
Evaluation of DCBT

A Major Qualifying Project

Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor Science

By

Brian Conway

Charles McAuley

Jonathan Yurek

Date February 28, 2002

Approved:

 Professor Mark Claypool, Advisor

2

Abstract

This project implemented the Dynamic Class Based Threshold (DCBT) queue

management algorithm in addition to a packet requeuing mechanism called Cut-In Packet

Scheduling (ChIPS). These algorithms were then compared to other popular queue

management schemes. To achieve this goal, code was developed as an extension to the

Linux kernel. Extensive testing of DCBT, ChIPS, and other Linux queuing mechanisms

took place in a controlled environment. Testing showed that these implementations were

effective and fair as queue management schemes.

3

Table of Contents

1. Introduction 4
2. Related Work 10

2.1 Probability Based Queues 10
2.2 Class Based Scheduling 12
2.3 Packet Requeuing 15

3. Approach 18
3.1 CBT Implementation 18
3.2 DCBT Implementation 19
3.3 ChIPS Implementation 21

4. Experiments 23
4.1 Setup 23

4.1.1 Physical Layout 23
4.1.2 Computer Setup 24

4.2 Testing 26
4.2.1 Tools 26
4.2.2 Tests 27

5. Results and Analysis 30
5.1 Throughput 30
5.2 Jitter 35
5.3 CPU Utilization 36
5.4 Memory Usage 38

6. Conclusions 40
6.1 DCBT 40
6.2 CBT 41
6.3 ChIPS 41

7. Future Work 43
7.1 Implementation 43
7.2 Experiments 44

8. References 46

4

Chapter 1: Introduction

The explosive growth of the Internet has created an opportunity for a wide range of

applications to be quickly deployed over only a few years. The ever-increasing demand

for bandwidth requires current traffic flows to be optimized as much as possible. The

demand for streaming video and audio, along with the wide spread use of email and

sharing of files among many users creates many kinds of traffic present in the Internet.

While many algorithms and approaches exist at the application level in order to

effectively send multimedia data, many of the bottlenecks involved in transmissions can

be found not at the destination, or even the source, but in-between, with the routers and

their queue management schemes.

Multimedia data has different requirements compared to most other traffic on the

Internet, in that its data is time sensitive and can tolerate various amount of data loss.

Multimedia traffic tends to make heavy use of the UDP protocol rather than TCP, as the

data is rate-based and does not need guaranteed delivery. Most router queue management

schemes do not accommodate for this difference between multimedia traffic and other

unresponsive UDP flows, and either punishes both, or treats all flows with an equal

discrepancy.

Unnecessary congestion can be easily simulated and explained by the lack of congestion

control in the UDP specification. As a protocol, it does not take into consideration the

dropping of its packets from a router's queue as a signal of congestion. UDP can be

responsive to traffic congestion, but this responsiveness must be implemented at an

5

application level. Unresponsive UDP traffic, interested in simply transferring the

information from source to destination can end up taking bandwidth from other, more

"well behaved" traffic. Such UDP flows can effectively fill a simple FIFO queuing

mechanism quickly and cause the router to start dropping packets from the top of its

queue.

The default best-effort IP packet-forwarding service is typically implemented in routers

by a single, fixed-size, First-In First-Out (FIFO) queue shared by all packets transmitted

over and outbound link. Router implementations using a simple fixed-size FIFO queue

typically just drop any packet that arrives to be queued to an already-full outbound queue.

This behavior is often called drop-tail packet discarding. The queue provides a simple

capacity for tolerating variability in the load, such as bursty traffic, on the outbound link.

A short burst of packet arrivals may exceed the available bandwidth of the link even

when the average load is well below the link bandwidth. However, when the average

load exceeds the available capacity of the link for sustained periods of time, an

unacceptably high amount of traffic is generated, resulting in drastically reduced

performance of the network.

Active Queue Management (AQM) techniques involve predicating when a router's queue

is under threat of filling up, and dropping packets according to certain probabilities

before the queue fills. Such AQM techniques include RED [FJ93] and BLUE [FKSS99],

and while some success has come from these approaches, they do not address the

problem of identifying unresponsive flows, and instead risk punishing weak or responsive

6

protocols, such as TCP. RED (Random Early Detection), one of the earliest and most

well known AQM techniques, increases its probability of dropping a packet as the router

queue grows and notifies senders of dropped packets of router congestion. However,

congestion-aware flows are, at best, just as likely to be dropped as non-responsive flows.

At worst, these flows can lose their fair share of the router queue because while they

curtail their own bandwidth properly, while a non-responsive flow will continue to flood

the router with packets. BLUE's approach is similar to RED in that it drops packets

according to queue size, but instead of using a set of complex settings adjusted by the

router administrator to determine the probability of dropping a packet, it adjusts its

probability according to the instantaneous queue size, based on previous changes in

traffic. This approach can allow for a much more even limiting effect on the growth of

the queue, but still neglects the difference between congestion-aware and non-

congestion-aware flows.

A different approach to coping with network congestion involves classifying traffic into

per-flow states. These states attempt to control the amount of bandwidth available to

each flow traveling through the router, and punish flows that take more than their fair

share. One such method is Flow Random Early Drop (FRED) [LM97]. FRED keeps

track of each flow and attempts to protect them from each other. If a flow is non-

responsive then it is incorporated into the RED algorithm and the flow is dropped with

normal drop probability. However, if a flow is marked as unresponsive, then any time

that flow takes more than its fair share, its packets are dropped, even if the queue is not

under threat of congestion. This means that responsive flows can still be punished

7

unnecessarily, if they take more than their fair share even if for only a short while.

A problem with most of the queue management schemes we have discussed so far is that

they make no differentiation between different types of traffic and the responsiveness of

the flows. These different types of flows are often called classes. One class-based

approach is Class-Based Queuing (CBQ) [FJ95]. CBQ isolates each different class of

traffic and allots each a configurable amount of bandwidth. Each class of traffic is given

its own queue which can have other management algorithms laid on top of it, such as

priority queuing for real-time multimedia classes, or RED and similar algorithms for

other flows instead of the typical drop-tail FIFO. However, the ability to quickly

determine and classify all the separate types of traffic becomes very difficult as more

classes are added.

