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ABSTRACT 

Network games are becoming increasingly popular, but have received 
little attention from the academic research community.  The network 
traffic patterns of the multiplayer games Counter-strike and Starcraft 
were examined and documented.  Analysis focused on bandwidth 
usage and packet size.  The games were found to have small packets 
and typically low bandwidth usage, but traffic patterns varied widely 
between games.  Modules for these two games reflecting these 
findings were added to the network simulator NS. 
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1 – Introduction 
 Since the release of the first multiplayer computer game, the level of attention 

game developers have devoted to the network aspect of a game has dramatically 

increased as games continue to grow in quality, depth, and complexity.  However, the 

size and behavior of the networks on which such games have been designed to run are 

also changing rapidly, and games are becoming increasingly demanding on network 

hardware to run quickly over the Internet.   

 However, the Internet was not designed with time-intensive applications taken 

into account.  The Transmission Control Protocol (TCP) is the most widely used protocol 

on the Internet.  Almost all traffic that travels over the Internet, with the exception of 

streaming media and real-time games, is carried by TCP, but it was built on the premise 

that packets had to be delivered reliably and in sequential order.  Streaming media 

applications and other real-time activities such as multiplayer games do not require fully 

reliable delivery.  The delay experienced in re-transmitting packets and the overhead of 

packet acknowledgements can cause an enormous amount of slowdown in a game, as the 

underlying protocol must wait for these retransmissions and consume extra bandwidth for 

the acknowledgements. 

 Games often use the User Datagram Protocol (UDP) to avoid these problems, as 

UDP packets are not guaranteed to reach their destinations, and thus do not require a 

mechanism for retransmissions and acknowledging successful deliveries.  However, any 

of the routers through which these packets are passed can be overburdened by traffic and 

lose packets.  A game must therefore provide its own means of tolerating packet loss, as a 

particularly overburdened router could lose a large amount of data before routing 

schemes can divert the flow of packets to compensate. 

 These considerations are relatively new to the world of networking, as most 

Internet applications transfer text or files over TCP, and only newer technologies dealing 

with streaming media parallel some of the issues introduced by games.  Therefore, the 

amount of research devoted to network behavior such as these programs generate is 

deficient, and progress is somewhat restricted compared with research on traditional TCP 

traffic. 
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 The lack of research into networked multiplayer computer games has left a large 

informational gap concerning the network traffic flows that these games create.  Because 

of this, routers may be able to provide different queue management services than are used 

for traditional traffic.  Better router queue management would improve the ping1 times 

for gamers leading to an increase in playability for many games, especially on high loss 

or low bandwidth connections. 

 

1.1 – Status of the Gaming World 
 The lack of research into network gaming was never a problem until fairly 

recently.  Before Doom,2 released in 1993, nearly all networked games were text based 

and used telnet or similar protocols to transmit data from player to server and back.  But 

even with the advent of Doom, networked gaming was still confined to a small portion of 

the population.  However, in the last 5 years, with the growth of the Internet, this has 

changed drastically. 

 In the current environment, the vast majority of networked gamers play card 

games, chess, checkers, and similar games.3  However, the traffic generated by each of 

these games is quite small and infrequent.4  The genres of games that have the most 

players, after parlor games, are First Person Shooters (FPS) and Massively Multiplayer 

Online Role Playing Games (MMORPGs), followed closely by Real Time Strategy 

(RTS) games.   

 Since Doom, FPS have made up a large portion of networked gaming.  In these 

games, the player views the world through the perspective of this character (the first 

person part) and is usually required to move around various locations slaying monsters 

and other players, with an amalgamation of ranged weaponry found along the way (the 

shooter part).  On an average night, there are well over 10,000 servers for games using 

                                                 
1 Ping is a simple program that measures the amount of time a small (usually 64 byte) packet takes to travel 

to a remote machine and back.  High ping times correspond to high latencies between machines. 
2 http://www.idsoftware.com/killer/doomult.html 
3 Archives of lumthemad.net, currently offline  Potential mirror at http://www.brokentoys.org/ 
4 Archives of lumthemad.net, currently offline.  Potential mirror at http://www.brokentoys.org/. 
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the Half-Life engine supporting over 40,000 gamers.5  Other FPSs support slightly 

smaller user populations6.  

 MMORPGs have been a rapidly growing field since Ultima Online's7 release in 

1996.  A MMORPG can be safely thought of as a graphical Multi-User Dungeon.8  All 

MMORPGs released thus far provide some mechanism for character advancement, large 

areas of landmass to travel across, and other players to interact with.  The “big three,” 

Asheron's Call,9 Ultima Online,10 and Everquest,11 claim to have nearly 1 million 

subscribers combined, and while only a fifth of them login on any given day,12 these 

players consume a non-negligible amount of bandwidth.  In addition, several more 

MMORPGs have been released in recent months,13 adding to this total. 

 The first RTS game was Dune 2,14 which was based loosely on the world from the 

Frank Herbert series of novels.  RTS games are generally characterized by resource 

collection, unit construction, and battles that consist of large numbers of animated 

soldiers standing a few feet apart going through the same animated attack motion over 

and over.  All of these actions happen continuously, unlike earlier strategy games (most 

notably Civilization15 and various war games from SSI and others) in which the player 

could take as much time as he or she needed to plan his or her turn before pressing the 

                                                 
5 Average of 3 randomly selected nights between 10/2/01 and 12/15/01 
6 Tribes 2, average 3 randomly selected nights between 10/16/01 and 12/15/01 
7 http://www.uo.com 
8 First pioneered in the 70s.  For more information, see http://www.legendmud.org/raph/gaming/book.html 
9 Asheron's Call (http://www.zone.com/asheronscall/) has an average of 12k players a night.  Observations 

and developer comments seem to indicate that about 1/5 of all subscribers play on any given night.  

However, this doesn't seem to match previously released subscriber figures.  Asheron's Call most likely has 

between 75,000 and 120,000 subscribers. 
10 At one point, UO had advertised having over 300,000 subscribers, but this has almost certainly fallen due 

to Asheron's Call, Dark Age of Camelot, Anarchy Online, World War Two Online, and Jumpgate all 

having been released since then. 
11 Everquest (http://everquest.station.sony.com/)has over 410,000 subscribers. 
12 Comments made by several developers on the now defunct www.lumthemad.net. 
13 Dark Age of Camelot, Anarchy Online, World War Two Online, and Jumpgate 
14 http://www.dune2k.com/duniverse/dune2/ 
15 See http://www.civ3.com for the second sequel of Civilization. 
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process turn button.  Since Dune 2, there have been several more games released,16 each 

with their own variation on the theme.  Currently, the number of RTS fans playing 

Starcraft17 on an average night numbers at least 20,000 players.18  

 

1.2 – Trends 
 The rapid growth of the Internet and the fall in computer hardware prices started 

the growth of multiplayer gaming.  The cost for a computer capable of playing the latest 

popular games has fallen from almost $2,500 in 199719 to around $1,600 in 2001.20  Also, 

the recent Internet boom has placed a computer in 54% of American households with 

80% of those having Internet access.21  These two points taken together show a dramatic 

increase in potential game players.   

 Another factor in the increase in network gaming is the change of developer focus 

from single player games to multiplayer games.  This is most obvious in the development 

of FPS.  Up until Quake 3,22 all FPS came with an expansive single player game with 

multiplay usually added on as an afterthought.23  However, the player communities would 

modify these games, adding new multiplayer content and game styles.24  Realizing this, 

the developers of Quake 3, id software25 released Quake 3 with minimal single player 

                                                 
16 Command and Conquer, Total Annihilation, Age of Empires, Black and White, Myth, and Shogun: Total 

War 
17 http://www.blizzard.com/worlds-starcraft.shtml 
18 Still gathering data 
19 Custom built Pentium/200, 64mb RAM, 4mb Video Card, AWE64, 4 GB hard disk, 24x CDROM 
20 Dell Dimension 8200 Series as of 10/9/01 
21 http://www.internetnews.com/isp-news/article/0,,8_879441,00.html 
22 http://www.quake3arena.com/index.html 
23 See http://www.gamasutra.com/features/19990903/lincroft_06.htm 
24 These modifications, called mods, have been around since the release of Quake.  Many of these mods 

radically change the game play from that of a straight deathmatch or team based capture the flag to soldier 

Sims, counter-terrorist games, and games styled off of action movies.  The mod community for Half-Life 

has put out over 15 mods that have been registered with the main WON servers.  Though few are as wildly 

popular as Counter-Strike, many have devoted followings.  
25 www.idsoftware.com 
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content and a determined focus on the network code and multiplayer level design.  Since 

then, many games, regardless of genre, have been released with some form of multiplayer 

gaming.26  Many have emulated Quake 3 in dropping single player game play entirely 

(Tribes 2,27 Unreal Tournament,28 and Majestic29).   

 Also, games industry has also begun shifting from hardcore gaming (FPS, 

MMORPG, RTS) to more mass-market games.  The best selling PC game in 2000 was 

The Sims, a real life simulator that generally doesn't appeal to the traditionally gaming 

community.  Of the top 10 PC games, only 2 (Age of Empires II and Diablo 2) were 

games enjoyed by "traditional" gamers.30  While none of these games have been 

multiplayer, the first mass-market game that is multiplayer will decidedly impact network 

traffic. 

