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Abstract: The goal of this project was to reduce the operating cost of a massively 

multiplayer game by making its servers more scalable.  To accomplish this task we 

implemented two methods for improving the scalability. These two improvements are a 

peer-to-peer sub-layer and a means for allowing a client to become a temporary server. 

To test the effectiveness of our two improvements we implemented an original massively 

multiplayer game.  The results from our experiments show improvements in latency and 

processing load. 
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1. Introduction 
 
 Massively Multiplayer Games (MMG’s) are one of the newest types of video 

games.  These video games are different from traditional video games in that they require 

a scalable network of clients whereas traditional video games feature a limited number of 

clients or players.  MMG’s have allowed for the implementation of virtual worlds in 

which hundreds of thousands of players can all share one game together.  This is a 

desirable feature for players because it creates a dynamic social environment for the 

players.  Many of those who play MMG’s extensively prefer to have this social 

interaction in their game because it enhances their enjoyment of the game in ways that 

are exclusive to MMG’s.  For example, a standard feature in MMG’s is the ability to chat 

online with other players.  This feature makes MMG’s more socially immersive by 

allowing players to personally contact one another.  Another common feature in MMG’s 

is the ability for players to play competitively or cooperatively with whomever they want 

and with as many people as they want.  Sometimes, even in a massive world of other 

players, a player will choose to play solo.  However even in this case the solo player is 

still aware of the other players and the changes to the game that they cause.  This 

awareness creates a sense of belonging to the game world, which also makes the game 

even more immersive even though the solo player is neither chatting nor playing with 

other players at all. Another feature that is common in many MMG’s is the ability to 

create custom avatars. This grants players a higher degree of freedom and allows them to 

create a character the way they want them to look. Whether the player’s avatar is a 

representation of how they see themselves deep down or is a character purely out of their 
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imagination, character customization adds an element of uniqueness to each player and 

variety to the game world. 

 

One of the technical challenges that must be solved in order in implement such a 

system is the problem of determining how much data should be sent to each client and 

how often that it should be sent.  Solutions to this problem have been shown to vary 

depending on the type of game.  If too little information about the current state of the 

game is sent then a player might be missing information that they need to play the game.  

If data is not sent often enough to each client then each client will lose his or her valued 

awareness and the game will be less fun.  However, over-sending data to each client has 

consequences as well.  If a client receives too much information, either all at once or over 

a period of time, then that client might be unable to process it all and, thus, the game's 

performance could suffer.  Some clients also might not be able to handle the network 

strain that a MMG could cause.  Striking a good balance between sending more 

information less often and less information more often would be ideal and it would let the 

largest number of players play with optimal performance. However, this balance is often 

impossible to achieve because of the static requirements of the game's design.  The global 

game state can almost always be divided into parts that can be classified as either critical 

to each client or non-critical to each client and then the easiest thing to do is to send only 

the critical data to each client.  While this strategy is the safest in that it protects the 

integrity of the critical data, it does not take into account any optimizations for cases 

when normally critical data might be irrelevant.  Optimizing a game system for those 
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occasions is an important topic because and this MQP will implement at least one such 

optimization. 

An alternative architecture to the client-server model would be a peer-to-peer 

(P2P) network. P2P networks have considerable benefits in that they are scalable and the 

decentralized structure of a P2P network makes it more reliable than a centralized client-

server model: one peer going down will have little impact on a P2P network, but a server 

going down could crash the entire game world. While these gains in scalability and 

reliability are fairly significant, P2P networks lack in the areas of security and are not 

well suited for handling persistent data. The differences between peer-to-peer networks 

and client-server architectures will be covered more in-depth in Section 2 on MMG 

Architectures. 

 

 For this project we focused on making a massively multiplayer game more 

scalable while still using a client-server model.  We had two reasons for doing this.  The 

first reason is because client-server is the most commonly used system in modern online 

games.  The second reason we chose this model is because we found that this system has 

advantages over other similar systems and that its weaknesses, specifically the server 

bottleneck, could be worked around.  Our goal with this project was to find ways to 

relieve some of the load on a central server.  If certain data that is unnecessary for the 

server to process (such as chat messages, avatars, etc.) were handled solely between 

peers, the load on the server would be reduced, thus improving scalability. 
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 Since we required that a game be easily modifiable at the network level we 

implemented our own small game from scratch.  This game supports a number of clients 

that are only limited by system resources, the ability to send text messages to other 

players who are currently signed on, and a few other aspects of a fully functional MMG, 

such as combat with other players. 

 

 One of the optimizations that we made was the establishment of a peer-to-peer 

sub-layer network for the transmission of text messages.  This is in contrast to a system 

where each text message must go through the central server.  The reason for doing this is 

because only the central server knows the IP addresses of each client and therefore, it 

must be ultimately responsible for routing each conversation.  However, performing these 

routing duties must be scheduled with other game tasks and it is possible for this load to 

be a significant burden on the server.  With the addition of a P2P network, the game 

clients wishing to send text messages only use the central server to locate other clients 

and then they can communicate directly with each other.  We believe that this will have 

the biggest positive impact when two players chat somewhat continuously during a long 

play session, which is the norm for a massively multiplayer game. Some modern MMG’s 

such as Phantasy Star Online use “voice chat.” This feature allows players to verbally 

communicate each other using a headset microphone. Although this feature fell outside of 

the scope of our project, it would be quite possible for future work to modify our P2P 

implementation to support the transmission of voice chat messages. 
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 Another optimization that we made is to allow the server to forward requests for 

certain pieces of game data to other clients.  This optimization was applied to static, 

persistent data, such as the distribution of a patch to each client from the central game 

server during a game.  Much like the text messaging problem, patch distribution is 

another burden that a game server must typically bear while trying to operate a video 

game.  However, in this case the danger of the server becoming a bottleneck is much 

greater.  The size of a patch for a MMG can be very large (several megabytes or more) 

and when this is multiplied by the current number of players, the result could be a 

catastrophic spike in latency for all users if other precautions have not been taken.  Our 

changes have reduced this bottleneck by allowing clients who have finished the download 

to act as hosts for other clients.  The only circumstance under which this may happen is 

when the server determines that it is suffering from a critical overload and responds by 

requesting that an able client be the host for another client who would otherwise be 

unable to download the patch. If for any reason the download fails, which could be due to 

the connection being lost or because the game-appointed server refused to serve, then the 

player who was unable to download initially, continues to wait for another download to 

begin from the central server (possibly this time coming from the central server itself).  

 

 Having the clients share non-static, non-persistent data in the same way could also 

be used as optimization; however, this presents a game security issue that can be difficult 

to solve.  Even though it is possible for the server to remember which clients it has asked 

to serve data to other clients it might be difficult to utilize this information in real time.  

When downloading something large and static, such as a patch, if a player were to 
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somehow cheat and manipulate the patch before it is sent to another player then it would 

be possible to detect the change and for the server to correct the change and take action 

on the cheater.  However, this is most likely too difficult to do in real time.  Instead of 

pursuing this option, we have identified which parts of the game state are non-critical and 

we have suggested ways that clients could still be used to share this information. These 

details will be covered over the course of this report. 