Class Based Threshold (CBT) [CC00a] is similar to CBQ, but introduces more stringent

rules to protect TCP flows. As opposed to CBQ's division of bandwidth, CBT sets

different thresholds for three different types of flows: TCP, Multimedia UDP, and non-

responsive UDP. According to the CBT algorithm, TCP traffic is always subject to RED,

while flows in other classes have their average number of incoming packets compared

against set thresholds, and if the average is above, than the next incoming packet is

dropped, while if the average is below, then the flow's queue is subject only to RED.

This prevents unresponsive flows from interfering with well-behaved TCP traffic by

punishing the well-behaved traffic unnecessarily, while at the same time not punishing

congestion-aware UDP flows. Still, like most other methods, CBT has preset thresholds

8

for its different classes, which may not always be set properly for the local network

environment.

Dynamic-CBT (DCBT) [CC00a, CC00b], which we have implemented, has been

proposed as a way to address the problem of these preset thresholds not being suitable for

the local network environment under all conditions. DCBT functions by dynamically

assigning the thresholds for UDP connections in a congested link as the makeup of the

traffic through a router changes [CC00a]. This is necessary due to the congestion-

unfriendly behavior of UDP traffic. DCBT does this in such a way that all the UDP

connections share the available bandwidth that has been given to the UDP class, although

there still may be contention within the UDP class. This will allow the router to adapt to

congested network conditions as the nature of the connections changes. Before our

implementation, this had only been accomplished in simulation.

In addition to DCBT, we have implemented a multimedia-favored scheduling algorithm

called Cut-In Packet Scheduling (ChIPS), which is a means to improve the transport of

multimedia traffic [CC00b]. ChIPS was designed to be an alternative to the FIFO packet

scheduling algorithm, and can be implemented underneath DCBT and as well as any

other RED-based AQM schemes. ChIPS functions by monitoring the queue rates of

flow-controlled UDP flows, and is called upon whenever these flows are using less

bandwidth than the TCP flows. Whenever line congestion is such that queue length of

the UDP flows is greater than the average queue length, ChIPS will reward this flow-

controlled UDP traffic by allowing their packets to cut ahead of other packets in the

9

queue, up to the average queue length.

We have implemented both DCBT and ChIPS as modules in the Linux kernel in order to

gauge effectiveness and fairness in dividing bandwidth in a non-simulated environment.

We created a test bed network and measured bandwidth, jitter, CPU usage, and other

statistics used by various TCP and UDP connections across our test router for both DCBT

and ChIPS. We found that DCBT is a fair queuing method and can accommodate

changes in network traffic easily. We also found that ChIPS is an effective method for

allowing a decrease in round trip time for multimedia packets without hurting the overall

bandwidth of the class structure.

In Chapter 2, Related Work, we introduce related queuing mechanisms and detail their

strengths and weaknesses. Chapter 3, Approach, highlights our methods for

implementing CBT, DCBT, and ChIPS in the Linux kernel. Chapter 4, Experiments,

details the process we used for evaluating the various queuing methods, including the

layout of our network and descriptions of our tools. We present the findings of these tests

in Chapter 5, Results and Analysis. In Chapter 6, Conclusions, we draw conclusions

regarding the effectiveness of our work based on the results and analysis of the

experiments completed. Finally, Chapter 7, Future Work, lists what we believe should be

done to expand our work on DCBT and ChIPS.

10

Chapter 2: Related Work

Before any implementation of a router queue management schemes can be completed, a

study of other relevant router algorithms should be pursued. The first part of this chapter

details probability-based queues, and demonstrates the original need for them and the

drawbacks that the DCBT algorithm aims to correct. The second section explains some

of the class-based approaches to solving the different needs flows have when traveling

through a router's queue, including the approach used by DCBT. Finally, we conclude

this chapter explaining ChIPS and ABE and how they might provide better total service

rather than best-effort FIFO queues.

2.1 Probability Based Queues

The first large improvement in Active Queue Management (AQM) was the development

of Random Early Detection in 1993 by Sally Floyd [FJ93]. This new algorithm, termed

RED, was designed to ease router congestion. The algorithm itself was simple enough so

that it became the first widely accepted alternative to a standard FIFO queue. The

premise behind the implementation of RED was that as network congestion grew inside

the router, the probability of its queue filling up increased. In order to prevent this from

happening, it was proposed that as the queue grew in size, the probability for dropping a

new packet from the queue should increase, instead of waiting for the queue to become

full.

The RED algorithm makes use of one variable and two fixed values: average queue size,

maximum queue threshold, and minimum queue threshold. The average queue size for

11

each new packet is computed. If the average queue size is over the set maximum

threshold, then the packet is 'marked'. No marking occurs to a packet if the average

queue size is currently below the minimum queue threshold. However, if the average

queue size falls between the maximum queue threshold and minimum queue threshold,

then the packet is marked according to a probability determined by the average queue

size. By using the average size of the queue as part of calculating the probability to mark

a packet, RED is also able to handle transient congestion, where the queue quickly fills

for a short period of time due to bursty traffic, dropping more packets than necessary.

While RED does encourage responsive flows to back off, unresponsive flows will still

continue to send as much information as before. While RED's algorithm more and more

aggressively attempts to drop packets to encourage flows to back off, the queue can

actually be overflowed with unresponsive flows that transmit at a rate higher than

capacity.

Another active queue management algorithm based on probabilistically marking packets

is BLUE [FKSS99]. BLUE's algorithm to determine drop probability is much simpler

than that of RED. Instead of setting threshold limits and testing the average queue length

against them, probability is incremented if the router's queue continuously overflows, and

decrements if the router queue is empty or stays idle. The probability is updated by a

fixed time interval referred to as a "freeze time." In preliminary tests, BLUE has shown

to provide approximately the same level as service as a well-configured RED router, but

with much less sensitivity to bursty traffic as it more gradually increases or decreases its

12

probability of marking packets compared to RED.

2.2 Class-Based Scheduling

The class based approaches to queue management attempt to take a different approach

than the queue modifications we have discussed thus far. Schemes such as RED and

BLUE attempt to create fairness on one given link for all traffic at any given time.

Examining the diversity of traffic on a given network would make it apparent that such a

method is not the best possible solution. These types of queue management schemes have

a tendency to punish the wrong flows by punishing everyone equally. While, under

certain circumstances, this would be a desirable effect, the responses of some flows of

traffic are much more detrimental to its overall bandwidth than the responses of others.

[LM97].