 However, computers are not the only source of multiplayer gaming.  Consoles 

systems from Nintendo, Sony, and Sega have traditionally been the bastion of multiplayer 

games.  It is no surprise then that all of the next generation console systems from the 

Sega Dreamcast31 forward have included some way of connecting to the Internet to play 

games against others.  Examining sales figures, it becomes apparent that consoles are a 

major part of the games industry.  An average computer game sells between 20,000 and 

50,000 copies,32 but console games easily outsell PC games.  The top 10 Console games 

sell as many copies as the top 200 PC games.33  Phantasy Star Online,34 the first console 

game with a strong network based multiplayer component, and its sequels are among the 

best selling console games in the last year.  Clearly with the release of more and more PC 

                                                 
26 See Arcanum: Of Steamworks and Magicka Obscura from Sierra, Vampire The Masquerade - 

Redemption from Activision, and Pool of Radiance: Ruins of Myth Drannor from UbiSoft for examples. 
27 http://tribes2.sierra.com/ 
28 http://www.unrealtournament.com/ 
29 http://www.ea.com/worlds/games/pw_majstc00/hatted_jump_page.jsp 
30 http://www.idsa.com/releases/SOTI2001.pdf 
31 Released in Japan in November of 1998. 
32 http://www.bighugegames.com/jobs/industryjobtips.html 
33 http://www.sega.com/games/post_gamearticle.jhtml?article=art_consolevspc 
34 http://www.sega.com/games/dreamcast/post_dreamcastgame.jhtml?PRODID=187 
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multiplayer games on to consoles (Quake 3, Solder of Fortune,35 Unreal Tournament, 

Half-Life, etc) and the release of newer networked games the numbers of players playing 

these games will drastically increase. 

 Finally, multiplayer games have been rapidly spreading to countries outside of 

North America.  Europe has a large number of computer users has a large number of 

network gamers.36  The Asia rim nations are also very involved in network gaming, with 

nearly 10,000,000 Koreans playing one game, Lineage, alone.37  Since few game servers 

are physically located in Asia or Europe, a large volume of traffic must cross the 

transoceanic connections. 

  

1.3 – State of Research 
Despite this massive growth and large user base, issues related to the effects of 

these games on network congestion have been largely neglected in both academic and 

industry publications.  Industry articles are more concerned with the management aspects 

of game development rather than the technical issues confronted by the programmers.  

Setting milestones correctly, making the scheduled ship date, and setting realistic 

technological goals are all very important, but issues like developing a robust network 

layer or minimizing network load suffer due to the lack of economic pressure.   

Conversely, most academic game studies have focused more on usability and 

game play issues brought about by new network protocols rather than analyzing the 

performance of real game protocols.  This leads to a significant knowledge gap as to what 

kind of traffic patterns, bandwidth usage, and protocols games use. 

Several issues contribute to the lack of research into games.  Gaming has not been 

a traditional research field in academia.  In general, games are looked at as more of a fun 

diversion rather than a business related application, despite games earning nearly as much 

revenue as the movie industry.38  The majority of grants go to research into hardware, 

                                                 
35 http://www.ravensoft.com/soldier.html 
36 http://extra.gamespot.co.uk/pc.gamespot/features/aroundtheworld_pc/ 
37 Though it should be noted that Lineage has a much different subscription model: 

http://www.happypuppy.com/features/bth/bth%2Dvol10%2D9.html 
38 http://www.kanga.nu/archives/MUD-Dev-L/2001Q2/msg00211.php 
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routing, and web related research.39  However, it is important to look at other types of 

traffic and games will soon be making up a sizable percentage of network traffic.   

 The games industry as a whole, where one would expect most of the games 

related research to be performed, has also shown a notable lack of interest in doing 

network related research.  Most game developers chose their professions because they 

enjoy the process of making games and the end product, rather than the often less applied 

work of academia.  In addition, most of the published papers concerning games are 

postmortems40 concerning the development process, written by an often non-technical 

producer.  Finally, since the games industry is on a very tight development cycle, most 

research time is spent on graphics, an area that changes radically every 6-8 months as 

each new generation of video hardware is released. 

 Because of this lack of knowledge, reasons for good and bad performance are also 

not well researched.  Various implementations might perform well under most 

conditions, but might perform very badly under others due to one easily changed design 

decision.  Fixing this sort of issue requires the knowledge that the problem exists, 

knowing how different types of traffic are queued at the router, and having the resources 

to implement a quality solution.   

 It is our goal to analyze the network traffic of two of the most popular games and 

develop a module based on them for the network simulator NS, a popular simulator used 

in academic research.  We chose two of the most popular genres of games, First Person 

Shooters and Real Time Strategies, with the intent of representing a larger range of data 

than a single genre would likely provide.   During our analysis of these games, we 

measured bandwidth and packet size by player number due to the effect the number of 

players has on the network footprint of games.  We also wrote an extensible module to 

simulate these games that will provide an easy way to add further games into NS.  This 

module will allow researchers to gain a better idea of what a few games' network traffic 

impact is by simulating them.  It will be possible to construct better router queue 

                                                 
39 http://www.interact.nsf.gov/cise/abst.nsf/anirabst2000?OpenView  
40 An after the fact analysis of what the main problems were in the development cycle, how they were 

solved, and what new approaches saved time. 
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management techniques that take into account the lack of flow control in most games, as 

well as the size and number of packets that games produce.  

 

1.4 – Synopsis of this Document 
 This report is divided into seven chapters that are organized as follows.  Chapter 1 

is the introduction; it contains a brief overview of the project and the motivation behind 

performing it.  Chapter 2 is the background; it contains a list of related works and 

commentary about them.  Chapter 3 is the methodology; it contains the process utilized 

when performing our analysis of the data.  Chapter 4 is game traffic analysis; it contains 

an overview of the data collected and its properties.  Chapter 5 is game traffic simulation; 

it contains a description of our work on NS and validation of our simulation.  Chapter 6 

contains our conclusions.  Chapter 7 details the further work we would like to see done in 

this area.  
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2 – Background 
 Discussing the most current developments in the world of multiplayer games is 

useful in understanding the need for extensive research in any particular game’s behavior 

when running over the Internet.  There are, however, few publications that relate to the 

network aspect of gaming, as most pertain to more general design issues.  A sizeable 

portion of the articles that discuss network issues were written by game developers faced 

with the specific challenge of adapting a game to multiplayer functionality.  These 

developers faced issues such as minimizing user-perceived latency, bandwidth 

limitations, coordinating the game environment between users, and compensating for 

Internet transmission latencies.   

 Network Simulator (NS) is a program that accurately simulates network traffic 

using an event-driven, object oriented technique.  Useful mainly for studying the effects 

of variable packet loads on routers, the simulator is a powerful tool for analyzing network 

performance and illustrating traffic patterns.  However, it goes not currently support 

traffic generated by multiplayer games.  This functionality is to be implemented in our 

project. 

 This chapter discusses some of the conclusions reached by game developers 

working on network aspects of multiplayer games and relates them to the goal of this 

project.  In addition, the functionality of NS is explained in detail, so comparisons can be 

made between existing simulations and the sort that this project seeks to produce.   

 

2.1 – Examples of Network Game Development: Articles by Game 

Developers 
 The lack of research into the facets of network gaming is reflected in the low 

quantity of academic articles published about the subject.  In addition, a number of 

articles illustrate this lack of research with a consistent shortage of references.  Very few 

articles actually make note of previous work, mostly because this work was never 

accomplished, and many share the same structure: a general warning to colleagues that 

there are a number of lessons to be learned in designing games for Internet playability.   



 15 

Typically, an article must relate the issues faced as unique to their designs, as 

there are no standards in network-game interfacing as of yet.  In fact, many articles barely 

describe the most critical issues behind efficient networking plan.  An example of this 

kind of article is a post-mortem article by Peter Lincroft on issues he faced while working 

on X-Wing vs. Tie Fighter.   

 

2.1.1 – “The Internet Sucks: Or, What I Learned Coding X-Wing vs. Tie Fighter” 

[Lin 99] 

 This article, originally published on Gamasutra,41 describes the problems involved 

in designing a networking model for an existing game engine.  Originally, this engine had 

been designed for the original X-Wing game, which was strictly single-player and 

therefore not designed with the Internet as a consideration.   

The designers had a number of factors to consider in re-writing their engine to 

effectively implement a scheme for running multiplayer games.  First, they knew that the 

level of complexity the original engine was capable of attaining was going to have to be 

supported by the new model.  This requirement set the amount of information that had to 

be passed between players to a large amount, which would be difficult to achieve over 

slow connections.  Second, they knew that they would not be able to provide dedicated 

servers, because of the high expected cost of maintaining them.  They could not allow 

gamers to set up their own servers either, due to the licensing issues.  This meant they 

had to use a peer-to-peer networking model.   

The problem that arose with this, however, was that the amount of bandwidth 

required per user would be proportional to the number of players in a game.  The Internet 

has no generally available multicasting capability available to game developers, so 

sending the same amount of data to each user required a separate transmission to every 

other player.  This would not necessarily have been very problematic, but the designers’ 

primary goal was to provide adequate performance for users with the bandwidth of a 28.8 

bps modem.   
                                                 
41 Gamasutra is a website devoted to game development.  A solid majority of the information available to 

game developers at the time of this writing can be found here.  The site is located at 

http://www.gamasutra.com. 
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It was decided that the amount of bandwidth needed could be greatly reduced 

with the proper information-coordinating algorithm.  They opted to have each game 

client send only information about its player’s actions.  These could then be assembled to 

determine the state of their environment.  In addition, the game would be structured so 

that one player acted as a game “host,” assembling the information collected about each 

player’s actions and distributing it to the other players.  This increased the amount of 

bandwidth needed by the host, but greatly reduced the amount needed for other users, as 

they needed only now to send out one copy of their information.  The game then 

proceeded in a lock-step fashion, in which player’s commands (turning, shooting, etc…) 

would be sent to the game host, complied with those of other players, and distributed to 

the other players.  Then each machine, with identical sets of information, could process 

the data on its own and the environment would appear exactly the same for every player. 