  

 In the next section, we will analyze and evaluate the primary architectures used in 

massively multiplayer online games as well as any research that has been done in this 

field. The third and fourth sections discuss program and experiment implementation and 

the data obtained from the experiments. Sections five and six will cover analysis and 

conclusions that can be drawn from our data. The final section discusses possible future 

work and enhancements to our project. 

 

2. Background 
 
2.1 MMG Architectures 

 
When designing a Massively Multiplayer Online game, there are a number of 

possible architectures to choose from, each with their own strengths and weaknesses. 

Here, five network models will be examined and discussed in terms of four attributes: 

scalability (how easily the architecture can handle additional clients with respect to the 

amount of resources needed to accommodate them), reliability (how well the game world 

can recover if a server goes down), security (how well the architecture can detect and 
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deal with cheating), and persistence (how well the architecture preserves the state of the 

game world and/or client data when a client leaves or comes back). 

On one end of the taxonomy spectrum (refer to Table 1 at the end of this section) 

is the simple Peer-to-Peer (P2P) architecture. Here, all computers act as both clients and 

servers at all times. Scalability is best here, since there is no single point to which all data 

is routed, which could otherwise create a bottleneck when many players are involved. 

Similarly, reliability is excellent, since a player dropping will not cause the other players’ 

games to end due to the decentralized structure. (Refer to Figure 1 at the end of this 

section for a detailed taxonomy of centralized vs. decentralized online gaming networks). 

Security is purely on the honor system; any player at any time could give themselves an 

unfair advantage over the other players and since there is no mediator to keep players in 

check, this is a significant problem in some game situations. Lastly, there is no 

persistence with a basic P2P design. 

On the opposite end of the spectrum from P2P is the basic client-server 

architecture. Here there is one server to which all clients connect. This server acts as an 

“all-powerful, all-knowing entity” through which all gameplay data goes. This results in a 

drastic increase in security and offers the possibility of persistent data. Conversely, 

however, this architecture alone is poorly scalable since the server can become the 

bottleneck and a single server is not very reliable either. 

A step up from the basic P2P is the addition of super-nodes. Each computer still 

acts as a client, but rather than having everyone also be a server, only certain computers 

are servers at one time, though every computer is a possible candidate to become one. 

The super-node computers are sporadically changing. Scalability is still excellent for the 
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same reasons. This P2P architecture does offer some persistence as long as the super-

nodes stay up; however, this also introduces slight problems with reliability – if each 

super-node goes down, the game will be unable to continue. This architecture only has 

some advantages over basic P2P, primarily in the areas security. While P2P with super-

nodes does offer some form of cheat detection, those who are super-nodes could 

potentially abuse their power or look the other way with respect to cheating. 

A third type of P2P is Peer-to-Peer with “trusted nodes.” Again, all computers are 

clients, but only “trusted” computers can be servers. This offers advantages in security 

and persistence, since the “trusted” computers are actual people hired by the company 

running the game. (Let us assume that these people are indeed trustworthy.) This, in turn, 

makes the architecture less scalable than the previous P2P architectures, since the 

addition of more clients would require more trusted nodes. Lastly, reliability is a bit 

lower, since the servers are limited, as they are always the same people, and, despite 

being “trusted,” servers can always unintentionally go down. 

Towards the other end of this spectrum is the Distributed Server Farm. In this 

case, we have multiple computers, all servers, working together as a distributed system. 

All other computers connect to this system as clients. This architecture has a great deal 

more capability in terms of security and also persistence, since all data can be saved to 

the servers. However, with a lot of data going through the server, this creates a bottleneck 

and the need for additional servers may be necessary, especially if the MMG becomes 

popular. Reliability is also not high, since again, servers can always unintentionally go 

down. 
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Name Scalability Reliability Security Persistence 

Peer-to-peer (P2P) Excellent Excellent “Honor System”* Abysmal 

P2P w/ Super-

nodes 

Excellent Good “Honor System” Poor 

P2P w/ Trusted 

Nodes 

Good Good Fair Fair 

Distributed Server 

Farm 

Fair Fair Excellent Excellent 

Client-Server Fair Fair Excellent Excellent 

* “Honor System” indicates that security is possible within this architecture; though, the players can cheat 
(or commit some other insecure activity) just as easily as play fair 
 
Table 1: A table classifying each architecture in terms of scalability, reliability, security, and persistence. 
As the architectures become more centralized, they become less scalable and less reliable. However, the 
more centralized architectures are more secure and allow for persistent data. 
 

Online Gaming Networks

Centralized Decentralized

Trusted Not Trusted Nodes No Nodes

Client-Server Client-Server P2P w/ Nodes LAN* P2P

Game Servers Hosted Games P2P Networks Lan Activity Direct link-up
(MMO's) (Quake) (Gnutella) (GBA, wireless PDA)

*assuming that a LAN server is a node

Figure 1: A taxonomy of online gaming networks by category. The less centralized an architecture is, the 
less trusted the network can be. Like in Table 1, Nodes in a P2P network can be either trust or non-trusted 
depending on the network, but they are certainly not as reliable as a dedicated server. A LAN Server is 
more dedicated than a Node in a P2P network, but typically does not have the resources to handle large 
numbers of clients. 
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2.2 Previous Work on this Topic 
 

 MMG’s have been an area of research interest lately among academics and 

professional game developers alike. Often times, however, the research done will ignore 

one or two of the primary aforementioned attributes (scalability, reliability, security, or 

persistence) in order to maximize the others. Two particular articles, one by Yahn W. 

Bernier [Ber 01] and another by Takuji Iimura, Hiroaki Hazeyama, and Youki 

Kadobayashi [IHK 04] propose some practical scalability solutions, but are largely 

applicable to peer-to-peer architectures. Nonetheless, they introduce some techniques that 

would be possible to modify and incorporate in a primarily client-server architecture. 

 Bernier begins his paper by giving a background of how the client-server 

architecture of online video game functions.  He says that the clients are essentially 

“dumb”: all they do is take input given to them by the user, send this information to a 

server that performs some operation on it per the game code, and then renders the reply 

from the server. The bottleneck, Bernier continues, is in the actual network connection. 

The lag is the client sending the data to the server and waiting for a response. To the user, 

their character appears to stutter, commands inputted are not instant. He suggests that to 

solve this lag, the programmers could have the clients predict how the server will respond 

and render it. Thus, to the user everything appears instant and when the actual response 

from the server arrives, the game updates to agree with it. Player movements, attributes, 

weapon stats, and displaying of opponents are the critical things that the clients will 

predict.  The benefit of this is that there is no apparent lag for the user. The biggest 

drawback, however, is player “warping”. If your client predicts an opponent at a location 
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in space and the server predicted it somewhere else, when the reply from the server 

arrives at your client, the opponent will appear to warp, or instantaneously move, from 

the old location to the new one. Another con he describes is called “leading”. If you shoot 

at a moving opponent directly with an instant hit weapon and are running with a high lag. 

