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Abstract

First Person Science, or FPSci, is a high-performance, light-weight
first person shooter developed by NVIDIA to facilitate experiments involving
latency and human-computer interaction. Unfortunately, FPSci only supports
single player experiences. To enable the simulation of a wider range of scenar-
ios typical of first person shooters, we designed and implemented a multiplayer
mode. Our version uses a client-authoritative model, utilizing two UDP con-
nections between each host and the server to achieve fast and reliable delivery
of updates and control messages. Our code is effective, supporting more than
64 simultaneous clients and a 400Hz refresh rate.
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Chapter 1

Introduction

Video games are one of the most popular forms of entertainment con-
sumed today. With fast and high-capacity Internet connections readily avail-
able, many modern games feature network components: global scoreboards,
pushed updates, and especially networked multiplayer. With the growing pop-
ularity of games, it is important for game makers to produce high-quality prod-
ucts, and to do so they must understand how players and games interact. This
understanding is also applicable to general human computer interaction and is
useful outside the game industry.

First Person Science (shortened to FPSci) is a first person shooter
game developed by NVIDIA with a focus on high performance and easy config-
urability. Although it offers considerable control over a single user experience,
FPSci currently has no support for studies with multiple players in the same
match. There is no network code at all in the original FPSci implementation,
which prevents its use in studies that involve interactions between players.

We designed and implemented a networked multiplayer mode for FP-
Sci, allowing multiple players to connect to a server and play together. We
developed these features with the goals of changing as little functionality as
possible, keeping performance high, and being configurable to support experi-
ments.

To achieve this, we first determined a network structure, utilizing a
client/server model and UDP communications. We selected the networking
library ENet to build on top of and decided to use both the reliable communica-
tion channel provided by ENet and an unreliable bare socket for each connection.
We defined protocols for how data should be encoded, sent over the network,
and decoded. We then implemented these protocols, adding code for serializing
and deserializing data to interface the communicated information with the FP-
Sci game world. This involved writing code in the game loop to interact with
game objects, code to interface with ENet, and layers in between to consolidate
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boilerplate code, standardize our data structures, and make the code readable.

Once we determined that our code worked, we ran experiments to
measure how it performs under a variety of conditions. We examined variables
such as framerate, bitrates over the network, CPU utilization of our code, the
latency between clients and the server, and the world state deviation between
clients. We varied the framerate of the game, the number of clients connected
in a single match, the latency of the network connections, and the packet loss
rate of the network.

We found that our work yielded acceptable performance. Our version
of FPSci was able to run multiplayer matches at upwards of 400Hz, handle more
than 64 simultaneously connected clients, and continue to run at pings up to
200ms (albeit with noticeable differences between the client’s world states). We
found that almost all resource usage scales linearly with increasing framerate.
The limiting factor for large matches is the exponential growth of network usage
on the server as more clients join.

Below, we outline the process we took in creating this new version of
FPSci. Chapter 2 offers a a background overview of FPSci, its dependencies,
and networked multiplayer in games - including the challenges it presents to
would-be-implementers. Chapter 3 goes into depth on our implementation - how
we approached development, our choices of tools, the network communication
scheme we developed, and the classes and functions we wrote. Chapter 4 covers
our evaluation, including the methods we used to measure performance, how we
ran our experiments, and details from our results. Chapter 5 recaps our work,
summarizes our design requirements, discusses the results of our evaluation, and
examines potential future work on this project.
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Chapter 2

Background

It is important to understand the motivation behind and structure of
FPSci before embarking on any effort to expand it. FPSci allows researchers to
change parameters of interest using a hierarchical plug-and-play configuration
structure. It also features per-frame logging to make in-depth analysis easier.
The game is built on the G3D Innovation Engine which abstracts away many
of the lower level data structures and object handling, and provides garbage
collection. To create features involving network connections, it is useful to
understand established approaches to networked multiplayer and latency com-
pensation techniques to inform implementation decisions during development.

2.1 FPSci

FPSci is a simple first-person shooter game used for performing ex-
periments. The project was started by a team at NVIDIA investigating how
latency affects players’ performance and behavior in first-person shooters. As of
this writing, FPSci consists of a first-person shooter interface, a variety of maps,
and several types of targets to shoot[1]. The platform is lightweight and capable
of running at over 400Hz on modern hardware. This high tick rate allows for
precise control over latency - there are configurable parameters to set the latency
between the user and the interface and within the game’s data pipeline. There
are also configurations available for the targets the player interacts with and
common attributes of the player. In order to make running experiments easier,
FPSci also features a modular plug-and-play format for specifying experiment
parameters and robust logging to a SQLite database to make the analysis of
results easier.

FPSci enables study of latency in first person shooters. Latency, or
“lag,” has a definite impact on how the game runs and how the player interfaces
with it, in turn affecting the player’s enjoyment of the game. Studying the ways
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that player performance is impacted by different parameters is an important step
in improving the player experience in first person shooters and gaining a deeper
understanding of human-computer interaction. Studying these effects in triple-A
games provides the benefit of a realistic study environment but does not provide
the ability to carefully control all aspects of the experiment, possibly causing
results to be confounded by variables and constraints outside the researchers’
control and making it difficult to replicate an experiment to verify results [1]. To
address this, FPSci was built as a high-performance application for user studies
investigating the relative impacts of latency and framerate on users and has since
been expanded to support user studies with broader control requirements [1].
FPSci allows a researcher to specify many parameters for experiments including
framerate, frame delay, target parameters, feedback questions, logging controls,
player movement, world physics, commands to be run based on experiment
progression, and more [2].

FPSci has a simple and flexible format for specifying parameters and
controlling the flow of experiments. It follows a three-tier approach to exper-
imental design, consisting of experiments, which contain one or more sessions,
which in turn contain one or more trials. The experiment level contains two
types of settings: universal settings and general settings. Universal settings are
settings that cannot be changed during an experiment, including target config-
uration and some experiment flow settings. General settings can be overridden
at the session level, effectively making them default values when defined at the
experiment level. General settings include rendering settings, weapon speci-
fications, player configurations, feedback configurations, logging settings, and
experiment flow settings. The experiment level is where the majority of general
settings are defined because they do not change throughout the course of an
experiment. However, any of the general settings can be changed at the session
level in order to study their effect. Sessions are the lowest level where settings
can be changed. Usually, an experiment’s independent variables are manip-
ulated between sessions. Each session contains a series of trials. Each trial
consists of a list of targets to spawn and a number of times that trial should be
repeated.

FPSci makes use of G3D’s Any file specification to store configurations.
Any is a JSON-like format that allows for simple parameters and more complex
objects to be described in plain text. The Any specification also supports nesting
data objects and custom parsing, allowing for modular configuration files that
are easy to read, modify, and maintain. By default, FPSci makes use of 6
Any files to describe an experiment. The purpose, and structure of each file is
detailed below:

• experimentconfig.Any: Contains 4 major subsections

– Experiment-wide settings- These are settings that are consistent for
the whole experiment, but can be overridden by session level

– Sessions
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∗ Each session can override any of the experiment-level settings

∗ Trials- Specifies the number of times that a session should be
repeated (no settings changed)

– Targets- Indicates how targets should be drawn and move

– Weapon- Indicates how the weapon should work

• keymap.Any- Maps player actions to keys/buttons

• startupconfig.Any- Sets FPSci searches for other Any files at launch

• systemconfig.Any- Settings for latency logger devices

• userconfig.Any

– Session/Experiment agnostic user settings

∗ Mouse DPI/sensitivity

∗ Reticle preferences

• userstatus.Any- Defines which sessions a user should do and in what order

While running, FPSci keeps a detailed log of what happens in the
game. This allows researchers to analyze player behavior and performance af-
ter running an experiment. FPSci logs are stored in a SQLite database that is
managed by a dedicated thread. In the interest of performance, the contents
of the logs are not written out to disk until either the memory fills up or the
experiment ends. The database includes tables that hold values for each exper-
iment, such as the experiment config, as well as per-frame information on frame
timings, physics, and player activities such as aiming and shooting. Feedback
questions and their responses, session parameters and statuses, target parame-
ters, positions, and trajectories, trial performance details, and user settings are
also logged in the database. Additionally, if the logs do not contain the session
parameters of interest, other parameters can be added to the logs by modify-
ing the experiment config. By logging relevant values on a every frame, FPSci
stores information on what happens the entire time a trial runs. Furthermore,
by organizing these values into a SQL database, the logs remain easy to parse
and the table structure allows researchers to easily access and format all the
data they need by querying the relevant tables.