It is clear, however, that this is where traditional networking concepts for the 

Internet are generally inapplicable to synchronizing a real-time environment between a 

number of distant users without a great deal of latency between cycles.  The majority of 

applications designed for networking require the reliable and orderly delivery of packets.  

This means that if a packet is lost in transit, it is retransmitted, and its receiver must 

simply wait for the packet to arrive.  This model functions very poorly for real-time 

applications, because time is as important as reliability.  A good example of this is a 

simple FPS with two players, in which the game environment (player position, direction, 

etc), is updated every few milleseconds.  If, in a transmission of environment data, a 

packet is lost, it may not affect the quality of the game very much.  More likely, the 

players would barely notice the change, as the missing data would likely only result in a 

slight adjustment of each user’s perception.  However, if the packet must be resent before 

any more could be processed, the game would halt until that packet arrived.  This is 

obviously undesirable, and extends to many real-time applications. 

The X-Wing vs. Tie Fighter team realized this problem with using TCP after 

trying to run their game over the Internet.  Almost all traffic on the Internet was in the 

form of TCP packets, which provided reliable transmissions.  On LANs, the game ran 

very well, because there was little to no need for re-transmitting packets.  The Internet, 

however, is considerably more lossy than a LAN, and packets were regularly lost in 
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transit.  This led to re-transmissions, which stopped the game while packets were re-sent, 

and tended to frequently produced latencies that ranged from 5 to 10 seconds.  This was 

simply unacceptable.  The natural solution was to use UDP in place of TCP.  UDP is 

connectionless and does not guarantee reliable transmissions, so lost packets are not 

retransmitted.   

This made the game run a great deal faster, but introduced a new problem.  Their 

model required every packet delivered to function properly.  In addition, the game could 

still only run as fast as the slowest user, i.e. a cycle could not be completed until the 

necessary information was received from every player, so the cycle would take as long as 

the longest transmission time.  Attempts at correcting this by putting a limit on the 

amount of time a host would wait for this information before ignoring it only made the 

gameplay sporadic for the affected player.   

A few conclusions can be drawn from this example.  First and foremost, real-time 

multiplayer games should not be run over TCP.  It is therefore reasonable to hypothesize 

that any games that attempt to use TCP will experience a great deal of latency when 

packets are lost.  Second, to effectively implement the algorithms necessary to run a fast, 

well-coordinated game, the developer must account for the timing issues introduced by 

the Internet before the design process even begins.  By today’s standards, the process by 

which this game was adapted for multiplayer capability is exhaustive, that is, they had to 

begin with the most basic concepts in networking.  An effective traffic measuring 

program would significantly increase the developer’s ability to see problems in a game’s 

multiplayer implementation long before the testing phase of the development cycle.  This 

is the intention of our NS module. 

 

2.1.2 – “1500 Archers on a 28.8: Network Programming in Age of Empires and 

Beyond” [BT 01] 

 The existing engine for this game was a single-threaded cycle of taking input and 

processing the game environment accordingly.  Just as the X-Wing vs. Tie Fighter 

developers, this design team used an algorithm that involved passing only user inputs 

between machines and using them to run the same simulation simultaneously on all 

machines.  The difference here, however, is that the tolerable latency for a Real-Time 
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Strategy (RTS) game is much higher than for other real-time environments.  This is true 

primarily because the amount of input from the user is a great deal less precise and tends 

to be less frequent.  A person playing a flight simulator will usually be changing direction 

and speed almost continuously, but a person playing an RTS will generally issue 

commands to units in the game a maximum of only a few times per second.  In addition, 

the player in a flight simulator requires instant results.  If there is a perceptible delay 

between moving a joystick and seeing the craft turn, the game becomes unplayable.  But 

a RTS player will generally not notice a unit in the game take a few milliseconds to start 

walking to where the player clicked.  An engine can therefore take more time to process a 

RTS player’s game cycle, as the player cannot detect such small latencies.   

 The Age of Empires (AoE) team decided that, given the time required to process 

commands, they would implement an algorithm that allowed the game to process a cycle 

while receiving commands for the next cycle.  They achieved this by scheduling 

commands to be executed two cycles in the future, and since the user could not detect the 

latency, the system would run smoothly under normal conditions. 

 However, when communications latency is introduced, the system is slowed.  The 

engine had to receive all inputs to process a turn, so transmission reliability was required.  

They did not make the mistake of using TCP, but when a game cannot proceed without 

all players’ actions accounted for, the game halts until the information is received.  The 

development team addressed this issue by maintaining a target frame rate for all users and 

adjusting this rate based on average ping times, previous latencies, and machine speeds.  

A game would slow down when network traffic became heavy between users and 

gradually speed up as traffic returned to normal.  Unfortunately, with this algorithm, the 

game only runs as fast as the slowest machine or network connection, and everyone 

experiences the effects. 

 The team reported that 250ms was barely noticeable, that 500ms was “very 

playable,” and that over 500ms tended to be sluggish in terms of user-perceived latency 

in their game.  It follows intuitively that this would be the case for most RTSs, so this 

algorithm is, though not very efficient, more than suitable for its purposes.  Games that 

require more information to be passed between players, however, would likely begin to 

experience a greater amount of slowdown as the bandwidth requirements increase. 
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 Ensemble Studios’ plan for their next RTS game is heavily network-oriented.  

They are putting a great deal of consideration into writing their own network libraries to 

avoid the effect of third party software slowing the game down.  They have made 

extensive plans involving information coordination algorithms and network game 

debugging utilities, and are beginning to concentrate more on what most game developers 

will be finding important: good networking.  This is a sign that research in this area will 

develop quickly with future releases. 

 Most important, however, is their decision to implement extensive metering 

throughout the development of the project.  Essentially, this means they were always 

aware of the latencies caused by network bottlenecks and slow users.  NS is an excellent 

program for simulating the effects of network traffic, and would likely benefit these and 

other developers. 

 

2.2 – Academic Research 
 As mentioned earlier, the level of academic research into network gaming has 

been on the rise for several reasons, including growing interests in new protocols as well 

as concepts that can be applied in other types of programs.  Some of the motivations and 

findings of this research are illustrated by these examples. 

 

2.2.1 – “Latency Compensating Methods in Client/Server In-game Protocol Design 

and Optimization” [Ber 01] 

 In this article, the author goes over the basics of multiplayer game networking on 

the level of how an FPS controls data sent by various users and deterministic methods of 

compensating for latencies.  The article first presents a model for the typical sequence of 

events on the client side of the client/server architecture used in both games: 

Sample clock to find start time 
Sample user input (mouse, keyboard, joystick) 
Package up and send movement command using simulation time 
Read any packets from the server from the network system 
Use packets to determine visible objects and their state 
Render Scene 
Sample clock to find end time 
End time minus start time is the simulation time for the next frame 
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Though this model primarily seems to address an algorithm for determining frame 

rates, the focus of the article is placed on keeping large latency differences between 

individual clients and the server from having a detrimental affect on gameplay.  The 

article does not explicitly mention this in the title, but its data is based on the Half-Life 

and Quake engines.   

 The problem faced is simple to state, yet difficult to solve.  Take as an example a 

simple FPS running with two players in the game.  One player has a much greater ping 

time to the server than the other.  This “slower” player fires a shot directly at the low-

ping player, and from his perspective, hits the other player.  The other player, however, 

has moved out the way of the shot since it was fired.  The high-ping player, however, has 

not yet received data from the low-ping player indicating the dodged shot, so it appears to 

the high-ping player that the shot hit.  Coordinating this action with the low-ping player 

makes that player see an evaded shot, but feel the effects of being hit.  If, however, the 

action was coordinated in such a way that the low-ping player’s real position was taken 

into consideration at the server before the shot was reported, the high-ping player would 

believe the shot had hit, when in fact the other player had moved out of the way.  In 

either case, one player experiences a result that is contrary to what he perceived.   

 The issue raised here is that there are a number of steps that must be taken in 

order to keep the user’s perceived latency to a minimum, and this cannot always be 

accomplished by streamlining the network side of the game.  Developers that must rely 

on client-side prediction and lag compensation to keep a gamer from becoming frustrated 

by latency are at a serious disadvantage in keeping a decent level of accuracy in the game 

environment.  Speeding up the communications between clients is therefore essential to 

keeping players interested in a multiplayer game. 

 

2.2.2 – “Designing Fast-Action Games for the Internet” [Ng 97] 

 When considering the requirements for network usability in multiplayer games, it 

is important to characterize the network over which these games will be played.  In the 

case of the Internet, there are a few expectations as far as bandwidth and latency are 

concerned.  This articles attempts to explain these expectations, and finds client-side lag 

compensation methods to be critical.   
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 The first issue raised in network performance is a set of reasonable expectations 

regarding bandwidth.  The number of nodes in a star topology network directly affects 

the amount of data that must be sent and received by each node.  It is therefore necessary 

to consider the amount of data needed to coordinate the game environment between 

players and adjust the bandwidth limitations accordingly.  However, this is difficult when 

the Internet tends to exhibit sporadic periods of congestion.  This is one area where the 

ability to map traffic patterns on a variable network environment is exceptionally useful. 

 The other network performance related issue deals with latency and types of user 

connections.  It appears that modems are the worst types of connections for multiplayer 

gaming, as modem compression schemes and bandwidth limits tend to keep latencies 

consistently high.  It appears that most games should be designed with broadband as a 

basis for latencies these days, but considering modem users is also necessary to reach the 

entire gaming audience.  Simulating traffic over modem connections is therefore an 

important step in studying in-game performance. 

