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1 Introduction 

Physical inactivity is one of the leading causes of death in the United States, which 

increases the risk of many ailments including diabetes, cardiovascular disease, metabolic 

syndrome and some cancers (Mokdad, 2000). Obesity is the leading preventable cause of 

health problems afflicting children and young adults. Over 78 million U.S. adults and about 12.5 

million U.S. children and adolescents were considered obese, according to a National Health 

and Nutrition Examination Survey administered in 2009-2010 (Holland, 2016). The core of the 

problem begins with overweight adolescents, who have a 70% chance of becoming overweight 

adults. Only one in three children are physically active each day due to the growing online 

lifestyle trending in adolescents and the lack of enjoyable physical activity alternatives besides 

organized sports (Agu & Claypool, 2016). A viable exercise alternative to engage adolescents is 

pervasive games, which extend the gaming experience into the physical realm. Exergames, 

such as Pokemon Go and Just Dance Now, are one particular form of pervasive game that 

shows great promise in appealing to adolescents. 

Exergames are a type of pervasive game that incorporate gameplay elements into 

exercise to increase physical activity in an enjoyable way (Agu & Claypool, 2016). Playing 

exergames promotes good health, increases aerobic fitness, and improves metabolic and 

physiological variables in adolescents (Wang & Perry, 2006). They have also been proven to 

serve as a sufficient alternative to regular exercise (Kretschmann, 2010). However, 95% of all 

new game players stop playing within 3 months, and 85% of new players stop after just one 

day, a trend that encompasses all genres of games including exergames (Agu & Claypool, 

2016). If exergames are to be effective, a system must be implemented that connects users to 

new exergames that they will enjoy when they lose interest in their current game. 
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Currently, there are multiple problems with the process of connecting adolescents to 

exergames they would enjoy (Agu & Claypool, 2016). These problems are: 

1. It may take many attempts to find an appealing exergame. 

2. Players need to actively seek new exergames when they get bored. 

3. Game recommendations for are primarily influenced by popularity, making it difficult to 

find tailored to individual interest. 

4. Measures of user enjoyment are not specific to exergames. 

5. Feedback on user enjoyment of exergames is currently limited mostly to sparse user 

reviews on websites such as Amazon.com. 

The proposed Cyber-Physical Recommender System (CyPRESS) aims to solve these 

problems. Figure 1.1 illustrates an overview of the CyPRESS system at a high level.  

 

Figure 1.1: CyPRESS Overview (Agu, Claypool 2016) 

CyPRESS will be a recommendation system which tries to connect players to exercise 

games that they may enjoy. By continuously monitoring player’s motion data, step count and 

game play statistics from their phone, CyPRESS can determine whether or not an individual is 

enjoying a game. CyPRESS will then recommend new exergames whenever the player is 

bored. The research and development of CyPRESS involves the following five steps:  

1. Selection of exergames for experiments 
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2. Smartphone instrumentation and generation of sensor data gathering app 

3. Adaption of user game experience questionnaires 

4. Synthesizing implicit interest indicators 

5. Use predicted Enjoyment-scores (E-scores) to recommend new games.  

On the user side is the CyPRESS smartphone client, which captures data from phone 

sensors and runs it through machine learning classifiers that have been trained on previous 

data to determine whether or not they have enjoyed the current experience. The system uses 

this information to determine which kinds of games the user enjoys, and when the user loses 

interest in the current game, CyPRESS will recommend similar games to the user based on a 

large database of games stored on CyPRESS servers. 

The scope of this Major Qualifying Project (MQP) was to determine whether it is possible 

to train machine learning classifiers to measure excitement in exergames from accelerometer 

and gyroscope data from the gamer’s smartphone. Our work roughly covered the first, second 

and fourth CyPRESS research agenda criteria above. The third step of adapting user 

questionnaire was addressed by a separate IQP group. Their group created a novel Exergame 

Enjoyment Questionnaire (EEQ) that was administered after a gamer played an exergame. The 

EEQ measured how much they enjoyed the game. We utilized EEQ for measuring exergame 

player enjoyment of games evaluated during our experiments.  

The goal of this MQP was to determine whether or not it is possible to determine an 

individual’s enjoyment from an exercise game based on motion data. The approach to meeting 

this goal was accomplished in the follow steps: 

 
● Run experiments using the Pokémon Go and Just Dance Now exergames while subjects 

play them, in order to collect data 

● Pre-process the raw data and calculate features from it 
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● Use machine learning on the processed data and extracted features to find trends in the 

data 

● Determine whether or not it is possible to detect enjoyment from motion data by 

analyzing the output of the machine learning algorithms 

● Synthesize classifiers and evaluate how accurately they classify reported player 

enjoyment scores from their smartphone sensor data gathered as they played 

 
Through the use of machine learning classifiers we were able to create a classification 

model that was reasonably successful at predicting user enjoyment. Our final model was able to 

correctly predict enjoyment 75% of the time.  

For the rest of our report we will explain how we ran our experiments and created our 

model, the results of these experiments, and the conclusions we drew from these experiments.  
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2 Background  

Before attempting to achieve our goals regarding CyPRESS, it was important to review 

background information related to our work, and that we attempted to understand the different 

facets of a recommendation system such as CyPRESS. To accomplish this we researched the 

various genres of exercise games. We also looked into different methods of quantifying game 

experiences, different types of phone sensors, and learned the basics of machine learning. 

2.1 Mobile Exergames 

Before further discussing the details of our project, it is important to have a thorough 

understanding of what exergames are, as well as the different genres that are available. 

Exergames are electronic games that involve exercise, and thus offer a new way to work out 

(Koivisto, Sari & Kristian, 2011). Many think that videogames are the cause of childhood 

obesity, as they can lead to a sedentary life, but exergames can subvert this by engaging video 

game players in physical activity (Koivisto et al., 2011). Since the creation of the Wii console, 

exercise games have been branching out from their origins. Exergames can be found on 

consoles as well as on smartphones, and they have a variety of subgenres: dancing, 

location-based, running, and working out. As the genre keeps expanding there are a variety of 

ways to move about and enjoy exercise.  
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Figure 2.1: Four examples of types of exergames  

Figure 2.1​ shows examples of the various exergames. Location based games require 

players to traverse the real world, dancing games require players to match onscreen prompts as 

shown, workout games require matching various exercises, and running games require the 

player to follow the game’s instructions while running (Koivisto, Sari & Kristian, 2011). 

2.1.1 Dancing Games 

The dancing subgenre of exergames attempts to make dancing a game activity by 

scoring player’s performance (Smith, 2005). Dancing games use motion sensing technology as 

a controller (Prather & Korolenko, 2008). Some use pads on the ground to sense when the user 

step in certain locations, which is most notably seen in the game Dance Dance Revolution 

(Smith, 2005). ParaParaParadise is a dance game that uses octagonal motion sensing rings 
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above the user to detect motion (Crampton, 2007). However, it is now more common to use an 

accelerometer, like in Just Dance, Just Dance Now, Country Dance, and Real Dance 

(Charbonneau, 2009). These games use either the accelerometer in the WiiMote or in the user’s 

smart phone. Dancing has a great deal of potential for getting people physically active because 

dancing has been shown to stimulate pleasure senses in the brain, as well as develop deeper 

emotional understanding (Krakauer, 2008). 

2.1.2 Location-Based Games 

The defining characteristic of location-based exergames is that they require players to 

seek out real-world locations to achieve in-game progress (Avouris & Yiannoutsu, 2012). 

Players can interact with events, landmarks, or items that are mapped to these real world 

locations by visiting these places. Location-based games tend to use augmented reality (AR) to 

meld the real world with a virtual one (Javornik, 2016). This can be done in many ways, such as 

projecting images from the game onto the feed from a phone’s camera. Location-based games 

utilize a phone’s GPS technologies to essentially turn the real world into a game board (De 

Souza, 2006).  

Although many of these games are not explicitly designed to encourage exercise, they 

are designed to make it impossible to play them without engaging in physical activity, as the 

player must move around in the real world to make progress. In this sense, location-based 

games persuade players to exercise in a much more subtle fashion than traditional exergames. 

The recent phenomenon of Pokémon Go is an excellent example of a location-based game that 

became popular and united large groups of people ​(Javornik, 2016). Location-based games can 

be a successful subgenre of exergames because they can potentially appeal to people that are 

not explicitly interested in using videogames to become more fit, while still improving their 
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physical well-being.  

Although Pokémon Go is a very popular location-based game, there are many other 

examples of the genre. Pokémon Go developer, Niantic, released a game called Ingress in 

2012. This game pits players on different teams against each other to control real world 

locations (Myk, 2014). Geocaching is another location-based game that has been played since 

2000, and it gives players GPS coordinates for real world items for them to discover (Dems, 

2011). 

2.1.3 Running Games 

Running fitness games attempt to gamify jogs and sprints through the use of in game 

incentives and narrative. Running games use a combination of accelerometer, gyroscope, and 

occasionally GPS information to measure the player’s progress in real time (Cooper, 2015). 

Some running games focus on narrative and immersion to convince gamers to go for a run. 

Zombies, Run! is a good example of this, as it is a story-based running game that uses in-game 

quests to increase the player’s pace (Moses, 2012). It motivates people to run by offering new 

chapters in the story, using an engaging survivor story as an incentive for motivation. It also 

uses gamification by offering in game resources for exploring new areas. 

Other running games focus more on the mechanics of running, and use timing based 

elements to control pace. Shape up Battle Run incorporates rhythm game elements to regulate 

when the player’s feet makes contact the ground to control his or her running pace (Rubino, 

2014). Battle Run uses a scoring system to measure the success of a run based on the player’s 

speed and running form. 

Overall, the purpose of running games is to make the process of running more engaging 

for users. Whether this is done through narrative or through using scores to measure progress, 
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the end goal is to get users to run more. 

2.1.4 Workout Games 

Similar to running games, workout games gamify the process of weight and body training 

by offering in game rewards for workout progress. These games provide players with preset 

workouts that they must perform to move forward in the game. One example of this is 

Superhero Workout, which casts the player as a superhero that must save the world by 

completing exercises. The game offers workouts in the form of missions, and these missions are 

tailored to different heroes, which are selected by the player based on workout priorities. 

Additionally, the game tracks calorie information, and actively gives workout feedback based on 

the player’s position, as captured by the phone’s camera. Superhero Workout is a good 

example of many of the techniques that workout games use, as it is story driven, offers 

immediate feedback, and scores workout progress (Williams, 2014). 

