com
logo, to differentiate it from other setup screensthat may be used for other programs running on
auser'sworkstation. Next are the text boxes with information such as I P addresses, MAC
addresses and other necessary data. The vaues are loaded from the text files named setup.cfg
and DUT _setup.cfg, where the values will be stored again when the user presses the continue
button. If the files do not exig, the textboxes default to “ ??7??” and when the user presses
continue, the files are crested with the new information entered. The buttons below the text
boxes are the two tests that will be run with information provided from the boxes, and can be
selected or desdlected depending upon which ones are desired to be performed (they are

defaulted to be run). The status of what testswill be run are dso saved in thefiles.

24

Figure 5.2 Example of scroll-over for test buttons

Automated IP Testhed 1.0

Automated IP Testbed 1.0

SmeartBits [P address air of ports to be nsed on Smerthits

SrmnartCard IP address 1 (ex: 10, : rnartCard MAC 1 (ex: 000000100002):
SrnertCard IP adde [iE ; rriartic ard A (22 000000Z00002): 100
Device Under Test IP addres

DUT TestIP1 (ex: 10.1.1.1):

DUT Port1 {

8 Throvghput Tests

To better hep with the understanding of what each of the tests do, scrolling over the buttons will
give an explanation of the tests that will be performed, as shown in Figure 5.2. The explanation
for the test replaces the regular greeting and generd explanation for the setup window. When
the mouse moves off of the button, the default explanation returns. There is dso the added
feature of having different color schemes randomly load each time the automation in run, as

Figure 5.3 shows an aternate scheme.

25

Figure 5.3 Example of Alternate Color Scheme

Automated IP Testhed 1.0

Automated IP Testbed 1.0

SmeartBits [P address air of ports to be nsed on Smerthits

BmartCard IP address 1 (ex: 10, i rnartCard WAC 1 (ex: 000000100002):
SrnartCard IP adde [e z st aed IA ex: 000000200002} : 100
Device Under Test IP addres

DUT TestIP1 {ex: 10.1.1.1):

DUT Port 1 (

¢ Throoghput

=

Thisis done for only four different color schemes, but bresks up the monotony of the window if

the tester has to run it multiple times in succession.

5.1.2 Setup Information Files

Aswas mentioned in the last section, two files, DUT _setup.cfg and setup.cfg are where
the information from the setup window is stored. There are two files for areason, as one has
the information pertaining to the Device Under Test (DUT_setup.cfg), while the other has the
information pertaining to the packet generator, and more specificdly SmartBits. DUT_setup.cfg

has the following parameters, arranged exactly asthey gppear in thefile

26

EME_IP="158.101.97.7" : export EME_IP

SLOT_NUMBER='6' ; export SLOT_NUMBER
DUT_IP1='10.1.1.7 ; export DUT_IP1
DUT_IP2='20.1.1.7 ; export DUT_IP2
PORT1="1 ; export PORT1
PORT2="2' ; export PORT2
IP_ADDRESS1-'10.1.1.2' ; export IP_ADDRESS1
IP_ADDRESS2="20.1.1.2' ; export IP_ADDRESS2
MAC1='00-00-00-10-00-02' ; export MAC1

MA C2="00-00-00-20-00-02' ; export MAC2

The different headings are what the script files match onto find the datait wantsin thefile (ex:
EME _IP), and the datait will take from thefile isingde the quotes

(ex: 158.101.97.7). The; export followed by the variable isto allow the datato be used by the
shell script setting off the Tk and Tl scripts. This data can then be used in the headings of the
windows or in the didog of the script before it begins. See Figure 5.4’ s heading; the IP address
is taken from the setup.cfg's EME_IP variable.

Thefile setup.cfg is donein the same manner as DUT_setup.cfg:

TEST CASES='01' - export TEST_CASES
SMARTBITS |P='10.10.10.10" : export SMARTBITS IP
NUM_PORTS='1,2" - export NUM_PORTS
IP_ADDRESS1='10.1.1.2 export IP_ADDRESSL
IP_ ADDRESS2="20.1.1.2 : export IP_ ADDRESS2
MA C1="00-00-00-10-00-02" : export MAC1

MA C2="'00-00-00-20-00-02" export MAC2

These variables and their corresponding data related to the setting up and running of the
SmatBits Autometion.
Again, note that these files are needed to run the automation portion of this suite thet

was created, but the setup window in not required to create them. They can be modified

27

manudly and the automation will run with the new information. However, the setup of the text

files must be created in exactly the same format.

5.1.3 Device Under Test Automation

After the user has pressed continue on the Tk window, the new datawill be written to
the files (if there is new data) and the Actud automation in Tcl will begin. Thefirg automeation
script that runs after the setup screen uses the information stored in the DUT_setup.cfg file to
configure the device for the IP test. This means not only setting up the network properly, with
| P addresses and other networking protocolsin place, but dso turning off certain routing
protocols that send out advertisement packets (to find other networks they are looking for in
hopes one will respond), such as IGMP querying, DVMRP, and Spanning Tree. Thisissothe
datistics of the test will be accurate, as when the test is performed, the amount of packets sent
and received would be affected by having other routing packets being sent out along the wires
then test in being performed on. Also, the back plane port, which connects the module to the
other modulesin the chass's, needed to be turned off, as the packets from the other routers can

come in through that port on out through the wire being used, again affecting the Satidtics.

28

Figure 5.4: Device Under Test Automation window

qui
e

Figure 5.4 showsthe DUT setup in progress. The script uses atelnet connection to log into the
chassis by using the IP address of the DUT found in DUT_setup.cfg. It then usesthefile again
to locate which module to connect to, which it does next. After that, it usestherest of the
information found in thefile to setup the DUT as mentioned above, communicating with the
Command Line Interface (CLI) of the module and using specific commandsin conjunction with
the datain the file to setup up the hardware. With that completed, the script logs out of the

device, and ends the telnet sesson.

5.1.4 Packet Generator Automation

29

Thefind script in the automation is the Packet generator automation script, which usesa
program caled PacketBuilder. Figure 5.5 shows the Automation Window with PacketBuilder
at work. This program communicates with the hardware and hasiit create the packets based on

the information provided in setup.cfg.

Figure 5.5: SmartBits Automation

Smartbits Automation for DUT at 158.101.97.7 _
Window Edit Options Help

spawn fbindcsh

P2

Starting IP Automation. .

Jegastool s/PacketBuilders O/pb.9.2.98 —ht1,2
jackbutlers Connecting. ..

Starting traffic on portis) 1,2. ..
jackbutlerz B

Thisinformation, specifically the MAC addresses and the | P addresses, are then used to put
into the packet that is sent out. For both the Throughput and Packet L oss tests each packet isa
fixed Sze. Fird, 64 byte packets are sent out for 30 seconds at 100% utilization at 100
Megabits per second. If this passes, 128 byte packets are used at the same speed for the same

amount of time. If that passes as well, 256 byte packets will be used in the same manner.

Now, for the throughput test, if fewer packets are received than are sent by the SmartBits, the
test isrepeated at a 20% lower rate. So, for example, if the 100% utilization fails for the 64
byte packets, the test is repeated at 80%. The inter-packet gap, basicdly the time between the
end of one packets transmisson and the beginning of another, must be modified for this change
in rate to take place. Generdly, the more time between packets, the lower the utilization.
Appendix 1 shows the caculations required to convert the proper times for 100 megabits per
second at 100% speed to 80% speed, and so on. For the packet sizes used in thistest, the

following numbers were found:

Sizeof packet Bandwidth Utilization I nter-packet Gap
in bytes in percentage in millsecs
64 bytes 100% .0960

80% 272
60% 565
128 bytes 100% .0960
80% 4
60% .906
256bytes 100% .096
80% .656
60% 1.589

The Packet Loss test smply sends each of the three packet sizes at 100% utilization and
messures the loss.
Both of the tests statistics for packets sent and received, aswell as agenerd pass/fall

for each packet Sze arerecorded. The result file's name is | Pthroughxxyyzz.ixt, and

31

| ppacketxxyyzz.txt where xx is the day, yy the month and zz the last two digits of the year, and

‘through’ and ‘packet’ represent the two different tests.