 Another significant contributor to latency is the packet router.  Basically, most 

routers are not set up to handle multiplayer game traffic very efficiently.  They tend to 

use a store-and-forward scheme in which they accumulate packets in their buffers before 

forwarding them, thus increasing latency.  In addition, once these buffers begin to 

overrun, packets are dropped, and in the case of unreliable transmissions, lost entirely.  

This can lead to extended periods of time in which a user in completely out of sync with 

game servers or other users, leading to game halting or poor gameplay.  Simulating this 

tendency of routers is key to developing a good scheme for overcoming these problems. 

 

2.3 – Network Simulator 
 Network Simulator (NS) is a powerful tool for mapping networks in a controlled 

environment.  It provides the means by which researchers can analyze the effects of 

variable levels of traffic on different types of routers, determine network behavior based 

on empirical data, and run a myriad of other experiments on the simulated network.  NS 

is particularly useful for testing new protocols in a local environment and without 

hardware dependencies.  Other means of developing and testing a new, unique protocol 

(meaning one that does not reside above another protocol) would be to physically set up 
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and configure real or emulated models to support the protocol.  Even with this case, 

however, the researchers are limited to the hardware resources they can obtain for the 

experiment, and their network configuration would likely not be able to imitate the 

Internet.   

 NS supports many kinds of traffic, ranging from web traffic and FTP42 to real-

time video and audio streaming.43  And because it is an open-source project, anyone can 

extend it to suit specific needs. 

                                                 
42 File Transfer Protocol.  Uses TCP. 
43 The modules for streaming media are not yet a part of standard NS builds, but may be acquired from 

researchers directly.  http://perform.wpi.edu/downloads 
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3 – Methodology 
In our study of multiplayer games, we took the following steps in order to acquire, 

analyze, and simulate the network traffic they generated. 

1. To obtain packet data, we elected to use a packet sniffer, which is a 

program that captures packet data passing through a network card.  The 

process of selecting a sniffer is discussed in sections 3.1.1 and 3.1.2. 

2. Adapting the data taken by the sniffer to meet our statistical modeling 

needs became an issue, and we relate our solution for this in sections 3.1.3 

and 3.1.4. 

3. Once a suitable packet sniffer was acquired and supplemented with our 

parsing own tools, we were able to collect traffic data, and our next step 

was to choose the games that would supply this data (section 3.2). 

4. Before analyzing the data, we were met with the issue of how it would be 

best simulated for each game.  We found it beneficial to write a tool for 

performing a variety of operations on the data (section 3.3).  This tool was 

useful in helping us analyze and parse our data, and also found use in 

generating code for our modules.   

5. We were then prepared to conduct an analysis on the data (section 3.4).  

Our results for this may be found in chapter 4. 

6. With a solid understanding of the patterns we found in our data, we then 

set out to build modules to simulate our findings (chapter 5). 

7. Finally, we ran tests designed to measure the accuracy of our simulated 

data (section 5.2). 

 

3.1 – Packet Sniffers 
 In order to do any kind of meaningful analysis or simulation, we needed to gather 

data from actual network traffic.  In order to do this, we had to find some way of taking 

packets from the network and reading them.  Fortunately, tools to do this have already 

been developed by several different groups.  These, tools, called packet sniffers, record 

all of the traffic that the network card in a computer sees.  However, different packet 
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sniffers have different sets of more advanced functionality, and it was difficult to decide 

on which one to choose. 

 

3.1.1 – Sniffer Requirements 

 We started by specifying a set of requirements.  Any packet sniffer we used had to 

record packets to permanent storage devices so that we could perform our own statistical 

analysis on the data.  We also wanted to be able to maintain records of various games so 

that we could write a simulator that took these files and generated an accurate traffic 

pattern from them.  Any packet sniffer we used also had to run in Windows because a 

second computer dedicated to capturing packets was not readily available on the same 

subnet.  The packet sniffer also had to capture the time each packet was sent accurately 

because games tend to send many packets over a brief amount of time.  Any sniffer we 

used would need to generate summary measures of the data as it was collected so that we 

could determine which types of statistical analysis we should generate.  Finally, any 

packet sniffer we used had to be relatively inexpensive.  There was no funding for most 

commercial sniffers and many had high fees. 

 

3.1.2 – Selecting a Packet Sniffer 

 There are a number of sniffers available, and in accordance with our 

requirements, the following were considered. 

 

Windump (http://netgroup-serv.polito.it/windump/) 

 Based on Tcpdump for Unix, Windump is very similar in that it only records 

packet data.  There are a large number of packet sniffers available that use Tcpdump as a 

back-end, but virtually all of them are strictly Unix ports.  To effectively use Windump, 

we would have to write a number of wrappers to transform the data into a more useful 

form for us.   

 

Analyzer (http://netgroup-serv.polito.it/analyzer/) 

 Analyzer is a windows based packet sniffer with a good GUI and a decent, though 

somewhat lacking, set of features.  However, the main reason Analyzer (which is in an 
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experimental stage of development) does not suit our needs is that logging traffic locks 

the rest of the program so that no results can be analyzed while the sniffer is sniffing.  

Without the ability to observe changes in traffic as they happen, we could not adequately 

make our observations unless we were to develop a means of marking game events over 

time.   

 

Spynet (now called Iris - http://www.eeye.com/html/Products/Iris/)  

 Since this was first written, the Spynet packet sniffer was sold to eEye Digital 

Security and renamed Iris, evidently replacing the unique sniffer previous known as Iris.  

The Spynet packet sniffer is a part of a larger suite of networking utilities that are as 

sophisticated as they are expensive.  The amount of functionality and statistical metering 

options was extensive, and this utility would have made an exceptionally useful tool in 

our project.  However, the cost of the Spynet package is approximately one thousand 

dollars, so it was not a viable option. 

 

Iris (replaced by Spynet – no official URL available) 

Iris was a simple packet sniffer with a reasonably well-constructed interface.  It 

clearly displayed the data on each individual packet and broke down the header data for 

each layer.  However, it did a poor job of sorting aggregate packets, and had a major flaw 

in its lack of a good logging implementation.  The data the former Iris collects goes 

directly to memory; and with a machine running a game at the same time, it can cause 

serious memory usage problems when setting the packet cache to a reasonable size.  

When logging to disk, Iris also stops recording packets entirely, missing those that arrive 

while the logging operation is happening.  The disk access also uses large amounts of 

system resources, which causes problems in games. 

 

Commview (http://www.tamos.com/products/commview/) 

 Commview seems to fit our requirements very well.  It is a robust sniffer with the 

ability to log packets according to rules we set, to take a number of statistics, and to 

generate reports periodically.  It does not have the logging stage/observing stage 
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restrictions of Analyzer, and it is one of only two sniffers ported to Windows that appear 

to be a finished product.  For these reasons, we decided to use it. 

 

Ethereal (http://www.ethereal.com/) 

 Ethereal is a widely ported sniffer that has all the versatility of Commview, but 

does not generate statistics as well, and does not graphically display them.  Ethereal 

would have been an equally good choice as Commview for our project due to its 

exceptionally well designed interface and data export functions, but was unfortunately 

not considered before the project began.  Commview remained suitable after we found 

Ethereal, so we did not feel the need to switch sniffers.  However, for most packet 

sniffing purposes, such as further research in network gaming, we would recommend 

Ethereal. 

 

3.1.3 – Usage 

 After several recorded traces yielded no useful information due to configuration 

errors or the traces missing vital parts of each game, we developed a methodology to use 

when recording a play session.  One of the initial problems we had, before we mastered 

using filters in Commview, was having extraneous packets from other applications in our 

traces.  To minimize this, we closed all other Internet software before loading the packet 

sniffer.  If we knew which IP addresses from which we were going to be playing the 

games, we would add filters to Commview to ignore all traffic except from those IPs.  At 

this point, we would begin logging, and then proceed to normally load the game, find a 

multiplayer session, and join it.  After completing the game, we would quit, and then stop 

the trace.  This process allowed us to capture complete traces of joining, playing, and 

quitting the games without capturing unwanted packets from other applications.    

 

3.1.4 – Issues 

 Despite developing this system, we had several problems with Commview.  There 

was no way, other than recording by hand, at what time during the trace significant game 

play activity took place.  While having this information turned out to be unnecessary 
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when we came to develop our simulator, it was difficult to gain an overall understanding 

of the traffic flows without it.   

 We also ran into a problem when logging packets.  If the packet buffer in 

Commview is set to large, and most of the computers resources are in use (often the case 

when playing a game), when Commview logs to disk, it will stop recording incoming or 

outgoing packets.  It was necessary to save the packets to disk frequently to prevent this 

problem, though it was still an issue if the computer lacked sufficient computational 

power.  This frequent logging also caused problems playing the games.  When 

Commview would begin logging the packets, frame rates would fall, often dramatically 

in slower computers, making it difficult to play the game.   Even when Commview was 

not logging, the extra memory and processing power made a noticeable difference in 

some games.   

 However, these problems were over come by using a powerful computer. The 

gaming systems we used were significantly above the top of the line when the games we 

worked with were released and had sufficient power to run the games and run the sniffer 

at the same time.  There was a 10% reduction in frame rates in Counter-strike under the 

most computationally intensive circumstances and virtually no noticeable frame rate 

reduction in Starcraft. 