2.2 Quantifying Game Experiences 

To be able to measure the success of our enjoyment predictions, we need an objective 

measure of player enjoyment. This is necessary to have to compare an explicits enjoyment 

score with our predictions to determine model accuracy. Thus, we require a method for 

quantifying player’s game experiences. There are a few tools currently available for quantifying 

game experiences through explicit indicators. Some of these indicators are questionnaires that 

are administered after participating in a game session (GEQ and IEQ) (Brockmyer, 2009) 

(Jennett, 2008), some are scales that are administered separate from any game sessions 

(PACES) (Kendzierski & Kenneth, 1991​)​, and some are models that predict player enjoyment in 
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video games (GameFlow) (Sweetser & Wyeth, 2005). 

2.2.1 GEQ 

The Game Experience Questionnaire or GEQ is a multi-module scale, originally 

developed to reliably measure deep engagement in video game-playing (See Appendix A for 

the full questionnaire) (Brockmyer, 2009). It consists of the core questionnaire module, the 

social presence module, and the post-game module, each of which is meant to be administered, 

in the given order, immediately after a game session ends. Additionally, a concise in-game 

version of the GEQ was developed, meant to be administered multiple times during the game 

session. The core questionnaire and social presence modules probe the players’ feelings and 

thoughts while playing the game, while the post-game module assesses how players felt after 

they had stopped playing. Each module consists of multiple items rated from 0-4, with 0 

referring to not at all and 4 referring to extremely. A grading rubric is given at the end with 

instructions on which questions refer to what components. To compute the score for each 

component, the average value of the pertaining items is taken. 

The core questionnaire module assesses game experience as scores on seven 

components: immersion, flow, competence, positive affect, negative affect, tension, and 

challenge (Brockmyer, 2009). Immersion and flow measure how engrossed the player is in a 

game. Competence, challenge, and tension refer to the feelings of stress or lack thereof that a 

game evokes. Negative and positive effects refer to if the player felt that the game was a 

positive or negative experience. For a robust measure, at least five items are needed per 

component; since there are a total of 33 items, some items refer to more than one component. 

As translation of questionnaire items sometimes results in suboptimal scoring patterns, a spare 

item has been added to all components.  
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The social presence module investigates psychological and behavioural involvement of 

the player with other social entities, be they virtual (i.e. in-game characters), mediated (e.g. 

others playing online), or co-located (Brockmyer, 2009). The module contains 17 items broken 

down into three graded components: psychological involvement and empathy, psychological 

involvement and negative feelings, and behavioural involvement. It should only be administered 

when at least one of the three types of co-players are involved in the game. 

The post-game module assesses how players felt after they had stopped playing 

(Brockmyer, 2009). The module helps assess naturalistic gaming (i.e, when gamers have 

voluntarily decided to play) as well as experimental research. The module contains 17 items 

broken down into four graded components: positive experience, negative experience, tiredness, 

and returning to reality. 

In terms of measuring deep engagement in video-game playing on a general level, the 

GEQ is an effective method for understanding player enjoyment.  

2.2.2 IEQ 

The IEQ or Immersive Experience Questionnaire is a scale used to subjectively measure 

immersion in games (See Appendix B for the full IEQ) (Jennett, 2008). It was developed and 

used as part of Charlene Jennett’s paper “Measuring and Defining the experience of Immersion 

in games,” whose purpose was to explore immersion further by investigating whether immersion 

could be defined quantitatively through three experiments. In each of the experiments, a specific 

version of the IEQ was administered to the participants and correlated with how they felt at the 

end of the game. 

The first two experiments used the same version, where participants answered 33 items 

in total based on how far they would agree with the statements indicated (Jennett, 2008). The 
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first 32 items had a Likert scale with five options ranging from “Strongly Disagree” to “Strongly 

Agree. The last item asked the participant “How immersed did you feel?”, in which the player 

could answer on a scale ranging from 1 to 10. 

The third experiment used an altered version of the IEQ where participants answered 31 

items on a scale of 1 to 5 (Jennett, 2008). However, the range of the answers differed 

depending on the question asked. The general pattern was that 1 represented “Not at all” or 

“Very little” while 5 represented “A lot” or “Very much so”. 

The IEQ is a useful tool for defining immersion in games, but the scope of the 

questionnaire is limited to subjectively measuring immersion. Since the GEQ has a section for 

immersion in addition to other game criteria, it may supersede the IEQ. As such, we will not use 

the IEQ as one of our external indicators. 

2.3 Sensors 

One of the predominant ways explicit data is gathered on smarthphones is through the 

sensors. Most smartphones have sensors to measure motion orientation and various other 

environmental conditions (Costello, 2016). The two most commonly used sensors are 

accelerometer and gyroscope. Accelerometers measure the acceleration of an object in 

different directions, and gyroscopes help determine an object’s orientation.  

2.3.1 Accelerometers 

An accelerometer is a device used to measure an object’s acceleration, which is a 

measurement of an object’s change in velocity. Acceleration is defined in the laws of motion 

equation, Force = Mass X Acceleration, meaning that accelerometers use relationships between 

force and mass to determine an object’s acceleration (Woodford, 2016). Accelerometers have 
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found a vast array of applications, from turning off a falling hard drive, to deploying airbags in a 

crashing car.(Goodrich, 2013). Accelerometers are able to help with these tasks because they 

are able to measure the acceleration of an object on the x, y, and z axis. Accelerometers usually 

detect acceleration in two different ways; piezoelectric effect, or capacitance sensor (“A 

Beginner’s Guide to Accelerometer,” n.d.). “The piezoelectric effect… uses microscopic crystal 

structures that become stressed due to accelerative forces. These crystals create a voltage from 

the stress, and the accelerometer interprets the voltage to determine velocity and orientation” 

(Goodrich, 2013). Capacitors work in a similar way, when the mass is moved in the device one 

of the metal plates of the capacitor shifts and moves closer to the other. When the plates are 

close they transfer an electric current which is sent to be interpreted (Woodford, 2016). In our 

experiments, we will be using a smartphone’s accelerometer data to try to deduce a player’s 

excitement. Presumably, there is some relationship between player enjoyment, and the 

acceleration with which they are moving their phone. Our machine learning program should be 

able to find that relationship. 

2.3.2 Gyroscope 

The basic function of a gyroscope is to use the Earth’s gravity to help determine the 

orientation of an object. Gyroscopes are made up of a rotor, mounted onto a spinning axis in the 

center of a large wheel. The axis turns while the rotor remains still to measure the gravitational 

pull (Goodrich, 2013). Since gyroscopes are able to measure the rate of rotation around an axis, 

they are particularly useful for determining the if an aircraft is rolling too much, or the orientation 

of a phone. Phones in particular use vibration gyro sensors, which are smaller and less accurate 

than traditional gyroscopes (“Gyro Sensors - How They Work and What's Ahead,” n.d.). 

Just as with accelerometers, we will use data gathered from the gyroscope to attempt to 
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classify game enjoyment. Gyroscopes will be a useful sensor for our data gathering because 

they will give us information about the rotational acceleration of phones, which is an important 

facet of phone movement. 

2.3.3 Step Detector and Step Counter 

Step detectors allow phones to detect when a user has taken a step. Step counters work 

in concert with step detectors to track the number of steps a user has taken, usually measured 

over some unit of time. Using the Android API for step detection and counting, the phone’s 

sensors are able to detect when the user is walking, running, or walking up stairs (“Sensor 

Types,” n.d.). However, these sensors should not be triggered by biking, driving or moving in 

another vehicle (“Sensor Types,” n.d.). The step detection and counters are frequently used as 

metrics for exergames. Step counters offer a simple means to measure the amount of steps a 

user has taken while playing a game, both indicating the amount of time a user has played the 

game, as well as how active he or she was while playing it. From step counts, it can be deduced 

how dedicated a player is to a game. In our experiments, use step counters to measure player’s 

activity while playing Pokémon Go. 

2.3.4 AndroSensor 

AndroSensor is an Android application that reports information about the state of a 

device’s sensors (Asim, 2013). While the app is limited to the sensors that exist on an android 

the phone, AndroSensor can monitor the following sensors: It uses an android phone’s 

accelerometer and gyroscope to create additional sensor data. The relevant sensors and 

features that AndroSensor captures are as shown in ​Table 2.3.1​. 

Sensor/Feature Unit of Measure Description 
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Accelerometer meters per 
second squared 

Measures acceleration. Captures this on the x, y, 
and z axis. 

Linear Acceleration meters per 
second squared 

Measures forward acceleration. Captures this on 
the x, y, and z axis. 

Gyroscope radians per 
second  

Measures rotational speed. Captures this on the x, 
y, and z axis. 

Location Longitude and 
Latitude 

The geographic location. 

Orientation degree Captures how the phone is oriented relative to the 
ground.  

Table 2.3.1: Androsensor sensors/features 
 

AndroSensor has been used several research studies to gather mobile device data. For 

instance, a phone running AndroSensor was placed on the back of a tactile picture book page in 

order to evaluate the user experiences (Kim, 2014). The app has also been used to estimate the 

roughness of roads based on phone movement in the vehicle (Douangphachanh, 2013). 
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Figure 3: Screenshot of Androsensor (androfreeware.com) 

The app allows the data recorded to be saved as a CSV file attached in an email, or 

saved directly on a phone. Among other settings, the time interval between data-gathering 

(sensor sampling rate) can be adjusted to as long as 15 minutes and as short as 0.005 seconds 

(5 milliseconds), although some Android phones are not able to support this. 

The Android sensors that are relevant to our study of exergame enjoyment are the 

accelerometer and the gyroscope. Data from these sensors is gathered continuously while the 

subject plays an exergame, and analyzed to infer exergame enjoyment levels. 

2.4 Machine Learning 

Samuel defined machine learning as the “Field of study that gives computers the ability 

to learn without being explicitly programmed” (Munoz, 2007). As such, machine learning has a 

great deal of relevance in the field of Artificial Intelligence, allowing programmers to construct 

models that can observe data and make predictions about that data. With the advent of 

increasingly large data sets, recommendation systems are being utilized by companies to 

recommend products to customers based on their preferences. Additionally, there are many 

softwares that are programmed with machine learning algorithms such as MATLAB and Weka.  

2.4.1 Basics of Machine Learning 

There are two major types of machine learning, supervised learning and unsupervised 

learning (Alpaydin, 2014). Supervised learning has input and output variables, and trains an 

algorithm to be able to map a predictive function that given certain input will be able to give 

expected output. In other words, this function, otherwise known as a model, will be able to 

predict the outcome of a situation given input. The algorithm trains the model by looking at 
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previous data and building a model based on this data. In unsupervised learning, the prediction 

algorithms are instead given unlabeled data. The algorithms must establish unifying 

characteristics, or underlying features of the data. It is the notion of being given “answers”, as in 

real data points, and being trained based on these real answers that defines supervised 

machine learning as compared to unsupervised learning.  