5.2 Evaluation

The automated Throughput and Packet Loss tests, when compared to the non
automated ones, work in exactly the same way, but at this point, on a much more limited basis.
In the non-automated tests, the packet sizes goes dl the way up from 64 to 1518 bytes, while,
because of abug in the console connection driver for the SmartBits Tdl libraries (which
PacketBuilder uses), the packets can only be a maximum of 500 bytesin the automated
environment. Thisislessthan 512 o, that iswhy only szes 64, 128 and 256 bytes were used.
Asfar asthe Throughput tests readjusting of percent utilization to figure out the exact maximum
throughput, the non-automated test is much more accurate, as there was not enough time to
implement the binary search agorithm as described in section 4.2.1. The Throughput Test asiit
currently is automated will only lower the percent utilization by 20 percent every time. Besdes

the limitations, the automated test works as it should within the parameters set forth.

32

6 Conclusions

Automation is a useful tool for network hardware testing, asit dlows for the Test Engineer to
have tedious and time consuming tests done for them, and dlows for increased productivity as
they can then do other tests while the automation is running. The 3com IP Automation Testbed
was designed to accomplish the god's of automating the Internet Protocol tests for the SmartBits
Packet Generator, and was made to help with the tedious way that the Throughput and Packet
Losstestsare used. Automation Engineers will dso benefit from a setup screen specific to their
automation environment. An added benefit would be to have a suite that could be integrated to
the test environment.

The automation test environment at this point accomplishes dl of those gods. It hasa
setup screen that dlows for configuration specific to a tester’ s environment, saving the
information to files that will be used to run the automation. In addition, the automation only
needs those files, and can be integrated into an environment that runs without setup screens (like
the ATS sysem a 3Com). Ladtly, it accurately recreates the tests (with some dight limitations),

while offering away to track the results of the test in the files the script produces.

7 FutureWork

There are severd areas that could be improved upon in the current working version of
the automated Internet Protocol Testbed.

Firdt, the Setup screen might be able to be organized better. It would be better if the
information that is stored in the two filesis separated on the screen so that the user understands
better where the information isgoing. Also, a help button could be useful to determine what
each of the different |P and MAC addresses are going to be used for specificaly in the
automation.

Second, the connection to the SmartBitsis currently a console connection because that
only way Packet Builder will dlow for. A better way to do thiswould be to write an interface
using the SmartBits Td libraries that alowed for atelnet connection. This would alow for much
more flexibility in terms of where the automation could be performed, because atelnet
connection could conceivably dlow anyone on the 3Com network to get to the SmartBitsif
properly connected.

Third, the automation in Tcl could aso be accompanied by a status window in Tk that
could tell the user generdly what is going on. The current system automeates and only showsthe
user what is actudly going on, which isvery fast and very hard to follow. By giving auser a
window to follow, it will dlow for assurance to the user that everything is connecting right and

working asit should.

Findly, fixing the current limitations in the automated script, incduding the SmartBits
driver (which only alows a maximum packet Sze of 500 bytes), and the binary search dgorithm
for the better gpproximation of the maximum throughput, would make the Testbed the exact

samein testing cgpability as the stand-alone non-automated tests.

8 Examination of the User Interface

Software Quality Assurance Engineers are familiar with the nature of their environments, and the
design of the setup window in Tk is designed specifically for that group of people. However, it isinteresting
to step back from this perspective for amoment, and examine how other groups of people would perceive

thiswindow, and what modifications could be made to improve the usability of the environment for them.

8.1 Current Configuration

Figure 1 shows an example of the current setup window.

Automated IP Testbed 1.0

Automated IP Testbed 1.0

SmarBits [P add
BmertCard IP address
SmartCard IP addre
nrnber of DUT] ex

UT TestIP 2 1.1.1)

Figure 1: Example of current setup window

Thewindow is comprised of five major sections as shown in the Figure. Thefirst section isthetitle and
version of the test and logo of the company, which is standard for the companies’ in-house programs. Next,
the different variables and their explanations follow, with the ability for the user to modify them to suit their
environments needs. The third part of the screen isthe buttons for the particular tests, where clicking them

togglesthe tests to be performed or skipped. Fourth is the explanation area, where there is a default

explanation describing the overall test and other areas of the window, aswell as a description of each test
when the mouse scrolls over the button for that test. Figure 2 shows both the highlighted button that the

mouse is over, aswell asthe explanation of the test for that button in the space of the default explanation.

Automated IP Testhed 1.0

Automated IP Testbed 1.0

SmartBits [P add:
SrmartCard IP address 1
SrnartCard IP

Drevice Under

DUT TestIP1

Figure 2: Example of scroll-over buttons and explanation

Thefinal part of the window isthe Continue and Exit buttons, leading you out of the window depending
upon which button you wish to press.

This current setup is a compromise between experienced users of UNIX and the protocol being
tested and those who do not know much about either. The advanced users can deselect certain tests they
don’t want to do, while inexperienced users can scroll over the buttons to view the explanations for the tests
they represent. For the information boxes above the buttons, examples are given for inexperienced users to
follow and emulate, but there is still no place where it explains how each variable will be used in the

automation.

37

8.2 Enhancements of featuresfor inexperienced users

To change thiswindow so it would be more accessible to inexperienced users of the protocol, there
should be a help button on the lower left-hand corner of the screen that will lead to explanations of the
different variablesin the test, and how each of the will be used. Figure 3 shows an example of the Help

button, as represented by alarge Question Mark in a box.

Aulorndled IP Testbaed 1.0

Automated IP Testbed 1.0

AnanBis TP el Traey
A adiand 1= acilhe

R

Lanl = e

Figure 4: Example of help button

This button would pop up another window, which would go through each of the different text boxes,
explaining what each piece of information would be usedfor. So, for example the “ SmartBits |P Address”
would be described by “ The SmartBits |P Addressisthe | P address of the SmartBits Packet Generator. This
will be used to connect to that hardware device so that commands can be given to it to execute functions for
the automation.” Thiswindow would appear from the right hand side of the setup window, as pictured in

Figureb.

i will
atian. [t

n:.r "|r'f-u"|l'_ d
rizh - [[ng the

[II_I-I'II_i-I_II._I-'I -0+

i that ca

Figure 5: Example of the pop-up help scroll window

The user simply needs to click on the help button they had pressed before to close this window. To clarify
what groups the information on the screen belonged to, it would help to split them up. Since the SmartBits
information and the DUT information are already grouped together on the screen anyway, it would be easy

to pull them further apart. Figure 6 shows how thiswould look.

39

Aulorndled IP Testbed 1.0

Automated IP Testbed 1.0

Smart ia
FoanBis TR« Trae

A anCanl [= ahihe

detarlr
b=

Figure 6: Example of separation of variables

These changes have now made the window much easier for people who do not know much about
the protocol to use it successfully. The variables are separated intotwo distinct groups, thereisahelp
section for the explanation of each of the variables and what they will be used for, and the test buttons
aready had ascroll-over feature to tell what the each of the tests they represented would do. Most
important of all, the window is organized in such away that each of the different parts are clearly defined, so

the user will not feel overwhelmed by complexity.

8.4 Enhancements of featuresfor experienced users

The experienced user is one that will understand the nature of the protocols, as well as the nature
of the window itself (from a UNIX functionality standpoint). Therefore, complexity isnot an issue, and there
can be more movement and placement of objectsin the window. One of the first things that many
experienced users would probably likeis a pull down menu for each of the variables, giving the entered data
for the past couple of times used (fiveisagood). so if they were running two test configurations over and
over, they would not have to type all the variablesin differently every time, they would simply select the

variables from thelist. Figure 7 shows how this would appear.