 

3.2 – Game Selection 

 With the myriad host of titles currently on the market, picking games that would 

be representative of the market as a whole was a difficult process.  With several hundred 

viable titles from which to choose and not nearly sufficient time to even perform a 

preliminary analysis on them all, we decided to look at games that sold well using the 

rational that if they sold well, they would have many players.  With that decided, we 

determined that it would be best if we chose from a list of games that one or both of us 

had played.  This did not narrow the list a great deal, but we felt it was important to spend 

most of our time analyzing a game rather than learning how to play it. 

 After doing some preliminary analysis, we discovered several more criteria we 

needed to use in order to determine the first few games to examine in depth.  It became 

apparent that nearly all games layered their own protocol on top of UDP, but there were 
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some that used TCP.  Because the games that used TCP, most notably Diablo 2, were not 

representative of network games as a whole, we decided to exclude them.  We also 

decided to select games from several different genres.  Since both Starcraft and Counter 

Strike were familiar, best selling games in different genres, we decided to select them. 

 We considered several other candidates including Tribes 2, Asheron’s Call, Age 

of Empires 2, and Quake 3.  Quake 3 and Tribes 2 were both rejected because Counter-

strike was a clear choice for a FPS due to its popularity, and we felt that comparing 

across genres was more important than comparing within genres.  Age of Empires 2 

suffered from a low online user base and significantly longer games than Starcraft.  

Finally, while we wanted to study Asheron’s Call, the time it took to develop our analysis 

process precluded studying another genre. 

 

3.2.1 – Starcraft Game Environment Issues 

 Starcraft is a real-time strategy game that revolves around constructing buildings 

and fighting units, and issuing commands that cause the units to move, engage enemy 

units, and perform other such tasks.  Every game is played on a map, and there are a 

variety of maps available.  There are three races from which a user can choose, and each 

has a balanced set of advantages and disadvantages over the others.  There are a number 

of ways in which players can be competitively grouped.  In a free-for-all, all players vie 

to be the last remaining player on the map.  Players can also team up against each other 

and/or AI scripted “computer” players in myriad ways.  In order to control as many 

variables as possible in our experiment, all games were played on the same map, and all 

were structured so that there were two teams of equivalent size; 2 vs. 2, 3 vs. 3, and 4 vs. 

4 player games were recorded.  In addition, the local player played as the same race in 

each game, and employed the same building strategy throughout. 

 

3.2.2 – Counter-strike Game Environment Issues 

Counter-strike is a modification to Half-Life that is distributed free over the 

Internet44 for owners of Half-Life or as a retail product in most game stores.  Counter-

                                                 
44 http://www.counter-strike.net 
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strike puts the players in the role of either a terrorist attempting to hold hostages, blow up 

landmarks, or assassinate a VIP or a counter-terrorist agent trying to thwart the terrorists.  

To play, the player must connect to a server, either located on his or her own machine or 

one across the network.  When more than 1 player joins this server a game begins.   

Games are divided in two ways.  All games are played on a map, each of which 

has its own set of objectives.  Most involve either the Counter-terrorists (CTs) attempting 

to rescue a set of hostages from close to where the Terrorists (Ts) start the round or the 

Terrorists attempting to plant a bomb close to where the CTs start.  Each map is played 

several times (rounds).  Each round ends either when the victory conditions are met, time 

runs out, or when one team has been totally eliminated.  At the start of each round, both 

sides are allowed to buy weapons and ammunition with the money they earned from 

previous rounds.  The better each team did the round before, the more money they have 

to spend.  Once each team has equipped, they attempt to wipe out the other team with 

their weaponry or complete the objective, though the former ends far more rounds than 

the latter. 

 

3.3 – Tool 

 Once we had picked the games, played them several times, and recorded some 

game sessions, we began to analyze the packet logs.  We almost immediately realized 

that although the native Commview statistical tools were reasonable for getting a rough 

idea of overall bandwidth, they were not satisfactory when trying to visualize traffic 

senders and receivers.  We also felt that we needed to see several types of graphs beyond 

the packets per second and bandwidth graphs that Commview generated.  Because of 

these problems, we set out to design and write a tool to allow us to generate statistical 

analysis on our data and aid in creating graphs. 

 The first step in developing this tool was to decipher the file format that 

Commview used when outputting packets.  This was far easier than it could have been 

because we were able to load the log file into Commview and look at the data in plain 

text rather than the hexadecimal format in which it is stored.  The biggest stumbling 

block was figuring out where in the Commview header portion of the packet the time and 

direction information were located.  The rest of the packet, including transport and 
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network layer headers, was saved exactly as it was when sent or received.  For an 

example of a Commview packet broken down into its component parts, see Appendix A. 

 Once we had a firm idea of how the packets were saved, we developed a Java 

application to parse the file, load the data into classes, and perform some statistical 

analysis on them.  Our first few attempts were complete successes, but when we moved 

from small traces (between 1 and 5 minutes long) to longer traces, it became apparent 

that Java was unable to handle that amount of data.  We could load somewhere on the 

order of 8,000 packets into memory, but any more than that and the Java Virtual Machine 

would run out of available memory or crash.  Changing the GUI from the Swing toolkit 

to the AWT (Advanced Windowing Toolkit) helped, but we were still unable to load a 

20-minute, 100,000-packet game of Starcraft.  At this point we also started running into 

issues with graphing the packets.   

 When developing the tool, we had initially planned for it to perform all the 

graphing functionality itself.  However, finding a good graphing package for Java was 

difficult, and the one we chose turned out to be unable to render a larger percentage of 

our sample data.  We decided at that point to output the packet data into a comma 

delimited file and import this file into Microsoft Excel for graphing purposes.  It was 

initially difficult to determine the correct procedure for rendering the kinds of graphs we 

wanted from Excel.  However, with some practice and modification to the output the tool 

generated, it became an almost trivial process to generate useful graphs.  With these 

graphs we were able to determine characteristics about the traffic that each game 

generated.  By the end of the project, the tool was capable of outputting size and time 

bucket files used in our NS simulation, files containing bandwidth per second, and trace 

files containing time and size with an option to include IP addresses.  Throughout the 

project it was also used to auto-generate code for loading the buckets in our NS 

simulation, though this was determined to have limited usefulness and excluded from the 

final product. 

 

3.4 – Analyzing Game Traffic 

 In order to build an accurate simulation, solid knowledge of the activity being 

simulated is necessary.  There are several factors that are important to determine before 
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creating a network simulation.  Most important among these are bandwidth, both average 

and instantaneous, and packet throughput.  In order to determine what kind of traffic 

pattern each game generated, we took a number of steps.   First, we gathered several 

traces of the same type.  For example, for Counter-strike we took traces of games on the 

same server with the maximum number of players.  With this data in hand, we ran it 

through the tool to get basic statistics that showed average bandwidth, packet sizes, time 

elapsed, and a few other metrics.  Using this data, we were able to determine if we 

needed more data or if it was safe to proceed to graphing.   

 Once we determined that we had enough solid data so that a graph would be 

reasonably representative of typical, similar game sessions, we loaded some of the files 

generated by the tool into Excel and generated scatter plots.  We generated a graph of the 

entire trace each time, and if there was an area that appeared different, we would graph a 

smaller time slice that contained that particular feature.  As a general rule, the traffic from 

each IP address was contrasted with another trace from a different game session that we 

thought would have a similar traffic pattern.  It was determined early in the process that 

most of the players in a given game generated similar traffic patterns, so it was generally 

unnecessary to look at more than one player’s trace.  
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4 – Game Traffic Analysis 
 Running games and recording the packet data produced a great deal of 

information, which we used to analyze strategies for our NS application.  There are a 

number of ways in which the data we acquired can be structured for viewing, but we 

decided that the best representation is in the form of annotated graphs.   

 Section 4.1 relates results found in our analysis of Starcraft game traffic.  First, 

we studied the relationship between traffic received by each remote player in a typical 6-

player session.  Next, we compared the traffic generated by each of several games of the 

same size, and then games of varying size.   

Section 4.2 is devoted to our analysis of Counter-strike.  As this game has a 

client/server architecture, we ran an analysis for both the typical client and servers 

running sessions of varying size.  Throughout this process we were mainly concerned 

with the size of and time between each packet.  These results would produce the data 

needed for simulating these games in NS. 

 

4.1 – Starcraft Traffic Data 
 Data collected for this particular game was graphed to illustrate the ways in which 

games varied by number of players, and how they varied across game sessions of similar 

size.  The purpose of collecting this data was to determine the means by which it would 

be possible to create a simulation for a typical game of Starcraft.   

 All Starcraft data was collected on the same machine.  This machine’s relevant 

specifications are as follows: 

• Intel Pentium III 800mhz processor with 100mhz FSB 

• 512 megabytes PC-100 SDRAM 

• nVidia geForce2 3d graphic accelerator with 64 megabytes of DDR SDRAM 

• UltraWide SCSI hard drive interface 

• 10baseT network card connected to 608/108mbps DSL modem 

• Windows 98B Operating System running Commview version 2.6 (build 103) 

packet sniffer 
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Controlled in-game variables were as follows: 

• Games were played using Starcraft: Brood War version 1.7. 

• Local player logged on to Battle.net using the USEAST gateway, and created the 

game sessions.  The game type was Top vs. Bottom for each. 

• The same map was used for every game.  The map is called Big Game Hunters, 

and can be found in the maps/broodwar/webmaps directory from where the game 

was installed..  

 

4.1.1 – Comparing Data Streams from Remote Players 

 The following charts represent the traffic received by the local player from each 

of the 5 other players in a 6-player game.  They serve to show that individual players 

generally produce similar traffic patterns in comparison with each other.  Each graph 

represents 20 minutes of packets received from each remote player.  Any packets lost in 

transmission are not represented on these graphs, as they never arrived.   