Another two sub-categories of machine learning problems are classification problems, 

and regression problems (Brownlee, 2016). Classification problems deal with discrete 

categories for data. For example, data in a classification problem could state whether a person 

is happy or sad. In regression problems the data is continuous, meaning it has a value with an 

infinite range, such as money. 

In unsupervised learning the algorithm receives only input data, and given this input data 

it must create a model that indicates the structure of data. This is primarily done through 

clustering similar data together or through generating associations between data points. 

 Machine learning is often used to analyze and make predictions from “big data”, which 

is a term to describe the huge quantities of data that are unprocessable with traditional data 

processing methods. Through improvements in processing power, it has become possible for 

machine learning algorithms to use huge data sets to train models and make predictions in 

various fields such as healthcare and finance (Levine, n.d). As this field further develops, it will 

become increasingly possible for companies and the government to be able to predict future 

trends through the use of machine learning. Similarly, as methods for machine learning improve 

it will become increasingly possible to train intelligent agents that could make autonomous 

decisions. 

In our project, are using machine learning to train classifiers and predict whether or not 

users are enjoying exercise games. We use our accelerometer, gyroscope and step count data 

captured from sensors to build a prediction model. We then analyze the results of these 

20 



 

predictions to determine if they accurate or not. 

2.4.2 Weka 

Weka is a suite of machine learning software that enables data analysis and predictive 

modeling. The software allows users to import formatted data files and then easily perform many 

data mining tasks on this data. Users can find interesting trends in their data through the use of 

the software’s preprocessing, clustering, classification, regression, visualization and feature 

selection functionality (Eibe & Witten, 2005). Weka is useful because it is lightweight, and does 

not require users to implement prediction algorithms. It has widespread use for teaching and 

research purposes. In our project we use Weka to train a machine learning classifier from our 

experiment data. 

2.4.3 MATLAB 

MATLAB is an abbreviation for it’s full name Matrix Laboratory. MATLAB as a high 

performance language for technical computation has millions of users worldwide. It is a common 

tool for math computations, modeling, data analysis, and machine learning. MATLAB is a high 

level matrix array language with control flow statements and a vast collection of mathematical 

libraries. MATLAB also has a great deal of modules for statistical modeling, machine learning, 

signal processing, and other potentially useful features. In our project, MATLAB will be used to 

help us process our raw smartphone sensor data, and especially extracting features, such as 

Standard Deviation or Min-Max from segments of our data.  

2.4.4 Recommender Systems 

As described in the introduction, the overall goal of our project is to help lay down the 
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foundation for a recommender system. Recommender systems are meant to filter information 

and predict the preference a user would give an item (Pouly, 2014). These systems have been 

created in a wide variety of domains, such as shopping (Amazon), movies (Netflix), music 

(Pandora), and many others. There are three methods used to create these individual 

preference predictions: content-based, collaborative, and hybrid. 

Content-based recommender systems use a user’s item-to-item data to make 

predictions (Pouly, 2014). In these systems, the items a user has preferred in the past is used to 

recommend similar items, but other users are not considered. To accomplish this, a user 

preference profile is created, either from explicit ratings and preferences made by the user or 

from implicit preferences derived from the user’s similar items. All available items are given a 

“weighted similarity metric” measuring how similar items are to each other. Certain systems also 

have a “relevance feedback loop” where users provide feedback on the recommendations 

(Pandora’s “like” and “dislike” buttons) to improve future recommendations. These systems 

solve the problem of only popular items being recommended because each user has an 

individual profile, and new items can be recommended from the beginning. However, it is 

difficult to recommend items to new users with sparse preference profiles, and 

recommendations made using this method generally do not provide new insight into 

preferences. 

Collaborative recommender systems use user-to-user and user-to-item data to make 

predictions (Pouly, 2014). These systems look at groups of users that have liked the same items 

in the past. Based on how many users have liked similar items and how they rated them, 

recommendations are made. An advantage of these systems is recommendations can be made 

outside of categories the user knows, which increases the knowledge of the user’s preferences. 

Disadvantages include needing a large base of people to participate to make good 

recommendations, which could be difficult for mobile exergames. 
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Hybrid recommender systems use a combination of content-based and collaborative 

methods (Pouly, 2014). One way these systems combine recommendation methods is to weight 

the score generated for each item by each method. Another way is to cascade the results of 

different methods so that one method refines the results of the next. The combination of these 

methods can combine advantages and mitigate disadvantages of individual methods. 

For all of these recommender systems, there must be enough data to make good 

predictions of user preferences. Knowing what features of the data correlate to user preferences 

is important for any recommender system. This is the area of recommender systems that our 

project focuses on. 

2.5 Related Systems 

To be able to better design our own exergame enjoyment prediction system, it is 

important to look at similar systems that infer related user states such as mood from the sensors 

in a smart phone. From other systems we can determine which strategies have been proven to 

work, as well as which do not. We can also determine the limits of the current state of the art, 

and attempt to pursue this. 

2.5.1 EmotionSense 

EmotionSense is a system for sensing emotions and for monitoring human interaction on 

mobile devices. Through the use of smartphone sensors, researchers can collect data on group 

dynamics, collecting information such as how activities, group interactions, and the time of day 

impact the emotions of individuals. Mobile platforms were targeted for this software, because 

mobile devices offer an unobtrusive means for monitoring human behavior. It is important for 

this technology to be unobtrusive because individuals tend to behave differently when they are 
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aware that they are being monitored. The EmotionSense framework uses sensors, such as 

gyroscope and accelerometer, that are relatively standard across many different phones, 

allowing for information to be collected from a great deal of different individuals (Rachuri, 

Musolesi, Mascolo, Rentfrow, Longworth, & Aucinas, 2010).  

The goal of EmotionSense is to enable social psychologists to easily be able to run 

experiments on test subjects who have installed the software on their phones. To ensure 

robustness, the framework can be programmed using a declarative language, allowing 

non-programmers to be able to change the software to suit their needs. EmotionSense is able to 

recognize different speakers, as well as monitor their emotions by running machine learning 

classifiers locally, meaning the application handles the process of assigning emotions to user 

behavior without the help of external hardware or software (Rachuri et al., 2010).  

The EmotionSense system is made up of sensor monitors, the programmable 

framework, and two declarative databases. The monitors logs events to the Knowledge Base 

repository, which hold all information from the sensors. The other database, the Action Base, is 

made up of all of the sensing actions that EmotionSense must perform. These actions can be 

programmed by researchers using the software, and actions are also generated based on 

sensor data (Rachuri et al., 2010).  

The software determines the user’s emotional states in large part through analyzing his 

or her’s speech patterns. EmotionSense generates reports on the user’s emotions based on a 

Gaussian Mixture Model (GMM) classifier, which was trained using the Emotional Prosody 

Speech and Transcripts library. The Emotional Prosody Speech and Transcripts library is the 

standard library for emotion and speech processing, and it was generated through recording 

professional actors reading dates and numbers while emulating speech from fourteen different 

emotional categories. This means that the classifier which determines the user’s emotional state 

was made using vast quantities of voice recordings. In addition to sensing speech, 
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EmotionSense also tracks accelerometer and gyroscope data, mostly to detect when sensor 

actions should be activated (Rachuri et al., 2010).  

 
Table 2.5.1: EmotionSense emotion classifications 

Table 2.5.1​ shows the broad emotions that EmotionSense analyzes, and the more 

specific specific emotions that are encompassed by the broad emotions (Rachuri et al., 2010). 

In a 10-week study with 18 participants, EmotionSense was able to estimate emotional 

states which generally correlated with the true emotional states of individuals. Overall, the 

framework offers an interesting tool for psychologists and social scientists to monitor behavior 

through the use of machine learning. 

2.5.3 Other Dance Enjoyment-Related Detection Research 

There are two other systems that have tried to using the movements from dancing to 

enjoyment. The first system is called the Musical Synchrotron. The Musical Synchotron used the 

accelerometer in the Wiimote, and matched the data to the tempo of the songs playing to 

measure the participants enjoyment (Demey, 2008). The second system was used to measure 

the enjoyment of music in a club in order to learn and as time passed create a better music to 

create a positive environment (Kunh, 2011). The system used wearable accelerometers 

combined with the data on dancing by the participants and measured four states; dancing, 

walking, foot tapping, and standing (Kunh, 2011). They match the tempo of dancing and foot 

tapping against the tempo of the song to decide how much the participants are enjoying the 
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song. Because we do not have access to the song being played we do not compare the tempo 

of accelerometer data against the the temp of the song to figure out enjoyment.  
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3 Methodology 

It was our objective to determine if it is possible to create a prediction model that could 

successfully predict user enjoyment of exergames. To do this we performed three consecutive 

steps: 

1. Pilot study to establish a procedure for generating a prediction model 

2. Experiments with Just Dance Now and Pokémon Go to gather sensor data 

3. Build a Prediction model using data from our Just Dance Now experiments. 

3.1 Flowchart 

Figure 3.1.1: A flowchart for the sequence of our experiments 
 

The flowchart in ​Figure 3.1.1​ outlines the basic process of our experiments. . The first 

step in our pipeline was to have participants play either Just Dance Now or Pokémon Go. We 

used the AndroSensor application running on our test phone to collect sensor data as users 

played the game. In addition to gathering data from the phone’s sensors, we had the users fill 

out a survey to determine how they felt after playing the game. This survey was used to 

calculated an enjoyment score. It was important to gather player opinions on how much fun the 

game was, because when performing our supervised machine learning it was necessary to label 

how all of the sensor data correlated to enjoyment.  

Next, we took the phone sensor data from AndroSensor and entered it into MATLAB to 

extract mathematical features from the raw sensor data (Asim, 2015). We took these features 
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and entered them into WEKA, where we used several machine learning classifier functions to 

create different prediction models. We gave WEKA the exact E-scores of the participants, which 

we calculated through adding up the point totals in a survey we gave them after the experiment. 

These prediction models were then able to predict how much a participant enjoyed the game by 

guessing an E-score from their sensor data.  