2.2 Structure of G3D

FPSci is built using the G3D Innovation Engine [3] - an open-source
game engine written in C++. In addition to data structures such as strings
and arrays, and services like garbage collection, G3D also grants access to the
structure of inheritance that defines how a game runs. This allows developers to
modify and change almost everything G3D does for their game if they desire. All
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G3D apps must define a class that extends the G3D GApp class, which contains
default functions that handle all the activities that happen within the game:
graphics, AI logic, networking, physics simulation, user input, and more. All
of the activities that happen in each frame are invoked within a method called
oneFrame(). By overriding the oneFrame() method, a developer can define a
custom order for the events that happen within the game loop, or a fully custom
set of events. By overriding the methods called in oneFrame(), a developer
can add custom behavior to their game. Most of the code modifications we
implemented during this project were in the onNetwork() method, which is
called once with each invocation of oneFrame(). G3D also provides parsing,
writing, and other low-level functionality for using Any files. This simplifies the
process to add additional parameters to FPSci by taking advantage of systems
already defined by G3D to parse files and generate complex object types.

2.3 Traditional approaches to networked multi-
player games

Split-screen and multiple-controller multiplayer games have been around
since the earliest days of video games, but many modern games utilize the In-
ternet to allow players to play together on separate hardware. Although the
modern Internet can usually deliver data quickly, data delivery over the Inter-
net is inconsistent: some packets may be lost and round-trip times may vary
from packet to packet. These properties of Internet traffic necessitate engineer-
ing to ensure that the user experience is responsive, accurate, and consistent
between players.

At its simplest, network code in games (or “netcode” as the industry
calls it) is responsible for synchronizing a shared game between players. Barring
more advanced style games, networked play functions the same as split-screen
multiplayer: all players share the same world, but are able to interact with said
world independently. In split-screen play, the game can load one single copy of
the world, insert a camera for each player, and then as it receives inputs from
each player, update the world. Each player sees the current world state because
they are observing the same copy of the world, just from different viewpoints.
In a networked game, every player’s machine is responsible for rendering a copy
of the world for that player to interact with. Generally, this means that the
client (the copy of the game running on the player’s machine) has a complete
copy of the game world. The challenge then becomes ensuring that the copy of
the world that each player has is consistent with the copy each other player has.
For example: if one player sees a door open, and another sees the door closed,
the consistency is broken: one player may get shot through what they believe
to be a closed door, or the other player may be confused as to why they cannot
shoot through an unobstructed doorway.

The exact methods for keeping clients consistent vary from game to
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game, but the basic principle is whenever the game world of one player changes,
the change must be communicated to all other clients as quickly as possible and
replicated there. Writing good netcode requires consideration of the following
[4]:

• Latency: Communication over the Internet is delayed. If, say, the connec-
tion from one client to another had a round-trip time of 40ms, updates
made on one client would appear on the other 20ms later at the earliest.
An object moving at running speed can move 6 inches in that time, which
could be the difference between a hit and a miss in a first person shooter.
This can also lead to clients disagreeing on the game state: one client may
change something after another client has already changed it, but before
it has been informed of the other client’s change. This desynchronizes the
game worlds and requires intervention to resynchronize the clients.

• Bandwidth: Although packaging and sending the entire game state to
every client each tick could ensure they are consistent, that much data
would congest the network, adding delay and degrading gameplay quality.
Games running at modern frame rates (60 or 120fps) can easily send 120
updates per second. The data sent can add up quickly if each update
contains a significant amount of data. This requires the writers of netcode
to weigh the costs of sending data: only necessary data can be sent, and
even then in moderation. Compressing data can help, but one should
consider how this affects the accuracy of the received information and the
added latency of compressing and decompressing the data. If not all data
can be sent in a single tick, a system must be in place to prioritize some
traffic over others and then deal with receiving part of the information
late.

• Data errors: The Internet is not reliable, so designers cannot assume that
data will arrive at the destination exactly the way it was sent. The netcode
should be robust enough to handle missing, corrupted, or out-of-order
packets without significantly disrupting the game.

• User Experience: Disruptions to the network, and even just latency, are
noticeable to the players. Entities lagging behind their actual positions,
shots that look like they hit but actually do not, and large jumps in the
game state can confuse and frustrate players. A large part of netcode is
working to hide - or at least minimize the effects of - these discrepancies for
players. Although our project does not attempt any of these techniques,
there is considerable research into “compensating” for latency, controlling
bandwidth usage, and resolving conflicts between clients.

There are two main architectures used in networked games [5]: client
authoritative and server authoritative. In a client authoritative model, clients
either connect directly to each other, or the “server” acts only to forward mes-
sages between clients. If a client makes a change, it is assumed to be accurate
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and replicated across the other clients. If there is a conflict, the clients com-
municate directly to determine which state is valid. In a server authoritative
model, all clients communicate with a central server that also has knowledge
of the game state. It accepts inputs from the clients, acts on them locally,
and then sends the results to all clients. This means the server is in charge of
resolving conflicts with an authoritative copy of the game world for reference,
and it prevents clients from violating any game rules (either intentionally or
unintentionally). Both approaches have merits and can be made to look in-
distinguishable from each other to a player. However, a developer’s choice of
approach has a huge impact on the design and performance of the game.

2.4 Latency and FPS Games

Spjut et al.[6] demonstrate that being able to separately control the
amount of input latency and refresh rate of a game can reveal nuances in the
relative impact of these distinct types of delay. Additionally, Lee et al. [7] show
the impact of different server tick rates on player accuracy, highlighting the need
for a high tick rate server for an evaluation platform. Liu et al. [8] find that
even small reductions in local latency drastically increased player accuracy and
score, indicating the importance of a lightweight test-bed when experimenting
with latency. Henderson [9] finds that players appear to be willing to accept
extremely poor network conditions and appear to care more about the difference
in latency between clients than they care about the amount of latency between
them and the server. Spjut et al. [10] explain that having accurate control over
end-to-end latency can allow researchers to better understand the foundations of
esports performance. Li et al. [11] describe a latency compensation mechanism
for equalizing network latency for all players in a cloud gaming environment
to study the impact of latency on Quality of Experience. Vlahovic et al. [12]
show that VR games may be just as sensitive to latency as non-VR FPS games,
further elevating the importance of understanding the principles of FPS games
and players’ behavior. Our work develops a tool that can be used to conduct
similar research to further understanding in these areas.
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Chapter 3

Implementation

After establishing our design goals and gaining an understanding of
the original FPSci, we began designing and creating our additions. We started
by making decisions: choosing a networking library, server design, and commu-
nication protocol. After this, we planned and implemented individual parts of
the complete modification, and using an iterative development style to create a
final product of quality, effective code.

3.1 The Development Process

Throughout the development process, we collaborated with other teams
modifying and using FPSci. In addition to our project, there were three FPSci
research teams at WPI. One was working on adding an authoritative server and
latency compensation to networked FPSci for their Major Qualifying Project
(MQP). The next was a master’s student focusing on supporting any user studies
run with the project and adding features necessary for those projects. Finally,
there was a group that ran user studies using the networked version of FPSci.

Because all of these groups planned to work with the same code, we
decided to use an iterative development process. To add a new feature we would
start by determining the required characteristics of the feature and brainstorm-
ing a high-level approach to adding the feature. Once we knew the requirements
and general approach, we would work to create a minimum viable product that
met all of the requirements. With this done, we would review how it was ac-
tually implemented and make decisions about what changes would make the
feature more robust and generalizable. Once we had decided what changes we
wanted to make to the feature we would implement those changes and refactor
the code we wrote in the first pass to be more understandable and maintainable.
At this step, we would also add parameters to the appropriate configuration files
so that researchers could specify different behaviors of the new feature without
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having to modify the code. This allowed us to develop in parallel with the other
groups: if other groups were dependent on a feature and planned to use the
features soon, we would release the feature either as the minimum viable prod-
uct or after only an initial round of refactoring, with the understanding that
we would refactor and finish it and replace the released version eventually. In
order to avoid conflicting changes, we tried to only work on features that were
orthogonal to the work the other groups were doing, but we were not always
successful.

3.2 Requirements

There were a few fundamental requirements we identified early in our
process. The first and most important requirement we identified was that any
changes we made would have to maintain backward compatibility with exper-
iments run with older versions of FPSci. This is in line with the development
requirements of FPSci where any researcher can use the latest version of FPSci
with the experiment config file from their experiment, regardless of what version
of FPSci it was written for. It was important that this remained true for any
changes that we made so that we did not break any experiments designed before
our changes were made. The second requirement that we identified was that
our implementation should be a server/client design instead of a peer-to-peer
design so that all players experience the same network conditions. Additionally,
our implementation should maintain the general flow of experiments that FPSci
currently supports with as few changes as possible. Finally, it is important that
game and experiment parameters are configurable from files without having to
make code edits, in line with how the original FPSci operates.