Aulorndled IP Testbaed 1.0

Automated IP Testbed 1.0

.:ill i‘lllleilE'i TP i'l] .Ir.‘."-E'i
.:ill :1|I'f::1r|] r: 'II.IIIL‘

Fnanianl = acihe

Fgure 7: Example of pull down menus

Thiswill add some confusion to the screen that inexperienced users would find unnerving, but users familiar
with the operating system would find no difficulty in this option, and would probably prefer this for ease of
use when doing multiple configurations back to back. Experienced users would also like to have the option
of selecting where the resultsfilewill go, aswell asthe option of being e-mailed when the tests are
completed. These two features could be added at the bottom right hand side of the screen, as shown in

Figure 8.

a4

Aulorndled IP Testbaed 1.0

Automated IP Testbed 1.0

.:ill i‘lllleilE'i TP i'l] .Ir.‘."-E'i
.:ill :1|I'f::1r|] r: 'II.IIIL‘

Fnanfiand 1= adiless

vl oo ;s

Figure 8: Example of added usahility for storage and emall of results

Thisway, the experienced user gets more control out of the window, and can tailor the way the results are
used and stored.
From these two improvements, the experienced user will be much morein control of the elements of

the setup window, specifically those tied to the functions of the operating system (UNIX, in this case).

8.5 Color usefor different user groups

So far, the features of the window have been the focus of the modifications for both groups, but
the color and style of the window may also play apart in how users perceiveit’s ease of use (or lack
thereof).

For inexperienced users, the colors of blue and grey would be most suitable for awindow, as they

are the most calming and seem friendlier to look at. [someone] Thisis shown in Figure 9.

V)

Automated IP Testhed 1.0

Automated IP Testbed 1.0

SmartBits [P add:

o ard IP

Device Under Teat IP addres
DUT TestIP1 (e

DUT Port 1 (ex

Figure 9: Color scheme for inexperienced users

Thisisnot to say that this would not be a good color choice for experienced users as well, but perhaps a
color scheme that is more defined in how the information stands out would be better suited, such asthe
current color scheme of black background with yellow text. Many other facets of the presentation should be
examined aswell, such asfont size, the font itself, and most importantly placement of information.

Creating windows catered to a specific group is a combination of many different factors, some of
which may seem trivial, but can make a difference just the same. For inexperience users, the color, font size
and placement of help around the different information (which should not be too cluttered) on the screen,
will make it amuch more pleasant window for them to use. The experienced users will be less concerned with
the presentation, as long as the can find what they are looking for with out too much effort, and are more

concerned with the options and availability of information for them to control.

Glossary
Automation — the process of cregting a system of software that will do tasks with little to no

input from the user that would otherwise have involved manipulation by the user to have it work.

Ethernet protocol — Thisisthe Layer 2 protocol that uses MAC addresses, and is usudly used

in conjunction with the TCP/IP protocol for the Internet.

Fast Ethernet speed: thisisthe speed that is defined as up to 100 megabits of data per second.
It derives its name from the originad Ethernet speed, which was up to 10 megabits of data per

second.

|P address — an IP addressis used for Layer 3 packets, and is setup in the following way:
WWW.XXX.YYY.Zzz, where each |letter represents a number. They are used as source and
destination addressesin the Layer 3 packet to tell the routers where to forward them, and

where they came from.

MAC address—aMAC addressis used from Layer 2 packets, and is setup in the following
way: 00-00-00-00-00-00, where any of the 0's could be hexadecima numbers (0 through F).
They are used as source and destination addressesin Layer 2 packets to tell the switches where

to forward them, and where they originated from.

OSl model — Thismode is acomplete mode for describing the different virtua Layers of

networking so that any protocol can be adequately described.

Packet Generator- Thisisapiece of hardware that creates packets based on information
entered by the user. It isusudly used to test arouter or switches capacities in different areas like

bandwidth, speed and transmission qudity (if it looses or drops packets).

Router- Thisisa piece of hardware that primarily concernsitself with Layer 3, specificdly 1P

addresses, and forwards Layer 3 Packets based on the IP information.

Switch Thisisa piece of hardware that only concernsitsaf with Layer 2, specificdly MAC

addresses, and forwards Layer 2 Packets based on the MAC addresses.

TCP/IPmodd — thisisamodd that describes different virtua layers of networking. Although it
describes TCP/IP and some other models well, it does not fit al protocols asidedly aswould

be preferred. This modd was used as a stepping stone to the OSI mode.

TCP/IP protocol — Thisisthe protocol that uses |P packets (with IP addresses in them), and is

respongble for most of the Internet Traffic today.

Workstation — thisis a piece of hardware that dlows for control over different parts of the setup
of the network configurations, and is typicaly where most of the scripting and automation takes
place.

References

[3¢100] 3Com Corporation (3cl), http:/Mww.3com.com/ingde/overview.html, 6/24/2000.

[3c200] 3Com Corporation, (3c2), http://www.com.com/products/dsheets/400583.htmll,
7/2/2000.

[3c300] 3Com Corporation, (3c3), http://www.com.com/products/dsheets/400583a.html#4,
7/6/2000.

[Dav00] Davidson, Gary. (2000) Software Quality Assurance Engineer. Interview: 3Com
Corporation, Marlboro, Ma. Campus, 6/27/2000.

[Fei97] Feit, Sidnie. (1997) TCPIIP.

[Ner00] Nerds 2.0.1, http://www.pbs.org/opb/nerds2.0.1/, 7/5/2000.

[Net00] Netcom Systems, Inc.,
http://www.netcomsystems.com/sol utions/products/data__sht/0799 0010RevD_SMB-
2000.htm, 6/29/00.

[Rou00] Rousseau, Ken. (2000) Software Quality Assurance Principa Engineer. Interview:
3Com Corporation, Marlboro, Ma. Campus, 7/5/2000.

[RF191] Bradner, S. (1991) RFC 1242 Benchmarking Terminology for network
interconnection devices.

[RF196] Bradner, S. (1996) RFC 1944 Benchmarking Methodology for Networking
| nterconnect Devices.

[Say00] Sayaf, Ghassan. (2000) Software Quality Assurance Engineer. Interview: 3Com
Corporation, Marlboro, Ma. Campus, 6/25/2000.

[Tan96] Tanenbaum, Andrew S (1996). Computer Networks.

[Wha00] Wheatl s?.com, http://mwww.whatis.com/osifig.htm, 6/15/00.

Appendix A: Calculationsfor Conversion of Percent Utilization to I nter-packet Gap

1. Cdculatethetimeit takesfor a packet to be transmitted, including inter- packet gap and
preamble:

Given GAPyin = 12 Bytes
Preamble = 8 Bytes

Packet Time (usec) = [PacketSize(Bytes) + Preamble][8bits/Byte][Bit Time (usec)]+ GAP
[1]

2. Bit Time = 1/Speed(Bits/Sec) [2]
Therefore:

Ethernet = 1/(10 E°) Bits/Sec = 0.10 E° Sec/Bit
Fast Ethernet = 1/(100 E°) Bits/Sec = 0.01 E° Sec/Bit
Gigabit Ethernet = 1/(1000 E°) Bits/Sec = 0.001 E°® Sec/Bit

3. Next, caculate the minimum inter- packet gap for each speed:
GAPrinen = [12 Bytes|[8 Bitg/Byte][0.10 E® Sec/Bit | = 9.6 usec
GAP,insasan = [12 Bytes|[8 Bits/Byte][0.01 E°® Sec/Bit | = 0.96 usec
GAPhingig = [12 Bytes|[8 Bits/Byte][0.001 E® Sec/Bit | =.096 usec