3.2 Pilot Study  

To establish the start-to-finish procedure of generating a prediction model for exergame 

enjoyment, we conducted a pilot study. In the pilot study, we each participated in two Just 

Dance Now sessions using AndroSensor to gather sensor data. In one session we acted 

“excited”, meaning we exaggerated our movements. In the other session we acted “bored”, 

meaning we tried to minimize our movements. The reason we acted bored and excited in the 

pilot study was to see if the model could work in an extreme case where we attempted to bias 

the data to make it easier to predict. If we could not predict the enjoyment in this contrived case, 

then we would have to evaluate our methods. After we gathered the data, we entered it into 

MATLAB and broke up the sensor data into one-second segments. For each segment, we 

computed features such as skewness, kurtosis, min-max difference, standard deviation, and 

root mean squared. We then entered the data for each session into Weka and created our first 

enjoyment score (E-score) prediction model. With the only variable being the participant, we 

checked to see if the model could tell for each segment of a game session whether the 

participant was enjoying the game or was bored. 
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3.3 Just Dance Now Experiments 

We decided upon using Just Dance Now as our primary exergame for collecting sensor 

data. Just Dance Now was selected because its three- to five-minute songs were an ideal length 

for experiments. It was also an appropriate choice because there have been successful studies 

related to detecting enjoyment from people’s dancing patterns, showing that the concept has 

promise (Kunh, 2011).  

We gathered fifty two individuals to participate in a controlled Just Dance Now 

experiment. Participant ages ranged from eighteen to twenty-three and included an equal 

number of males and females. Experiments were performed one participant at a time.  

The experiment procedure was as follows: 

1. We described the experiment procedure to participants.  

2. We administered a pre-experiment survey, where participants provided 

demographic information such as age, gender, and weekly amount of exercise.  

3. We activated the Androsensor application on the phone that the participant used. 

We set the application to capture user motion data every 10 milliseconds. 

4. We had the participants play the song “Taste the Feeling”. The participant stood 

seven to ten feet from the screen, and all proctors provided some privacy by not 

watching the participant play.  

5. Once the song was completed, the participant answered a survey to gauge how 

much they enjoyed the game using strongly disagree to strongly agree questions. 

(See Appendix B) 

6. The participant began their second Just Dance game session, in which they were 

instructed to pick of choice and dance.  
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7. The participant filled out the same survey mentioned above to gauge how much 

they enjoyed the second song.  

8. The experiment ended with a simple post-survey which explicitly asked whether 

the participant enjoyed the Just Dance Now sessions. 

3.4 Pokémon Go Experiments 

For our secondary exercise game we selected Pokémon Go. Pokémon Go was selected 

because it is a radically different type of exergame than Just Dance Now, and its ubiquity made 

it immediately familiar to many people. For our Pokémon Go experiments we had five 

participants, four of which were male, and one which was female. The procedure for our 

Pokémon Go experiments was as follows: 

1. We described the experiment procedure to the participant. 

2. We administered a pre-experiment survey, where each participant provided 

demographic information such as age, gender, and weekly amount of exercise.  

3. We asked each participant if they had played Pokémon Go, and if they had not, we 

informed them of the basics of the game.  

4. We told each participant to walk around the WPI campus and attempt to go to 10 

PokéStops (locations within the real world that offer in-game benefits). The experiment 

ended when the participant went to ten PokéStops or when twenty minutes expired. 

Whichever came first. Each participant was also informed to catch Pokémon as their 

own leisure. We activated the Androsensor app to capture the motion data when the 

participants began. 

5. We had each participant fill out a post-experiment survey, where they were asked 

several questions to implicitly determine their enjoyment of the game. We then explicitly 
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asked the player if they enjoyed the game. 

3.5 MATLAB and Weka 

After gathering data from our Just Dance Now experiments, we had to transform the raw 

sensor data into features which could correlate to user enjoyment and be used to generate a 

prediction model. We adapted existing MATLAB code that had been developed from other WPI 

projects. The accelerometer data was developed from Muxi Qi’s master thesis (Qi, 2016). The 

gyroscope features were developed from Christina Aiello’s thesis (Aiello, 2016). The full list of 

the features we calculated can be found in the Analysis Chapter. After this, we used the 

previously created code to determine the correlation for each feature to E-scores by determining 

the p-value and correlation coefficient. We then removed the features that had p-values greater 

than 0.05. We took the correlated features and entered them into Weka to create our prediction 

model.  

We varied many factors to shape the creation of our model. The first factor was which 

classifier we used to create our model. We ran four different classifiers on the data, Random 

Forest, SMO, J48, and NaiveBayes. Each of these classifiers created different prediction 

models. Additionally, we used ten-fold cross-validation to ensure that all of our data was used 

for both testing and training our model.  

Another factor that we varied was bucket size. When predicting the E-scores, we chose 

to have our prediction model attempt to predict if the enjoyment was within a certain range of 

E-scores, as opposed to predicting specific scores. We called these various E-score prediction 

ranges different buckets. For instance if we had two buckets for player enjoyment, “having fun”, 

and “not having fun”, then “not having fun” would represent any E-score from 0 to 40, and 

“having fun” would represent an E-score from 40 to the maximum score of 80.  
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The final element that we varied when creating our prediction models was using only the 

first song that users played in the Just Dance Now experiment, or using both songs the user 

had played. Since the first song was the same for all participants, we wanted to see if limiting 

the sensor data that the model was being built off of would make a noticeable difference in the 

success rate of E-score prediction. 

We tested combinations of these variables with each other to make numerous prediction 

models. We saved these prediction models, as well as the Weka output that helps determine 

the effectiveness of each model, such as the stratified cross-validation summary, and the 

confusion matrix. We then used the Weka output to determine which prediction models had the 

highest percentage of correct classification of player enjoyment. 

Once we had determined a few of our of best prediction models, we evaluated how well 

our prediction models performed predicting the player enjoyment of Pokémon Go. This was 

important to test because we wanted to see if our prediction model, which had been created 

with entirely Just Dance Now data, could easily be generalized to an exercise game of a 

different genre. 
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4 Results and Analysis 

As previously discussed, the primary objective for our project was to create a 

classification model that can be used to predict user enjoyment for exercise games from their 

smartphone sensor data. In this chapter we analyze the effectiveness of various combinations 

of different features, machine learning classifiers, and other variables. Through this analysis we 

justify the combination of these variables to use for our final classification model for exergame 

enjoyment. We also discuss demographics information, as well as some of the results of our 

surveys. 

4.1 Demographics  

This section presents the demographics of the participants in the Just Dance Now 

Experiment. 

 

Figure 4.1.1: Pie Chart of Gender of Participants 

In the Just Dance Now experiment we had a majority of male participants. As shown in 

Figure 4.1.1​, 21 of participants were female, 30 of participants were male, and 1 prefered not to 
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answer.  

 

Figure 4.1.2: Age of study participants 

Figure 4.1.2​ shows the ages of the participants in the Just Dance Now Experiment. All of 

the participants were college students, so the age range was inherently limited. The participants 

were all between the ages of 18 and 23, with 21 being the most common age. 

 

Figure 4.1.3: Average physical activity per week of participants 

Figure 4.1.3​ shows the participants’ average time per week they spend engaged in a 
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physical activity. Most of the participants exercised between zero to five hours.  

 

Figure 4.1.4: E-score vs gender box-and-whisker plot for Just Dance Now Experiment 

Figure 4.1.4​ compares the E-scores to the genders of the participants for Just Dance 

Now. It shows that there was no notable difference between males and females. The p-value is 

.0746 which is greater than the threshold of 0.05, means it is not statistically significant, and the 

correlation coefficient is -0.1773 which means it is not correlated. 
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Figure 4.1.5: Song 2 E-score vs enjoyment  

Figure 4.1.5​ compared the E-score calculated using a question on the survey explicitly 

asking them whether they enjoyed the game or not. We use this question to validate the survey 

that was used to calculate participants E-scores. As shown by the E-scores from the second 

song, which was chosen by the participants, there is a stark contrast between the two 

distributions. This suggests that the E-score calculation was a good gauge on whether someone 

enjoyed the game or not. The p-value is 0.00000 which means that it is statistically significant, 

the correlation coefficient is 0.6770 which means it’s highly correlated. 
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Figure 4.1.6: Hours of Physical Activity per week vs E-score 

 
Figure 4.1.7: Hours of Physical Activity per week vs E-score 
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Figure 4.1.6​ compares the participants E-score with their average number of hours of 

physical exercise during a week broken into 5-hour buckets. There were few participants in the 

buckets with more hours of exercise per week, but the majority of participants exercised 

between zero and ten hours a week. There does not seem to be any relation between the 

amount that the participant exercised, and the amount they they enjoyed the game. There was 

no reasonable trend line to fit in ​Figure 4.1.7​. 

4.2 E-score Distribution 

Before one can understand the predictions of E-scores, it’s helpful to know the 

distribution of E-scores from the experiment participants. 

 
Figure 4.2.1: Cumulative Distribution of E-scores 

The range of possible E-scores was 0 to 80, while the range of actual E-scores was 26 
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to 77. The cumulative distribution graphs indicate the median E-score overall was 59 for both 

song data, while the median E-score for the first song was 58. The average for both song data 

was approximately 57.3 while the average for the first song was approximately 55.9. There is 

little difference between these distributions, although the E-scores for the both songs is 

consistently slightly greater than for the first songs, indicating that the second songs (the ones 

participants chose) were enjoyed more.  

4.3 Feature Selection 

Features used to create the prediction model that do not correlate to the E-score may 

confuse the classifier and therefore reduce the number of correct predictions. 

We calculated 31 features from the mobile sensor data during our experiments. As 

previously stated, we derived these features from previous study WPI projects (Qi, 2016) (Aiello, 

2016). Of the 31 features, 27 were calculated based on the accelerometer (x, y, and z) and 4 

were calculated based on the gyroscope (x, y, and z). Depending on the song data used to 

create the prediction model, features correlated differently to the E-score. 
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Table 4.3.1: Feature correlation to E-score for both songs 

For instance, ​Table 4.3.1​ shows the correlations of the features to the E-scores for all 

the song data collected during the Just Dance Now experiments. At the top are the features that 

have a p-value below 0.05, while the rest are sorted by decreasing absolute correlation 

coefficient. As shown in ​Table 4.3.1​, the three correlated features are all based on maximum 

spectral density (power over frequency). The reason these features are most correlated (albeit 

weakly correlated) to E-score could be because they represent the amount of energy used in 

the phone’s movements. A person expending more energy while playing could be enjoying it 
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more. 

It was a possibility that it may be easier to determine the truly correlated features using a 

single Just Dance Now song, so we used only the first songs for each participant (which were all 

the same song). Determining the feature correlations using the first songs, only the discrete 

cosine transform (DCT) of the maximum spectral density feature correlated to E-score even 

weakly. These feature correlations are shown in ​Table 4.3.2​. Peak frequency and the other 

maximum spectral density features were the next most correlated features to E-score. 