 
The bands of points are separated by multiples of 4 bytes in size, with 132 bytes 

comprising the solid majority of points.  The density of each band indicates the frequency 

with which each packet size appears.   
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The distribution of points on this graph is very similar to that of player 1; the vast 

majority of packets are 132 bytes in length.  The second-most dense band is again at 122 

bytes.  There also seems to be a trend forming in the number of 122 byte packets per 

second increasing at about 480 seconds into the game. 
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At this point, it appears that all players might adhere to the same general 

distribution of points, except that this one does not express the aforementioned trend in 

the 122-byte packet band. 
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 The distribution of points across each of the graphs is strong evidence that each 

player sends roughly the same pattern of traffic.  It was this observation that led us to 

conclude that there was no need to account for differences between incoming packet 

streams in a simulated game of Starcraft, as they are all statistically equivalent.  

However, since most of the plot points on our graphs overlap, it is difficult to derive 

statistical information from them alone.  Following is a graph of the relative frequency of 

packet sizes across the 5 remote players in this Starcraft session. 



 37 

 
 The distribution is clearly around 70% 132-byte packets, with 120-122 byte 

packets comprising the next largest group.  This relates to the bands of packets, at these 

size levels, on the scatter plots.  With only relatively few packet sizes used by Starcraft, it 

is visually easy to associate those represented here with their levels on the scatter plots. 

 Finally, a comparison of the bandwidths generated by each of the remote players 

solidifies the argument that they behave very similarly.   
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 Player 1 Player 2 Player 3 Player 4 Player 5 

Average bandwidth 

(bytes/second) 680.4592 676.1897 669.1414 665.8436 675.1947 

Standard deviation 137.2658 114.8658 113.5378 100.0684 104.0294 

Std dev/mean 0.201725 0.169872 0.169677 0.150288 0.154073 

 

 This graph illustrates the division of total bandwidth by the remote players.  From 

the graph, it is clear that they each contribute nearly equally to the total bandwidth used.  

It is for this reason we decided it would not be necessary to differentiate between remote 

players in our simulations.  In addition, this graph suggests that each player is sending the 

same amount of data to every other player, as the amount of data received from each is 

the same when perceived by the local player. 

 

4.1.2 – Comparing Outgoing Data Streams Across Similar Games 

 The prototype for our NS game application was intended to simulate a typical 6-

player game of Starcraft using the probabilistic methodology described earlier in this 

document.  A typical game, however, was as yet undefined, so it was necessary to run a 
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number of game sessions and compare them.  Of the ten sessions recorded, we have 

decided to display four as a succinct demonstration of their overall similarity.  All four 

graphs were cropped to 800 seconds for the sake of comparison.  Every game has yielded 

the same pattern throughout, however, and it should be noted that showing only the first 

800 seconds does not limit the analysis. 

 
All traces looked like this one.  The majority of packets are 132 bytes in size, just 

as the incoming traces showed.  There are two packets that lie out of this plot’s range.  

They are just over 500 bytes in size and are delivered to Battle.net servers for purposes 

unrelated to gameplay, itself. 
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The similarity between games is more evident with each graph.  
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The 100-byte packets that appear to be uniformly distributed across the time axis 

are not sent to any of the other players in the game, but actually represent some kind of 

persistent connection with a Battle.net server.   

 
 As each player in a Starcraft session sends the same amount of data to every other 

player, it follows that the packet size distribution of the outgoing traffic should match that 

of the incoming traffic.  Comparing the following graph with the previous size 

distribution graph illustrates that this is true. 
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It became apparent very early that acquiring a typical 6-player game’s simulation 

was as simple as choosing a lengthy trace as input for our simulator.  Games of other 

sizes (2, 4, and 8 players) also proved to be similar within their sizes; the 6-player 

comparison shown in this document is only an example of this. 
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 Game 1 Game 2 Game 3 Game 4 

Average bandwidth (bytes/second) 3372.932 3403.082 3096.799 3318.153 

Standard deviation 589.523 493.6111 627.2109 820.4449 

Std dev/mean 0.174781 0.145048 0.202535 0.24726 

 

 The bandwidth graph in this case is almost evenly distributed between the four 

separate sessions.  Again, the significance of this is that a typical game of Starcraft of the 

same size is, in reality, any game of that size.  The anomalous data spike at 300 seconds 

has been attributed to a period of unusually high latencies in game 4 at that time (noted 

during gameplay), resulting in fewer packets sent. 

 

4.1.3 – Comparing Starcraft Games by Number of Players 

 The number of players does not have a direct affect on the average packet size, as 

is indicated by the following graph.  Each ring represents a game, and each segment a 

percentage of the total packets from each trace.  The graph shows that 132 is the most 

common packet size, with significant numbers of 118, 140, and 120-byte packets 
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appearing in the trace.  This matches closely to the bands of points on Starcraft packet 

plots.   

 
 The average time between packets is very difficult to produce with our tool due to 

innate problems with floating-point numbers in Java.  Packet times for the Starcraft data 

are generally poorly represented by standard graphs, so we decided to express the next 

portion of our analysis using graphs of average bandwidth. 
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 2 players 4 players 6 players 8 players 

Average bandwidth (bytes/second) 662.2995 2076.483 3437.764 4953.268 

Standard deviation 106.4026 323.7356 495.3148 896.1799 

Std dev/mean  0.160656 0.155906 0.144081 0.180927 

 

This graph illustrates that the amount of bandwidth used by Starcraft sessions is 

proportional to the number of players in the game.  A 2-player game sends around 650 

bytes/second.  Each session depicted here is about 1400 to 1600 bytes/second from its 

neighbors, though the 2-player game runs at only 660 average bytes/second.  Thus they 

do not only appear to be related, but linearly related. 

 As the number of players increases, so does the variance in bandwidth consumed.  

This is likely due to the increased probability that any player in the game is experiencing 

a high amount of latency to another.  Since the game runs in a general lock-step fashion, 

this directly affects the rate at which data is sent by the rest of the players in the process.   
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4.2 – Counter-strike Traffic Data 
While a Starcraft game has very little deviation throughout its run, Counter-strike, 

especially on the server side, has a distinct repeating pattern.  Throughout the section 

below, the names of the maps played during the trace will be contained in the title of the 

graph.  All Counter-strike data was collected on the same machine.  This machine’s 

relevant specifications are as follows: 

• AMD Athlon 800mhz processor with 200mhz FSB 

• 256 megabytes PC-100 SDRAM 

• nVidia geForce 3d graphic accelerator with 32 megabytes of DDR SDRAM 

• ATA-66 hard drive interface 

• 10baseT network card connected to WPI LAN through residence hall connection 

• Windows 98 v4.10.98 Operating System running Commview version 2.6 (Build 

103) packet sniffer 

• Counter-strike version 1.3 on Half-life version 1.1.0.8 

• Maps used (from standard install): de_dust, de_aztec, and cs_assault 

• Games all played on LAN server located on WPI network 

 

4.2.1 – Client Traffic 

The client-server architecture of Counterstrike creates a specific set of traffic patterns.  

For example, regardless of how many players are in any given game, the data sent by the 

client looks remarkably similar.  There are very few outlying data points, and most of the 

packets are of nearly the same size.  Take for example, this graph: 
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The mean size of the packets sent by the client is around 165 bytes with a standard 

deviation of 40 bytes.  While the data are quite variable second by second, over several 

minutes, even across player deaths, the data looks quite uniform as is shown above.  Due 

to the total lack of variability by player number, (there were between 24 and 32 active 

players during the time this graph shows), it seems reasonable to conclude that the client 

data rate is not dependant on the number of players.   

The round cycle becomes less clear as the number of players on the server 

decreases.  The play session below once again covered a map change but in this particular 

session, the number of players varied between 7 and 11.  Another key difference is that 

the first map, de_dust, tends to run quickly compared to other maps and rounds average 

around 2 minutes.  However, we can still see the end of rounds by observing the large 

packets sent out whenever a round ends.   
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 The traffic generated by one round of Counter-strike is a nearly flat line from start 

to finish.  It would appear that the client sends updates constantly, even when the player 

isn’t providing input.  There is an interesting fall off at the end of this graph, more than 

likely corresponding with the end of round/start of round sequence.  An interesting 

feature is the slight increase in average packet size at 555s due to an unknown cause that 

is also reflected in the bandwidth graph below. 



 49 

 
Average bandwidth: 2693.92 bytes/s  
Standard deviation: 1324.82 bytes/s 
 
It is interesting to contrast the bandwidth over time with the packets sent.  While 

the granularity on the bandwidth graph is significantly better than the packet size graph 

above, it still shows distinct drop offs in bandwidth usage per second.  This is more than 

likely the result of prolonged periods of waiting still within the game, as it seems to 

happen several times per round.   
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 Average bandwidth: 3209.42 bytes/s 
 Standard deviation: 1958.83 bytes/s 
 

 Examining this graph and contrasting it to the assault to aztec client bandwidth 

graph above, it is interesting to note the differences between them.  During the first map 

in both cases the bandwidth usage looks quite similar but after the map change from dust 

to aztec at time 950s, the bandwidth spikes here jump dramatically in both frequency and 

size.  However, the same phenomenon is present in the server graph taken during the 

same play session.  The assault to aztec play session has a slight increase in bandwidth 

usage, but it is not as dramatic as it is in this case.  However, the rounds were quite short 

and bloody during the beginning of the aztec map in this case, which may explain the 

increase in bandwidth usage. 