4. To cdculate Packetg/'sec, it is smply theinverse of the packet time [Equation 1]:
Rate (Packets/Sec) = 1/(Packet Time (Sec)) [3]

5. If we condder Pecent Utilization to be the percent of the maximum packet rate (as
SmartBits does), then we are gating:

Rate(PacketySec) = (% utilization (as fraction)[1/Packet Timenin (sec)] [4]

47

6. Sincethe only control we haveto adjust the rate is the inter- packet gap, we can equate [3]
to [4] and solve for the gap as afunction of packet size:

1/[(Packet Sizet+Preamble)(8)(Bit Time)+GAP] = (% utilization)* 1/[(Packet
SizetPreamble)(8)(Bit Time)+GAP] [5]

7. Thus, we can use eqution [5] genericaly, For example:
80% utilization, 64 Byte Packet, Fast Ethernet

Gap(usec)= [[1-0.80][(64-+8)(8)(0.01)]+0.96]/0.18 = 2.640 usec

Appendix B: Source Code for Automation Testbed

setup_ip.tk

#!/usr/ 1 ocal / bi n/ expect -f
HEHH AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H R H R H R H R
HEHH AR H AR HH AR H AR HH AR H AR H AR H AR H AR H AR H AR H

#

File Nane: begin_ip.tk

Revision History: Revision Date Aut hor Remar ks
0.1 20 JUN 2000 Adam Fai r banks First
Ver si on

.2 25 JUN 2000 Adam Fai r banks made nore
i nput vari abl es

#

1.01 02 JUL 2000 Adam Fai rbanks t wo

di fferent out

put files,
set up.

cfg for
smarthits

use and
DUTset up.

cfg for
DUT setup

1.05 20 JUL 2000 Fi ni shed
aut omation for

DUT cfg.tcl and

i p_auto.tcl

Ful |y Worki ng Version
Rel ease: MQP

Description: Automated Test Menu for Internet Protocol Tests
- Packet Loss

- Throughput

- Interacts with DUT to set up environnent

- Interacts with Packet Generator (SmartBits),
creates

traffic for tests

49

HEHH AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H R H R H R H R
HEHHURHH AR HH AR H AR HH ARG H AR H AR H AR H AR H AR H RS H

#

Files in automation: the following files make up the automation suite

begin_ip.tk: what we are in now, tk setup wi ndow for the
aut omat i on
DUT _cfg.tcl: the Device Under test setup scipt (automation)
ip_auto.tcl: the Packet Cenerator automations script
setup.cfg where the variables formthis wi ndow are stored
for the ip_auto.tcl
DUT_setup.cfg where the variables fromthis w ndow are
stored in for DUT _cfg.tcl
641 Pf.txt: the 64 byte packet(w thout source and
destinati on MAC preanbl e)
1281 Pf.txt: the 128 byte packet (without the source and
destinati on MACs)
2561 Pf . t xt: etc......
results.txt: where the results of the automati on go
#
HEHH AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H R H R H R H R
HEHH AR H AR HH AR H AR HH AR H AR H AR H AR H AR H AR H AR H

source /sqal/test/scripts/co_op_files/conmon_lib/common.lib

HEHH AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H R H R H R H R
HEHHURHH AR HH AR H AR HH ARG H ARG H AR H AR H AR H AR H AR H

#

#setup vari abl es

set DUT_setup _file "DUT_setup.cfg"
set setup_file "set up. cfg"”

set test_var " TEST_CASES"

set title "Automated | P Test bed"

set nunports NUM_PORTS
set smart _ip SMARTBI TS_I P
set sbh_ipl | P_ADDRESS1
set sb_nmmcl MAC1

set sh_ip2 | P_ADDRESS2
set sb_mac2 MAC2

set eme_ip_var EME I P

set sl ot_num SLOT_NUMBER
set DUT_ipl DUT_I P1

set DUT_ip2 DUT_I P2

set Portl PORT1

set Port2 PORT2

set notes_dir
/sqaltest/scripts/co_op_files/afairban/multi_firewall/Rel ease_Notes

gl obal 3CL_DEBUG
set 3CL_DEBUG 1

3CL_get Rel Notes $notes_dir

e e R R G R e e e T
Setup the window with the colors, and the correct title

proc 3CL_format Wndows {title args} {
gl obal bg_col or;
gl obal fg_color;
gl obal sel ect_col or
gl obal entry_bg_col or
gl obal act_bg_col ors;
gl obal highlite_colors;
gl obal font;

if {![Ilength $args]} {
set wi ndow .
set sub_win .
set border 0
} elseif {[Ilength $args] == 1} {
set wi ndow [lindex $args 0]
set sub_win "$w ndowm ."
set border O
} else {
set wi ndow [lindex $args 0]
set sub_win "$w ndowm ."
set border [lindex $args 1]
}
set title_font "-Adobe-Times-Medi um R-Normal --*-320-*-*-*_*_x_x*"
set directory "/sqga/test/scripts/co_op_files/bdouglas/run_files"
if {![info exists bg color]} {
readCol ors;
}
wntitle $wi ndow "$title"
$wi ndow configure -bg \#$bg col or (0);

if {$border} {
frame $sub_win_top -bg \#$bg_color(0) -borderwidth 5 -reli ef
groove;
} else {
frame $sub_wi n_top -bg \#$bg_col or (0) -borderwi dth O;
}
pack $sub win\ _top -in $w ndow -side top
| abel $sub_win\ _top.l -font $title font -bg \#$bg color(0) -fg
\#$fg color(0) -text "$title" -width 30 -height 1
pack $sub_win\ _top.l -padx 0 -pady O -anchor center -in
$sub_win\ _top -fill x -side left

i mmge create photo 3com-file "$directory\/3coml|ogo.gif"

| abel $sub_wi n\ _top.3com -borderwi dth 0 -bg \#$%bg color(0) -width
200 -height 99 -image 3com -bd 0O

pack $sub_wi n_top.3com -padx 0 -pady 0 -anchor nw -side left -in
$sub_wi n\ _top

51

}

3CL_format Wndows "$title $v_nunt
3CL_get Next Col or
wm geonetry . +90+5

HEHH AR H AR H AR H AR H AR TR TR TR TR TR R R TR TR R R
every tinme button is clicked or unclicked, status of tests is shown in
wi ndow for debuggi ng use
set widget ".bottomright"
bind . <Button-1> {+
set wi dget %WV
U onCick
}
bind . <Key> {+
set wi dget %W
U ondClick
}

HEHH BB H AR H AR H AR H AR H AR H AR H RS H RS H R H R H R H R R TR R
#titles, variables and explanations for buttons

set def _explain "Wel come to the Automated Testbed for the IP
Throughput and Packet Loss Tests. By default,\n all tests will be
performed. To disable a test, please unclick the button that you w sh
not\n to test. Addtionally, scrolling over each button will give a
description of\n its test functions."

set test_strings ""
set test_vars ""
set test_explains ""

| append test_strings "Throughput Tests"

| append test _vars "TEST_1"

| append test_explains "The Throughput test tests the fastest rate at
whi ch a device can forward frames without\nerror. If a single frane is
dropped the test fails and the test is repeated at a | ower throughput
rate.”

| append test _strings "Packet Loss Rate Tests"

| append test _vars "TEST_2"

| append test_explains "This test measures the percentage of franes | ost
by the Device Under Test that shoul d\nhave been forwarded."