By the time your data has reached the server, he or she has moved out of range and the 

server registers a miss. So in order to hit them, you need to lead your shots. However, 

based on your lag, the leading required to hit something could be very large, like one 

hundred units in front of the target.  Bernier continues with the introduction of a possible 

solution to leading.  Lag compensation is logging when a user command is sent and the 

server rewinds the time of the opponent to match the lagged user command time so that 

instead of registering a miss it would be registered as a hit. Bernier adds that this too can 

cause problems such as “bullets around corners”. If you shoot at someone, a stationary 

target, in your line of sight and your lag to the server is great enough that they can run 

around a corner and duck.  No matter what their client predicted, they would register a hit 

and would possibly die. Thus their reaction would be, “that bullet killed me from around 

the corner, that’s impossible”. Bernier concludes with a warning that this however will 

change the game play and that may not be what the programmers original intended the 

game to be like. 

 Iimura, Hazeyama, and Kadobayashi describe how to use a Distributed Hash 

Table to adapt an MMG to a peer-to-peer network.  Each peer keeps this DHT, which 

contains the global state of the game and the contact information of its peers.  To handle 

larger sizes the game is broken down in zones, so that the DHT only has to hold the 

global information of its zone.  To handle timing issues a peer is selected to be a zone 
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owner. This zone owner acts as the server of its zone.  For performance the zone owner 

caches it's DHT so that it can make many updates quicker.  Also for network 

performance, connections are cached so that volatile data, like player position, can be 

updated frequently.  To handle the effects of having an owner of a zone being removed, 

the system they have allows any one of the peers to have the ability to promote itself to 

be the new zone owner whenever they do not find an owner of their own zone.  This can 

be done because the game state is save on the DHT, which is shared amongst every 

player. 

 

3. Procedure 
 

This section of the report describes the process that we used to complete the project. 

First, in Section 3.1, we list the goals of our project. In this section we explain each 

component of the project and why we needed to create it. Section 3.2 is dedicated to 

describing the three programs that we wrote in order to get our results. In Section 3.3 we 

describe our experimental procedure and how our results were obtained using the three 

programs. 

 
 
3.1 Goals 

 

When we started the project, we analyzed the strengths and weaknesses of the most 

common server architectures as they relate to massively multiplayer online gaming. The 

three main architectures that we studied were a client-server model, a typical distributed 

server model, and a pure peer-to-peer model. Two additional variations of the peer-to-

peer model (the use of "super-nodes" and "trusted nodes") were studied as well. Each of 
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these models was then compared to each other using the attributes of scalability, 

reliability, security, and persistence. Our goal here was to determine if the most 

commonly used architecture, the distributed server, was really the best-suited model for 

implementing an online game. We discovered that this model is actually very appropriate 

for online games, but it could also benefit from scalability improvements. This work is 

presented in section 2.1 of our report.  

Next in our goal was to prototype and test a client-server model with enhanced 

scalability. To come up with ideas on how to improve scalability, we looked back at our 

analysis. The peer-to-peer networks were an obvious choice for improved scalability. 

However, we did not want use them in such a way as to reduce the system to a peer-to-

peer network since it would compromise the client-server model's strengths in security 

and persistence.  

Some game traffic is unimportant to accurate gameplay and has a very low need for 

security. Our solution was to implement a peer-to-peer sub-layer for game traffic that 

peers could use for unreliable or temporary messages. We also implemented a means for 

peers to send larger, more permanent updates to each other. It is not a problem that the 

server does not know what is sent between peers, since these events do not affect the rest 

of the game. But with the updates that are critical to the game state, each client will need 

to verify the integrity of the data that it has downloaded with the server. Since this is 

game data, the player can verify the data easily by simply playing the game. If during the 

game, the client’s software shows that the data it received from another peer is out of date 

or severely corrupted, then the game server can take action. In the worst case, the server 

will just have to send the update itself. But in the best case, which is the most frequently 
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occurring, the data will be valid and the game will be playable. The explanation of the 

implementation of our system is in Section 3.2 of our report. 

Finally, we ran the programs several times in controlled experiments to determine 

how effective our modifications were in improving the scalability of the server. Since 

measuring scalability is difficult to define, we decided that our goal would be to show 

that our improvements should decrease the processing load and bandwidth load of the 

server in most games. Then, if the expense-per-client could be lowered, then a single 

server can handle more clients than it could before. This statement is what we mean by 

improved scalability. Section 3.3 describes exactly how our experiments were run. The 

results and the analysis of those experiments are also included in Section 4 of this report. 

 

3.2 The Program Specification 
 
This section of the report describes in detail how our system was designed and 

implemented to meet our goals. In Section 3.2.1 we begin by explaining the rules of our 

scaled-down massively multiplayer game. Section 3.2.2 explains the implementation of 

our basic client-server system. Section 3.2.2 also shows how our improvements work on 

top of this implementation. In Section 3.2.3 we explain the purpose of the MapServer 

program and we also explain why it is decoupled from the client-server system. In 

Section 3.2.4 we define each of the game events that are sent over the network, since the 

bulk of each program's work is in listening for and responding to these events. Finally, 

Section 3.2.5 describes the different versions of the server and client programs that we 

created just for the experiments. 
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3.2.1 Program Rules 

When we began designing our game, we had three important requirements for it. The 

first was that it had to be a truly an MMG. This meant that hundreds of players could be 

involved in the same game world at the same time. The second requirement was that it 

must contain the same basic functions as a complicated MMG. For our project, we 

wanted the players to perform all of these functions: entering the game, leaving the game, 

walking around, talking to other clients on the same map, attacking other players or 

enemies, and changing player state. Finally, our most important requirement was that the 

game itself not be very complicated to implement and play. This requirement was 

imposed by our limited time to complete this project. 

To meet these requirements we designed the game "The World of Rock, Paper 

Scissors". This game meets exactly all of our requirements and no more, so that the 

project could be kept simple. To play, a player must first log in by starting their client 

program. (The opening screen is shown in Figure 2). Next, the server places the client in 

a random, unoccupied place in the game world. This is the player's starting position. The 

player can now take any of these actions: log out by quitting the program, type a chat 

message by pressing the “Enter” key, take a step up, down, left, or right by using the 

arrow keys, or change their weapon by pressing any of the “r”, “p”, or “s” keys. There is 

a 400-millisecond delay between steps. This number was chosen since it seemed to be a 

reasonable speed for the game to be played as it gives a player time to react to other 

players in their proximity. However, there is a weapon-switch delay of 100 milliseconds. 
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The reason for this is so that the players with fast reflexes can switch their weapon in 

mid-step when engaging in combat. 

Each player is also given a unique avatar in the game world. This is what the player 

controls when they issue a walk command. Also, each avatar has a weapon icon 

displayed above it. This weapon icon is always either a picture of a rock, a pair of 

scissors, or a piece of paper. 

The meaning of these symbols is used when two players collide with each other. 