Class Based Queuing (CBQ) [FJ95] attempts to divide all flows into the type of service

they provide to keep link usage fair. A link's bandwidth is divided among the possible

types of service that a link will carry and also according to who will be using these

services. The division of bandwidth is determined by how much an individual or

business needs for their share, hence one agency's share might be a higher percentage of

the link than another's. Each of those shares could then be divided again on a per-service

basis inside each agency. If a class' bandwidth usage is above its specified limit, then

that class and all classes descended from it in the hierarchy are subject to attenuation by

the link scheduler.

13

The problem with such a management scheme is that the overhead on flow management

for Class Based Queuing is quite high. This can introduce higher latencies to the link,

which affects the router's performance. Class Based Threshold (CBT) [CC00a] attempts

to address this shortcoming by making much simpler assumptions and classifications on

the flows coming through the link. All CBT traffic is divided into three main categories:

TCP, tagged (or multimedia) UDP, and untagged (other) UDP. Identification of each

class has a very low overhead compared to CBQ, as no identification of agency or type of

data in each flow is needed.

CBT separates all traffic based on class and treats each class as a completely separate

entity. It sees that TCP traffic is responsive to congestion and that UDP is not. As such,

each flow is handled differently before being placed into a standard RED queue. When a

TCP packet arrives, it is not checked against the early drop test and is instead allowed to

pass into the RED queue normally. UDP, on the other hand, is checked for multimedia

tags and then given to the early drop test. The test used is set at a fixed rate, and if that

class threshold is crossed, then the packet is dropped. If tagged UDP enters the router

and the queue size is greater than the average queue size according to the RED

calculations, then the packet is dropped. Untagged UDP is treated in the same way, with

the exception being that it is compared to the RED minimum.

We have implemented DCBT [CC00a], which differs from standard CBT by the addition

of dynamic thresholds on a per-class basis. This requires the counting and identification

of flows in each of the three classes of traffic so that the thresholds can be adjusted

14

according to current traffic conditions. Flows are identified by using a combination of the

source and destination addresses, the Type of Service (ToS) field in the IP header, and a

timeout according to a user definable setting. The reasoning behind this method is that

while slow-sending flows (like telnet sessions) will actually be broken up into a number

of flows as far as the router is concerned, the low bandwidth and indeterminate (and

probable lack of interest concerning) latency of the actual flow is negligible compared to

the traffic on the router as a whole.

Another flow-based queuing scheme is Stochastic Fairness Queuing (SFQ) [M91], which

tries to be a fair method of queuing insofar as it does so without requiring the excessive

overhead of strict fair queuing. Keeping all the flows separate and treated fairly is an

expensive operation, and thus would not be good for implementation in a high traffic

router. SFQ attempts to create a low overhead method of pseudo-fair queuing based on

hash tables. SFQ separates the flows based on a hash key generated from the source and

destination of the packets in question. Using these two addresses, it makes it very quick

to reference any given flow for fairness checking and queue manipulation. However, it

sometimes turns out that two or more flows could end up having the same hash key,

which would mean that those two flows have to split a normally fair share of bandwidth.

To combat this problem, the kernel perturbs the hash key generation in such a way that it

is highly unlikely that these two pairs will be placed in the same flow again. The kernel

does this periodically in an attempt at keeping the flows' bandwidth fair and even. Still,

even with such protection from the kernel, SFQ's fairness isn't quite as fair as it could be,

15

and so is not ideal for a very high load router.

2.3 Packet Requeuing

Cut-In Packet Scheduling (ChIPS) [CC00b] is a means to improve the delivery of

multimedia connections. Its goal is to reduce multimedia jitter, or the lack of continuity

among successive connections in multimedia applications over a network, due to packet

loss. ChIPS is designed to be an alternative to the FIFO packet scheduling algorithm, and

can be implemented underneath any other RED-based AQM schemes, CBT, or DCBT.

ChIPS functions by monitoring the queue rates of tagged UDP flows, and is called upon

whenever these flows are using less bandwidth than the TCP flows. Whenever link

congestion is such that the queue length of the UDP flows is greater than the average

queue length, ChIPS will reward UDP traffic by allowing their packets to cut ahead of

other packets in the queue up to the average queue length.

By inserting these tagged UDP packets at the average queue length into a congested line,

ChIPS improves flow-controlled multimedia jitter by ensuring that more packets make it

to their destination in enough time to remove jitter without giving unfair bandwidth to the

present congestion. However, it is possible that in the process, this insertion could do

damage to the TCP flows, or even make them fail if a large enough delay was introduced

due to the multimedia traffic taking up a large amount of the available bandwidth and

because of an increase in out of order packet delivery.

Some algorithms, such as the RED queue mechanism discussed earlier, have no means to

16

monitor and control the queue buffer usage in the router among the different types of

flows, and because of that, it is important for ChIPS to monitor the average queue rate

itself and to turn on its functionality only when this ratio is minimal. The case is different

under CBT, however, because the UDP threshold can be manually set to use only a small

portion of the available queue. This behavior of CBT makes ChIPS' automatic control

feature unnecessary. Similarly, when ChIPS is used in conjunction with the DCBT

scheduling algorithm, the self-regulating nature of DCBT allows the ratio that turns off

ChIPS' functionality to be set much higher without hurting the fairness of the flows.

Alternative Best-Effort (ABE) [HKLT01] is an enhancement that is built on top of the IP

best-effort service. It is designed on the basis that providing low-delay at the expense of

potentially less throughput will yield a positive outcome in a congested link. The driving

ideas behind ABE are: First, there are many interactive multimedia applications at

present which will perform well despite a wide range of loss and bandwidth conditions,

but for which delay, which causes jitter, remains the major problem. Second, unlike

differentiated services, the ABE service is designed to not require the active tracking of

how much traffic is using the low delay capability contained therein.

The characteristics and requirements of ABE are defined as follows:

I. ABE packets are marked as either green or blue.

II. Green packets receive a low, bounded delay at every hop.

III. Green does not hurt blue. If a source decides to mark some of its packets green

rather than blue, then the delay and throughput received by sources that mark all their

17

packets blue remains the same, or becomes better.