#***

R R I R R R I R b O O SR S S R

Procedures

52

#***

R R I R R I b R b O O SR I S R R

#every mouse click, status of tests for debug
proc U onClick {} {

gl obal test_vars
gl obal numtests

for {set i 0} {$i < $numtests} {incr i} {
set variable [lindex $test_vars $i]
gl obal $vari abl e
puts "S$variable == [set $variable]"

}

proc Init {} {

gl obal test_vars
gl obal numtests

for {set i 0} {$i < $numtests} {incr i} {
set variable [lindex $test_vars $i]
gl obal $vari abl e
set $variable 1
}
}
HAH#HHHHHH
#this is where the variables are retrieved from DUT_set up.cfg and

setup.cfg are put into
#t he textboxes

set curr_explain $def_explain
if {![file exists $setup_file]} {

exec touch $setup_file
exec chnod 777 $setup_file

} else {

set env_file [open $setup_file r]
set max_var O
while {[gets $env_file line] !'= -1} {
if [string match "\[A-Z]*" $line] {
set var_($max_var) $line
i ncr max_var
}
}
for {set i 0} {$i < $nmax_var} {incr i} {
set variable($i) [lindex [split $var_($i) =] 0]

53

set definition($i) [lindex [split $var_($i) '] 1]
set $variable($i) $definition($i)
}

cl ose $env_file

if {[file exists $setup_file]} {
set $smart _ip [set $smart _ip]

set $nunports [set $nunport s]
set $sb_ipl [set $sb_ipl]
set $sb_ip2 [set $sb_ip2]
set $sb _nmacl [set $sb_macl]
set $sb _nmac2 [set $sb_mac2]

} else {

}
if {![file exists $DUT_setup_file]} {

exec touch $DUT_setup_file
exec chnod 777 $DUT_setup_file

} else {

set env_file [open $DUT setup file r]
set max_var O
while {[gets $env file line] = -1} {
if [string match "\[A-Z]*" $line] {
set var_($max_var) $line
i ncr max_var
}
}
for {set i 0} {$i < $nmax_var} {incr i} {
set variable($i) [lindex [split $var_($i) =] 0]
set definition($i) [lindex [split $var_($i) '] 1]
set $variable($i) $definition($i)
}

cl ose $env_file

if {[file exists $DUT_setup_file]} {
set $DUT ipl [set $DUT i p1l]
set $DUT ip2 [set $DUT i p2]
set $enme_ip _var [set $ene_ip_var]
set $slot_num [set $slot_nuni
set $Portl [set $Port1l]
set $Port2 [set $Port 2]

} else {

set $DUT_ipl "?2??2?"
set $DUT_ip2 "?2??2?"
set $ene_i p_var "??2?2?2?"
set $slot_num "?2?2?2?2?"

}

set numtests [Ilength $test_strings]

#this is where the | abel s and textboxes and buttons are packed into the
tk wi ndow for display

frame .top3 -bg \#$bg_col or (0)

pack .top3 -side top -anchor w

| abel .top3.telnetl -bg \#3%bg color(0) -font $font -fg \#$fg _color(0) -
text "SmartBits | P address:"

entry .top3.telnet -bg \#$%entry_bg_color(0) -font $font -fg

\ #$sel ect _color(0) -textvariable $smart_ip -highlightcol or

\ #$hi ghl i t e_col or s(100)

| abel .top3.nunportsl -bg \#$bg_color(0) -font $font -fg \#$fg_col or (0)
-text "Pair of ports to be used on Smartbhits (ex:1,2 or 3,6):"

entry .top3.nunports -bg \#$entry_bg color(0) -font $font -fg

\ #$sel ect _col or(0) -textvariable $nunports -highlightcol or

\ #$hi ghl i t e_col or s(100)

pack .top3.telnetl .top3.telnet -in .top3 -padx 2 -pady 2 -side left -
anchor w

pack .top3. nunportsl .top3.nunports -in .top3 -padx 2 -pady 2 -side |eft
-anchor w

frame .top4 -bg \#$bg_col or (0)

pack .top4 -side top -anchor w

| abel .top4.ipll -bg \#$bg color(0) -font $font -fg \#$fg color(0) -text
"SmartCard | P address 1 (ex: 10.1.1.2):"

entry .top4.ipl -bg \#$entry_bg_color(0) -font $font -fg

\ #$sel ect _col or(0) -textvariable $sb_ipl -highlightcolor

\ #$hi ghl i t e_col or s(100)

| abel .top4.macll -bg \#$bg color(0) -font $font -fg \#$fg col or(0) -
text "SmartCard MAC 1 (ex: 000000100002):"

entry .top4.macl -bg \#$entry_bg color(0) -font $font -fg

\ #$sel ect _col or(0) -textvariable $sb_macl -highlightcolor

\ #$hi ghl i t e_col or s(100)

pack .top4.ipll .top4.ipl -in .top4d -padx 2 -pady 2 -side left -anchor
w

pack .top4.macll .top4.macl -in .top4 -padx 2 -pady 2 -side |left -anchor
w

frame .top5 -bg \#$bg_col or (0)

pack .top5 -side top -anchor w

| abel .top5.ip2l -bg \#$bg color(0) -font $font -fg \#$fg color(0) -text
"SmartCard | P address 2 (ex: 20.1.1.2):"

entry .top5.ip2 -bg \#$entry_bg_color(0) -font $font -fg

\ #$sel ect _col or(0) -textvariable $sb_ip2 -highlightcolor

\ #$hi ghl i t e_col or s(100)

| abel .top5.mac2l -bg \#$bg color(0) -font $font -fg \#$fg col or(0) -
text "SmartCard MAC 2 (ex: 000000200002):"

entry .top5.mac2 -bg \#$entry_bg color(0) -font $font -fg

\ #$sel ect _col or(0) -textvariable $sb_mac2 -highlightcolor

\ #$hi ghl i t e_col ors(100)

pack .top5.ip2l .top5.ip2 -in .top5 -padx 2 -pady 2 -side left -anchor
w

pack .top5.mac2l .top5.nmac2 -in .top5 -padx 2 -pady 2 -side |left -anchor
w

frame .top2 -bg \#$bg_col or (0)

pack .top2 -side top -anchor w

| abel .top2.telnetl -bg \#3%bg color(0) -font $font -fg \#$fg _color(0) -
text "Device Under Test |P address:"

entry .top2.telnet -bg \#$%entry_bg_color(0) -font $font -fg

\ #$sel ect _col or(0) -textvariable $eme_i p_var -highlightcolor

\ #$hi ghl i t e_col or s(100)

| abel .top2.slotnum -bg \#$bg_col or(0) -font $font -fg \#$fg_color(0) -
text " Slot nunber of DUT(ex: 1-7):"

entry .top2.slotnum-bg \#$entry_bg _color(0) -font $font -fg

\ #$sel ect _col or(0) -textvariable $slot_num - hi ghlightcol or

\ #$hi ghl i t e_col or s(100)

pack .top2.telnetl .top2.telnet -in .top2 -padx 2 -pady 2 -side left -
anchor w

pack .top2.slotnum .top2.slotnum-in .top2 -padx 2 -pady 2 -side left
-anchor w

frame .top6 -bg \#$bg_col or (0)

pack .top6 -side top -anchor w

| abel .top6.ipll -bg \#$bg color(0) -font $font -fg \#$fg color(0) -text
"DUT Test IP 1 (ex: 10.1.1.1):"

entry .top6.ipl -bg \#$entry_bg_color(0) -font $font -fg

\ #$sel ect _col or(0) -textvariable $DUT_i pl -highlightcolor

\ #$hi ghl i t e_col or s(100)

| abel .top6.ip2l -bg \#$bg color(0) -font $font -fg \#$fg color(0) -text
"DUT Test IP 2 (ex:20.1.1.1):"

entry .top6.ip2 -bg \#$entry_bg_color(0) -font $font -fg

\ #$sel ect _col or(0) -textvariable $DUT_i p2 -highlightcol or

\ #$hi ghl i t e_col or s(100)

pack .top6.ipll .top6.ipl -in .top6 -padx 2 -pady 2 -side left -anchor
w

pack .top6.ip2l .top6.ip2 -in .top6 -padx 2 -pady 2 -side left -anchor w

frame .top7 -bg \#$bg_col or (0)