We split up the song data into the songs that had E-scores less than or equal to 40 and 

greater than 40, because 40 was the center of the E-score range and represented neutral 

enjoyment. In order to account for the fact that almost 90% of our participants said they enjoyed 

the game, we sampled an even distribution of twelve songs with E-scores above 40 as we had 

twelve songs with E-scores below 40. This way we would have an equal number (12) of songs 

in both bins. Using this data, we produced the feature correlations shown in ​Table 4.3.3​. The 

two correlated features were different from those in ​Table 4.3.1​, although both describe energy 

used. These are moderately correlated to E-score, while the spectral density features were 

weakly correlated. The reason for this may be that we used fewer songs to correlate features to 

E-scores, thus reducing the accuracy of these results. 
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Table 4.3.2: Feature correlation for first songs 
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Table 4.3.3: Feature correlation for even split around 40 (12 each side) 
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4.4 Data Processing and Classifiers 

Key variables can be changed when making prediction models through Weka, including 

altering the dataset through data processing and running various machine learning algorithms. 

This section describes the different variables adjusted  while creating the best prediction model. 

4.4.1 Data Processing 

Weka takes in a dataset as input and runs a machine-learning algorithm on that dataset 

in order to generate a prediction model. We choose the contents of the dataset to generate 

different prediction models through data processing, which is the selection of data to retrieve, 

transform, or classify information. ​Table 4.4.1​ shows the different methods used to vary the 

dataset we inputted into Weka. 

Data 

Processing 

Method 

Possible Values Description 

Number of Bins 2, 3, 6, 10 The number of bins 
(buckets) for 
categorized the 
E-scores into. 

Bin range Bins split at the median of our observed E-scores 
(i.e. 0-59, 60-80) , bins split at the median 
possible E-score (i.e. 0-40, 41-80), bins with 
same number of possible E-scores (i.e. 0-26, 
27-53, 54-80) 

The range or size of 
each categorized 
E-score bin. 

Sample of song 
sessions 

Both songs (100), first songs (49), sampling of 
both songs (24) 

The song sessions 
included in the 
dataset. 

Features All features, statistically-significant features, 
Weka-chosen feature selection, combinations of 
other statistically significant features 

The features used to 
create the prediction 
model  
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 Table 4.4.1: Data Processing methods 
 

Number of bins refers to the number of bins we categorized E-scores into. We tested 

sizes of 2, 3, 6 and 10, with 2 bins loosely translated into like/dislike and 3 bins loosely 

translated into like/neutral/dislike. 

For bin range, we tried different sizes including bins split at the average of our observed 

E-scores (i.e. 2 bins with E-scores between 0 and 59 placed in one bin and of E-scores between 

60 and 80 placed in another), split at the halfway point of possible E-scores (i.e. 2 bins with 

E-scores between 0 and 40 placed in one bin and E-scores between 41 and 80 placed in 

another), and bins with the same number of possible E-scores (i.e. E-scores between 0 and 10, 

10 and 20, 20 and 30, etc.). Different bins sizes altered the accuracy of the prediction model, so 

we tried many variations to improve the accuracy. 

Sample of song sessions is a mix of data from the different song types and number of 

songs chosen from that type. Both songs includes sessions from both song data. First songs 

means data from the same song across all participants. Sampling of both songs is used for 

evenly-sized 2 bins where we select the same number of songs in the smaller bin as the larger 

bin by sampling different areas of the larger bin. 

Features refers to the which features we create the prediction model off of, depending 

on whether we cull any misleading features or include all features. All features includes all 31 

features. Statistically significant only includes the features with a p-value less than or equal to 

0.05. Weka-chosen feature selection uses Weka’s built-in feature selection to select different 

features. Mixes of other correlated features includes features that had a p-value less than or 

equal to 0.05 for other datasets, specifically split depending on number of songs chosen. 
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4.4.2 Classifiers 

Weka has many built-in machine-learning algorithms used to create prediction models. 

Table 4.4.2​ briefly describes different classifiers ran on our datasets. 

 

Classifier Description 

Random Forest Class for constructing a forest of random decision trees 

J48 Class for generating a pruned or unpruned C4.5 decision tree 

SMO  Class implements a sequential minimal optimization algorithm for training a 
support vector classifier 

Naive Bayes Class for a Naive Bayes classifier using estimator classes 

 
Table 4.4.2: Popular classifiers and their descriptions 

 
We chose these classifiers because they represent a wide variety of algorithms that 

cover the basics of most machine-learning algorithms. Random Forest and J48 use different 

methods of analyzing decision trees ( also called classification trees), SMO (Sequential Minimal 

Optimization) is a faster implementation of the popular SVM (Support Vector Machine) 

algorithm, and Naive Bayes is a simple probabilistic classifier that applies Bayes’ theorem with 

strong independence assumptions between the features. 

4.4.3 Stratified Cross-validation Summary 

After running a classifier on any dataset, Weka displays a number of sections as output. 

Table 4.4.3​ describes the output of one of these sections: a stratified cross-validation which 

summarizes useful statistics calculated from the analysis. 

 

Output Description 
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Correctly Classified Instances Percentage of test instances correctly classified ( also called 
accuracy or sample accuracy) 

Incorrectly Classified 
Instances 

Percentage of test instances incorrectly classified 

Kappa statistic Agreement of prediction with the true class; 1.0 signifies 
complete agreement, 0.0 is equivalent to random chance. 

Mean absolute error Average magnitude of the errors in a set of forecasts, without 
considering their direction. 

Root mean squared error Quadratic scoring rule for measuring average magnitude of 
the errors (squared before averaging) 

Relative absolute error Ratio that describes the mean absolute error divided by the 
classifier’s error 

Root relative squared error Ratio that describes the root mean squared error divided by 
the classifier’s error 

Total Number of Instances Number of instances in the dataset 

 
Table 4.4.3: Stratified cross-validation summary description 

 
Out of these eight outputs, we present the correctly classified instances and the kappa 

statistic fields, as these are the most important outputs used to determine which combination of 

data processing and machine-learning algorithm generates the most most accurate prediction 

model. 

4.4.4 Detailed Accuracy by Class 

In addition to the stratified cross-validation summary, the detailed accuracy by class 

section yields detailed information for each class in the dataset. ​Table 4.4.4​ describes the 

different output shown in the detailed accuracy by class section. 

Output Description 

TP Rate Rate of true positives (instances correctly classified as a 
given class) 
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FP Rate Rate of false positives (instances falsely classified as a given 
class) 

Precision Proportion of instances that truly belong to a class divided by 
the total instances classified as that class 

Recall Proportion of instances classified as a given class divided by 
the actual total in that class (equivalent to TP rate) 

F-Measure A combined measure for precision and recall calculated as 
2*Precision*Recall / (Precision+Recall) 

MCC Measure of the quality of binary classification 

ROC Area Probability that a positive will be ranked higher than a 
negative. Optimal classifiers have ROC area values 
approaching 1, while 0.5 is comparable to random guessing 

PRC Area Probability used for determining whether the dataset has 
class imbalance problems 

Class Labels for the different classes (bins) the data is split into 

 
Table 4.4.4: Detailed accuracy by class 

These fields give more insight to the success of each class and allows us to compare 

classes between one another. The most important field for us is the weighted average of the 

receiver operating characteristic area for all classes, which we used to help determine the most 

optimal prediction model. 

4.4.5 Confusion Matrix 

Weka also displays a confusion matrix as part of the output. A confusion matrix, also 

called an error matrix or a special kind of contingency table, show the performance of a 

classifier. Each column of the matrix represents the instances in a predicted class while each 

row represents the instances in an actual class. The number of correctly classified instances is 

the sum of the diagonals in the matrix; all others are incorrectly classified. 
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In ​Table 4.4.5​, of the 34 actual E-scores in the “a” bucket, the system predicted that 17 

were in the “a” bucket, 12 were in the “b” bucket, and “5” were in the c bucket. Similarly, the 

system predicted that 10 were “a”, 9 were “b”, and “14” were c for the 33 actual E-scores in the 

“b” bucket. Lastly, the system predicted for the 33 actual E-scores in the “c” bucket that 10 were 

“a”, 13 were “b”, and 10 were “c”. In other words, the system predicted 36 correct instances for 

Table 4.4.5​. 

 Predicted class 

a b c 

Actual 

class 

a = 55 17 12 5 

b = 63 10 9 14 

c = 80 10 13 10 

 
Table 4.4.5: Sample confusion matrix for 3 buckets 

 
A confusion matrix is useful for visualizing the performance of a classification model. We 

used the confusion matrix to ensure that the prediction model was attempting to predict between 

the different bins rather than leaving out some bins, or worse, placing all E-scores into the same 

bin, as well as look for patterns in any misclassification 

4.5 ​Just Dance Now Final Model 

After generating numerous prediction models from our Just Dance Now data, we 

determined the most effective prediction models by splitting the data into 90% training data and 

10% test data through a process called k-fold cross-validation with a k-value of 10. We 

determined the best prediction models by comparing three metrics: the percent of instances that 

were correctly classified, the kappa statistic, and the weighted average of the ROC area. ​Table 
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4.5.1​ highlights how these prediction models compared to each other, with the best prediction 

model for that dataset generated from the algorithms highlighted and bolded. 

 

 

Both songs, 2 bins (0-59, 60-80), even distribution (50 songs per bin), 3 features 
(radioSpectralPeak, radioSpectralPeak_FFT, radioSpectralPeak_DCT)  

 Random 
Forest 

J48 SMO Naïve Bayes 

Correctly Classified 
Instances 

52.0% 65.0% 65.0% 62.0% 

Kappa Statistic 0.040 0.293 0.292 0.232 

ROC Area Weighted 
Average 

0.546 0.613 0.644 0.599 

First Songs, 2 bins, even distribution (24-25 songs per bins), all features 

  Random 
Forest 

J48 SMO Naïve Bayes 

Correctly Classified 
Instances 

59.2% 53.1% 65.3% 69.4% 

Kappa Statistic 0.183 0.059 0.303 0.389 

ROC Area Weighted 
Average 

0.648 0.497 0.651 0.677 

Both songs, 2 Bins (0-40, 41-80), even distribution (12 songs per bin), 3 features (energy in 
0.5 to 3, windowed energy in 0.5 to 3, and radioSpectralPeak_DCT). 

*Note that we added radioSpectralPeak_DCT because it had a P-value of 0.0502, which is 
close enough to having a P-value below 0.05. 