IV. All ABE packets belong to a single best-effort class. If the total load is high, then

every source will receive little throughput. However, blue sources will experience

more throughput than green sources sharing the same network resources. [HKLT01]

These requirements are built on the design decision that green packets are more likely to

be dropped during periods of congestion than blue packets. Simply, ABE can be thought

of as allowing an application to make the tradeoff of delay for loss, or less throughput. It

accomplishes this by marking some packets green. The third requirement, green does not

hurt blue, comes from the goal that the color chosen by an application does not need to be

actively monitored. When the third requirement is enforced, then an application which

decides to mark some packets green must do so because it values the low delay more so

than a potential increase in loss or a decrease in throughput. Otherwise, it would mark its

packets blue. In all cases, there is no penalty for other applications that could choose to

mark all their packets blue.

ABE supports traffic that might be solely TCP-friendly traffic, non-TCP-friendly, or a

mixture of the two. The downside to the ABE service is that applications which wish to

make use of its advantages must be rewritten to do so, and all the work cannot be

accomplished at the router level, like the scheduling algorithms discussed earlier. Since

an IP header mark would be required, ABE would also require the modification of the

operating system.

18

Chapter 3: Approach

We implemented CBT, DCBT, which differs from standard CBT by the addition of

dynamic thresholds on a per-class basis, and ChIPS on top of DCBT. We implemented

the following as loadable kernel modules for use with the Linux kernel. This benefited us

by using open source kernel to expand upon the included RED algorithm to fit the needs

of the CBT algorithms.

3.1 CBT Implementation

In order to accurately compare the differences between CBT and DCBT we chose to

implement the CBT algorithm as well as DCBT. This part of the implementation was

primarily focused on calculating the per-class averages. The averages were then

compared against fixed thresholds to determine whether the next incoming packet should

be dropped.

CBT culls any packets that fall outside of the thresholds set for that class. Only the UDP

packet thresholds are subject to this, however, because of the self-regulating properties of

TCP. The thresholds for all UDP traffic are used when the RED average queue size is

greater than the RED minimum threshold value. The suggested threshold for

multimedia-based packets is set at 10 packets. Unresponsive UDP packets have a

different threshold value set at 2 packets [CC00a]. If the length of the RED average

queue exceeds the RED maximum threshold value, then the router will drop the packet,

regardless of the type of traffic used by the packet.

19

After the thresholds for each of the queues has been determined, the queue behaves as a

standard RED queue. As such, the incoming packets that survive the CBT threshold test

are subject to RED rules and a packet gets dropped according to the random drop rate. If

a packet survives all drop tests, then the total count for packets is incremented, as well as

the count of packets for that traffic class. All surviving packets then continue to be

dequeued as normal.

3.2 DCBT Implementation

Another implemented queuing algorithm we implemented is DCBT. DCBT differs from

CBT in that it keeps track of how many flows of traffic are passing through the router,

and what type of traffic they are. This information proves useful in allowing CBT

thresholds to dynamically change according to type and quantity of traffic in use. In

order to achieve this functionality, a flow counter/classifier, new threshold test, and

memory collection routine was implemented.

Flows are identified using a combination of the source addresses, destination addresses,

and the protocol field in the IP header. By using simple hash key methods the classifier

is able to give each flow a unique key to identify it from others. However, the ability to

differentiate between flows coming from the same computer of the same protocol proved

beyond the scope of this project, but did not cause difficulty in attaining accurate results.

Multimedia traffic, or congestion sensitive UDP, is identified as all UDP traffic

originating from the IP address of one of the test machines. The hash keys for each flow

are contained in a linked list, the structure of which also contains an expiration time for

20

the flow (determined by the current time plus a tunable option in the code expressed in

centiseconds), the class of traffic, and an "inactive" flag that signifies that the flow had

expired. A new flow is identified as one that was not already in the linked list without

the inactive flag set. When such a flow is discovered, the count of the total number flows

incremented by one, as well as the count of the flows of that class of traffic. Since every

flow adds another element to the list of flows, as the number of flows increases, the

amount of memory required increases linearly with it.

After the flows have been classified and counted, a similar threshold test to CBT takes

place. The threshold for multimedia-based packets is set at the RED average queue size

multiplied by the multimedia packets share of the bandwidth. Unresponsive UDP packets

have a different threshold value set at a small amount of the impending state queue

buffers [C00a].

MM UDP = (mmflows/totalflows) * RED_avg
Other UDP = (udpflows/totalflows) * [RED_min - (RED_max - RED_min)*0.1]

The old flow collector, or memory collector, runs at a preset interval during normal

operation. This interval is configurable in the code, is expressed in centiseconds, and is

activated using standard Linux timers. When the collector is activated the current list of

flows is traversed and any flows that have passed their expire time have their inactive

flag set, and the count of total flows decremented as well as the count of flows of that

flow's traffic class. The inactive entry in the list is then available for reuse by new

incoming flows. Old flow memory is not deallocated back to the kernel, as it would be

more expensive to deallocate memory only to reallocate it in such brief periods of time,

causing the kernel to do more work through page faults and interrupts only to achieve a

21

similar result.

3.3 Implementation of ChIPS

The last queuing mechanism implemented was ChIPS, or Cut-In Packet Scheduling. This

algorithm was designed with the intent to lower latency outliers involved in delivery of

congestion sensitive multimedia traffic. This functionality is gained by moving some

multimedia packets ahead in the queue to the queue average during times when the queue

average is greater than the RED queue minimum, and the total number of flows twice or

more than that of multimedia flows.

The original implementation of ChIPS, which was implemented in the network simulator,

called for the inclusion of a "virtual queue" which was an almost exact copy of the

original queue. This second queue contained all the packets received in order, as would

have happened in a normal FIFO queue. This second queue was the one that was used in

all the threshold calculations, in order to prevent unfair bandwidth allocation from TCP

flows due to a faster drain rate of multimedia packets.

We opted to discard this queue. The virtual queue seems to offer negligible advantages

compared to the overhead involved in keeping track of every packet over again. We also

encountered problems in maintaining packet order. This was due to some packets being

queued ahead of an earlier queued packet, thus skewing jitter results that were dependent

on time of departure and time of arrival. This packet order problem needed its own

queuing mechanism, and instead of using kernel resources to keep a virtual queue we

22

decided to implement this new queue instead.

This queue is an "in-order" multimedia queue. As multimedia packets arrive in the router,

they are first subjected to DCBT culling tests, and then a copy is placed in this in-order

queue in FIFO fashion. ChIPS can then move the original, copied packet into RED's

queue average pointer if necessary. When any multimedia packet is to be dequeued, a

packet from the in-order queue is dequeued in its place and the other packet is discarded,

keeping all the packet deliveries in order.