3.3 Decisions

Although we had a list of design requirements, it was up to us decide
the specifics of implementation. This included deciding on the server structure,
underlying networking library, and network structure for game data.

3.3.1 Server Structure

One of the first decisions we had to make was how to build the server
application. We were first faced with determining how to handle client ac-
tion resolution. Specifically, we had to decide if we wanted to build a server-
authoritative system, where clients send their requested action to the server
and then the server responds with the updated world-state after that action is
applied, or a simpler client-authoritative system, where clients simulate all of
their actions according to their local world-state and then send their updated
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world-state to the server to be replicated to other clients. We considered several
factors when making this decision:

The server could be significantly simpler if we went with a client-
authoritative system because the server would simply have to store the world
state, apply updates from the clients each tick, and forward that saved state to
each of the clients so they can update any remote objects in their local world-
state. Additionally, the client authoritative model can help clients hide latency
because their actions are reflected locally immediately without waiting for the
server to validate their actions. This is essentially the same as the latency com-
pensation mechanism of local prediction which is sometimes implemented on
systems where a server authoritative model is used.

However, there are significant downsides to client authoritative system.
The most impactful of these is that because hit resolution takes place on the
client of the shooter. As long as the client shoots where the target is on their
screen, it registers as a hit regardless of whether or not the other clients agree
that object is in that location at that time. Because of this, a server authoritative
model is more accurate because it waits until it has all of the clients’ positions
for a specific frame before doing hit validation. However, this usually means
that in order to hit a target in a server-authoritative system, a client has to
“lead” (aim ahead of) the target by a variable amount that depends on the
latency of the network. Additionally, most first-person shooter games make
use of a server-authoritative model because this makes it significantly harder to
cheat - the server does not treat updates from the client as truth, performing
validation on updates which ensures that clients can not do illegal actions like
flying or shooting a target without being able to see it.

After weighing these options carefully, we decided to use a client-
authoritative model for our first iteration and then later add a server-authoritative
option to the game if we had time. By building both of these systems, we could
allow researchers to choose which model they want. This also allowed us to
start with a simple server that does not need much logic, giving us more time
to spend building network infrastructure and get familiar with the code base.

3.3.2 Network Library

Because of the inherent complexities of network communications, we
utilized an external networking library in our FPSci fork rather than writing
our own code from scratch. We examined eight different networking libraries
before settling on a single one, ENet [13], to use in the project. Our search
focused on network libraries geared toward games but did include more generic
libraries. Based on the goals of our network implementation, low latency being
the most important, we identified four criteria we wanted to be included in the
library we chose:

1. UDP support: our implementation requires a low baseline latency which
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may not always happen for TCP connections.

2. Ease of use: the library should handle the intricacies of network protocols,
allowing us to focus on the application level of the network implementa-
tion.

3. Simple dependency: because all future FPSci developers need to set up
the library, it should be easy to install and small in size.

4. Reliable communication: As well as standard UDP communication, we
would like a way to send occasional packets over UDP with guaranteed
delivery.

The libraries we examined are listed below:

ENet

ENet1 is a simple and straightforward game networking library. Built
on top of Berkeley sockets, its main feature is low-latency, reliable communica-
tions. It also provides simplified wrapper functions around the basic Berkeley
socket functionality to aid in the use of raw UDP or TCP sockets. Reliable UDP
communications offer control over retransmission controls and throughput while
still being considerably more performant than TCP connections. The library
is open-source and has been actively maintained for over a decade. It is also a
dependency for G3D and is thus already available to FPSci developers.

GameNetworkingSockets

GameNetworkingSockets2 is a modern game networking library built
and maintained by Valve. It provides numerous features on top of UDP to ensure
reliable communication, and includes methods for segmenting and prioritzing
traffic. It also includes methods for simulating latency and packet loss and does
logging. Although a promising choice in terms of features, it is a large added
dependency and has a somewhat complicated build process.

Boost

Boost3 (specifically the ASIO package) is an industry-standard net-
working and IO library. It offers complete functionality and control of UDP
and TCP connections, but is slightly more complicated as a result. Because it
is not designed for games it does not seem to offer reliable UDP functionality
out of the box. It is also a large (although well-documented) dependency.

1http://enet.bespin.org/index.html
2https://github.com/ValveSoftware/GameNetworkingSockets
3https://www.boost.org/doc/libs/1_79_0/doc/html/boost_asio.html
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Netlibrary

Netlibrary4 is a smaller networking project designed for games. It of-
fers four different levels of reliability applied to UDP connections, varying from
reliable and ordered messages to unreliable and unsequenced messages. Netli-
brary is lightweight and very simple to use, however, its methods are blocking by
default, necessitating further work on our part to use them within the project.

SLikeNet

SLikeNet5 is a fully featured game networking suite, built as a successor
to the RakNet library. It offers rich functionality and is actively being developed.
The extensive functionality means the library has a steeper learning curve as
well as a much larger memory footprint. We decided it was overkill and not
worth the time to learn for this project.

Yojimbo

Yojimbo6 is a fully featured game networking suite designed especially
for competitive first-person shooter games. It offers relatively straightforward
functions and should be easy to use. However, it has special requirements for
the game loop and may not easily allow flexibility for us to implement more
novel latency compensation techniques.

Winsock

Winsock7 is the standard windows library for socket operations in-
cluded in the Windows SDK. It offers full use of TCP and UDP sockets but
requires considerable infrastructure to be built on top of them. Many other
networking libraries listed here are built on top of Winsock.

Other Libraries

We came across the following libraries in our research, but rejected
them upon cursory inspection. They are included here for reference.

EVPP

EVPP8 is a modern, enterprise-backed C++ networking library built

4https://github.com/matt-attack/netlibrary
5https://github.com/SLikeSoft/SLikeNet
6https://github.com/networkprotocol/yojimbo
7https://docs.microsoft.com/en-us/windows/win32/winsock/

getting-started-with-winsock
8https://github.com/Qihoo360/evpp
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with an extreme focus on performance. However, it requires numerous depen-
dencies, is developed by a Chinese company, and most of the documentation in
Mandarin.

SPAS (Small, Portable, Asynchronous Sockets)

SPAS9 is a simple socket interface based on Boost/ASIO, implemented
entirely in a single header file. SPAS is genuinely impressive and is certainly
not a large dependency, but it, unfortunately, does not support UDP commu-
nications.

3.3.3 Network Structure

Before we could start implementing any of our changes, we also had
to decide how we wanted to structure the network messages and the code for
sending and receiving them. We needed to send some packets as fast as possible
and some packets as reliably as possible, depending on the type. This would
have been extremely difficult to implement on a single socket connection, be-
cause there would effectively be two streams of traffic on the same channel: one
reliable and one unreliable. To solve this, we decided to open two connections
between each client and the server. One, for reliable traffic, makes use of ENet’s
Peer structure, which provides reliable communication over UDP and an easy
interface for sending and receiving packets. The second, for unreliable (but low-
latency) traffic, is a standard UDP socket that we controlled using the ENet
socket functions, which provide a basic wrapper over the Winsock library.

Our packet structure and construction code is covered in detail in sec-
tion 3.4.3 . From the beginning, we knew that we wanted all the code responsible
for creating and sending packets to be separate from the code that was respon-
sible for interfacing with the game world. This led us to create a new class that
we called NetworkUtils, which is responsible for both taking the game data,
converting it to bit strings and then sending those over the network, and for
converting the input from the network back int usable game data. While this
was our plan from the beginning, we initially struggled to fully separate the
game logic from the networking code and originally had significant game logic
within NetworkUtils methods. We later remedied this through refactoring.

We also chose to implement a way to configure the latency of the links
between client and server from within FPSci. Although a configured router on
the network can easily add configurable latency, packet loss, and other variations
to the traffic between clients and the server, it requires adding hardware to
the test environment. FPSci is designed with experiments in mind; there are
configuration options for almost all variables that could be experimented with.
Thus, it makes sense to include network latency within the game itself, since
most experiments involving networked gameplay will likely involve setting or
adjusting the latency of clients. We inserted this functionality just above the

9https://github.com/ruifig/czspas
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Figure 3.1: Path of outbound data (left) and inbound data (right) through
networked FPSci

ENet layer, via our LatentNetwork class.