  Random 
Forest 

J48 SMO Naïve Bayes 

Correctly Classified 
Instances 

66.7% 70.8% 66.7% 75.0% 

Kappa Statistic 0.333 0.417 0.333 0.500 
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ROC Area Weighted 
Average 

0.715 0.590 0.667 0.590 

 
Table 4.5.1: Comparison of our best prediction models 

 
From these results, it seems that J48, SMO, and Naive Bayes classifiers generate the 

best prediction models under different conditions. Random Forest serves as a consistent 

baseline to compare against, and the overall best prediction model with 75% accuracy was 

generated from running Naive Bayes on the dataset consisting of both songs, 2 bins split 

between 0 to 40 and 41 to 80 of equal size (12 songs per bin) and the energy in 0.5 to 3, 

windowed energy in 0.5 to 3, and radioSpectralPeak_DCT features. Note that we kept 

radioSpectralPeak_DCT in the dataset because it had a P-value of 0.0502, which is close 

enough to having a P-value below 0.05. This dataset performed better than the one without 

radioSpectralPeak_DCT, which justifies our addition of radioSpectralPeak_DCT into the mix. 

Also note that the prediction model had a relatively strong kappa statistic of 0.5 and a decent 

ROC Area weighted average of 0.59. Lastly, ​Table 4.5.2​ shows the confusion matrix for this 

prediction model. It indicates that the prediction model is very good at predicting for the “dislike” 

bin and above average at predicting for the “like” bin. 

 Predicted 

class 

a b 

Actual 

class 

a = 40 11 1 

b = 80 5 7 

Table 4.5.2: Confusion matrix for overall best prediction model 
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4.6 Pokémon Go Tests 

In the Pokémon Go experiment we had five participants. One was female and four were 

male. The weight of participants ranged from 100 lbs to 200lbs. Participants were limited to 

college students and the age range was 18-21 with a standard deviation of 1.41 and a mean of 

19. The participant’s heights ranged from 5’0” to 6’4”, with a standard deviation of 5.932’, and a 

mean of 69.8’. None of them spent any time playing any exercise game during the week. A 

summary of this information is presented in ​Table 4.6.1​. 

Gender 
Split 

Weight range Age 
Range 

Age 
std 
dev. 

Age 
mean 

Height 
Range 

Height std 
dev. 

Height 
Mean 

4 male,  
1 female 

100 lbs - 200 
lbs 

18-21 1.41 19 5’0” - 6’4” 5.932’ 69.8’ 

Table 4.6.1: Summary of demographics from Pokemon Go experiment 
 

To test the accuracy of our prediction model on other exergame genres, we applied our 

overall best prediction model to our Pokemon Go data and obtained a 75% accuracy with a 

kappa statistic of 0 and an ROC area weighted average of 0.333. ​Table 4.6.2​ shows the 

corresponding confusion matrix, which tells us that all predictions were made for the “like” bin. 

 Predicted 

class 

a b 

Actual 

class 

a = 40 0 1 

b = 80 0 3 

Table 4.6.2: Confusion matrix for overall best prediction model used with Pokemon Go data 
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With an accuracy of 75%, we would normally conclude that the prediction model had the 

same accuracy regardless of whether the data came from Pokemon Go or Just Dance Now. 

However, the high accuracy of the results is skewed because we only obtained Pokemon Go 

data from four participants. The sub-optimal kappa statistic value of 0 that is equivalent to 

random guessing, the weak ROC area weighted average value of 0.333, and the confusion 

matrix showing that all predictions were made for the “like” bin leads us to conclude that we do 

not have sufficient Pokemon Go data to properly test our prediction model on. 

  

53 



 

 

5 Conclusions 

Exergames offer one potential solution to the societal problem of physical inactivity. 

Although exergames can get users active who would normally not consider physical activity, 

games a problem with player retention. To solve this problem the CyPRESS (Cyber Physical 

Recommender System) is being developed. 

 The purpose of our project was to use machine learning classifiers to predict user 

enjoyment of exercise games from smartphone sensor data.  

We aimed to develop an approach towards predicting user enjoyment by collecting 

sensor data, extracting features from the sensor data, and then creating a prediction model from 

these features in Weka. This was meant to work as a first step towards eventually creating a 

recommender system.  

 Through our experiments and our subsequent creation of prediction models, we were 

able to draw conclusions about the validity of our methods for calculating E-scores, and 

determine the most predictive features, the best classifier types and criteria for the best 

prediction model. 

5.1 E-score Calculator Correlates to User Enjoyment 

Our method for calculating E-scores effectively captures user enjoyment. As shown in 

Figure 4.1.5​, when we compared the calculated E-scores to the question in our survey that 

explicitly asked if they enjoyed the game, there was correlation between their E-score and their 

answer to this question. The graph shows this, as in the box and whisker plots for the yes and 

no answers, there is no overlap between the player’s E-scores for these questions. 
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5.2 Feature Selection using Correlation was 

Effective 

It was more effective to build a model using a smaller number of features that correlate 

with a p-value < 0.05, rather than a larger number of features with weaker correlation or p-value 

> 0.05. Our results show this because when we built models with our full list of 31 features, 

compared to when we built our models with only the features with p-value < 0.05, the models 

that were built with the small list of features with a better p-value performed better on average. 

This can be seen in Appendix E.  

From our analysis, we could also conclude that since the spectral density peak 

(radioSpectralPeak in the p-value tables) and the energy in 0.5Hz to 3Hz features had the 

greatest correlation with p-value < 0.05 to E-score, differences in the amount of energy a person 

expended was the easiest way to tell the difference in enjoyment levels. This means that people 

who were expending more energy, or people that were moving more, were enjoying the game 

more than people who were moving less. 

5.3 Final Model 

Our most effective prediction model was created using the Naive Bayes classifiers, with 

two prediction bins of 0 to 40 and 41 to 80. There was an equal number of sessions in each bin 

via sampling and only included the statistically significant features of energy in 0.5hz to 3hz, 

windowed energy in 0.5hz to 3hz, and radioSpectralPeak_DCT. To populate our training set for 

the 41-80 bin, we took samples of 12 sessions that had E-scores in the 41-80 bin in order to 
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match the number of sessions from the first bin. 

The prediction model was more accurate when we had an equal number of sessions in 

each bin. Having bins with an equal number of sessions was more effective because it 

prevented the case where the model would predict the bin with the most sessions, causing 

prediction errors. Since the average E-score of our participants was above the cutoff E-score 

cutoff of 40 for enjoyment, the model was less accurate because it would almost always guess 

that people enjoyed the game purely because a majority of the people did. This is reflected in 

the confusion matrix and the lower Kappa statistic and ROC values from the models with the 

equal sized bins seen in ​Table 4.5.1​.  

Another factor that affected prediction accuracy the most was the range of each bin. The 

prediction model was more accurate when we used bins of equal ranges around the neutral 

value compared to bins of unequal ranges. For example, having 2 bins ranging from 0 to 40 and 

41 to 80 performed better than having bins ranging from 0 to 59 and 60 to 80. To be precise, the 

best classifier from the 2 bins with equal ranges had 75% correct classification, while the bins 

with unequal ranges maxed out at 65% correct classification. This is likely due to the fact that 

the neutral value for enjoying the game was 40, which makes for a better split than having the 

split be at 59. 

Examining our results, we saw that when the prediction model was created with data 

from the song that all participants played (the first song), it performed better than the prediction 

model that used all of the data from both songs , as can be seen in ​Figure 4.5.1​. the classifier 1

that was built with only first song data had a correct classification percentage of 69%, while the 

best both songs classifier had 65% correct classification. This is because when the model was 

created with a specific song, it would be better at predicting player enjoyment with that specific 

song. However, since building a prediction model on just one song does not lead to a 

1 ​Note that we are talking about the models where sampling was not involved 
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generalizable model, we chose to use the prediction model that was built with data from all of 

the songs that users selected. 

5.4 Overall  

In general, it is feasible to create a model that can predict user enjoyment of Just Dance 

Now from their smartphone sensor data reasonably well. Our final model was able to correctly 

classify enjoyment 75% of the time for 2 bins (enjoy, not enjoy). However, our model is trained 

using very sparse data on subjects who did not enjoy the game. We believe that if we had more 

motion data from people who did not enjoy Just Dance Now, it is possible that the prediction 

model would have been able to perform even better. 

5.5 Future Work 

Although we found our project to be reasonably successful, there is a great deal of future 

work that could further improve the prediction model and offer useful context for the model’s 

success.  

● More data on subjects that did not enjoy the exergame (Low e-Score): ​As was previously 

discussed, our classifier would have likely performed better if we had more mobile sensor 

data of participants that did not enjoy the game. This means that when doing experiments 

regarding exergames, it is important to have a roughly equal percentage of users that 

enjoyed and did not enjoy the game. Because it is easier to build a successful prediction 

model when there is an equal number of people enjoying and not enjoying a game, we 

recommend that more games users are likely to enjoy less than Just Dance Now be used in 

future exergame experiments. 
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● More Pokemon Go data: ​When we tested our overall best prediction model on Pokemon Go 

data, we were unable to come to a decisive conclusion due to a lack of experimental data. 

Gathering more Pokemon Go data would allow for a proper test our prediction model and 

come to a conclusion on the feasibility of using our prediction model for Just Dance Now for 

other genres of exergames. 

● Comparison of our enjoyment classifier with human raters: ​It would also be useful to 

measure the success rate of our prediction model in predicting player enjoyment against the 

success rate of another person predicting player enjoyment. This could be done by running 

more Just Dance Now dancing experiments and having a human rater present. The rater 

would observe an individual’s dancing and guess if they were enjoying the game or not 

(guess their e-Score from preset ranges). The human guesser could base their guess on the 

player’s facial expressions, dancing patterns and more. The human rater’s success rate 

would then be compared to the prediction model’s success rate to determine how useful the 

prediction model is. 

● Creating a model from different genres of exergames: ​Considering that our project mainly 

prioritized building a prediction model with Just Dance Now, future experiments should focus 

more on building a model that can be generalized across different games, and games of 

different genres. This may require gathering different mobile sensor per genre, such as the 

touch sensor. ​Figure 5.5.1​ and ​Figure 5.5.2​ depict the difference in accelerometer readings 

from Just Dance Now and from Pokemon Go respectively. While some features of the 

games can be seen, the touch sensor could be much more indicative of user enjoyment 

when playing Pokemon Go than accelerometer. 

● Experiment with other feature selection algorithms: ​Lastly, we recommend that future works 

continue to try out different combinations of features and create new features with new 

sensor data. One way to do so is to utilize Weka’s Attribute Selection Filter feature, which 
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automatically chooses features to use for machine learning classification. 