The benefit of this system is that multimedia packets can be inserted anywhere into the

queue, and it will not matter what order in which they arrive at the head of the queue,

since the proper packet in the multimedia order will be dequeued in its place. This halted

all the out of order packet arrivals, as expected.

23

Chapter 4: Experiments

Our network test bed was built to evaluate our implementations of CBT, DCBT,

DCBT/ChIPS, and other queue management schemes on a router using the Linux kernel.

We performed a variety of tests using network tools to test the efficiency of these

implementations in our Linux router.

4.1 Setup

This section outlines the setup of our network test bed. Points that were taken into

account included the physical layout of the network as well as the computer setup of the

router and the clients that would be accessing it.

4.1.1 Physical Layout

In order to efficiently test our router, it needed to be in a position to have at least two

lines connected to the router for network traffic. On each side of the router, we required

a number of client machines either generating or receiving traffic, thereby testing our

implementation and its effectiveness both in terms of processor usage on the router and in

throughput on the clients' sides. Placing only a single client on each side of the router

would have been ineffective for this goal, as there would be no congestion present

between the client machines competing for bandwidth through the router. Therefore, our

design included at least one client computer on a given side of the router, and two on the

opposite side generating traffic that needed to compete for resources when reaching the

far client. To prevent traffic collisions on the side of the two client computers, we

attached each computer to the router with its own ethernet interface. A detailed diagram

24

of the network setup is as follows:

4.1.2 Computer Setup

Fig 4.1 – Network Test Bed Diagram

Our Linux router was a dual Pentium II 300 MHz computer with 128 MB memory

running Mandrake Linux 8.1 and using version 2.4.13 of the Linux kernel with New

Reno TCP. For more accurate CPU measurements without the need to take multiple

processors into account, the router kernel was compiled to take advantage of only a single

processor. This machine used the advanced router configuration available in the 2.4

Linux kernel using the iproute2 set of tools to route traffic between the three subnets

using the Traffic Control application. Iproute2 is a group of configuration utilities that

takes advantage of features in the redesigned network subsystem in version 2.2 and later

Linux kernels, including new routing, filtering, and classifying code. Our router featured

25

two PCI 100BaseT ethernet cards, one in the 10.0.1.0/24 IP range connected to client1

and one in the 10.0.2.0/24 range connected to client2. A third ethernet card was a

10BaseT card, located in the 10.0.0.0/24 range, connected on the opposite side of the

diagram to the gateway computer.

The client computers were also a vital part of our network test bed. Each of these client

computers was a Pentium 133 mhz computer with 48 MB of memory and a PCI network

card running FreeBSD 4.4, using New Reno TCP. While not the most powerful

machines to date, they were more than sufficient to saturate a 100 Mbps connection

without taxing the processor. All of our tests showed that processor usage on the client

machines never exceeded 50% of the 133 mhz processor, ensuring that these computers

would not be a bottleneck in our experiments.

The stand-alone client machine served as a firewall to connect our network test bed to the

Internet. This was a FreeBSD machine running Network Address Translation (NAT) to

forward network traffic from the test bed to the local WPI network as necessary for

system configuration from outside the test bed. This connection was also necessary in

order to create more flows of traffic for testing by sending data to other computers on

campus. This computer featured two 10BaseT ethernet cards, one connected to the Linux

router, and the other connected to WPI's network.

On the far side of the router, two client computers ran FreeBSD and served only as traffic

generators to send data to the lone client computer on the other side of the router. Each

26

of these clients was connected to the Linux router's 100BaseT ethernet cards with their

own 100BaseT ethernet cards. This allowed two high-speed 100 mbps connections

between the clients on one side of the router without the need to worry about traffic

collisions, and a smaller 10 Mbps connection on the far side of the router between the

router and the gateway.

4.2 Testing

Using freely available network monitoring and testing tools we were able to evaluate

CBT, DCBT, and DCBT/ChIPS's efficiency as a router in controlled environment. The

most valid and important aspect of this testing was to compare the CBT, DCBT, and

DCBT/ChIPS implementations against other queue management schemes already

implemented in the Linux kernel, including FIFO and RED. We attempted to discover

whether the DCBT scheme is a more effective algorithm compared to the others, in terms

of fairness in queuing with reasonable cost in overhead. With the DCBT/ChIPS

combination we find whether this scheme can lessen multimedia jitter with a small cost

of delay to other traffic.

4.2.1 Tools

Three tools were used in experiments for traffic generation and measurement. The first

of these was a traffic generation tool called Iperf1. Iperf was developed as a modern

network tool for measuring TCP and UDP bandwidth performance. Iperf was able to

measure maximum TCP and UDP bandwidth and packet loss, and allowed the tuning of

1http://dast.nlanr.net/Projects/Iperf/

http://dast.nlanr.net/Projects/Iperf/

27

various parameters as well as UDP characteristics. Iperf ran as a client and server for

both TCP and UDP traffic generation, and reported bandwidth, delay jitter, and datagram

loss.

The second performance testing tool we used to evaluate our implementations was Iostat,

a tool included in the Sysstat2 package. The Sysstat utilities are a collection of

performance monitoring tools for Linux. The Iostat command is used for monitoring

system input/output device loading, and was used throughout out tests for processor

usage reporting and benchmarking.

The final testing tool we used was NcFTP3, a command line FTP client. This tool was

used to generate TCP traffic via FTP to other computers on-campus, allowing us to

increase the number of flows passing through our router. By sending data only to on-

campus computer, we were able to maintain a small round trip time, on the order of 2 ms.

This was important, as it allowed us to conduct tests on a larger group of computers, yet

still operate under similar conditions as our network test bed, and therefore not introduce

extraneous variables that might have made it difficult to compare our results with those of

our network test bed.

4.2.2 Tests

We used three types of tests in evaluating our queue management schemes in our network

2http://perso.wanadoo.fr/sebastien.godard/

3http://www.ncftp.com

http://perso.wanadoo.fr/sebastien.godard/
http://www.ncftp.com

28

test bed: throughput, processor usage (with two- and many-flow tests), and one-way

latency. For each test, our packet size was fixed at 1000 bytes. For each queuing

mechanism tested, the minimum queue size was set to 5000 bytes, the maximum queue

size was 15,000 bytes, the queue size limit was 20,000 bytes. For RED testing, the

maximum drop probability was set to 0.01.