3.4 Implementation Details

3.4.1 Data Flow

Figure 3.1 shows broadly how information is passed through our code.
Outbound data is generated by the simulation or player inputs. Our onNetwork
function pulls these changes, encapsulates them in suitable packets, and calls
NetworkUtils functions to process the packets. NetworkUtils checks the packets
for connection information, then calls the correct boilerplate code to pass the
packet contents to ENet, which in turn sends them to the OS and hardware.
Inbound data is received off the hardware by the OS and queued in ENet. When
onNetwork looks for incoming traffic, it triggers NetworkUtils to pull packets
from the ENet queue, encapsulate them in our Packet class, then pass them
back to onNetwork. onNetwork then updates the world state accordingly.
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3.4.2 Changes to the onNetwork Loop

Most of the changes that we made to the operation of the FPSci app
came from our modification of the onNetwork method. This method is called
by the oneFrame method of the application to handle all network tasks once
each frame. The actions that onNetwork performs differ between the server
and client, but the general behavior is similar: The networking code starts by
receiving and handling all incoming packets. These packets contain updates for
networked entities, game state information, player activities such as shooting,
and control traffic such as connection notifications and registration information.
After all of these packets have been received and processed, and any updates
have been applied to the current game state, an update of local changes is sent to
the relevant remote party so they can update their game state. We implemented
two onNetwork functions, one on the server and one on the client.

Server-Side onNetwork

The server-side loop acts as described above, with most of it’s code
dedicated to handling control messages about client status and activities, and
only a small portion handling sending and receiving updates from clients. The
function does the following:

1. Calls the parent’s onNetwork function. This does nothing as far as we can
tell, but is good practice in case GApp default network functionality is
added.

2. Increments the network frame number, which is used to synchronize ac-
tions and log files between the server and clients.

3. Loops through the packets received since the last frame, using a Net-
workUtils function. The packets are handled according to type, which is
detailed later in this section.

4. Compiles all world-state updates into an update packet, and sends it to
all connected clients.

5. If the user has requested, send updated player configs to all connected
clients.

The code that does this is outlined below:

1 /* FPSciServerApp.cpp */

2 void FPSciServerApp :: onNetwork () {

3 Framenumber ++

4 while (there are packets to receive) {

5 Receive a packet

6 if (we received an unreliable packet) {

7 handleUnreliablePacket(packet);

8 } else {
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9 handleReliablePacket(packet);

10 }

11 }

12 Create an update packet that has all player positions in it

13 Broadcast the update packet to all connected clients

14

15 if (the user has requested to propagate PlayerConfigs) {

16 Send player config to the client(s) requested

17 }

18 }

Listing 3.1: Basic structure of the onNetwork function. This function is called
once per frame by the oneFrame function. It handles all updates from the
network and sends updates the the clients.

There are three different packet types that the server expects to come
on the unreliable channel:

• HANDSHAKE packets prompt the server to reply with a handshake reply
packet to indicate to the client that the pure UDP socket is operational
and connected.

• BATCH ENTITY UPDATE packets are processed by the server reading
the updates in the packet and applying the update to the specified entity
based on the update type. Currently, the client only sends an update for
itself in the batch entity update but we designed the server to support
clients sending updates for multiple entities in a single packet for future
features. Similarly, we built-in support for different update types that can
be specified on a per-update basis which is designed to provide support
for easily switching between absolute updates, like we are using now, and
relative updates such as deltas or any other representation of update data.

• PLAYER INTERACT packets are sent to the server when a client does
specific actions such as shooting (regardless of if they hit anything). At
the moment all that the server does with this information is log it to the
database so that researchers can review accuracy and fire-rate statistics
for all players from a centralized file. Future versions of the game might
broadcast these actions to other clients so that they can play a sound when
another player shoots their gun and possibly render a bullet hole where
the missed shot hit the scene.

1 /* FPSciServerApp.cpp */

2 void handleUnreliablePacket(packet){

3 switch (packet type) {

4 case HANDSHAKE:

5 Send response to client

6 break;

7 case BATCH_ENTITY_UPDATE:

8 for (each update) {

9 switch (Update type) {

10 case NOOP:
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11 // Do nothing (No-Op)

12 break;

13 case REPLACE_FRAME:

14 Update the entity ‘s position from network

15 break;

16 }

17 }

18 break;

19 case PLAYER_INTERACT:

20 Log remote action

21 break;

22 }

Listing 3.2: This is the logic that is run when an unreliable packet is received
by the server.

There are five packet types that we handle on the reliable channel, most
of which are control packets that deal with connection and round management.

The first type of packet that we handle is a connection on the reliable
channel, for these packets, we simply accept the connection and the ENetPeer
structure will take care of sending a response back to the client indicating that
we are connected.

If the packet is a disconnection on the reliable channel, we start by
removing the client’s model from our local copy of the world state and deleting
their connection information. We then broadcast a message to all the rest of the
clients that are connected to tell them to remove the disconnected client from
their world as well.

If we receive a register client packet on the reliable channel, we store
their connection information including their ID, unreliable port number, reliable
ENetPeer object, and current frame number. We use this information in other
parts of the game logic to determine the address or peer whom we should send
a packet to based on their ID. After we have stored their information we add
them to our local world state by creating a model and inserting it into our scene
with their ID. Finally, we must synchronize this new world state with all of
the clients, including the newly connected client. To do this, we first send a
broadcast message to all the previously connected clients telling them to add
a new entity that will represent the new client. Then, the server tells the new
client to add each of the existing clients to their scene. Finally, the server tells
the new client where their spawn position should be and tells them to respawn
to that position now.

If the server receives a packet reporting a hit, it first logs the hit to
the database, then it deals damage to the entity that was shot and checks if
that shot destroyed the entity. If the shot did destroy the entity, the server
commands all clients to respawn, resets the state of the round, and tells all the
clients that a player has shot another player. If this shot does not destroy an
entity, the server simply notifies all clients that a player has shot another player.

The final type of reliable packet that the server handles is a ready-
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up packet. This packet is sent from the client when the user has indicated
that they are ready for the round to start. When a server receives this type
of packet, it simply increments a counter of how many clients are ready and
if that counter reaches the threshold for the number of players needed to start
a round it broadcasts a packet to all clients telling them to synchronize their
frame numbers and start the round.

1 /* FPSciServerApp.cpp */

2 void handleReliablePacket(packet) {

3 /* This is a reliable packet */

4 switch (inPacket ->type()) {

5 case RELIABLE_CONNECT:

6 Accept the incoming connection

7 break;

8 case RELIABLE_DISCONNECT:

9 Delete the player from the scene

10 Remove the their connection information

11 Tell all the other clients to remove them from their scene

12 break;

13 case REGISTER_CLIENT:

14 Record their connection information

15 Acknowledge their connection

16 Set the latency on their connection to the default value

17

18 Create a model for the new client and add them to the scene

19 Tell all currently connected clients to add the new entity

20 to their scene

21 for (each currently connected client) {

22 Tell the new client to add existing client to their

23 scene

24 }

25 Set the new clients spawn position

26 Tell the new client to respawn

27 break;

28 case REPORT_HIT:

29 Log the hit

30 if (this hit kills a player) {

31 Reset the game state

32 Tell all clients to respawn

33 }

34 Tell all the clients that someone was shot

35 break;

36 case READY_UP_CLIENT:

37 Players ready ++

38 if (enough players are ready){

39 Start the round and tell all clients to start

40 }

41 break;

42 }

Listing 3.3: This is the logic that is applied when the server receives a reliable
packet.
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Client-Side onNetwork

The client-side onNetwork implementation is largely the same as the
server side, but it only deals with a single remote connection (to the server), and
it has much less information to keep track of. The function does the following:

1. Calls the parent’s onNetwork function. This does nothing as far as we can
tell, but is good practice in case GApp default network functionality is
added.

2. Increments the network frame number variable

3. If the unreliable socket is not connected, it crafts and sends an unreliable
handshake packet to the server, hoping for a response.

4. If both channels to the server are open, it creates and configures a BatchEn-
tityUpdate packet, fills in the location data of this client, and then sends
it to the server.

1 /* FPSciApp.cpp */

2 if (reliable and unreliable channels are connected) {

3 Create packet of updates

4 Populate packet with data from player

5 Send packet

6 }

7

Listing 3.4: This logic creates an update for the clients position and sends it to
the server and is run once per frame.