When that happens, both players are returned to their previous position. However, they 

also engage in a game of “Rock, Paper, Scissors” (hence the name) using the weapon that 

they currently have displayed as an icon. The loser of this combative game loses one hit 

point. Players start with 15 hit points so that they can enter combat a few times before 

running out of hit points. (Figure 3 shows some players who have been engaging in 

combat). When a player runs out of hit points they receive a loss and they are moved to a 

new random place in the game world, exactly like if they had restarted the game. The 

player who took the loser's last hit point is awarded with a win and continues playing on 

the same map. Players retain their win-loss records until they log off. The combat symbol 

and a player's win-loss record both meet the requirement that the players have a state that 

changes during the game. 

The game ends when the server closes and, thus, is not persistent. When this happens, 

the state of each client is lost. This is not what a commercial MMG would do, but it is 

acceptable for ours because persistence is not one of our goals. Persistence would be less 

useful in testing our network since we restart the game anew for each trial. 
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Figure 2: The title screen for World of Rock, Paper, Scissors 

 

 
Figure 3: An in-game screenshot with three players facing-off. 
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3.2.2 The Program Model 
 

Our implementation begins with the server program. The server program performs 

two tasks in an endless loop. The first task is that the server must listen for new clients 

who wish to log into the game. When one is found, the server then takes that client and 

assigns it a place in the game world, according to the rules. The server then adds this 

client to its growing (and shrinking) list of all currently connected clients allowing other 

players to have knowledge of the player from this client and must tell all other clients 

about the new client. The second action that the server must take is that it must accept 

and respond to every command that the each of the clients send. We implement this phase 

of the server's logic by using a for-loop over the entire list of clients and calling a special 

command interpreting function on each packet in each player's socket. (Each packet is a 

separate command. This will be explained shortly.) This loop is where the majority of the 

work is done in the server program. 

The client program begins by reading a configuration file. This file contains the well- 

known IP address and port that the game server is running on. If the client cannot 

connect, or if the connection is refused, then the client terminates. After the client 

connects then it simply waits for updates from the server. While the client is waiting for 

updates, the player can take any of the actions that are specified in the rules. When these 

actions are taken they are sent to the server as commands. The normal client program also 

draws the game world and the player's avatar to the screen. The special versions of the 

client program that were created for the bots do not render an image to the screen. Since 

the majority of the work in the system is done by exchanging events and commands, 
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these will be defined in section 3.2.6. This section describes when each event is used and 

how both programs process it. 

Our peer-to-peer messaging modification works by sending selected events directly 

from one peer to the other peers on the same map instead of sending them to the server 

first. In our game, a client's area of influence is the map they are on. Hence, whenever a 

player takes an action, the only players who need to receive notifications are the players 

on the same map. With our peer-messaging plan, each client has to know the IP address 

of its neighbors. This is accomplished by including each player's IP address with the rest 

of that player's data when it is first sent to a client upon joining a new map. For our 

experiments, we choose to send only the chat messages over the peer-to-peer network, as 

opposed to player state information - such as, hit points, wins, losses, and other 

information that could undesirably affect the game if intentionally modified by another 

player. 

Our peer-content server modification works by having each client act like simulated 

members of the game's actual distributed server network. The client-server architecture of 

our system would allow security to be maintained by having each client verify everything 

(which could be a very simple and fast process as opposed to having the server send the 

content modification) that it obtains from another peer with the real server. (The 

implementation of this feature, however, is beyond the scope of our project and not 

actually implemented in our game). The program that would make this verification 

process possible is called the MapServer. This program is explained in the next section. 
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3.2.3 The MapServer Program 

Massively multiplayer game servers frequently have to serve large updates. These can 

be either permanent alterations, like a patch, or they can be large temporary updates, such 

as the contents of a new zone when a player arrives at a new location. In both cases, the 

server is burdened with having to transmit large chunks of data. This data could be 

several kilobytes or several megabytes, depending on the situation and the game.  

In our game, we require the clients to download maps that they haven't been to yet 

from the server. This is our way of simulating these larger updates. The maps, however, 

are not served by the actual server process. They are instead served by a separate process 

that we call the MapServer. There are several good reasons for implementing this as a 

separate program. First, by making this program a separate process, a distributed server 

can more easily be implemented. For example, a game might have one server program 

and two MapServers running on three different computers. Another reason for running 

the MapServer as a separate process is so that we can easily detach it from the server and 

allow clients to run it to decrease the number of tasks that the server performs. 

With the implementation described above, the peer-layer is transparent. No matter 

where the MapServer is actually located, a client can connect to it and get a map without 

knowing if the update was from the server or another player. 

In our game, the MapServer’s IP addresses are given out by the server. During the 

course of a game, a player may determine that it needs a certain map to continue playing. 

It is at this time that the server gives the client the IP address of a MapServer. This can be 

either the address of a client or of the server. The client then uses this IP address and the 
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well-known port, 25556, to obtain the update. If the MapServer is unable to meet the 

request for any reason, then the client just simply reissues the request to the server again. 

 

3.2.4 Maps 

 
The game world is made up of a 10x10 grid of maps. Each map is 15 tiles in width by 

12 tiles in height. The maps are created using a map editor, which we created from the 

original concept demo of the game. An avatar is used as the cursor, which can be moved 

around the map like in the game (See Figure 4). The “J” and “K” keys cycle through the 

background (passable)/foreground (non-passable) tiles (each background tile has a 

corresponding foreground tile) and the “B” and “F” keys place background and 

foreground tiles respectively. “N” and “M” cycle through the map I.D. numbers. Each 

map has an I.D. between zero and ninety-nine. When a map is saved, the file name is the 

map’s I.D. number with a .map extension. Maps are saved to disk with the “W” key and 

old maps can be loaded with “L”. 

When maps are saved, they are written to a binary file with the first thirty-two 

characters containing the file name and 180 characters (15x12) making up the map. The 

binary file type was chosen to prevent the world from being easily modified by the 

players. 
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Figure 4: The Map Editor allows maps to be created and modified with relative ease. The user simply 
moves the avatar onto tiles placing either background (i.e. grass, bridge) or foreground (i.e. tree, 
water) tiles. 

 
 
3.2.5 Program Messages 

In this section we detail the complete list of game events that are exchanged between 

the clients and the server. Some of these events are player-initiated commands and others 

are server-generated updates. A few of these updates are used in both ways. In our game, 

each event is sent in a separate packet. This way both the server and the client can 

process each packet independently of each other. In our source code and in this section 

the terms “packet”, “event”, and “command” are all interchangeable. 

 

 



 26

Connection Packet 
 
 First, when a new client needs to connect to the server it must begin the 

transaction by sending a connection packet to the server. The username and avatar fields 

should be set the way the player wants them to be. The client should fill in zero for the ID 

and one for the type unless the player is trying log back in as a previous player. Then the 

ID should be the ID from the session that this client wishes to resume. Now the server 

will respond with another packet. This packet will contain the player's new ID and the 

other two fields will contain the values that the client must use for their avatar and 

username. Usually, these are the requested values anyways. If the server returns an ID of 

0 however this means that the connection was denied. This can happen for a number of 

reasons, including having a re-login attempt fail. (When the chosen ID is already in use 

for example). 