pack .top7 -side top -anchor w

| abel .top7.portll -bg \#3bg color(0) -font $font -fg \#$fg_color(0) -
text "DUT Port 1 (ex: 1):"

entry .top7.portl -bg \#$entry_bg color(0) -font $font -fg

\ #$sel ect _col or(0) -textvariable $Portl -highlightcolor

\ #$hi ghl i t e_col or s(100)

| abel .top7.port2l -bg \#3bg color(0) -font $font -fg \#$fg_color(0) -
text "DUT Port 2 (ex: 2):"

entry .top7.port2 -bg \#$entry_bg color(0) -font $font -fg

\ #$sel ect _col or(0) -textvariable $Port2 -highlightcol or

\ #$hi ghl i t e_col ors(100)

pack .top7.portll .top7.portl -in .top7 -padx 2 -pady 2 -side left -
anchor w

pack .top7.port2l .top7.port2 -in .top7 -padx 2 -pady 2 -side left -
anchor w

frame .md -bg \#$bg_col or (0)
pack .md -side top -anchor nw

| abel .md.explain -textvariable curr_explain -bg \#$bg color(0) -font
$font -fg \#$fg color(0) -width 90 -height 6

for {set i 0} {$i < $numtests} {incr i} {

set string [lindex $test_strings $i]
set var [lindex $test_vars $i]

3CL_get Next Col or
checkbutton .md.[string tolower $var] -text $string -variable $var
-bg \#$bg_col or(0) \
-highlightcol or \#$highlite_colors(100) -font $font -fg
\#$fg_color(0) -activebackground \#$act bg col ors(100)

bind .md.[string tol ower $var] <Enter> {
set var [lindex [split W .] 2]
set variable_index [|search -exact $test_vars [string toupper
$var]]
set curr_explain [lindex $test_explains $vari abl e_i ndex]

}

bind .md.[string tol ower $var] <Leave> {
set curr_explain $def_explain

}

pack .md.[string tolower $var] -in .md -side top -padx 2 -pady 2 -
anchor nw

}
pack .md.explain -in .nmd -side top -padx 2 -pady 3
I nit

frame .footer -bg \#$bg col or(0)
pack .footer -side top -anchor nw

3CL_get Next Col or
HEHH BRI HH

57

##this is where the new infornmation entered by the is stored back in the
two setup files to be
used by the scripts

button .footer.continue -text "Continue" -bg \#$bg color(0) -
hi ghl i ght col or \#$highlite col ors(100) -font $font -fg \#$fg color(0) \
-activebackground \#$act _bg_col ors(100) -command {
if [file exists $setup_file] {
exec rm $setup_file
}
exec touch $setup_file
exec chnod 777 $setup_file

set tenp_file [open $setup_file w

set tests_to_run ""
for {set i 0} {$i < $numtests} {incr i} {
if [set [lindex $test_vars $i]] {
| append tests to run $

}
}
puts $tenp_file "[set test_var]="[set tests_to_run]'\t\t;export
[set test_var]"
puts $tenmp file "$smart _ip=\'[set $smart _ip]\'\t\t\t; export
$smart _i p"
puts $tenmp file "$nunports=\'[set $nunports]\'\t\t\t; export
$nunports"
puts $tenmp file "$sb_ipl=\'[set $sb_ipl]\'\t\t\t; export
$sb_i pl”
puts $tenp_file "$sb_ip2=\'[set $sb_ip2]\'\t\t\t; export $sb_ip2"
puts $tenmp file "$sb_macl=\'[set $sb_macl]\'\t\t\t; export
$sb_macl"
puts $tenmp file "$sb_mac2=\'[set $sb_mac2]\'\t\t\t; export
$sb_mac2"
close $tenp_file
if [file exists $DUT_setup_file] {
exec rm $DUT_setup_file
}
exec touch $DUT_setup_file
exec chnod 777 $DUT_setup_file
set tenp_file2 [open $DUT_setup_file w
puts $tenmp file2 "$enme_ip var=\'[set $eme_ip_var]\'\t\t\t; export
$eme_i p_var"
puts $tenmp file2 "$slot_nune\'[set $slot _numi\'\t\t\t; export
$sl ot _nunt'
puts $tenp file2 "$DUT ipl=\'[set $DUT ipl]\'\t\t\t; export
$DUT i p1"
puts $tenp file2 "$DUT ip2=\'[set $DUT ip2]\'\t\t\t; export
$DUT i p2"
puts $tenp_file2 "$Portl1=\"'[set $Port1]\'\t\t\t; export $Portl"
puts $tenp_file2 "$Port2=\"[set $Port2]\'\t\t\t; export $Port2"

puts $tenmp file2 "$sb ipl=\'[set $sb_ipl]\'\t\t\t; export
$sb_i pl1"

puts $tenp_file2 "$sb_i p2=\'[set $sb_ip2]\'\t\t\t; export $sb_ip2"
puts $tenp file2 "$sb nmacl=\'[set $sb_maci]\'\t\t\t; export
$sb_macl"
puts $tenmp file2 "$sb nmac2=\'[set $sb_mac2]\'\t\t\t; export
$sb_mac2"
cl ose $tenp_file2
exit 1
destroy .

}

3CL_get Next Col or
button .footer.exit -bg \#3%bg color(0) -font $font -fg \#$fg _color(0) -
text "Exit" -highlightcolor \#$highlite_col ors(100) \
-activebackground \#$act _bg_col ors(100) -command {
exit O
destroy .

}
pack .footer.continue .footer.exit -in .footer -padx 2 -pady .5 -side
| eft
pack .footer -side top -anchor sw

focus .footer.continue

DUT _cfg.tcl

#!/sqal usr/ | ocal / bi n/ expect/ --

#envi ronnent vari abl es

gl obal env

spawn $env(SHELL)

set setup_file "DUT_set up. cfg"

#variables to be used to store information fromthe DUT_setup.cfg file
set sl ot_num SLOT_NUM

set eme_ip_var EME I P

set sl ot_num SLOT_NUMBER
set dut _ipl DUT_I P1

set dut _ip2 DUT_I P2

set portl PORT1

set port2 PORT2

set ip_addressl | P_ADDRESS1
set ip_address?2 | P_ADDRESS2
set macl MAC1

set mac2 MAC2

HEHHURHH AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H R H R H R
HitH#H#

#it#

start to get information fromfile either stored in DUT_setup.cfg

#it#

59

HEHH AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H R H R H R H R
HitH#H#
if {![file exists $setup_file]} {

exec touch $setup_file
exec chnod 777 $setup_file

} else {

set env _file [open $setup file r]
set max_var O
while {[gets $env file line] = -1} {
if [string match "\[A-Z]*" $line] {
set var_($max_var) $line
i ncr max_var
}
}
for {set i 0} {$i < $nmax_var} {incr i} {
set variable($i) [lindex [split $var_($i) =] 0]
set definition($i) [lindex [split $var_($i) '] 1]
set $variable($i) $definition($i)
}
cl ose $env file

}

if {[file exists $setup_file]} {
set $enme_ip _var [set $ene_ip_var]
set $slot_num [set $slot_nuni
set dut _ipl [set $dut _ipil]
set dut _ip2 [set $dut_ip2]
set portl [set $portil]
set port2 [set $port 2]
set nmacl [set $nmcl]
set nac2 [set $nmc2]
set ip_addressl [set $ip_addressl]
set ip_address2 [set $ip_address?2]

} else { puts "setup file does not exist!!!!"

}

puts "Starting |IP Automation..."