5. Finally, it uses NetworkUtils to receive every packet that arrived since the
last frame, responding to each in kind:
If the packet was received on the unreliable channel:

1 /* FPSciApp.cpp */

2 switch (packet type) {

3 case BATCH_ENTITY_UPDATE: {

4 /* Take a set of entity updates from the server

5 and apply them to local entities */

6 for (Entity update in packet) {

7 if (Update is not for this client) {

8 Get entity object from scene

9 if (entity is null) {

10 Log that the entity does not exist

11 }

12 else {

13 switch (update type) {

14 case NOOP:

15 // Do nothing (No-Op)

16 case REPLACE_FRAME:

17 Move the entity to new position

18 }

19 }

20 }
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21 }

22 }

23 case HANDSHAKE_REPLY: {

24 Set unreliable channel connected to true

25 }

26 case PLAYER_INTERACT: {

27 if (Player performing action is not this client) {

28 Log action , state , time and player ‘s position

29 }

30 }

31 }

32 }

Listing 3.5: This is the logic that handles unrelaible packets on the client and
is run from the onNetwork function.

The three types of packets received on the unreliable channel are processed
as follows:

• BATCH ENTITY UPDATE: Loop through the contained updates,
when an update matches a NetworkedEntity in the client’s scene,
update that entity’s position

• HANDSHAKE REPLY: Log the reply and store that the socket con-
nected

• PLAYER INTERACT: If the interacting player is not this client (i.e.
is remote), log the player action

If the packet was received on the reliable channel:

1 /* FPSciApp.cpp */

2 switch(packet type)){

3 /* Handle Reliable packets here */

4 case RELIABLE_CONNECT: {

5 Get local unreliable socket port

6 Print connection information

7 Create a registration packet

8 Populate the registration packet with this client ‘s

9 GUID and unreliable socket port

10 Send the packet

11 }

12 case CREATE_ENTITY: {

13 if (GUID in the packet != this client ‘s GUID) {

14 Load a player model

15 Create an entity for the new player

16 Insert new entity into the scene

17 Add the new entity to hittable target list

18 }

19 }

20 case CLIENT_REGISTRATION_REPLY: {

21 if (response GUID == this client ‘s GUID) {

22 if (packet ‘s status field is success) {

23 Set reliable connection connected to true

24 Set the latency of the reliable network

25 connection according to the session config

26 Set the latency of the unreliable network
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27 connection according to the session config

28 }

29 else {

30 Log that the connection was refused

31 }

32 }

33 }

34 case MOVE_CLIENT: {

35 Get this client ‘s player entity

36 Set its position according to packet

37 }

38 case DESTROY_ENTITY: {

39 Get the specified entity from the scene

40 Remove the entity from the scene

41 }

42 case SET_SPAWN_LOCATION: {

43 Get this client ‘s player entity

44 Set its spawn position according to packet content

45 Set its spawn heading according to packet content

46 }

47 case RESPAWN_CLIENT: {

48 Get player entity from scene

49 Call player ‘s respawn method

50 Reset the network session

51 }

52 case START_NETWORKED_SESSION: {

53 Start the networked session

54 Set the network framenumber to the value in the packet

55 }

56 case SEND_PLAYER_CONFIG: {

57 Set session config values to those in the packet

58 }

59 default:

60 Print a warning that an invalid type was received

61 }

62 }

Listing 3.6: This is the logic that handles relaible packets on the client and is
run from the onNetwork function.

3.4.3 Supporting Infrastructure

NetworkUtils

The NetworkUtils class provides utility functions for sending and re-
ceiving packets, controlling connection latency, and managing client connec-
tions. Because these functions do not have any game logic in them, they are
shared between the server and client code. For sending packets, NetworkU-
tils provides four functions: broadcastReliable, broadcastUnreliable, send, and
sendPacketDelayed. For receiving a packet, the class provides one function: re-
ceivePacket. For managing connection latency, the class provides 3 functions:
setAddressLatency, removeAddressLatency, and setDefaultLatency. Finally, for
managing client connections it provides one function: registerClient.
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1 /* NetworkUtils.cpp */

2 void broadcastReliable(packet , enetHost) {

3 for (each peer connected to the host) {

4 if (the peer is connected) {

5 Clone the packet to send

6 Set the destination of the packet and mark it reliable

7 send(packet);

8 }

9 }

10 }

11

12 void broadcastUnreliable(packet , srcSocket , dstAddresses) {

13 for (each address in dstAddresses) {

14 Clone the packet to send

15 Set the destination of the packet and mark it reliable

16 send(packet);

17 }

18 }

19 void send(packet)

20 {

21 Get the latency for the destination of this packet

22 if (latency == 0) {

23 Send the packet on the wire now

24 }

25 else {

26 /* call the delayed send function */

27 sendPacketDelayed(packet , latency);

28 }

29 }

30 void sendPacketDelayed(packet , latency) {

31 Get the current time

32 Calculate the time to send with the current time + the latency

33 Create a LatentPacket with the given packet and time to send

34 Add the packet to the LatentNetwork queue

35 }

Listing 3.7: The NetworkUtils functions are called by the client and server app
from the onNetwork function to handle sending packets.

Both of the broadcast functions provide very similar functionality but take
slightly different inputs. Each duplicates the given packet, creating a copy
for each destination. They configure the packets to send on either the reliable
channel or unreliable channel, respectively. Both then pass all the packets to
the NetworkUtils send function.

The NetworkUtils send function first checks the configured latency for
transmitting to the packet’s destination. If the latency is 0, it calls the packet’s
send function, sending the packet to ENet immediately. Otherwise, it calls
sendPacketDelayed to send the packet after a delay. The sendPacketDelayed
function finds the time the packet will be sent (now + the latency), creates a
LatentPacket with that information, and passes it to the LatentNetwork thread.

1 /* NetworkUtils.cpp */

2 shared_ptr <GenericPacket > receivePacket(enetHost , socket) {

3 if (there are packets to receive on the unreliable channel) {

23



4 Create a GenericPacket that will handle reading the packet

type

5 Convert generic packet to a typed packet with the packet

contents

6 Set the packet as unreliable

7 return packet;

8 }

9 if (there are packets to receive on the reliable channel) {

10 if (a client has connected on the reliable channel){

11 Create a relibaleConnect packet

12 Set the packet as reliable

13 }

14 else if (a client has disconnected on the reliable channel

) {

15 Create a reliable Disconnect packet

16 Set the packet as reliable

17 break;

18 }

19 else { /* we just received data on the reliable channel */

20 Create a generic packet to read the packet type

21 Convert generic packet to a typed packet with the

packet contents

22 Set the packet as reliable

23 }

24 return packet;

25 }

26 /* No new packets to receive */

27 return nullptr;

28 }

Listing 3.8: The receivePacket function in network utils is called by the
onNetwork function of the client or server in order check if there are any packets
to receive.

The receive packet function takes both an ENetHost and a socket that
should be checked for incoming packets. The first thing that this function does
is check if there are any packets waiting to be received on the unreliable socket.
If there is one, it receives the packet as a generic packet, checks the type, then,
based on the packet type, it creates a typed packet that interprets the input
correctly based on the packet type. It then returns the typed packet.

If there are no unreliable packets to be received when the receivePacket
function is called, it services the reliable connection with an ENet function call.
This ENet call serves to generate an event for any connection, disconnection,
or packet delivery that has occurred on the reliable connection since the last
call and also allows the host to send any messages that have been queued for
sending. If there has been a connection on the reliable channel, this function
generates a packet representing the new connection and returns that packet.
Similarly, if there is a disconnection on the reliable channel, it generates and
returns a packet. Finally, if there was a packet to receive on the reliable channel,
the function does the same thing as it does with unreliable packets, creating a
generic packet and then creating a typed packet containing the data from the
packet. If there are no packets to receive the function indicates this to the caller
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by returning a null pointer.

1 /* NetworkUtils.cpp */

2 void NetworkUtils :: setAddressLatency(addr , latency)

3 {

4 Remove any existing latency for the addr

5 Add the address to the latency map for storage

6 }

7 void NetworkUtils :: removeAddressLatency(addr)

8 {

9 Remove any existing latency for addr

10 }

11 void NetworkUtils :: setDefaultLatency(latency)

12 {

13 Sets the default amount of latency

14 }

Listing 3.9: This is the logic to change the amount of latency that will be applied
to a specifc address or the default amount.