 

Step Packet 
 
 Whenever a client wishes to take a step it must notify the server of this action by 

announcing only the direction of the step. This is because only the server knows the true 

position of the player if the player lags and becomes de-synchronized. (And, this is the 

only way for the server to handle conflict-resolution with stepping). The client can still 

animate the avatar and move the avatar but the client must correct any inconsistencies 

due to lag later when a position packet arrives from the server, if that is necessary. 

 

Position Packet 
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 First, a client must initiate a step using a step packet. When the server processes 

the step packet it will then send a position packet to update every client that needs to 

know this information. The management of the animation “parts” (fractions of a step) are 

merely cosmetic and are calculated by each client. Only the server sends this packet and 

the server only sends this packet in response to a step packet. 

 

Player Packet 
 

 The server sends this message to a client whenever the client needs to add a 

player to their list of fellow players on the same map. This can happen because the client 

has recently joined a new map, or has recently joined the game, or because another player 

has joined the map. The fields in this packet specify every attribute about the new player, 

including the IP address for the peer-to-peer system to use. 

 
Leave Packet 

 
 The server sends this message to a client whenever the client needs to remove a 

player from their list of current players. This occurs every time a player voluntarily 

leaves the map, when a player on the same map is defeated and moved elsewhere, and 

when players log off. This message is only sent by the server to the clients. Clients do not 

inform each other of their own leaving, for security reasons. 

 

HP Packet 
 

 This packet is sent by the server to a client to notify that client that another 

player's hit points have changed. The fields in this packet contain the new value and the 
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player ID of the player who needs to have their value updated. Players must not be 

trusted to send this update themselves either. 

 

Weapon Packet 
 

 First, a client will send this packet to the server with both ID fields set equal to 

that client's ID. The weapon field should be set to the weapon that the client wants to 

switch to using one of the enumerated constants representing rock, paper or scissors. 

After the server receives the update it will send one of these packets to every player on 

the same map as the original player. This is how the weapon information is updated. 

(This is virtually identical to the HP packet, except the player chooses the new value 

first). 

 

Win-Loss Packet 
 

 The server sends this message to a client whenever the client needs to update the 

number of kills and deaths for a given player. Like the HP and Weapon update events, 

this event is restricted to the server. 

 

Map Packet 
 

 When a client discovers that it needs a map it will send a request using this 

packet. The client will set the ID field to its own ID and set the mapid field to the mapid 

that it needs. Failures should be set to zero and the other two fields will be undefined. 

Now, the following steps happen: 

1. The server replies with the address field filled out. This is a MapServer's address. 
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2. The client attempts to use this addr to get the map from that MapServer. 

3. If the attempt fails for any reason, like connection broken, failures is incremented. 

Repeat from step 1. 

4. If the attempt succeeded, then the client now has their missing map. 

 

Chat Packet 
 

 When someone wants to send a chat message they must first copy their message 

into the message field. The player ID field can be set to specify a private message to one 

player. If the ID field is set to 0 then the message is said “out loud” and it will be sent to 

everyone on the same map as the speaker. 

 

Ping Packet 
 

 If a client sends a ping packet to the server then the server will reply by returning 

the ping packet unchanged. However, the client can use this to detect the latency of the 

system. First, the client should sequentially label each of its ping requests using the serial 

field. This prevents confusing one ping’s start with another ping’s end. (That causes a 

much lower time than it should be). Second, the client should fill in the start field with 

any consistent timing metric that it chooses. An example of this would be milliseconds 

since the program began. That way, when a client hears a ping reply, the client will know 

how long the latency is. 

 

3.2.6 Programs for the Experiments 
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Besides the normal server program, client program, and MapServer, four other 

programs were created specifically for the experiments.  

First, our experimental design required the ability to run multiple players all 

simultaneously. To do this, we removed the graphical display from the client program 

and implemented four different bots. This changed program is called the BotProgram in 

the experimental design (Section 3.3). This new BotProgram can run up to 265 bots at 

once. (The limit of 265 was imposed by the number of sockets that we were able to 

open). 

In addition to this, our implementation of the peer-to-peer chatting was hard coded 

into the program. As a result, we ended up with two different versions of the 

BotProgram: one with peer chatting enabled and one with that feature disabled. The latter 

program was used as a control in the experiments. Our server program also had two 

versions: one where the client-operated MapServers were used whenever possible and 

another version where the server program never redirected a map request to a client 

MapServer. And again, the latter program was needed as a control in the experiments. 

 
The Experimental Bots 

The four different bots were each created to test a different part of the system. Below 

are brief explanations of each bot and how they determine which actions to take: 

 

ChatBot: This bot merely stands still and sends a random chat message every 400 

milliseconds. The time interval of 400 milliseconds was chosen because this is the 

speed at which players normally take actions. For example, a player who holds down 

a directional key will take steps at the rate of one step every 400 milliseconds. This is 
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much more chatting that a human player could ever reasonably do. However, this 

amount of traffic allows us to test the effectiveness of sending small (96 bytes) but 

frequent messages over the peer network. 

 

ExplorerBot: This bot walks in a straight line as fast possible. And when it hits a 

wall it always turns right. The purpose of this bot is to load as many maps as it can as 

fast as it can. This purpose is effective because ExplorerBots who bump into each 

other can pull each other out of areas where they are stuck. This bot was designed to 

test the MapServer. 

 

AttackBot: This bot blindly moves toward the nearest player while using the shortest 

path. It also changes its weapon to be the weapon that will win against which ever 

weapon that player is using. AttackBots test the combat aspect of the program, and 

they are only used as a sub section of SpazBots in the experiments. 

 

SpazBots: SpazBots earn their name from their behavior. The SpazBot is 

programmed to perform the actions of both the ChatBot and either an ExplorerBot or 

an AttackBot for each action depending on if there is another player on the map that 

the SpazBot is on. The purpose of a SpazBot is to take the maximum number of 

actions possible, and thus to load the server. 
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MeasurementBots: The purpose of this bot is to record the ping times from the 

server. This bot pings the server every fifteen seconds and saves the results until the 

program ends. When the program is over, the bot prints these times to the screen.  

 
 

3.3 The Experiment Specifications 
 
 

3.3.1 Experimental Data 

 
Our experiments collected three different sets of data from the system. The three 

measurements that we will take will be the server's frame counter, the server's total 

bandwidth used, and the latency that is observed by a MeasurementBot. 

The first measurement, the server's frame counter, requires an explanation. Our server 

program (all versions of it, refer back to section 3.2.5) keeps a count of how many times 

it completes its main loop. Recall that this main loop involves looping through each client 

once and processing each command from each client. Logically, the more clients that a 

server has, the longer each loop will take. Also, the longer each command takes to 

process, the longer this loop will take. And since an increased server load causes the main 

loop to run for longer, it will also execute fewer times. Therefore this measurement 

allows us to infer the server's relative processing load. 