 

 

Figure 5.5.1: Just Dance Now Accelerometer Magnitude over time 

 

Figure 5.5.2: Pokemon Go Accelerometer Magnitude over time 
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Appendices  

Appendix A - Game Experience Questionnaire 

This shows the Game Experience Questionnaire, or GEQ, which is one method for 

determining player enjoyment. We chose to use a different questionnaire to create baseline 

E-scores, which can be seen in Appendix B. 

Game Experience Questionnaire – Core Module  

Please indicate how you felt while playing the game for each of the items, on the following 
scale:  
not at all slightly moderately fairly extremely  
0 1 2 3 4  
  
1 I felt content   
2 I felt skillful   
3 I was interested in the game's story   
4 I thought it was fun   
5 I was fully occupied with the game   
6 I felt happy   
7 It gave me a bad mood   
8 I thought about other things   
9 I found it tiresome   
10 I felt competent   
11 I thought it was hard   
12 It was aesthetically pleasing   
13 I forgot everything around me   
14 I felt good   
15 I was good at it   
16 I felt bored   
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17 I felt successful   
18 I felt imaginative   
19 I felt that I could explore things   
20 I enjoyed it   
21 I was fast at reaching the game's targets   
22 I felt annoyed   
23 I felt pressured   
24 I felt irritable   
25 I lost track of time   
26 I felt challenged   
27 I found it impressive   
28 I was deeply concentrated in the game   
29 I felt frustrated   
30 It felt like a rich experience   
31 I lost connection with the outside world   
32 I felt time pressure   
33 I had to put a lot of effort into it    

In-game GEQ  

Please indicate how you felt while playing the game for each of the items, on the following 
scale:  
not at all slightly moderately fairly extremely  
0 1 2 3 4  
  
1 I was interested in the game's story GEQ Core – 3  
2 I felt successful GEQ Core – 17  
3 I felt bored GEQ Core – 16  
4 I found it impressive GEQ Core – 27  
5 I forgot everything around me GEQ Core – 13  
6 I felt frustrated GEQ Core – 29  
7 I found it tiresome GEQ Core – 9  
8 I felt irritable GEQ Core – 24  
9 I felt skillful GEQ Core – 2  
10 I felt completely absorbed GEQ Core – 5  
11 I felt content GEQ Core – 1  
12 I felt challenged GEQ Core – 26  
13 I had to put a lot of effort into it GEQ Core – 33  
14 I felt good GEQ Core – 14  
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GEQ - Social Presence Module  

Please indicate how you felt while playing the game for each of the items, on the following 
scale:  
not at all slightly moderately fairly extremely  
0 1 2 3 4  
 
1 I empathized with the other(s)   
2 My actions depended on the other(s) actions   
3 The other's actions were dependent on my actions   
4 I felt connected to the other(s)   
5 The other(s) paid close attention to me   
6 I paid close attention to the other(s)   
7 I felt jealous about the other(s)   
8 I found it enjoyable to be with the other(s)   
9 When I was happy, the other(s) was(were) happy   
10 When the other(s) was(were) happy, I was happy   
11 I influenced the mood of the other(s)   
12 I was influenced by the other(s) moods   
13 I admired the other(s)   
14 What the other(s) did affected what I did   
15 What I did affected what the other(s) did   
16 I felt revengeful   
17 I felt schadenfreude (malicious delight)   

GEQ – post-game module  

Please indicate how you felt after you finished playing the game for each of the items, on the 
following scale:  
not at all slightly moderately fairly extremely  
0 1 2 3 4  
  
1 I felt revived   
2 I felt bad   
3 I found it hard to get back to reality   
4 I felt guilty   
5 It felt like a victory   
6 I found it a waste of time   
7 I felt energised   
8 I felt satisfied   
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9 I felt disoriented   
10 I felt exhausted   
11 I felt that I could have done more useful things   
12 I felt powerful   
13 I felt weary   
14 I felt regret   
15 I felt ashamed   
16 I felt proud   
17 I had a sense that I had returned from a journey   

Scoring guidelines  

Scoring guidelines GEQ Core Module  
The Core GEQ Module consists of seven components; the items for each are listed below.  
  
Component scores are computed as the average value of its items.  
Competence: Items 2, 10, 15, 17, and 21.  
Sensory and Imaginative Immersion: Items 3, 12, 18, 19, 27, and 30.  
Flow: Items 5, 13, 25, 28, and 31.  
Tension/Annoyance: Items 22, 24, and 29.  
Challenge: Items 11, 23, 26, 32, and 33.  
Negative affect: Items 7, 8, 9, and 16.  
Positive affect: Items 1, 4, 6, 14, and 20.  
  
Scoring guidelines GEQ In-Game version  
The In-game Module consists of seven components, identical to the core Module. However, 
only two items are used for every component. The items for each are listed below.  
Component scores are computed as the average value of its items.  
Competence: Items 2 and 9.  
Sensory and Imaginative Immersion: Items 1 and 4.  
Flow: Items 5 and 10.  
Tension: Items 6 and 8.  
Challenge: Items 12 and 13.  
Negative affect: Items 3 and 7.  
Positive affect: Items 11 and 14.  
  
Scoring guidelines GEQ Social Presence Module  
The Social Presence Module consists of three components; the items for each are listed below.  
Component scores are computed as the average value of its items.  
Psychological Involvement – Empathy: Items 1, 4, 8, 9, 10, and 13.  
Psychological Involvement – Negative Feelings: Items 7, 11, 12, 16, and 17.  
Behavioural Involvement: Items 2, 3, 5, 6, 14, and 15.  
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Scoring guidelines GEQ Post-game Module  
The post-game Module consists of four components; the items for each are listed below.  
Component scores are computed as the average value of its items.  
Positive Experience: Items 1, 5, 7, 8, 12, 16.  
Negative experience: Items 2, 4, 6, 11, 14, 15.  
Tiredness: Items 10, 13.  
Returning to Reality: Items 3, 9, and 17.  
 
 
 
 
 
 
 
 
 
 

Appendix B - Immersive Experience Questionnaire 

This appendix shows the questionnaire that we administered to see if participants 

actually enjoyed playing the game. The answers that participants submitted were then 

converted in each individual’s E-score that would be used to build our models. 

Version 1 

Your personal experience of the game 

Please rate how far you would agree with the statements below just before you were 
interrupted. 

SD=strongly disagree; D=disagree; N=neutral; A=agree; SA=strongly agree. 

I felt that I really empathised/felt for with the game. 

SD D N A SA      

I did not feel any emotional attachment to the game. 
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SD D N A SA      

I was interested in seeing how the game's events would progress. 

SD D N A SA      

It did not interest me to know what would happen next in the game. 

SD D N A SA      

I was in suspense about whether I would win or lose the game. 

SD D N A SA      

I was not concerned about whether I would win or lose the game. 

SD D N A SA      

I sometimes found myself to become so involved with the game that I wanted to speak to the 
game directly. 

SD D N A SA      

I did not find myself to become so caught up with the game that I wanted to speak to directly to 
the game. 

SD D N A SA      

I enjoyed the graphics and imagery of the game. 

SD D N A SA      

I did not like the graphics and imagery of the game. 

SD D N A SA      

I enjoyed playing the game. 

SD D N A SA      

Playing the game was not fun. 

SD D N A SA      

The controls were not easy to pick up. 
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SD D N A SA      

There were not any particularly frustrating aspects of the controls to get the hang of. 

SD D N A SA      

I became unaware that I was even using any controls. 

SD D N A SA      

The controls were not invisible to me. 

SD D N A SA      

I felt myself to be directly travelling through the game according to my own volition. 

SD D N A SA      

I did not feel as if I was moving through the game according to my own will. 

SD D N A SA      

It was as if I could interact with the world of the game as if I was in the real world. 

SD D N A SA      

Interacting with the world of the game did not feel as real to me as it would be in the real world. 

SD D N A SA      

I was unaware of what was happening around me. 

SD D N A SA      

I was aware of surroundings. 

SD D N A SA      

I felt detached from the outside world. 

SD D N A SA      

I still felt attached to the real world. 

SD D N A SA      
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At the time the game was my only concern. 

SD D N A SA      

Everyday thoughts and concerns were still very much on my mind. 

SD D N A SA      

I did not feel the urge at any point to stop playing and see what was going on around me. 

SD D N A SA      

I was interested to know what might be happening around me. 

SD D N A SA      

I did not feel like I was in the real world but the game world. 

SD D N A SA      

I still felt as if I was in the real world whilst playing. 

SD D N A SA      

To me it felt like only a very short amount of time had passed. 

SD D N A SA      

When playing the game time appeared to go by very slowly. 

SD D N A SA      

How immersed did you feel? (10=very immersed; 0=not at all immersed) 

1 2 3 4 5 6 7 8 9 10 

 

Version 2 

Your experience of the game 

Please answer the following questions by circling the relevant number. In particular, 
remember that these questions are asking you about how you felt at the end of the 
game. 
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To what extent did the game hold your attention? 

Not at all 1 2 3 4 5 A lot 

To what extent did you feel you were focused on the game? 

Not at all 1 2 3 4 5 A lot 

How much effort did you put into playing the game? 

Very little 1 2 3 4 5 A lot 

Did you feel that you were trying you best? 

Not at all 1 2 3 4 5 Very much so 

To what extent did you lose track of time? 

Not at all 1 2 3 4 5 A lot 

To what extent did you feel consciously aware of being in the real world whilst playing? 

Not at all 1 2 3 4 5 Very much so 

To what extent did you forget about your everyday concerns? 

Not at all 1 2 3 4 5 A lot 

To what extent were you aware of yourself in your surroundings? 

Not at all 1 2 3 4 5 Very aware 

To what extent did you notice events taking place around you? 

Not at all 1 2 3 4 5 A lot 

Did you feel the urge at any point to stop playing and see what was happening around you? 

Not at all 1 2 3 4 5 Very much so 

To what extent did you feel that you were interacting with the game environment? 

Not at all 1 2 3 4 5 Very much so 

To what extent did you feel as though you were separated from your real-world environment? 

Not at all 1 2 3 4 5 Very much so 
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To what extent did you feel that the game was something you were experiencing, rather than 
something you were just doing? 

Not at all 1 2 3 4 5 Very much so 

To what extent was your sense of being in the game environment stronger than your sense of 
being in the real world? 

Not at all 1 2 3 4 5 Very much so 

At any point did you find yourself become so involved that you were unaware you were even 
using controls? 