The functions for managing latency are simple and straightforward.
Latency is tracked in a C++ map object indexed by the destination address.
This allows us to quickly look up the amount of latency to add to a packet
based on the destination address. By specifying latency on a per-address basis
we are able to specify different amounts of latency for 2 clients running on
the same machine (same IP) as well as between the reliable and unreliable
channels for the same client, because they operate on different ports. The
setAddressLatency function works very simply by deleting any existing entry for
the specified address and then adding the new latency to the map. This function
is called on the server when a client connects, when a session is initialized
on either the server or client, and when a player config is pushed down from
the server. The removeAddressLatency function works by simply removing the
address from the map if it is in the map. If the latency is not set after the entry is
removed, the default latency will be used instead. Finally, the setDefaultLatency
function simply changes the value of the defaultLatency member variable. This
is used by the send function in the case that the destination address of the
packet cannot be found in the latency map.

1 /* NetworkUtils.cpp */

2 NetworkUtils :: ConnectedClient* NetworkUtils :: registerClient(packet)

{

3 Create a new ConnectedClient

4 Record the peer associated with the new client

5 Record the ID associated with the new client

6 Record the unreliableAddress associated with the new client

7 return newClient;

8 }

Listing 3.10: This it the logic for creating a new ConnectedClient struct that
contains all the information needed to identify the client. This is called by the
Server’s onNetwork function when a new client connects.

NetworkUtils provides a struct called ConnectedClient that contains
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all the information to identify a client. This struct includes the ENetPeer that
is used to communicate with them reliably, an ENetAddress that holds the des-
tination for unreliable connections, the ID of the client, and the frame number
for that client. The register client function creates and returns a new Con-
nectedClient that contains all their contact information, which is derived from
the packet contents. This is then used by onNetwork to identify the ID of the
client so that it can update the right entity and can translate messages from
the reliable to the unreliable channel and vice versa.

Packets

We designed custom data structures to hold the information we send
over the Internet. For convenience, every type of packet we use is a different
class, but all are subclasses of GenericPacket. GenericPacket offers four con-
structors: one for broadcast packets, one for received packets (which takes as
an argument and parses the received bitstring), one for packets on the reliable
channel, and one for packets on the unreliable channel. These set the internal
destination fields so that the created packet will be sent to the proper place over
the proper channel.

GenericPacket also has functions for determining which channel it was
sent on, whether it’s inbound or outbound, its source and destination, and its
type. There’s also a clone function to copy the packet object.

Non-generic packets add data fields and override three methods: pop-
ulate, serialize, and deserialize. Populate is used to place values into a packet
once it is initialized; the arguments vary by what data that packet type carries.
Serialize takes each of the packet’s internal data fields and writes them into a
binary object that can be sent over the network. Deserialize does the opposite,
reading the data fields off of a binary object and into the object’s fields. Dese-
rialize is called automatically on the arguments for the createRecieve method,
which creates an inbound packet object on a host when it receives a packet.
The structure of the class harirachy is outlined in Figure 3.3.

1 /* Packet.cpp */

2 int GenericPacket ::send() {

3 Serialize this packet into a binary output

4 if (this packet is reliable) {

5 Create an ENetPacket that contains the binary to be sent

6 Send the packet on the wire

7 return the status code

8 }

9 else {

10 Add the binary to a buffer

11 Send the packet on the wire

12 return the status code

13 }

14 }

15

16 void GenericPacket :: serialize(outBuffer) {
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Figure 3.2: A GenericPacket starts with a packet type which then tells the
receiving code in NetworkUtils how to interpret the rest of the data in the
packet. This same structure is followed by all other packet types.

17 Write the packet type to the binary output

18 }

19

20 void GenericPacket :: deserialize(inBuffer) {

21 Read the packet type from the binary input

22 }

Listing 3.11: these are some of the basic functions that are provided by the
GenericPacket class. Derivied classes will override and implement their own
verison of serialize and deserialize that will handle the specifc data in that
packet.

We defined and used the following packet types:

• UNINTALIZED TYPE: default value for uninitialized packets. Never sent
over the network.

• BATCH ENTITY UPDATE: contains position and heading data for any
number of players. Sent to the server from each client containing their
own position, and from the server to every client containing every client’s
position.

• CREATE ENTITY: instructs a client to create a new player entity, sent
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Figure 3.3: A UML diagram of the packet class and derived packet types

by the server when a new player joins

• DESTROY ENTITY: instructs a client to destroy a player entity, sent by
the server when a player disconnects.

• MOVE CLIENT: instructs a client to move its player to a new location.
Only sent by the server.

• REGISTER CLIENT: packet carrying information about a client. Sent
to the server when a connection is first established.

• CLIENT REGISTRATION REPLY: sent to a client in response to a reg-
ister request. It either can signal approval or denial of the registration
request.

• HANDSHAKE: ask for a response.

• HANDSHAKE REPLY: reply to a handshake request.

• REPORT HIT: inform the receiver that a player has been hit and by
whom. Sent from a client to the server, and then echoed to other clients.

• SET SPAWN LOCATION: instruct a client to set its player’s spawn lo-
cation to a specified value.
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• RESPAWN CLIENT: instruct a client to call its player’s “respawn” method.
Sent from the server.

• READY UP CLIENT: inform the server that this client is ready to start.
Sent from the client.

• START NETWORKED SESSION: instruct a client to start it’s networked
session. Sent from the server.

• PLAYER INTERACT: sent to log any form of player interaction, includ-
ing moving, looking, and shooting. Sent from clients to the server, and
echoed to other clients.

• SEND PLAYER CONFIG: carries most of the PlayerConfig data struc-
ture, sent from server to client as part of the configuration for a session.

• RELIABLE CONNECT: created when a reliable connection successfully
opens. Only used locally.

• RELIABLE DISCONNECT: created when a reliable connection is closed.
Only used locally.

Figure 3.4: The structure of a BatchEntityUpdate packet (our most frequently
sent packet) follows the structure of a GenericPacket but adds additional values
to our header and then adds update information for one or more entities

LatenetNetwork

The LatentNetwork class provides functionality for simulating latency.
This allows us to run experiments in a test lab with extremely low latency
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and then create a specific, consistent amount of latency in the system. Latent-
Network runs an independent thread that polls a heap of LatentPackets every
0.5ms, sorted by their scheduled time to send. If the current time matches the
time a LatentPacket is scheduled to be sent, it pops the packet from the heap
and sends it. LatentNetwork also provides thread-safe access to add elements
to the LatentPacket heap via a shared, mutex-protected queue. LatentNetwork
offers one public function: enqueuePacket.

1 void enqueuePacket(shared_ptr <LatentPacket > packet) {

2 {

3 Lock the packet queue

4 Push the packet onto the queue

5 Unlock the packet queue

6 }

7 };

Listing 3.12: This is the logic that adds a LatentPacket to the queue shared
between the main thread and the neworking thread. This is called by the
onNetwork code to hand off a packet.

The network thread runs this:

1 void LatentNetwork :: networkThreadTick ()

2 {

3 while (thread is running) {

4 Sleep until 0.5ms since the last tick

5

6 Lock the packet queue

7 Copy the queue contents into local heap

8 Empty packet queue

9 Unlock the packet queue

10

11 Place new packets into the local heap

12

13 Get the current time

14 while (the next packet in the heap should be sent) {

15 Pop the next packet

16 Send the packet

17 }

18 }

19 }

Listing 3.13: This is the logic that the networking tread runs every time it wakes
up. This handles taking packets form the main thread and sending them on the
network after the right amount of latency.
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Chapter 4

Evaluation

To evaluate our contributions, we designed and ran several experiments
to determine the efficiency, scalability, and resiliency of our networked version
of FPSci. Our testing was centered around the performance of the game, as
FPSci must run at extremely high framerates to be able to do experiments with
latency. We also tested the performance of the system in extreme conditions -
high latency, packet loss, and large numbers of connected clients - to see how well
it would perform. These tests gave us insight into the strengths and weaknesses
of the code and what experiments it would be useful for.

4.1 Methodology

We identified several variables to examine:

• The amount of time spent in the onNetwork function. This lets
us know how much CPU time our network code uses each frame. If we
compare this to other parts of the game loop - physics, user interaction,
rendering - we can find the relative impact of the networking code.

• The network traffic our code generates. Measuring the amount of
traffic our code generates, and seeing how this changes when the framerate
or the number of clients changes, allows us to see how efficiently we use
the network, and how many clients can participate in a single match on a
given network.

• The impact of latency and packet loss on the clients. Comparing
the world states of the clients to each other and the server at any given
time lets us see how much imperfections in the network connection affect
their synchronicity. This gives us an idea of how resilient our code is to

31



network disruptions, and we can compare the behaviour of our system to
existing games with latency compensation techniques.

• The accuracy of our simulated latency. If it is to be used in exper-
iments, we want to confirm that our latency simulation is accurate and
effective.

We implemented several changes to the system in order to run our
evaluation. Most of these changes consisted of adding more logging to be able
to record variables we measured, but overall they do have a significant impact
on performance.