The total bandwidth used by the server is calculated from the number of packets sent 

by the server program and the number of maps served by the official MapServer. Since a 

single packet is always 96 bytes in length and a single map is always 213 bytes in length, 

the formula is bandwidth = maps*213 + packets*96. This measurement is necessary 

because we also want to minimize the amount of bandwidth that each client uses. 
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Bandwidth is an important constraint to consider when loading a server. Although most 

massively multiplayer game servers have access to high bandwidth lines, each individual 

server can only output so much data per second, no matter how much data it can process. 

Our third measurement, latency, is the most commonly used metric by players to 

determine how loaded a server is. Our experiments measure the latency every 15 seconds 

so that we can record the latency spikes and the average latency of an entire game. The 

server's latency indirectly depends on how fast the server completes each frame. 

Therefore, we can use this measurement to infer total server load as well. 

 

3.3.2 Experiment Design 

To run the experiments we used three computers. All three of the computers were 

plugged into a private LAN using a hub. No other computers were present on the LAN 

and no other network traffic was present on the LAN while the experiments were being 

run. This way we could prevent interference and unnecessary packet collisions. We also 

tested this hardware with a single client to verify that the latency introduced by the 

hardware was less than one millisecond. Since all three computers were physically only a 

few feet apart, this was expected. 

The standard procedure for running the peer-to-peer chat trials was as follows: the 

ServerProgram and MapServer were run on the server machine. BotPrograms, which are 

used to specify how many of a certain type of bots are to be run, are executed on the 

client. One BotProgram, running only a MeasurementBot, was executed on a laptop 

computer, while another, running all other bots, was executed on the client computer. 

Before the BotProgram is run, several parameters must be set. For the BotProgram that is 
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not running the MeasurementBot, the parameters set are the independent variables in 

these experiments, such as: game length (two minutes), bot quantity and type (75-150 

chatBots or spazBots) and type of chat implementation (either peer-to-peer or server). At 

the end of each trial, the BotPrograms will print their statistics (those described in Section 

3.3.1) to the screen. 

The procedure for testing the client-side implementation of MapServer is similar 

to the peer-to-peer chat trials with a few differences. In these trials, a MapServer is also 

run on the client machine. The BotProgram parameters have also changed: game length 

can now be either two and four minutes, explorerBots are used in quantities of 100, 125, 

and 150, and MapServer location is the final independent variable which can either be  

just one server-operated MapServer or both a server and client-operated MapServer. 

The final set of trials we ran was a combination of the previous two sets. The first 

four used server-implemented chat and MapServer, while the last four used client-

implemented chat and MapServer. All experiments in this final set were two-minute 

games using 75, 100, 125, and 150 spazBots. 

 

4 Results and Analysis 
 

 The following four sections of the report illustrate and analyze the results of our 

two experiments. Our first experiment tested the effectiveness of our peer-to-peer sub-

layer against a similar system that did not have this feature. The results of those 

experiments are graphed in section 4.1 and the analysis of those graphs is in section 4.2. 

Our second experiment tested the effectiveness of allowing the clients to operate their 
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own MapServers versus only running the MapServer program on the server. The graphs 

of that data are found in section 4.3 and the analysis of those graphs is in section 4.4. 

 
4.1 Results of the Peer-To-Peer Sub-layer Experiments 

 
 This section of the report shows the data that we obtained from the peer-

to-peer sub-layer experiments in graph form. During our experiments we used three 

independent variables: the use of the peer-to-peer sub-layer (on or off), the type of bot 

used (a ChatBot or a SpazBot), and the number of bots that are connected to the game 

(75, 100, 125, or 150). However, our analysis only utilizes the results from the trials 

where 150 bots were used. Section 4.2 analyzes the data that we graphed in section 4.1. 

For the purpose of this analysis we chose to focus exclusively on the data where the 

experiments used 150 bots. We chose to analyze the data in this way because the data 

from the non-150 experiments was similar to the other data sets. Specifically, the number 

of bots in the game had an approximately linear effect on the server’s frames-per-second 

and bandwidth used, and no predictable effect on the latency of the server between trials. 

However, our results for the 150-bot trials are consistent with the rest of the runs. The 

complete table of results can be found in the appendix. 

 

Graph 4.1.1 compares the difference in frames-per-second that the server was able 

to achieve for both ChatBots and SpazBots while using the peer-to-peer chat system. 

Graph 4.1.2 shows the data from the similar games that only used the conventional client-

server model instead. Our frames-per-second data was calculated by dividing number of 

logical frames that the server completed during the two-minute game by the number of 

seconds in the game, 120. The important difference between the two types of bots is that 



 36

the SpazBot sends chat messages while playing the game whereas the ChatBot only chats 

without moving. 

 

 
Graph 4.1.1: Chat Bots vs. Spaz Bots for Server Load with Peer-to-Peer Chat 
 

 
Graph 4.1.2: Chat Bots vs. Spaz Bots for Server Load with Client-Server Chat 
 

Graphs 4.1.3 and 4.1.4 compare the difference in bandwidth (via total bits per 

second) used for both of the two bot types. Graph 4.1.3 shows the results from the peer-

to-peer system and Graph 4.1.4 shows the results from the client-server system. Our total 

bits were calculated by the sum of every packet sent by the server and also every map 

served by the MapServer. Each packet is 96 bytes long and each map is 213 bytes long; 
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and the exact count of both was recorded for each game. These numbers can be found in 

the appendix. (The simple multiplication is not shown here.)  To calculate the unit, bits 

per second, we divided the total bits by the game length, 120 seconds. 

 

 
Graph 4.1.3: Chat Bots vs. Spaz Bots for Bandwidth with Peer-to-Peer Chat 
 

 
Graph 4.1.4: Chat Bots vs. Spaz Bots for Bandwidth with Client-Server Chat 
 

Graphs 4.1.5 and 4.1.6 are line graphs that show the latency of the chat bots 

during games that used the peer-to-peer chat implementation and the client-server 

implementation of chat, respectively. One important thing to know about the observed 

latency is that latency under 100ms is undetectable by the player and latency under 
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400ms is considered comfortable. These thresholds were determined by the client 

implementation: it only sends updates every 100ms and the player is limited to one real-

time action every 400ms. Another important detail is that our latency measurements have 

a +10ms margin of error. This is due to timer granularity. Since we have no way of 

remedying this, we have to accept this margin of error. 

 

 
Graph 4.1.5: Chat Bot Latency with Peer-to-Peer Chat 
 

 
Graph 4.1.6: Chat Bot Latency with Client-Server Chat 
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Graph 4.1.7: Spaz Bot Latency with Peer-to-Peer Chat 
 

 
Graph 4.1.8: Spaz Bot Latency with Client-Server Chat 
 

4.2 Analysis of the Peer-to-Peer Sub-layer Experiments 
 

The first two graphs of this section show the effect that our peer-to-peer sub-layer 

has on the server’s frames per second. With the peer-to-peer sub-layer, the server has a 

66% improvement in frame rate when running with chat bots. With spaz bots however, 

there is very little change. This difference is due to how much more processing the spaz 
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bots require. With the spaz bots, the server spends the majority of its time processing 

their movement commands. Even though the spaz bots send just many chat messages just 

as frequently, the server processes them much faster. The chat bots however do not send 

any movement commands and 100% of their processing time is devoted to relaying these 

chat messages. Therefore, the chat bots show the largest improvement. 