Not at all 1 2 3 4 5 Very much so 

To what extent did you feel as though you were moving through the game according to you 
own will? 

Not at all 1 2 3 4 5 Very much so 

To what extent did you find the game challenging? 

Not at all 1 2 3 4 5 Very difficult 

Were there any times during the game in which you just wanted to give up? 

Not at all 1 2 3 4 5 A lot 

To what extent did you feel motivated while playing? 

Not at all 1 2 3 4 5 A lot 

To what extent did you find the game easy? 

Not at all 1 2 3 4 5 Very much so 

To what extent did you feel like you were making progress towards the end of the game? 

Not at all 1 2 3 4 5 A lot 

How well do you think you performed in the game? 

Very poor 1 2 3 4 5 Very well 

To what extent did you feel emotionally attached to the game? 

Not at all 1 2 3 4 5 Very much so 
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To what extent were you interested in seeing how the game's events would progress? 

Not at all 1 2 3 4 5 A lot 

How much did you want to “win” the game? 

Not at all 1 2 3 4 5 Very much so 

Were you in suspense about whether or not you would win or lose the game? 

Not at all 1 2 3 4 5 Very much so 

At any point did you find yourself become so involved that you wanted to speak to the game 
directly? 

Not at all 1 2 3 4 5 Very much so 

To what extent did you enjoy the graphics and the imagery? 

Not at all 1 2 3 4 5 A lot 

How much would you say you enjoyed playing the game? 

Not at all 1 2 3 4 5 A lot 

When interrupted, were you disappointed that the game was over? 

Not at all 1 2 3 4 5 Very much so 

Would you like to play the game again? 

Definitely not 1 2 3 4 5 Definitely yes 

Appendix C - Just Dance Now Surveys 

This appendix shows the full Just Dance Now questionnaire. This shows the 

demographic section as well as the section in Appendix B. 
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Appendix D - Weka Data 

This appendix shows important Weka output data for all prediction models created, 

including correctly classified instances, kappa statistic, and ROC Area weighted average. 

Weka Results 

All Songs 2 Buckets All Features 59 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

57.0% 56.0% 62.0% 58.0% 

Kappa Statistic 0.137 0.120 0.235 0.157 

ROC Area 

Weighted 

Average 

0.622 0.567 0.617 0.562 

  

All Songs 2 Buckets 3 Features 59 (radioSpectralPeak, radioSpectralPeak_FFT, 

radioSpectralPeak_DCT) 

  Random 

Forest 

J48 SMO Naïve Bayes 
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Correctly 

Classified 

Instances 

52.0% 65.0% 65.0% 62.0% 

Kappa Statistic 0.040 0.293 0.292 0.232 

ROC Area 

Weighted 

Average 

0.546 0.613 0.644 0.599 

  

All Songs 2 Buckets 13 Features 59 (Principal Components attribute selection, Ranker 

search) 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

55.0% 51.0% 56.0% 52.0% 

Kappa Statistic 0.098 0.011 0.115 0.043 

ROC Area 

Weighted 

Average 

0.548 0.522 0.557 0.486 
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All Songs 2 Buckets All Features 40 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

86.0% 85.0% 88.0% 53.0% 

Kappa Statistic -0.036 0.204 0.000 0.074 

ROC Area 

Weighted 

Average 

0.714 0.665 0.500 0.699 

  

All Songs 2 Buckets 3 Features 40 (radioSpectralPeak, radioSpectralPeak_FFT, 

radioSpectralPeak_DCT) 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

86.0% 88.0% 88.0% 59.0% 

Kappa Statistic -0.036 0.000 0.000 0.167 

ROC Area 0.406 0.424 0.500 0.679 
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Weighted 

Average 

  

All Songs 3 Buckets All Features 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

35.0% 36.0% 36.0% 36.0% 

Kappa Statistic 0.024 0.040 0.038 0.038 

ROC Area 

Weighted 

Average 

0.529 0.537 0.502 0.545 

  

All Songs 3 Buckets 3 Features (radioSpectralPeak, radioSpectralPeak_FFT, 

radioSpectralPeak_DCT) 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

42.0% 39.0% 42.0% 46.0% 
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Instances 

Kappa Statistic 0.129 0.080 0.124 0.186 

ROC Area 

Weighted 

Average 

0.576 0.501 0.562 0.591 

  

All Songs 6 Buckets All Features 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

17.0% 24.0% 19.0% 16.0% 

Kappa Statistic 0.001 0.087 0.024 -0.012 

ROC Area 

Weighted 

Average 

0.597 0.520 0.540 0.537 

  

All Songs 6 Buckets 3 Features (radioSpectralPeak, radioSpectralPeak_FFT, 

radioSpectralPeak_DCT) 

  Random J48 SMO Naïve Bayes 
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Forest 

Correctly 

Classified 

Instances 

22.0% 15.0% 16.0% 25.0% 

Kappa Statistic 0.062 -0.022 -0.015 0.098 

ROC Area 

Weighted 

Average 

0.514 0.511 0.496 0.526 

  

All Songs 10 Buckets All Features 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

10.0% 20.0% 19.0% 19.0% 

Kappa Statistic -0.006 0.109 0.088 0.099 

ROC Area 

Weighted 

Average 

0.551 0.546 0.547 0.612 
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All Songs 10 Buckets 3 Features (radioSpectralPeak, radioSpectralPeak_FFT, 

radioSpectralPeak_DCT) 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

09.0% 13.0% 11.0% 17.0% 

Kappa Statistic -0.016 0.031 -0.010 0.072 

ROC Area 

Weighted 

Average 

0.431 0.481 0.476 0.523 

  

First Songs 2 Buckets All Features 59 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

59.2% 53.1% 65.3% 69.4% 

Kappa Statistic 0.183 0.059 0.30 0.389 

ROC Area 0.648 0.497 0.651 0.677 
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Weighted 

Average 

  

First Songs 2 Buckets 3 Features 59 (radioSpectralPeak, radioSpectralPeak_FFT, 

radioSpectralPeak_DCT) 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

59.2% 51.0% 57.1% 59.2% 

Kappa Statistic 0.182 0.025 0.153 0.191 

ROC Area 

Weighted 

Average 

0.628 0.578 0.466 0.602 

  

First Songs 2 Buckets 1 Feature 59 (radioSpectralPeak_DCT) 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

51.1% 55.1% 65.3% 65.3% 
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Instances 

Kappa Statistic 0.145 0.109 0.316 0.310 

ROC Area 

Weighted 

Average 

0.611 0.510 0.660 0.677 

  

First Songs 2 Buckets All Feature 40 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

83.7% 81.6% 85.7% 63.3% 

Kappa Statistic -0.037 0.203 0.000 0.060 

ROC Area 

Weighted 

Average 

0.570 0.500 0.500 0.553 

  

First Songs 2 Buckets 3 Feature 40 (radioSpectralPeak, radioSpectralPeak_FFT, 

radioSpectralPeak_DCT) 

  Random J48 SMO Naïve Bayes 
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Forest 

Correctly 

Classified 

Instances 

85.7% 85.7% 85.7% 59.2% 

Kappa Statistic 0.170 0.000 0.000 0.091 

ROC Area 

Weighted 

Average 

0.384 0.333 0.500 0.616 

  

First Songs 2 Buckets 1 Feature 40 (radioSpectralPeak_DCT) 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

75.5% 85.7% 85.7% 85.7% 

Kappa Statistic 0.000 0.000 0.000 0.000 

ROC Area 

Weighted 

Average 

0.468 0.333 0.500 0.498 
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First Songs 3 Buckets All Features 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

30.6% 34.7% 26.5% 30.6% 

Kappa Statistic -0.048 0.008 -0.129 -0.050 

ROC Area 

Weighted 

Average 

0.459 0.500 0.448 0.507 

  

First Songs 3 Buckets 3 Features (radioSpectralPeak, radioSpectralPeak_FFT, 

radioSpectralPeak_DCT) 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

42.9% 32.7% 32.7% 42.86% 

Kappa Statistic 0.132 -0.031 -0.051 0.129 

ROC Area 0.553 0.459 0.507 0.563 
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Weighted 

Average 

  

First Songs 3 Buckets 1 Features (radioSpectralPeak_DCT) 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

24.5% 34.7% 36.7% 51.0% 

Kappa Statistic -0.137 0.005 0.007 0.246 

ROC Area 

Weighted 

Average 

0.376 0.408 0.518 0.585 

  

First Songs 6 Buckets All Features 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

30.6% 18.37% 20.4% 16.3% 
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Kappa Statistic 0.162 0.014 0.027 -0.008 

ROC Area 

Weighted 

Average 

0.565 0.529 0.558 0.517 

  

First Songs 6 Buckets 3 Features (radioSpectralPeak, radioSpectralPeak_FFT, 

radioSpectralPeak_DCT) 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

24.5% 20.4% 18.4% 12.2% 

Kappa Statistic 0.094 0.050 -0.020 -0.064 

ROC Area 

Weighted 

Average 

0.587 0.546 0.467 0.429 

  

First Songs 6 Buckets 1 Feature (radioSpectralPeak_DCT) 

  Random 

Forest 

J48 SMO Naïve Bayes 
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Correctly 

Classified 

Instances 

12.2% 16.3% 18.4% 24.5% 

Kappa Statistic -0.056 -0.018 -0.019 0.079 

ROC Area 

Weighted 

Average 

0.465 0.503 0.432 0.478 

  

All Songs Even Split 40 2 Buckets All Features 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

54.2% 50.0% 62.5% 62.5% 

Kappa Statistic 0.083 0.000 0.250 0.250 

ROC Area 

Weighted 

Average 

0.517 0.483 0.625 0.624 

  

All Songs Even Split 40 2 Buckets 3 Features (energy in _5 to 3, windowed energy in _5 
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to 3, and radioSpectralPeak_DCT). *Note that we added radioSpectralPeak_DCT 

because it had a P-value of 0.0502, which is close enough to having a P-value below 

0.05 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

66.7% 70.8% 66.7% 75.0% 

Kappa Statistic 0.333 0.417 0.333 0.500 

ROC Area 

Weighted 

Average 

0.715 0.590 0.667 0.590 

  

All Songs Even Split 40 2 Buckets 2 Features (windowed energy in _5 to 3, energy in _5 

to 3) 

  Random 

Forest 

J48 SMO Naïve Bayes 

Correctly 

Classified 

Instances 

66.7% 70.8% 50.0% 70.8% 
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Kappa Statistic 0.333 0.417 0.000 0.417 

ROC Area 

Weighted 

Average 

0.708 0.590 0.500 0.556 
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