We added three tables to the logging database:

• The amount of time spent in different parts of the code. Each
frame, we logged the amount of time the CPU spent executing the onNet-
work function, the simulation code, and the graphics code. To collect this
data, we hooked into the existing Profiler in G3D, which FPSci and G3D
were already using to profile sections of the code, including the onSimu-
lation function and the graphics functions. We added a profiler event for
our onNetwork code, and added code to export the values from the pro-
filer into the database each frame. Unfortunately, the running profiler is
rather costly. When we ran matches before enabling it for the evaluation,
we were able to run the game at up to 500Hz. With the profiler enabled
for the evaluation, FPSci could not run faster than around 200Hz.

• The network traffic sent and recieved. In order to measure the
amount of network traffic our networking code generated, we hooked the
logger into the NetworkUtils send function to count the number of bytes
sent each frame. This byte count, along with the number of packets sent
is logged each frame. The receive function in NetworkUtils also records
the number of packets received and their total size in bytes. This provides
a measure of the network traffic our code is generating, but unfortunately
it does not account for all of the data. ENet’s reliable channel periodically
sends small heartbeat packets and adds header data and acknowledgement
packets to the information we send through it. While this probably is not
a significant amount of data, we can not measure it with our FPSci-based
logging because it is at a lower layer than we have access to.

• The timestamps ping packets are sent and received. Periodically,
we send ping packets (which we dubbed “serial number” or SN packets,
because they contain only a serial number) from the clients to the server.
By recording the exact frame and time the each packet is sent, and then the
time it is echoed back, we can calculate the two-way latency in the network
connection. We also record the time that these packets are processed by
the server, but we were not able to do any analysis on one-way latency
because we were not able to synchronize our test computers’ clocks to a
satisfactory precision.
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To stress-test the server, we also created a “headless” client, which
does no simulation and has no user interface. This client waits for the match
to start then simply reads a recording of a previous match, and each frame
sends the correct packet to simulate having moved. To the server, this is almost
indistinguishable from a real client, although it does not respond to all of the
control packets the server can send. Because this client is so lightweight, we can
run many on a single machine and see how the server scales with many clients.

We setup three machines with identical specs to run our experiments.
These machines each had an Intel i7-8700K at 3.7GHz with 64GB of ram, a
GTX 1080 and an Intel I219-LM 1Gb/s NIC. These were connected together
with a 1Gb/s unmanaged network switch which had a 1Gb/s connection to the
local network. Two of these machines were used as clients and the third was
used to run the server. Additionally, in order to run the headless client we used
a machine with an AMD Ryzen 2600 at 4.1GHz with 32GB of ram, an RX 580
and an HP 560SFP+ 10Gb/s NIC connected to the local network at 10Gb/s.

Finally, to simulate adverse network connections, we used a Raspberry
Pi as a router between the server and the local network. With the Pi, we were
able to add packet loss on the connections between the clients and the server.

We devised four different sets of experiments to examine performace
of our code:

• Test 1: Traditional Matches with Variable Framerate:

The first set of trials we designed were aimed at getting a baseline of
performance for our modified version of FPSci. We ran several trials with
2 clients playing against each other. Each trial lasted approximately 60
seconds. We ran each trial at a different framerate, although in each trial
the framerate of both clients and the server matched. We used framerates
at 30Hz intervals between 30Hz and 210Hz. Above 180Hz, FPSci clients
were unable to maintain the requested framerate, so we did not continue
testing higher framerates. When the profiler is not enabled, the game can
reach over 400Hz consistently.

• Test 2: Stress-Testing the Server with many Clients

The second test we performed was aimed at determining how many clients
the server would be able to handle at any one time. We recorded a one-
minute session of a client moving around the map, and then replayed that
through increasing numbers of headless clients. We ran trials with 2, 4, 8,
16, 32, 64, 128, and 255 clients.

• Test 3: Varying Latency and Examining its Effects

The third test we performed was aimed at determining how latency affects
the synchronization of the clients. We ran several one-minute 60Hz trials
with two clients, with the same, symmetric latency on each link. We
increased the amount of latency by 20ms each trial. Inspecting the logs
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allowed us to see how the measured latency compared to the specified
latency, and how memory and CPU usage were affected by the increased
latency. We were also able to compare at each point in time the position
of each client’s player on itself, on the server, and on the opposing client.

• Test 4: Examining the Effects of Packet Loss

Finally, we used the Pi router to introduce packet loss into the system.
We ran 2 player, 60Hz trials with no added latency, and with 0.1%, 0.25%,
0.5%, 1%, 2%, 5%, 10%, and 20% loss. We were watching for errors in
the communication and how the discrepancy between the clients changed
- how large it was and how consistent it was, and whether noticeable jitter
appeared to the user.

4.2 Results and Analysis

4.2.1 Test 1: Traditional Matches with Variable Framer-
ate

Figure 4.1: Overview graphs of a trial run at 30Hz (left) and 210Hz (right)

As can be seen in some of our initial graphs from our first experiment in
Figure 4.1, the bitrate and framerate are nearly constant. The small variations
are likely from random changes in graphics time and are not significant compared
to the average value. We found the bitrate, framerate, CPU time for onNetwork,
and number of packets per second to be constant within a trial, allowing us to
compare across trials using the average values from each trial. The graphs from
the trial at 210Hz, where FPSci could not hold the requested framerate, show
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Figure 4.2: Average bitrate, packets per second, and CPU time vs. framerate

significant variation in the client 1 framerate. We did not continue testing at
higher framerates, and do not include the 210Hz data in our analysis, because
at that point FPSci is operating outside of normal conditions.

One feature to note about the 210Hz graph is that as the framerate of
the client decreases, so too does the network bitrate; the two are directly related.
This relationship is confirmed when we look at Figure 4.2, the bitrate of the
server and clients’ network communication increases linearly with framerate.
This is because FPSci sends the same amount of data each frame regardless of
the framerate (about 63 bytes per frame from client to server), so the per second
network throughput is higher when there are more frames each second

The server sends more data than either client because it is sending the
state of all networked entities to all clients, whereas each client only sends its
own position data to the server.

We cannot explain why the average time spent in onNetwork is greater
at lower framerates for the server and client 1 during our experiments. It is
possible that this is a result of random variation or a single very slow frame
dragging the average, but the fact that the same curve is present on both a
client and the server suggests this is not the case.
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4.2.2 Test 2: Stress-Testing the Server with many Clients

We can predict the amount of data sent over the network based on the
number of clients connected. Of all the types of packets we defined, only the
BatchEntityUpdate packets have much affect on the network utilization. All
other packet types are either extremely small or sent very rarely, or both. A
BatchEntityUpdate consists of two sections: a header and a list of entities to
be updated (refer to Figure 3.4 for update packet structure). Knowing that the
header consists of 7 bytes and that one entity requires 56 bytes, we can find an
equation for the bitrate of data sent by the server and clients. Given that F is
the framerate in frames per second and n is the number of clients on the server,

bitrateclient = (7 + 56) ∗ (F ) ∗ 8

bitrateserver = (n)(7 + (56)(n))(F ) ∗ 8 = 7(n)(F ) + 56(n2)(F ) ∗ 8

Using these equations, we can predict the network usage for trials based on
framerate and number of clients connected:

Expected Network Throughput at Different Client Counts (Mbps)
Hz 2 4 6 8 16 32 64 128 256
30 0.057 0.222 0.494 0.874 3.47 13.8 55.2 220 881
40 0.076 0.296 0.659 1.16 4.62 18.4 73.5 294 1175
50 0.095 0.370 0.823 1.46 5.78 23.0 91.9 367 1469
60 0.114 0.444 0.988 1.75 6.94 27.6 110 441 1762
70 0.133 0.517 1.15 2.04 8.09 32.2 129 514 2056
80 0.152 0.591 1.32 2.33 9.25 36.8 147 588 2350
90 0.171 0.665 1.48 2.62 10.4 41.4 165 661 2644
100 0.190 0.739 1.65 2.91 11.6 46.1 184 735 2937
110 0.209 0.813 1.81 3.20 12.7 50.7 202 808 3231
120 0.228 0.887 1.98 3.49 13.9 55.3 221 882 3525

Table 4.1: Predicted server network utilization (Mbps) at given client counts
(x-axis) and framerates (y-axis)

Our measurements, as seen in Figure 4.4, almost exactly match the
predictions in the Table 4.1: the server’s network utilization increases exponen-
tially with the number of clients. This is because adding more clients increases
both the number of packets to send and the amount of data sent in each packet.
Since clients only communicate with one other host, the server, their network
utilization increases linearly with both framerate and client count. The data
received by the server increases linearly as well, because each new client only
sends a fixed amount of data. The most intensive experiments that can be
accommodated by a given network is easily calculable from Table 4.1. On a
1-Gbps LAN, the most clients that can be serviced on a 60Hz server is around
128.
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Figure 4.3: Graphs of average parameter per trial vs. number of clients

The server running on our test hardware could not handle 128 clients
connected simultaneously, but did run smoothly with 64 clients. As can be seen
in figure Figure 4.5, the total amount of server CPU time spent each frame
exceeds the duration of one frame (about 16.6ms at 60Hz) somewhere between
64 and 128 clients. With more clients, server CPU time increases exponentially.
Somewhere between 128 and 255 clients, the amount of time spent each frame
on the network alone exceeds the duration of one tick.