 

The peer-to-peer sub-layer also affects the bandwidth consumption of the server in a 

similar way. Once again, the chat bots show a large improvement while the spaz bots are 

not significantly affected. This difference is due to how many more updates a single step 

command requires. Normally, both a single chat message and a single step command 

result in exactly one update going to every player on the map. This update is either the 

new position of the player or the content of the text message. However, when players 

move between maps or when players attack each other, multiple updates must be sent to 

each client. These multiple updates greatly outnumber the quantity of chat messages that 

are sent. Also, spaz bots generate extra traffic by changing their weapon multiple times in 

between in each step and each chat message. Since each weapon change requires that an 

update be sent to everyone, this single action is guaranteed to generate more traffic than 

their chat messages. Once again, since chat bots only send chat messages, they show the 

largest improvement here.  

 

Comparing graphs 4.1.5 and 4.1.6 against graphs 4.1.7 and 4.1.8 show that the latency of 

the system is lower in two ways when peer-to-peer messaging is used. First, the highest 

latency spikes are drastically lower when peer-to-peer messaging is used. (Compare 10ms 
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and 20ms against 111ms and 201ms). Second, the average latency is also lower for the 

peer-to-peer sub-layer enabled games. This difference exists even for the spaz bots that 

were unaffected in the other two metrics. The reason that the spaz bots were affected here 

is because the spaz bots are just as prone to the server lagging as the chat bots are.  In 

other words, the server is a bottleneck. And when the traffic arrives in bursts, like in this 

experiment, there will be times when even the most capable server will not be able to 

keep up. So it is possible that peer-to-peer messaging can help alleviate bursting traffic. 

 

Since the chat bots benefit the most from peer-to-peer messaging, this means that the 

most appropriate messages to select for use on a peer-to-peer sub-layer would be the ones 

that are the most frequently sent. And if a game has any traffic that tends to come in 

bursts then that traffic might be a good candidate as well if it is not game critical traffic 

that must be sent to the server first. Our analysis of the spaz bots show that the usefulness 

of a peer-to-peer sub-layer is negated when a majority of the traffic is not sent over this 

network.  

 
4.3 Results of the Client-Operated MapServer Experiments 

 
This section of the report shows the data that we obtained from the client-operated 

MapServer experiments in graph form. During our experiments we used three 

independent variables: if clients were allowed to host their own MapServers (yes or no), 

the length of the game (2 or 4 minutes), and the number of explorer bots in the game 

(100, 125, or 150). However, our analysis only utilizes the results from the trials where 

150 bots were used. Our reason for only analyzing part of the data is explained in section 
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4.4. This section of the report contains only the graphs that are referred to in the analysis. 

The complete table of results can be found in the appendix. 

 

The first and second graphs of this section compare the frames-per-second achieved by 

the server during two minute and four minute games. Graph 4.3.1 shows the results of a 

system that is running client-operated MapServers. Graph 4.3.2 shows the results of a 

system that where each client must download each map from the server. 

 
 

 
Graph 4.3.1: Server Load Based on Game Length with Client-Operated MapServers 
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Graph 4.3.2: Server Load Based on Game Length with Server-Operated MapServers 
 

The third and fourth graphs of this section show the bandwidth usage of the 

servers in the two and four minute games. Graph 4.3.3 shows the bits-per-second of a 

server that is aided by client-operated MapServers. Graph 4.3.4 shows the bits-per-second 

of a server that is serving every map by itself. 

 

 
Graph 4.3.3: Bandwidth Based on Game Length with Client-Operated MapServers 
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Graph 4.3.4: Bandwidth Based on Game Length with Server-Operated MapServers 
 

The next two line graphs show the latency observed by the explorer bots in two 

games that use client-operated MapServers. The last two line graphs show the latency in 

similar games that only use the one server-operated MapServer. 

 

 
Graph 4.3.5: Latency vs. Game Length with Client-Operated MapServers (2 minutes) 
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Graph 4.3.6: Latency vs. Game Length with Client-Operated MapServers  (4 minutes) 
 
 

 
Graph 4.3.7: Latency vs. Game Length with Server-Operated MapServers  (2 minutes) 
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Graph 4.3.8: Latency vs. Game Length with Server-Operated MapServers (4 minutes) 
 

 
4.4 Analysis of the Client-Operated MapServer Experiments 

 
The first two graphs of section 3.3 show almost no difference in server frames-

per-second while client-operated MapServers are both enabled and disabled. This 

interesting result is caused by the fact that maps require very little processing to serve. In 

order to serve a map, all that the MapServer has to do is listen for a request and reply by 

promptly sending the map and closing the connection. So essentially, running a 

MapServer is not a processor intensive application. 

 

Graphs 4.3.3 and 4.3.4 however do show a very significant difference between a system 

that uses client-operated MapServers and one that does not. In graph 3.3.3, the system 

that uses client-operated MapServers saves approximately half of its total bandwidth! 

This is a remarkable savings considering that each map is only downloaded once while 

the game messages are constantly sent while the program is running. What this means 

that is even though the maps are only 2.21 times the size of a normal update, they still 

account for half of the total bandwidth. However, notice that the bandwidth gains 
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decrease over time. This is because in our experiment each bot only needs to download 

each map once. And fewer maps are downloaded in the last half of each game than in the 

first half of each game.  

 

Graphs 4.3.5 and 4.3.7 have lower latency on average than graphs 4.3.6 and 4.3.8. The 

difference between these two sets of graphs is the game length. Although the data seems 

to indicate that 2-minute games have less latency than 4-minute games, this does not 

make sense as a difference. Even though the largest latency spikes occurred at 2 minutes 

and 4 minutes exactly in the two 4 minute games, the placement of the latency spikes 

does not make sense. If anything, the latency spikes should have happened earlier in the 

game when more of the maps were being downloaded. So instead we have to conclude 

that our latency data for these experiments was more likely just variance in latency and 

making the difference not statistically important. If the single largest latency spikes in 

each game are ignored, then the average latency for each game is under 20ms. With this 

analysis we can say that the game length should affect the latency. This analysis does 

make sense since we observed no noticeable change in server frames-per-second earlier. 

 

From our analysis, running client-operated MapServers clearly has the largest effect on 

the bandwidth of the system. Systems that use client-operated servers should use them to 

send data that is only significantly larger than the smaller gameplay updates. 

 

5 Conclusions and Recommendations 
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The primary goal of our project was to find techniques to increase scalability in 

client-server architectures. We developed two such techniques that can reduce server load 

and, thus, allow for more scalable systems. Sections 5.1 and 5.2 discuss the benefits and 

what contributions can be brought to the domain of massively multiplayer games through 

the use of peer-to-peer messaging and peer content servers, respectively. In Section 5.3, 

we talk about possible modifications and enhancements can be made to this project for 

future MQP groups or those interested in Game Development. 