The throughput tests consisted of starting a 30-second TCP stream of traffic from the

client1 machine to the gateway, followed by starting another 30-second stream of 10

mbps UDP traffic from the client2 machine to the gateway 10 seconds later, allowing for

overlapping areas of TCP and UDP, with each type of traffic alone on each end of the

test. This test was carried out for a variety of queuing disciplines to measure bandwidth

throughput, packet loss, and their efficiencies using Iperf on each client's side.

The processor usage tests consisted of a two-flow test as described above for testing the

throughput, as well as a many-flow test consisting of running many flows from client1

and client2 at the same time through the router for an extended period of time. To

generate a greater number of flows, data was sent not only to the gateway computer, but

also via FTP to computers on-campus. This allowed us to add as many flows as we had

computers to send data to. Iostat was used to measure the system CPU usage during

these tests on the router-side at 1-second intervals.

Finally, the latency tests consisted of a five-flow test, including one 1 mbps flow of

multimedia traffic from client1 to the gateway, as well as 2 TCP flows from each of

29

client1 and client2 to the gateway and to on-campus computers. Iperf was used to

measure the jitter of these tests. To do so, the jitter calculations were continuously

computed by the server, as specified by RTP in RFC 1889. The client recorded a 64-bit

second/microsecond timestamp in the packet, and the server then computed the relative

transit time as the server's receive time minus the client's send time. Jitter was displayed

as the mean of differences between consecutive transit times.

30

Chapter 5: Results and Analysis

After the network test bed and router implementations were completed, we began our

testing procedure. First we compared the throughput of different flows of traffic between

FIFO, RED, CBT, and DCBT. Then we compared the difference in jitter between DCBT

and DCBT with ChIPS to find what difference ChIPS offered multimedia traffic.

Following that, the costs of CPU utilization and memory usage were measured to gauge

the benefits versus the costs of DCBT as a packet queuing mechanism.

5.1. Throughput

FIFO Throughput

0

200

400

600

800

1000

1200

1400

1 6 11 16 21 26 31 36

Time (sec)

Rate
(KB/s)

TCP UDP

RED Throughput

0

200

400

600

800

1000

1200

1400
1 6 11 16 21 26 31 36

Time (sec)

Rate
(KB/s)

TCP UDP

Fig 5.1 - FIFO and RED Throughput

For the throughput tests, we started a TCP flow, shown by the solid line, and let it run for

10 seconds. After that, we introduced a 10 Mbps UDP flow with a 1 KB packet size,

shown by the dashed line, and observed the bandwidth of the TCP flow. Since TCP is

responsive to congestion and UDP is not, TCP's bandwidth will normally be lost to UDP.

31

When the tests were run with the standard FIFO drop-tail queue (Fig 5.1, left), we see the

results of UDP taking all the bandwidth away from the congestion-responsive TCP flow.

The same results occur with a RED queue (Fig 5.1, right). These results are expected

since both RED and FIFO queues are ineffective at queuing fairly when there are

unresponsive, high bandwidth flows.

CBT Throughput

0

200

400

600

800

1000

1200

1400

1 6 11 16 21 26 31 36

Time (sec)

Rate
(KB/s)

TCP UDP

DCBT Throughput

0

200

400

600

800

1000

1200

1400

1 6 11 16 21 26 31 36

Time (sec)

Rate
(KB/s)

TCP UDP

Fig. 5.2 - CBT and DCBT Throughput

Both CBT and DCBT show much more fair throughput results than the RED and FIFO

queues. CBT's only failure is that it cannot adapt to conditions the way DCBT can. Even

if CBT's parameters were changed to make the results in this graph fairer, there would

then be other situations where CBT could not allocate bandwidth fairly. There is a small

discrepancy in the above DCBT throughput graph between seconds 12 and 17. UDP takes

a clear lead in throughput. Originally, this was attributed to transient flows in the Iperf

measurement system. However, after more study it became apparent that this was due to

TCP's congestion sensitivity mechanism for low bandwidth situations, where the window

32

size, or the amount of data sent at one time, collapses to a base rate and then grows back

to the maximum size that is supported by the network. An additional experiment was run

featuring with a UDP flow first, followed by a TCP flow, illustrating such behavior (Fig

5.3):

DCBT Throughput

0

200

400

600

800

1000

1200

1400

1 6 11 16 21 26 31 36

Time (sec)

Rate
(KB/s)

TCP UDP

Fig 5.3 - DCBT Throughput tested with UDP first

Since TCP's window size grows until its fair share it does not show an erratic loss in

bandwidth when it is introduced to the system nor does it show a lag time in achieving a

fair share of bandwidth.

While both DCBT and CBT have shown themselves to be more fair than FIFO and RED

in situations where an unresponsive UDP flow is present, we can see from these graphs

that DCBT is better at adapting to situations with different traffic mixtures.

33

FIFO Throughput w/ MM

0

200

400

600

800

1000

1200

1 6 11 16 21 26 31 36

Time (sec)

Rate
(KB/s)

TCP UDP MM

RED Throughput w/ MM

0

200

400

600

800

1000

1200

1 6 11 16 21 26 31 36

Time (sec)

Rate
(KB/s)

TCP UDP MM

Fig 5.4 - FIFO and RED Throughput with Multimedia

Figure 5.4 shows RED and FIFO in the same testing scheme as before, but with a 1 Mbps

multimedia UDP flow added, shown by the green solid line, throughout the course of the

test. This flow featured as 1 KB packet size. As shown above, the queues do nothing to

protect the multimedia flow. Its bandwidth is very inconsistent, and also reduces TCP's

available bandwidth further than with the UDP flow alone.

34

CBT Throughput w/ MM

0

200

400

600

800

1000

1200

1 6 11 16 21 26 31 36

Time (sec)

Rate
(KB/s)

TCP UDP MM

DCBT Throughput w/ MM

0

200

400

600

800

1000

1200

1 6 11 16 21 26 31 36

Time (sec)

Rate
(KB/s)

TCP UDP MM

Fig 5.5 - CBT and DCBT Throughput with Multimedia

On the other hand, CBT and DCBT provide a much more consistent throughput for the

MM flow. Figure 5.5 looks similar to the graphs without a multimedia flow, but show

that the MM flow is getting a fair share of the bandwidth, with the unresponsive UDP

flow losing bandwidth to accommodate the new flow. The multimedia flow itself is stable

for the length of its run, due to the classification methods.