 

4.2.2 – Server Traffic 

 The traffic generated by the server, however is quite different.  There is a large 

amount of variability based on the number of players alive on the server at the time.  This 

variability affects both the size of the packets sent and their frequency.  For very large 
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numbers of players (24-32) the rounds become rather obvious by the variation in packet 

size.  Take for example the graph Assault to Aztec Server.   

 

 
Total Packets: 20815 
Mean Size: 465.25 
Size Standard Deviation: 205.95 
Largest Packet: 2886 
Smallest Packet: 122 
Mean Time Between Packets: 0.079 
Total time: 1650 
 

The game started on the map cs_assault, which is a hostage rescue map.  The 

player was a terrorist.  Rounds can be distinguished by the slow decline in the packet size 

sent from the server.  For example, one round goes from approximately 500s to 650s, 

featured above in the first small box. It seems likely that the large packets of nearly 3000 

bytes, circled in green are round initialization or round termination packets, as they 

strongly correlate with the end of the decline of packet size.  The red and yellow ovals 

correlate with large firefights within the game.  The red ovals also correspond to 

firefights in which the player died.  They seem to have larger packets than normal 
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firefights, possibly due data sent to the player containing chase mode data.  Another 

important feature is the break in the graph around 1400 seconds, indicated by the second 

large box.  At this time, the map was changed to de_aztec almost immediately after the 

start of a new round.  The map change can be seen more clearly on the graph labeled 

Assault to Aztec Map Change. 

 
 The graph above shows a bit more clearly the progression of a round of Counter-

strike.  The time up to the first box contains what are most likely messages sending what 

weapons the player’s teammate bought and their movement to their initial positions.  

After that, each box represents one phase of the round, ending with the end of a firefight.  

Most rounds consist of multiple battles happening at the same time in different places, 

followed by the players, reloading, regrouping, and moving onward until they get into 

another firefight.  Each box represents one of those phases.   
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 The image above corresponds with a round change and then a map change shortly 

afterward.  The green circle again corresponds with a round change and you can see the 

rapid climb of the traffic shortly afterwards.  This graph also shows the general 

downward trend of the packet size just before a round change.  From 1350s to 1390s the 

packet size is consistently going downward.  There was a brief firefight resulting in the 

player’s death.  Within 15 seconds, a map change was initiated.  The map change is 

indicated by the blue box.  It took several seconds for a round to begin after the map 

change, so the first firefight, the yellow oval, is significantly delayed compared to most 

rounds.  It should also be noted that the peak of activity is smaller than the round before.  

Most players do not reconnect to the server in time to get into the first round. 
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 Average bandwidth: 5871.07 bytes/s 
 Standard deviation: 3553.95 bytes/s 
 

The bandwidth usage by the server still shows the cyclical nature of Counter-

strike’s network usage.  The bandwidth peaks, with the exception of the extreme outliers 

that are more than likely firefights, trend downward for a few minutes, then the jump 

back upward at a round change.  The large dip at 1100s is difficult to explain, since there 

was nothing in the game play to indicate any sort of dramatic prolonged bandwidth usage 

drop but it may be the result of network congestion.   

 The round cycle becomes less clear as the number of players on the server 

decreases.  The play session below once again covered a map change but in this particular 

session, the number of players varied between 7 and 11.  Another key difference is the 

first map.  Dust tends to run quickly compared to other maps and rounds average around 

2 minutes.  However, we can still see the end of rounds by observing the large packets 

sent out whenever a round ends.   
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Total Packets: 18715 
Mean Size: 309.95 
Size Standard Deviation: 155.65 
Largest Packet: 2886 
Smallest Packet: 122 
Mean Time Between Packets: 0.063 
Total time: 1173.48 

 

It should also be noted that these packets vary in size correlating exactly with the 

number of players in the game.  The round packets just under 1500 bytes correlate with 7 

players in the game, while those just above 1500 correlate with 8 and so on.  Another 

notable feature is the reduced number of large firefights but an increase in their intensity.  

With smaller numbers of players, the teams tend to stick together and firefights usually 

involve all the players in the game at the time.  The final feature is the map change to 

Aztec occurring at 950s.  Note that this map change looks quite different than the one 

shown in the previous play session.  The lack of the round change immediately preceding 

the map change makes it much easier to see the steep drop in packets sent by the server. 
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 Average bandwidth: 4950.51 bytes/s 
 Standard deviation: 3695.54 bytes/s 
 

 The key feature on this bandwidth graph is the very clear “buy-time” intervals.  

After a new round, the players are unable to move or fire but are allowed to buy 

equipment.  There are distinctly noticeable dips in bandwidth usage strongly correlating 

with the new round packets that would indicate that the bandwidth usage is significantly 

less during buy-time. 

 

4.3 – Comparing Starcraft Traffic With Counter-strike Traffic 
The network traffic generated by Starcraft and Counter-strike look very different.  

There is a significant degree of randomness in the Counter-strike traces, with no two 

games looking the same.  This is in stark contrast to Starcraft where games are barely 

distinguishable.  The differences between the two games are significant in terms of 

packet size and bandwidth consumption. 

One such area of difference is the model the two games use to transmit a larger 

than normal amount of data.  Starcraft packet sizes are close to uniform across the 
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number of players, with more packets transmitted when the bandwidth requirements 

increase.  The Counter-strike client also follows this model, though the packet sizes are 

more variable than those in Starcraft.  The Counter-strike server, on the other hand, 

increases the size of the packets when confronted with a need to send more data to the 

client.  These differences are not visible when viewing a bandwidth graph but are 

important to note due to their effects on congestion.  

The games are also different in the bandwidth they consume over time.  Starcraft's 

bandwidth consumption varies very little over the course of a game regardless of events 

occurring within the game.  Counter-strike, however, has a distinct cyclic pattern in its 

bandwidth distributions, which vary over time and have a marked correlation to game 

events.  Overall, the amount of bandwidth consumed by a Starcraft player is comparable 

to bandwidth consumed by a Counter-strike client.  A 6-player game of Starcraft has the 

local player sending between 3000 and 3500 bytes/second, and a Counter-strike client 

connected to a mostly-full server typically sends a little over 3200 bytes/second. 
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5 – Game Traffic Simulation 
 With the analysis completed, we began to develop algorithms for generating 

simulated traces that would mimic traces generated by actual games.  We developed 

several algorithms, but it became obvious that a relatively simple solution could generate 

a generally accurate simulation, and that by fine-tuning this process we could develop a 

generic, sample trace generator that could be built into NS with few problems. 

 

5.1 – NS Integration 
 In analyzing our data, we realized that the traffic patterns generated by games of 

Starcraft generally consisted of packets of distinct sizes delivered at relatively short 

intervals, but always steadily.  From these observations, we hypothesized that a typical 

Starcraft session could be simulated by selecting weighted values for packet size and time 

since the last packet was sent, and running a simulation based on these probabilistically 

selected numbers.   

 The basis of our algorithm was that the NS timing for an application involves 

sending a packet of a specified size, waiting for a specified interval, and repeating the 

process.  We used our tool to generate, for a single source IP, two probability buckets.  

The first contained the sizes of every packet in a given trace, and each size’s 

corresponding frequency of appearance in the trace (essentially, the number of packets 

for each size).  The other bucket contained the time between packets and the number of 

packets associated with each time interval.   

 Building our probabilistic simulator into this structure was relatively simple.  We 

created an application, called game-app, that upon invocation reads bucket files generated 

by our tool (see section 3.3), picks a packet size from the size bucket, sends it, waits for a 

time chosen from the time bucket, and repeats.  The functions that generate any given 

packet’s size and time delta use an algorithm that uses a random number generator in 

tandem with our probabilistically weighted buckets.   

 Using this system, it is possible to probabilistically generate any trace, although it 

currently only supports the UDP protocol.  We experienced some difficulty in dealing 

with the coarse time granularity introduced by the nature of operating systems (50ms in 

Windows 98) and by Commview.  There were a large number of 0-value time deltas in 
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our initial time buckets that indicated a number of packets were sent in such rapid 

succession such that Commview or the operating system could not detect the time 

between packets.  These bursts in traffic tended to create inaccuracies in our simulations, 

as they sometimes range higher than the node queues can handle.  A simple, yet effective 

fix to this problem was to limit the number of packets that could be delivered in a single 

burst.  This modification kept unusual bursts from distorting the simulation, and can be 

adjusted to suit any application that experiences similar effects. 

Further research into Starcraft’s behavior with differing numbers of players 

resulted in a specialized application for the game, which is derived from the probabilistic 

application.  Typical traces were generated for 2, 4, 6, and 8 player games, and these 

were built into the Starcraft NS application.  NS users can select the number of players by 

adjusting a variable (gameSize_); the default value is 6 players.   

 The Counter-strike application currently comes in two parts, a client application 

and a server application.  The data sent by the client in Counter-strike does not vary 

based on the number of players in the game or the status (alive or dead) of the player.  

The data is remarkably uniform over time with respect to size, but varies slightly in the 

number of packets sent per second.  This data pattern was a good match for the use of the 

bucket algorithm developed for game-app, so the cstrike-app class was derived from 

game-app and only overrides its parent class to load the buckets. 

 The server application, however, is quite different.  Due to the cyclical nature of 

the packet size the server sends and the bursts of packets that are sent during firefights, 

we decided that the probabilistic model would not work well.  Our analysis showed that 

within each round there were several segments, each ending with a firefight and a drop in 

the overall packet size.  At the end of each round, the packet sizes would climb again and 

the process would repeat itself.  With these factors in mind, we developed a model with 

several variables, each able to be tuned based on the number of players in the game and 

the average round length.   