 
5.1 Recommendations for Uses of Peer-to-Peer Event Messaging 

 
 Peer-to-Peer Messaging (P2PM) had the greatest effect on server load and a 

minimal effect on the total amount of bandwidth used. For those reasons, P2PM works 

best for small, player-initiated events that happen frequently. However, this may not 

apply to every game. Consequently, P2PM may not be useful for every game. Recall that 

during the experiments, both the chat bots and the spaz bots were programmed to send a 

chat message every 400 milliseconds. This is an unrealistically fast rate for a typed 

conversation to take place at. In the real world, if our 150 spaz bots were replaced by 150 

real players, then the server load would have to be lighter. This would lessen the effect 

that P2PM has on the system, too. We would have liked to have tested this, but 

organizing 150 computers and 150 human participants was prohibitive. Our 

implementation of the server program and the client program would allow us to conduct 

this experiment because we used bots. 

 Another situation where P2PM is useful is when messages between two players 

must be exchanged so rapidly that keeping the server in the loop is too expensive of an 

operation. This happens when the acceptable latency of the current operation drops below 
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the current average latency. In The World of Rock, Paper, Scissors, the acceptable 

latency is 400 milliseconds and the point at which latency is not even noticeable is 

around 100 milliseconds. This is because the player's two fastest moves require a 400 and 

100 millisecond delay before they can be preformed again. (These actions are taking a 

step and changing one's weapon, respectively). Since the player is being forced to wait 

for a period of time that is greater than the latency, the latency does not matter. But now 

imagine an even more fast-paced version of the same game where the delays are lowered 

to 100 milliseconds and 50 milliseconds, respectively. Now that the players can more 

easily reach the latency limits of the system, they may find it more acceptable to handle 

'duels' on their own machines and then update the server one second later. 

 Although we only used chat data in our peer-to-peer messages in the 

experiments, this does not have to be the only implementation of this idea. In a real 

implementation, this data could be any non-gameplay data that is not time sensitive. Chat 

traffic is just one example of this. Another example could be if our game allowed players 

to change their avatar image at their preference during the game. Then that data could be 

sent to a player's peers first and to the server later. Another example would be putting 

each client in charge of informing its peers of that player's win-loss record. In that case, 

the server would follow up the peer's message with the 'official' message whenever the 

server had the resources to do so. And if there was a significant discrepancy between the 

two updates then that could be investigated. (Usually, the suspicious message will turn 

out to be either extremely outdated or corrupted. But a tamper-resistant packet-ordering 

scheme, perhaps also with checksums, would let each client and the server detect when 

duplicate messages and intentionally altered messages were sent). Small and frequently 
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occurring messages are the best candidates for P2PM. The messages that are sent over a 

P2PM network may be non-critical or critical, or somewhere in between. 

  

5.2 Recommendations for Uses of Peer Content Servers  
 

 In our experiments we used map data to test the effectiveness of having client-

operated content servers. Although this is a good use for such a system in a real game, 

there are more uses. For example, if the geography of the world is included in the game's 

installer, then the updates to those maps could be the map data that is sent. Modern 

massively multiplayer games have much more happening in them than just the geography 

of the world and the players running around on it. Other game objects include server-

controlled agents (such as enemies) and resources to collect. It may also be possible for 

players to affect the geography of the world itself, or it may change over time. All of 

these things could mean that players would have to keep downloading updated game-

world parameters often. This places a significantly larger burden on the server than 

simply handling the game events, as our analysis shows. 

 

 Another potential use of client-operated content servers could be using them to 

serve program updates and patches to their peers. These types of mandatory updates pose 

a greater problem to a server, not because of the size of the download or the number of 

times that it must be downloaded, but because of the demand for it. If a software patch is 

mandatory then the currently active players will all need it immediately. Other active 

players who login the same day will also need the patch immediately. So the situation is 

that a sizeable portion of your total userbase will all demand the same update all at once. 
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This makes serving the patch difficult. If the decision is made to have a dedicated patch 

server then this server will be idle most of the time every day and it will be overloaded 

and unable to meet the demand of the players the few times that it is needed. Having 

enough additional patch servers to accommodate for the demand is even more wasteful 

than having just one server because then more servers become idle. So a good solution 

would be to have the one dedicated patch server, but then to have the clients download 

the patch directly from each other when the patch server is busy. (The hardware and 

bandwidth expenses for this patch server could even be saved by taking one of the game 

servers offline to temporarily 'seed' the client network with the patch.) Blizzard 

Entertainment has recently implemented a system even more advanced than this in their 

recent game World Of Warcraft. This new patch delivery system involves having groups 

of clients share the downloaded patch in a BitTorrent-like fashion (Blizzard 

Entertainment – Inside Blizzard: Legal FAQ). (BitTorrent works by having peers ‘share’ 

a download by using their combined upload bandwidth to upload different parts of the 

same file to each other. These parts are then recombined by the client when every part is 

acquired. BitTorrent uses cryptographic hashing (SHA1) of all data and Blizzard likely 

takes no less care as well.) 

 

 The best use of a client-operated content server is to relieve the game server in a 

large, single update that will go to many clients. Our analysis shows that the bandwidth 

savings would almost certainly be large and meet the needs of the game. The data that the 

client-operated content server is serving does not need to be constant, like a patch, either. 

If a player is playing the game primarily in a certain area, then they will probably have 
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the most recently updated version of that area in their client. This client could then 'tell' 

another client who has just entered the area everything that it knows. Of course, clients 

should also have to verify knowledge gained in this way to be secure. But then that new 

client could begin telling other clients what it knows, and so on. In this way the game 

server could send a minimal amount of updates to more players. 

 

 Our results also indicated a significant improvement of latency when client-

operated content servers were used. However, this was because we were running the map 

server and the game server simultaneously on the same physical machine. In a real MMG 

implementation there would have to be many different machines running in parallel to 

handle the load. So, the latency caused by having the combined servers is a non-issue. 

Nonetheless, if one's peers are chosen intelligently then an improvement in latency could 

still be possible. For example, two players in Massachusetts that directly connect to each 

other have less latency versus the same two players bouncing messages off of the 

nationwide east-coast game server in Florida.  

 

5.3 Future Work 
 

 Because the goal of our project was not so much to create a game, but rather to 

enhance the scalability of the Client-Server model, there are a number of modifications 

that can be made to our project perhaps for a future MQP in either Computer Science or 

Interactive Media and Game Development. First is Voice Over Internet Protocol (VoIP), 

which is a voice chat scheme that is used in some of today’s MMG’s, such as Phantasy 

Star Online. This method of chat is like text-based chat in that it is non-critical data and 
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can be handled via P2P. Another modification is the use of a distributed server farm, 

which would, instead of having the game run off of a single server machine like we did, 

have several dedicated server machines, thus enabling load distribution across multiple 

machines. The last possible modification would be the use of a load balance detection 

algorithm in conjunction with the distributed server farm to detect when a certain 

machine gets overloaded. When this happens, this piece of code can move future clients 

to another server. 
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