#check to see if DUT responds, login to DUT and connect to appropriate
bl ade

send "ping [set $ene_ip_var]\r"

expect " [set $eme_ip_var] is alive"

send "telnet [set $eme_ip_var]\r"

expect "Login:"

send " CB9000DEBUG r"

expect "Password:"

send "\r"

expect ">"

send "connect [set $slot_nuni.I1\r"

#setup vlian for ip interface one
expect ":"

send "bri vlan def 2\r"
expect "(1-13Jall|?):"
send "$port1\r"

expect "):"

send "ip\r"

expect "):"

send "q\r"

expect "(n,y)"

send "n\r"

expect "(n,y)"

send "n\r"

expect "Name {?}"

send "ip_vlani\r"

#setup vlian for ip interface two
expect ":"

send "bri vlan def 3\r"
expect "(1-13Jall|?)"
send "$port2\r"

expect "):"

send "ip\r"

expect "):"

send "q\r"

expect "(n,y)"

send "n\r"

expect "(n,y)"

send "n\r"

expect "Name {?}"

send "ip_vlan2\r"

#setup ip interfaces on DUT for use with Smartbits packets
expect ":"

send "ip int def [set dut_ipl] 255.255.255.0 vlian 2\r"
expect ":"

send "ip int def [set dut_ip2] 255.255.255.0 vlian 3\r"

setup static arps for smartbits and DUT to comuni cate through
expect ":"

send "
expect
send "ip arp static 2 [set ip_address2] [set mac2]\r"

ip arp static 1 [set ip_addressl] [set macl]\r"

expect
send "ip routing enable\r"

#set eth portspeed at 100 full duplex (fast ethernet)
expect ":"

send "eth portnode a\r"

expect "(n,y)"

61

send "y\r"
expect ":"
send "100ful I\r"

#di sabl e autonegoti ation since port
ful

expect
send "

eth autoneg a dis\r"

#di sabl e spanning tree packets (for
expect ":"

send " bri spann stpState dis\r"

#di sable dvmrp (for statistics to not count other

expect

send " ip nulti dvnrp int

#di sabl e ignmp querying (for statistics to not count other

expect

send "ip multi ignmp query dis\r"
#di sabl e backpl ane port
expect ":"

send "eth portState 13 dis\r"

#| ogout of bl ade and DUT

expect ":"

send "dis\r"
expect ">"

send "l ogout\r"
expect "bash"
ip_auto.tcl

#!'/ sqal/ usr/ | ocal / bi n/ expect/ --

gl obal env
spawn $env(SHELL)

speed already at fast ethernet

stats to not count other

packet s)

mod a dis dis\r"

packet s)

62

100m

packet s)

set result _file "results.txt"

set setup_file "set up.cfg"”
set nunports NUM_PORTS
set sl ot_num SLOT_NUM

set eme_ip_var EME I P

set smart _ip SMARTBI TS_I P
set sl ot_num SLOT_NUMBER
set macl MAC1

set mac2 MAC2

HEHH AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H R H AR H R H R H R H R
HitH#H#

#it#

start to get information fromfile either stored by begin_ip.tk or
manua

#it#

HEHH AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H R H R H R H R
HitH#H#

if {![file exists $setup_file]} {

exec touch $setup_file
exec chnod 777 $setup_file

} else {

set env _file [open $setup file r]
set max_var O
while {[gets $env file line] = -1} {
if [string match "\[A-Z]*" $line] {
set var_($max_var) $line
i ncr max_var
}
}
for {set i 0} {$i < $nmax_var} {incr i} {
set variable($i) [lindex [split $var_($i) =] 0]
set definition($i) [lindex [split $var_($i) '] 1]
set $variable($i) $definition($i)
}

cl ose $env_file

}

if {[file exists $setup_file]} {
set $smart _ip [set $smart _ip]
set $nunports [set $nunports]
set $macl [set $macl]
set $mac2 [set $mac2]
} else { puts "setup file does not exist!!!!"

}

HEHHURHH AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H R H R H AR H
#start throughput test

HEHH AR H AR HH AR HH AR HH ARG H AR H AR H AR H AR H AR H AR H AR H
#starts at 64 bit packet size, 100% util (defaults at 96 usec)

puts "[set $numports]"”

puts "Starting |IP Automation..."

send "/sqal/tool s/ Packet Buil der2.0/pb.9.2.98 -i\r"
expect " pbCommand>"

send "pb -I\r"

expect " pbCommand>"

send "pb -htl -nl100000 -vs[set $mac2] -vs[set $macl] -f 64IPf.txt\n"
expect " pbCommand>"

send "pb -ht1\n"

expect " pbCommand>"

sl eep 10

send "pb -ht2 -scr"

if {
expect "RX Packet count for slot 2 is 100000 packets"
P A
if [file exists $results_file] {
exec rm $results_file

}

exec touch $results_file

exec chnod 777 $results_file

set tenp_file [open $results_file w

puts tenp_file "Passed 64 byte test at 100% utili zation\n"
puts tenp file "100000 packets sent from[set $macl] to [set $nac2]
with .0960 interpacket gap"
close $tenp_file

HEHH AR H AR H AR H AR H AR H AR H AR H RS H AR H R H R H R H R TR R
#if first trial fails at 100% tries again at 80 (-g272 for 272 usec
gap)
} else {
send "/sqal/tool s/ Packet Buil der2.0/pb.9.2.98 -i\r"
expect " pbCommand>"
send "pb -I\r"
expect " pbCommand>"
send "pb -htl -g272 -nl100000 -vs[set $mac2] -vs[set $nmacl] -f
641 Pf. txt\n"
expect " pbCommand>"
send "pb -ht1\n"
expect " pbCommand>"
sl eep 10
send "pb -ht2 -scr"
if {expect "RX Packet count for slot 2 is 100000 packets"} {

if [file exists $results_file] {
exec rm $results_file

}

exec touch $results_file
exec chnod 777 $results_file

set tenp_file [open $results_file w

puts tenp_file "Passed 64 byte test at 80%utilization\n"
puts tenp file "100000 packets sent from[set $macl] to [set $nac2]
with .0272 interpacket gap"
close $tenp_file

} else {
#finally tries at 60% (565 usec gap)
send "/sqal/tool s/ Packet Buil der2.0/pb.9.2.98 -i\r"
expect " pbCommand>"
send "pb -I\r"
expect " pbCommand>"
send "pb -htl -g565 -nl00000 -vs[set $mac2] -vs[set $nmacl] -f
641 Pf. txt\n"
expect " pbCommand>"
send "pb -ht1\n"
expect " pbCommand>"
sl eep 10
send "pb -ht2 -scr"
if {expect "RX Packet count for slot 2 is 100000 packets"} {

if [file exists $results_file] {
exec rm $results_file
}
exec touch $results_file
exec chnod 777 $results_file

set tenp_file [open $results_file w

puts tenp_file "Passed 64 byte test at 60%utilization\n"
puts tenp file "100000 packets sent from[set $macl] to [set $nac2]
with .565 interpacket gap"
close $tenp_file

} else { puts " You're router stinks....it can't even do 60%
utilization!!!I''\r Now exiting...... "
sleep 5
exit O
}
}
}

HEHH BB H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H R H R H AR H
#continue with 128 byte packets

HEHH AR H AR HH AR HH AR HH ARG H AR H AR H AR H AR H AR H AR H AR H
#128 byte packet size, 100% util (defaults at 96 usec)
puts "[set $numports]"”

puts "Starting |IP Automation..."

send "/sqal/tool s/ Packet Bui |l der2.0/pb.9.2.98 -i\r"
expect " pbCommand>"

send "pb -I\r"

expect " pbCommand>"

send "pb -htl -nl100000 -vs[set $mac2] -vs[set $macl] -f 1281 Pf.txt\n"
expect " pbCommand>"

send "pb -ht1\n"

expect " pbCommand>"

sl eep 10

send "pb -ht2 -scr"

if {
expect "RX Packet count for slot 2 is 100000 packets"
P A

exec touch $results_file
exec chnod 777 $results_file

set tenp_file [open $results_file a]

puts tenp_file "Passed 128 byte test at 100% utilization\n"
puts tenp file "100000 packets sent from[set $macl] to [set $nac2]
with .0960 interpacket gap"
close $tenp_file