The results of all of our throughput tests’ averages are summarized in the Table 5.1 and

5.2:

Test TCP alone TCP while
UDP present

UDP while
TCP present

UDP alone Drop Rate for
one TCP flow

FIFO (2 flows) 1110 KB/s 14 KB/s 1138 KB/s 1152 KB/s No Results

RED (2 flows) 1089 KB/s 16 KB/s 1136 KB/s 1152 KB/s 0.0084

CBT (2 flows) 1090 KB/s 760 KB/s 378 KB/s 1153 KB/s No Results

DCBT (2 flows) 1089 KB/s 632 KB/s 536 KB/s 1153 KB/s 0.0079

Table 5.1 – Throughput of 2-flow Tests

35

Test TCP while
MM present

TCP while
UDP + MM
present

UDP while
TCP + MM
present

UDP while
MM present

MM overall

FIFO (3 flows) 978 KB/s 16 KB/s 1093 KB/s 1069 KB/s 83 KB/s

RED (3 flows) 967 KB/s 16 KB/s 1044 KB/s 1040 KB/s 108 KB/s

CBT (3 flows) 972 KB/s 704 KB/s 309 KB/s 1025 KB/s 126 KB/s

DCBT (3 flows) 976 KB/s 630.3 KB/s 388 KB/s 1025 KB/s 127 KB/s

Table 5.2 – Throughput of 3-flow Tests

5.2. Jitter

ChIPS was designed as a method for multimedia packets to avoid latency outliers without

adversely affecting the bandwidth of other flows. We used Iperf's time delay

measurement capabilities to test the jitter delay on the packets sent. We ran tests

consisting of 3 simultaneous streams, two TCP and one 1 Mbps MM stream. Jitter is

shown in Figure 5.6, with DCBT represented by the solid line and DCBT/ChIPS by the

dashed line. The results show that ChIPS provides a means to decrease jitter noticeably

over DCBT, and guarantee a ceiling rate of packet delivery during most network

conditions. Our test bed featured such a small round trip time as to not incur a noticeable

penalty latency-wise, however we are unable to test whether ChIPS would produce lower

jitter over larger networks.

36

DCBT and DCBT/ChIPS Latency

0

1

2

3

4

5

6

1 5 9 13 17 21 25 29

Time (sec)

Jitter (ms)

DCBT ChIPS

Fig 5.6 - Jitter over time for DCBT and DCBT/ChIPS

5.3. CPU Utilization

One of the concerns in the implementation of DCBT and CBT was the amount of extra

load it would place on the CPU. If there was much more than FIFO, than it would be

much harder for people to justify using it since they would need more expensive

hardware to accommodate the algorithm. The CPU utilization for each of the queuing

disciplines tested is shown in Figure 5.7, including standard deviation for each processing

usage test:

37

CPU Utilization

0

5

10

15

20

25

30

35

40

FIFO RED CBT DCBT

CPU (%)

TCP TCP + UDP UDP

Fig 5.7 - CPU Utilization for all tested queuing disciplines for TCP, UDP, and TCP/UDP together

However, the percentage of the CPU used by CBT and DCBT is not much more than

RED and FIFO. In fact, for a TCP-only router, shown by the leftmost bar in each set, the

CPU usage is nearly equal, and for UDP-only, shown by rightmost, the utilization is

slightly less. When the types of traffic are mixed, however, the utilization goes up

appreciably, but is not significant compared to a possible utilization of 100%.

38

DCBT CPU Utilization per flow

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10

Flows

CPU (%)

Fig 5.8 - CPU Utilization of DCBT per flow

More importantly is the concern for how CPU utilization scales with the number of

flows. When testing an increasing number of flows across the router, the increase in

processor usage for flows for DCBT is not significant. Figure 5.8 shows a linear growth,

taking into account standard deviation of the average CPU usage. We predict that the

300MHz Pentium II that we used for testing could handle up to 70 flows at once.

5.4 Memory Usage

Similarly to each flow adding an incremental, but noticeable, amount of overhead on the

CPU, each flow also uses more of the kernel's available memory. Calculating the

memory used in data structures for DCBT yielded a total of 17 bytes per flow. On top of

that, a flat overhead of 52 bytes is required over that of RED for the whole DCBT

39

queuing mechanism. At a maximum of 70 flows, this comes out to be 1242 bytes, or

approximately 1.2 kilobytes.

However, memory usage is much more intense with the current implementation of

ChIPS, primarily due to the way the in-order queue operates. Since every packet is

copied, instead of referenced, to prevent referencing deallocated memory, a page fault

occurs every time a multimedia packet is queued. More memory is needed as the amount

of multimedia traffic increases. This adds both noticeable memory usage and CPU

usage. Due to time constraints of our experimentation period, we were able to conduct

multiple throughput and latency experiments on our ChIPS implementation, but were

unable to fully conduct CPU utilization experiments.

40

Chapter 6: Conclusions

The explosive growth of the Internet has created an opportunity for a wide range of

applications to be quickly deployed over only a few years. The ever-increasing demand

for bandwidth requires current traffic flows to be optimized as much as possible. While

many algorithms and approaches exist at the application level in order to effectively send

multimedia data, many of the bottlenecks involved in transmissions can be found not at

the destination or the source, but in-between, with the routers and their queue

management schemes.

This project implemented the Dynamic Class Based Threshold (DCBT) and Class Based

Threshold (CBT) queue management algorithms, as well as a packet requeuing

mechanism called Cut-In Packet Scheduling (ChIPS). These algorithms were then

compared to other popular queue management schemes. To achieve this goal, code was

developed as an extension to the Linux kernel. Extensive testing of DCBT, ChIPS, and

other Linux queuing mechanisms took place in a controlled environment.

We have produced a number of results by testing DCBT, CBT, and ChIPS. Our

implementation of DCBT worked correctly and was fair, while CBT also worked but was

not as fair as DCBT. Furthermore, our testing of ChIPS demonstrated a successful

decrease of jitter for latency-sensitive multimedia traffic.

6.1 DCBT

DCBT is a fair queuing mechanism due in part to its flow classification. Using the flows

as a relative measure of network usage for each protocol, we were able to give each

41

classification of traffic a fair amount of bandwidth. Because it is able to change the

thresholds for each class of traffic, DCBT can adjust to mixes in traffic as is necessary

instead of relying on fixed thresholds that may not accurately represent the status of the

router's traffic.