On the client, as seen in Figure 4.6, the amount of CPU time used
in the network code remains relatively constant. However, the amount of CPU
time spent on graphics increases with the number of clients as the game is forced
to render more player models. In terms of pure computation, a client can easily
handle more than 254 other clients in the same match.

However, our software can currently only support 255 clients connected
simultaneously because a batch entity update packet stores the number of en-
tities it contains in a single byte. This could be fixed by either increasing the
size of the entity count field, or by fragmenting updates across multiple packets
when there are too many to fit in a single one. However, at higher client counts
the processing cost and network cost of new clients is very large; 256 clients at
70FPS would easily saturate a 2Gbps link. Most experiments we foresee will
need no more than a dozen clients at most, so our implementation is robust
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Figure 4.4: Graphs of average network utilization (send and receive) vs. number
of clients

enough for our use case.

4.2.3 Test 3: Varying Latency and Examining its Effects

We found that even when we requested no latency be added to the
networking code we still observed around 16.6 ms of latency round trip from
client to server. This is what we would expect when running the game at 60Hz:
the client sends the packet to the server, the server then has to wake up from
it’s game loop, reply to the packet, and then the client has to wake up from its
game loop and receive the packet. Waiting for each host to wake and service
the network should add a delay of a considerable fraction of the frame time.
We found that this amount of additional latency seems to be fairly constant
regardless of the amount of latency that we configured the networking thread
to add. As can be see in Figure 4.7, the amount of additional latency above
the requested latency is fairly consistently between 16 and 20 ms which is just
over one frame time’s worth of latency. We then re-ran our analysis code on the
data gathered as part of test 1 to see if at higher framerates there was lower
additional latency, supporting the hypothesis that we should expect one frame
of additional latency. Looking at Figure 4.8 we can see that this trend continues
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Figure 4.5: Graph of server CPU time spent in different functions vs. number
of clients

Figure 4.6: Graph of client CPU time spent in different functions vs. number
of clients

as we would expect and the amount of additional latency is approximately equal
to the frame time.

Additionally, we found that there appears to be a linear relationship
between the deviation of position between local and remote clients and the
amount of latency we added, as can be seen in Figure 4.9. This is what we
expected because the trial that the headless client was replaying for this test
had the client moving straight ahead almost constantly. This meant that as
the local client lags further and further behind, the remote client would get
further and further from where they were seen locally (since the distance the
client moves in the time between its position is sent and received is directly
proportional to the time between sending and receiving). We would expect that
this is the upper bound of deviation because in a real game the player would
not be moving consistently forward. Any time they are not moving, the lagging
client’s copy of their player would “catch up” to the unmoving player’s actual
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Figure 4.7: Graph of requested latency and the amount of additional latency
measured.

Figure 4.8: Amount of round trip latency observed at different framerates

Figure 4.9: Deviation in position between clients at differing added amounts of
latency
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Figure 4.10: Deviation in position between clients during 2% packet loss

position, decreasing the deviation during certain parts of the match.

4.2.4 Test 4: Examining the Effects of Packet Loss

We found that packet loss has surprisingly little impact on our system.
Our perception while playing was that packet loss was not noticeable until it was
significant (over 2%), and then only manifested as slight jitter in other clients’
movement. These jitters did not have enough magnitude to make aiming more
difficult.

The reason packet loss has so little effect is that we are constantly
sending position updates. That means that even if a packet is lost one frame, the
next frame will most likely yield a packet with the correct location. Because we
deal in absolute locations, there is no loss of location precision if this happens.
Sending data at 60Hz means that the discrepancy is only present for about
16ms. In games with slower framerates (or slower network update rates), it
would become a problem more quickly. We found that the discrepancy stays
relatively low, as seen in Figure 4.10, but fluctuates between multiples of the the
movement speed and frametime as packets are lost. Some of these fluctuations
are from random variations in latency, but packet loss also contributes, as can
be seen at higher loss rates in Figure 4.11. Most discrepancies are equivalent to
only one lost frame, which makes sense in our experiment - the chance that two
packets will be lost in a row is the loss rate squared, which was only 4% even
in our 20% packet loss test. In real traffic, packet loss tends to occur in bursts,
which would have a more noticeable effect. However, the game would recover
as soon as communication resumes. It is worth noting that because networked
FPSci is client-authoritative, any shots that hit the opponent while it appears
stationary would still be registered as hits.
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Figure 4.11: Deviation in position between clients during 20% packet loss
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Chapter 5

Conclusion

Gaming, and especially first person shooter games, are a popular form
of entertainment that comprise a sizeable portion of the entertainment industry
[8]. The size of the market encourages the development of high-quality games
to draw players, and to do this requires understanding how players and games
interact. Additionally, the understanding gained by studying games can be
applied to other areas of human computer interaction, improving the user expe-
rience in unrelated areas of computing. The impacts of latency and input delay
are an important area of study in games, especially in first person shooters,
where fast-paced play requires quick thinking and reaction times.

Our goal was to expand FPSci, a research first person shooter, by
adding the ability to run networked multiplayer matches. On top of FPSci’s
existing ability to run experiments with local latency, this would facilitate re-
search into the impact of different parameters on players’ performance playing
multiplayer games. As we were expanding upon an existing project, was im-
portant that we change as few things as possible so that FPSci could still be
used for single-player experiments.We also kept the same system of using the
Any files to specify parameters for experiments to align with the FPSci design
of allowing easy, extensive configuration for experiments.

As well as performing all of the functions that singleplayer FPSci pro-
vides, our version allows multiple clients to connect to a server and play together.
Each client is able to see all of the others in real time and constantly shares its
own location data. All of the clients are also capable of shooting other players.
FPSci detects successful hits and shares them with the server, which responds in
kind. Currently, it restarts the match by respawning all of the players, although
this could be modified easily to create other varieties of gameplay.

To facilitate experiments, the number of clients a server supports, the
latency of connections, and server address and port are configurable through
files. As of this writing, our code is being used in a WPI study measuring how
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latency affects the peaker’s advantage in multiplayer FPS games.

As demonstrated in our evaluation, the code we wrote can run suc-
cessfully in adverse conditions, and, more importantly, can log characteristics
of these conditions and its own performance for evaluation. We also left the
code in a relatively readable and extensible state: the switch statements in on-
Network can easily be modified or extended to incorporate new packets. The
generic packet infrastructure also means that adding new types of packets is
simple and easily understandable, allowing new packets to be added quickly by
handling boilerplate code. Overall, our code is organized and labeled (as we did
several refactoring operations throughout implementation), making extending
it easier.

Future Work

There are certainly more features that would benefit multiplayer FP-
Sci. To make the experience more closely match FPS games, future developers
can add game features, optimize code, or change the multiplayer architecture.

Possible new game features include different weapons, such as projec-
tile launchers, items that players can collect, or other game modes. These could
prove useful in some experiments and bring the game experience match more
closely what users would encounter in the real world. Of course, each of these
would need to be handled over the network to ensure projectiles follow the same
path for all clients, only one client can pick up any single item, and managing
different respawn behaviour or player organizations.

There are also ways to improve the performance of our code. It is
possible to decrease the network utilization by compressing the data we send,
filtering it to avoid sending repeat updates, or scheduling updates more in-
telligently. We currently send all of the available data every frame, without
compression, regardless of whether any other instance needs it, which could be
fixed with a modest amount of tweaking.

It should also be possible to increase server performance with a large
number of clients by improving how references to the player objects. Our code
relies on linear searches to find particular clients, storing references would im-
prove lookup time significantly without having much affect on memory usage.
It would also be useful to researchers to have an authoritative server and to
have different styles of sending data (i.e. via deltas instead of absolute values),
because these systems are commonly used in production games.
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