HEHH AR H AR H AR H AR H AR H AR H AR H R H R H R H R H R H R TR R
#if first trial fails at 100% tries again at 80 (-g400 for 400 usec
gap)
} else {
send "/sqal/tool s/ Packet Buil der2.0/pb.9.2.98 -i\r"
expect " pbCommand>"
send "pb -I\r"
expect " pbCommand>"
send "pb -htl -g400 -nl100000 -vs[set $mac2] -vs[set $nmacl] -f
1281 Pf.txt\ n"
expect " pbCommand>"
send "pb -ht1\n"
expect " pbCommand>"
sl eep 10
send "pb -ht2 -scr"
if {expect "RX Packet count for slot 2 is 100000 packets"} {

exec touch $results_file
exec chnod 777 $results_file

set tenp_file [open $results_file a]

puts tenp_file "Passed 128 byte test at 80%utilization\n"
puts tenp file "100000 packets sent from[set $macl] to [set $nac2]
with .4 interpacket gap”
close $tenp_file

} else {

#finally tries at 60% (906 usec gap)

send "/sqal/tool s/ Packet Buil der2.0/pb.9.2.98 -i\r"
expect " pbCommand>"

send "pb -I\r"

expect " pbCommand>"
send "pb -htl -g906 -nl00000 -vs[set $mac2] -vs[set $nmacl] -f
1281 Pf.txt\ n"
expect " pbCommand>"
send "pb -ht1\n"
expect " pbCommand>"
sl eep 10
send "pb -ht2 -scr"
if {expect "RX Packet count for slot 2 is 100000 packets"} {
exec touch $results_file
exec chnod 777 $results_file

set tenp_file [open $results_file a]

puts tenp_file "Passed 128 byte test at 60% utilization\n"
puts tenp file "100000 packets sent from[set $macl] to [set $nac2]
with .906 interpacket gap"
close $tenp_file

You're router stinks....it can't even do 60%

} else { puts
utilization!!!I''\rNow exiting.....
sleep 5

exit O

}

}

}

HEHH AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H R H AR H R H R H AR H
#continue with 256 byte packets

HAHHHH B HHAH BB HHHH B R HAH R HHH B R R R R
#256 byte packet size, 100% util (defaults at 96 usec)
puts "[set $nunmports]"

puts "Starting |IP Automation..."

send "/sqal/tool s/ Packet Buil der2.0/pb.9.2.98 -i\r"
expect " pbCommand>"

send "pb -I\r"

expect " pbCommand>"

send "pb -htl -nl100000 -vs[set $mac2] -vs[set $macl] -f 2561 Pf.txt\n"
expect " pbCommand>"

send "pb -ht1\n"

expect " pbCommand>"

sl eep 10

send "pb -ht2 -scr"

if {
expect "RX Packet count for slot 2 is 100000 packets"
P A

exec touch $results_file
exec chnod 777 $results_file

67

set tenp_file [open $results_file a]

puts tenp_file "Passed 256 byte test at 100%utilization\n"
puts tenp file "100000 packets sent from[set $macl] to [set $nac2]
with .096 interpacket gap"
close $tenp_file

HEHH AR H AR H AR H AR H AR H AR H AR H R H RS H R H R H R H R TR R
#if first trial fails at 100% tries again at 80 (-g656 for 656 usec
gap)
} else {
send "/sqal/tool s/ Packet Buil der2.0/pb.9.2.98 -i\r"
expect " pbCommand>"
send "pb -I\r"
expect " pbCommand>"
send "pb -htl -g656 -nl00000 -vs[set $mac2] -vs[set $nmacl] -f
2561 Pf. txt\ n"
expect " pbCommand>"
send "pb -ht1\n"
expect " pbCommand>"
sl eep 10
send "pb -ht2 -scr"
i f {expect "RX Packet count for slot 2 is 100000 packets"} {

exec touch $results_file
exec chnod 777 $results_file

set tenp_file [open $results_file a]

puts tenp_file "Passed 256 byte test at 80%utilization\n"
puts tenp file "100000 packets sent from[set $macl] to [set $nac2]
with .656 interpacket gap"
close $tenp_file

} else {
#finally tries at 60% (1589 usec gap)
send "/sqal/tool s/ Packet Buil der2.0/pb.9.2.98 -i\r"
expect " pbCommand>"
send "pb -I\r"
expect " pbCommand>"
send "pb -htl -g1589 -nl100000 -vs[set $mac2] -vs[set $macl] -f
2561 Pf. txt\ n"
expect " pbCommand>"
send "pb -ht1\n"
expect " pbCommand>"
sl eep 10
send "pb -ht2 -scr"
if {expect "RX Packet count for slot 2 is 100000 packets"} {
exec touch $results_file
exec chnod 777 $results_file

set tenp_file [open $results_file a]

puts tenp_file "Passed 256 byte test at 60% utilization\n"

68

puts tenp file "100000 packets sent from[set $macl] to [set $nac2]
with 1.589 interpacket gap"
close $tenp_file

} else { puts " You're router stinks....it can't even do 60%
utilization!!!I''\rNow exiting..... "

sleep 5

exit O

}

}

HEHH AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H AR H R H AR H R H R H R H R
#it

#H####H#Packet Loss test
#i#######currently does it for 64 byte packet at 100 % utilization
send "/sqal/tool s/ Packet Buil der2.0/pb.9.2.98 -i\r"
expect " pbCommand>"
send "pb -I\r"
expect " pbCommand>"
send "pb -htl -nl100000 -vs[set $mac2] -vs[set $macl] -f 64IPf.txt\n"
expect " pbCommand>"
send "pb -ht1\n"
expect " pbCommand>"
sl eep 10
send "pb -ht2 -scr"
if {expect "RX Packet count for slot 2 is [set $packetl] packets"} {

$fi nal _packet = $packet 1- 100000

exec touch $results_file
exec chnod 777 $results_file

set tenp_file [open $results_file a]

puts tenp_file "Packet Loss Test for 64 bytes:\n"
puts tenp file "100000 packets sent from[set $macl] to [set $nac2]
at 100% utilization: "
puts tenp_file " [set $final _packet] dropped by DUT\n
close $tenp_file

exit O

}
}

69

DUT _setup.cfg

EME_| P=' 158. 101. 97. 7' ; export EME_IP
SLOT_NUMBER=' 6' ; export SLOT_NUMBER

DUT_I P1="10.1.1. 1" ; export DUT_IP1
DUT_I P2="20.1.1. 1" ; export DUT_I P2
PORT1="1' ; export PORT1

PORT2=" 2' ; export PORT2

| P_ADDRESS1="10.1.1. 2 ; export | P_ADDRESS1
| P_ADDRESS2="'20.1.1. 2 ; export | P_ADDRESS2
MAC1=' 00- 00- 00- 10- 00- 02" ; export MAC1
MAC2=' 00- 00- 00- 20- 00- 02" ; export MAC2

70

setup.cfg

TEST_CASES='0 1'
SMARTBI TS_I P=' 10. 10. 10. 10°

NUM PORTS=' 1, 2' ; export

| P_ADDRESS1='10.1.1. 2
| P_ADDRESS2=' 20. 1. 1. 2
MAC1=' 000000100002
MAC2=' 000000200002'

71

; export TEST_CASES

export SMARTBITS | P

NUM_PORTS

export
export
export
export

| P_ADDRESS1
| P_ADDRESS2
MAC1
MAC2

64! pf.txt

0800450000320000000040047AC90A010102140101020000000000000000000000000000
00000000000000000000000000000000

72

128l pf.txt

73

0800450000720000000040046F860A.01010214010102000

74

256| Pf.txt

0800450000F20000000040047A09000A0101021401010200000000000000000000000000
00
00
00
00
00
00

75