DCBT does not place an unreasonable amount of strain on a router in terms of processing

power or memory. As mentioned in the previous chapter, using the 300MHz Pentium II

found in the test bed environment, we would be able to route 70 flows of traffic

simultaneously before hitting the hard limit of the CPU. The memory usage of DCBT is

minimal; requiring only 1.2 kilobytes to support the 70 flows.

6.2 CBT

While CBT was constructed to use the same mechanism for dropping packets as DCBT,

it lacks the ability to change its own parameters to meet the needs of the traffic at any

given moment. Accordingly, while it was fairer than FIFO and RED queuing

mechanisms, which lack the ability to distinguish traffic at all, it is not as fair to multiple

traffic flows as DCBT. Also, for a limited number of flows there is little to no savings in

CPU usage and memory for CBT on any modern processor over that of DCBT.

6.3 ChIPS

ChIPS, designed to improve packet latency by placing multimedia packets at the RED

queue average, allows for smaller jitter for multimedia packets. Our tests demonstrated

that ChIPS does offer this advantage over DCBT, and effectively guarantees a ceiling on

42

jitter under normal traffic conditions on a router. However, the current implementation

of ChIPS does tax the router’s memory and CPU resources by requiring double the

amount of memory normally used to queue one multimedia packet, and so a more

effective way to maintain packet order is necessary before a smaller delay in jitter will

become apparent.

43

Chapter 7: Future Work

We were able to accomplish a great deal developing DCBT over the course of our

project, but there is still room for additional work to be done. There are different

directions that our work could be taken in terms of both implementation and experiments.

7.1 Implementation

The first area of future work that we propose would be a general code cleanup and

integration. Our code for CBT, DCBT, and ChIPS currently has many similarities with

RED, in that the use of the Traffic Control program uses the RED syntax for setting the

proper queue values. Our kernel code is added to the RED configuration option in the

kernel, and could be integrated as its own configuration option. Finally, future code

cleanup would be necessary for future kernel use as the advanced router features change

and the code must be update for new API changes. While we do not expect any changes

to be necessary for future revisions of the 2.4 Linux kernel, release of new branches

could require additional changes.

Another area of future work that we propose is DCBT's flow detection. Currently, the

type of flow is detected by the source, destination, and protocol used. While this was

very useful for testing the fairness of our code, it may not be practical for traffic on the

Internet because a router would not know that all traffic from a single source should be

classified as multimedia traffic, nor would this often be the case. Better flow detection of

an existing protocol being used as multimedia, or the introduction of a new protocol

specifically for multimedia applications, is a crucial piece that would need to be

44

implemented before wider adoption of this queuing mechanism could be accomplished.

A third aspect of future implementation work that could be pursued would be to make our

CBT, DCBT, and ChIPS implementations work under IPv6. With the expanding size of

the Internet, the eventual move to IP version 6 is inevitable, and our code will need to

take that into account at that time. One advantage of IPv6 over the traditional IPv4 is an

expanded packet header, which could be used to store addition information in each packet

and possibly aid in flow counting, versus the IPv4 packet, which has insufficient room to

store information that would be necessary for more advanced flow counting.

A final addition that we propose for future work is the addition of ChOPS to our queuing

mechanisms. ChOPS, Cut-Out Packet Scheduling, functions similarly to ChIPS, but

instead of moving packets forwards in the queue, it moves them backwards in the queue.

The effect of this would be to give multimedia packets a definite scheduled time of

arrival when coupled with ChIPS.

7.2 Experiments

One area open for more extensive experimentation is ChIPS. One method to gather more

accurate results on the advantages of ChIPS that we propose is to conduct tests using a

larger network that is not as conducive to high-speed traffic. Further testing could be

accomplished using cascaded routers, and measuring the affects of ChIPS being used in

multiple routers that traffic passes through successively.

45

Another area that could undergo further testing is the Symmetric Multi Processor (SMP)

support for our implementations. We believe that all locking was sufficiently

implemented in our code, but all of our testing was performed on a uniprocessor system

such that obtaining results was more straightforward. We did not have time to perform

extensive SMP testing on our work. It is possible that some cleanup would be required

before this could be accomplished.

46

Chapter 8: References

[BC00] D Bovet, M Ceasti. Understanding the Linux Kernel. O'Reilly and Associates.
2000.

[CC00a] J Chung, M Claypool. “Dynamic-CBT - Better Performing Active Queue
Management for Multimedia Networking.” In Proceedings of NOSSDAV, June
2000, Chapel Hill, NC, USA.

[CC00b] J Chung, M Claypool. “Dynamic-CBT and ChIPS - Router Support for
Improved Multimedia Performance on the Internet.” In Proceedings of ACM
Multimedia, Los Angeles, CA, USA, November 2000.

[FJ93] S Floyd, V Jacobson. “Random Early Detection Gateway for Congestion
Avoidance.” In IEEE/ACM Transactions on Networking, August 1993.

[FJ95] S Floyd, V Jacobson. “Link-Sharing and Resource Management Models for
Packet Networks.” In IEEE/ACM Transactions on Networking, August 1995.

[FKSS99] W Feng, D Kandlurz, D Sahaz, and K Shiny. "BLUE: A New Class of Active
Queue Management Algorithms." U. Michigan CSE-TR-387-99, April 1999.

[HKLT01] P Hurley, M. Kara, J Le Boudec, P Thiran. “ABE: Providing a Low Delay
within Best Effort.” IEEE Network Magazine. May/June 2001.

[IMD01] G Iannaccone, M May, C Diot. “Aggregate Traffic Performance with Active
Queue Management and Drop from Tail.” Sprint ATL, Universita` di Pisa,
Activia, Februrary, 2001.

[LW00] A Leon-Garcia, I Widjaja. Communication Networks: Fundamental Concepts
and Key Architectures. McGraw Hill. 2000.

[LM97] D Lin, R Morris. “Dynamics of Random Early Detection.” In Proceedings of
SIGCOMM, 1997.

[M91] P McKenney. “Stochastic Fairness Queuing.” Sequent Computer Systems, Inc.
January, 1991.

[RC01] A Rubini, J Corbet. Linux Device Drivers, 2nd Edition. O'Reilly and Associates.
2001.