Each segment of a round has its own effective maximum and minimum packet 

size, as well as a burstiness and outlier percentage.  As the round goes on, the packet size 

drops as well as the number of packets per burst and the frequency of bursts.  The number 

of outliers seemed to correlate more strongly with the number of players in the game and 
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the map being played.  A rudimentary version of this is included in our ns sample, 

however, due to time constrains, the transition between segments and the packet timer 

were not able to be fully implemented. 

 

5.1.1 – Class Diagrams 

 The aim of the class hierarchy implemented in our simulators is to create at least 

one unique class for every game simulated.  This provides a high level of customizing 

ability and will allow games to be compared to others within and outside of their genres.  

We had considered grouping games by type, but found that this would limit the games to 

a specific traffic pattern that does not necessarily define every game of its type. 
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GameApp 

bucket : type – stores a value and it’s 
frequency of occurrence in a trace 
sizes : list of buckets – holds a list of sizes 
and their associated frequencies 
times : list of buckets – holds a list of times 
and their associated frequencies 
totalSizePackets : number – used for indexing 
totalTimePackets : number – used for 
indexing 
 
start() – start sending game packets 
stop() – stop sending game packets 
command() – interprets tcl script commands 
init() – a simple initialization function that 
supplements constructor 
selectBucket() – returns a value from a bucket 
selected probabilistically from a specified 
bucket vector 
readBucketFiles() – reads list of buckets from 
file 
next_snd_time() – computes the time between 
a packet just sent and the next in queue 

bucket 

StarcraftApp : GameApp 

gameSize_ : number – can be 
set in tcl script to determine 
number of players in 
simulated game 
 
init() – calls fillBuckets(), 
overrides GameApp init’s 
call to readBucketFiles() 
fillBuckets – depending on 
value of gameSize_, it will 
fill the bucket lists with the 
appropriate pre-recorded data 
start() – start sending 
Starcraft packets 
stop() – stop sending 
Starcraft packets 
command() – tcl command 
interpreter 

 - Denotes inheritance 

CstrikeApp : GameApp 

No variables 
 
init() – calls fillTimeBuckets() and 
fillSizeBuckets(), overrides GameApp init’s 
call to readBucketFiles() 
fillTimeBuckets() – enters typical 
CounterStrike client trace time deltas into 
time bucket list 
fillSizeBuckets() – enters typical 
CounterStrike client packet size values into 
size bucket list 
start() – start sending Counterstrike client 
packets 
stop() – stop sending Counterstrike client 
packets 
command() – tcl command interpreter 

value : number – a 
value, such as 
packet size or delta 
time 
packets : number – 
number of packets 
associated with the 
value 
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 NS has a virtual base class called App from which all application-level simulation 

modules are derived.  GameApp is derived from this class, and all inherited functions 

from class App are listed in GameApp’s diagram.  selectBucket() and readBucketFiles() 

are the only functions not derived from App.  GameApp provides the probabilistic 

functionality described earlier, and also serves as a template for game classes that can use 

this form of simulation.   

 StarcraftApp is a game that utilizes the probabilistic algorithm, and is therefore 

derived from GameApp.  Since Starcraft sessions can specify a number of players, its 

class differs from GameApp in that it has a variable (gameSize_) for this, and its “bucket 

filler” functions read from a set of previously generated buckets that each correspond to a 

particular game size.   

timeInterval 

CstrikeServApp 

timeInterval : type – contains values 
for packet size and frequency. 
tiaTimeIntervals : list of 
timeIntervals – timeIntervals are 
used to differentiate between 
network activity cycles produced by 
the game 
curInterval : number – the current 
interval 
roundTime : number – the amount 
of time devoted to this timeInterval 
 
init() – overrides App init functions 
start() – start sending Counterstrike 
server packets 
stop() – stop sending Counterstrike 
server packets 
command() – tcl command 
interpreter 

burstPct : number – ranges 
from 0-100 and indicates the 
percentage of all 
transmission times that send 
a burst of packets (more than 
the normal amount) 
burstCoef : number – a 
multiplier for the normal 
number of packets in a burst 
minEffSize : number – 
minimum standard size of 
packets in this interval.  
Anything smaller than this is 
considered an outlier. 
maxEffSize : number – 
maximum standard size of 
packets in this interval.  
Anything smaller than this is 
considered an outlier. 
outlierPct : number – 
percentage of all packets 
whose sizes are anomalous 
outlierCoef : number – the 
size difference between an 
outlier and minEffSize or 
maxEffSize 
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 The Counter-strike client is represented by the CStrikeApp class, which is also 

derived from GameApp.  As the data from any given client is generally uniform between 

game sessions, a typical trace was used to fill the buckets for this game. 

 The Counter-strike server, however, applies a cyclic pattern to the data it sends.  

This class was not fully implemented due to time limitations, but its algorithm is as 

follows:  Every distinct cycle of traffic patterns is rotated in a round-robin manner.  

Within each cycle, there are sets of values that determine its packet distribution.  These 

values are explained in the class diagram.  See section 4.2 – Counter-strike Traffic Data 

for details on how the cycles differ from each other. 

 

5.2 – Comparing Real Traffic to Simulated Traffic 
 In order to determine whether our NS implementation could portray an accurate 

representation of the data collected, we ran several simulations and compared them with 

actual trace data.   

 

5.2.1 – Starcraft 

 Starcraft results turned out to be close to the actual trace data in terms of average 

bandwidth, but with an increased standard deviation in the bandwidth.  The following 

graphs are scatter-plots of the data collected from a session of Starcraft and its 

corresponding simulation in NS. 
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 These graphs show that the simulated data produces more evenly distributed 

bands of 118 and 120 packets especially, and a more uniform distribution of packets 

larger than 152 bytes.  The scale of these graphs, only 100-200 bytes, greatly accentuates 

differences in traffic.  The simulated data looks much more dense than the real data, for 

instance, but they each send about the same amount of traffic.  Bandwidth graphs can 

more clearly distinguish the difference between the actual and simulated data.  The 

following graphs illustrate this: 

 
Average bandwidth: 3437.764 
Standard deviation: 495.3148 
Std dev/mean: 0.144 



 66 

 
Average bandwidth: 3493.92 bytes/second  
Standard deviation: 1373.403  
Std dev/mean: 0.393 
 

 The variance of the simulated data is very large in comparison with that of the 

actual data.  The simulation for this typical 6 player game shows a 36% increase in 

standard deviation over the real trace, even though the average bandwidth for each is less 

than 60 bytes/second from the other.  We believe this is due to the large number of 0 time 

deltas in the buckets used for this simulation.  These 0 values create a level of burstiness 

unlike real traces, and it would likely be beneficial to find a way around this problem in 

future work.  As the amount of data sent in every burst is better curbed, the simulated 

data should move toward a real trace’s packet transmission time variance.  It seems the 

next important step in honing this algorithm is to find a way of achieving this.   

 We found that these results are typical of every 6-player game we had recorded, 

and this session can therefore represent the rest, as well.  We were interested at this point 

in determining whether these results would be similar between games of varying size. 
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 2 players 4 players 6 players 8 players 

Average bandwidth (bytes/second) 662.2995 2076.483 3437.764 4953.268 

Standard deviation 106.4026 323.7356 495.3148 896.1799 

Std dev/mean  0.160656 0.155906 0.144081 0.180927 
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 2 players 4 players 6 players 8 players 

Average bandwidth 559.9632 2042.107 3486.258 4760.615 

Standard deviation 110.6543 753.7073 1341.138 1699.715 

Std dev/mean  0.19761 0.369083 0.384693 0.357037 

 

 The amount of variance in the data was shown to increase with the number of 

players in section 4.1.3, but the simulated data behaves slightly differently.  The amount 

of variance takes an immediate climb to a constant level between the 4, 6, and 8-player 

games, but remains very close to the actual values in the 2-player game.  This shows that 

the simulations tend to become very inaccurate in terms of bandwidth distribution once 

the highest and lowest bandwidths in the real data become large enough to allow these 

levels of variance to occur. 
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5.2.2 – Counter-strike Client 

 
 

Actual Data Average Packet Size:  170.13 bytes 
Actual Data Standard Deviation:  65.52 bytes 
Simulated Data Average Packet Size: 235.72 bytes 
Simulated Data Standard Deviation:  147.93 bytes 
 

 The Counter-strike client application was our first hard-coded NS app.  It suffers 

from a number of flaws because the process for creating applications had not yet been 

fully developed at the time we made it.  Obviously, the simulated data is a poor fit by 

packet size.  The variance on the packets is far too large and the average size is almost 

40% larger than it should be.  These problems were found to be caused by some 

limitations of the JVM and a poor selection of a trace file for the template of this 

simulation.  Our methodology for developing the application was flawed initially, and we 

did not perform verification testing early enough in the process to discover this error. 
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Actual Data Average Bandwidth:   2954.58 
Actual Data Standard Deviation:    1450.12 
Simulated Data Average Bandwidth:  3590.05 
Simulated Data Standard Deviation:   1606.60 
 

 Due to the problems with packet size, the bandwidth usage is also significantly 

incorrect.  However, the errors above should lead to a 30-40% increase in the bandwidth 

used rather than the 20% that is demonstrated here.  This would indicate a significant 

error in the time component of the simulation.    The Counter-strike client app is not 

totally beyond usefulness.  A rebuild of the simulation seed data would make it fit much 

closer to the actual data. 
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5.2.3 – Counter-strike Server 

 
 

Actual Data Average Packet Size:  528.25 bytes 
Actual Data Standard Deviation:  256.61 bytes 
Simulated Data Average Packet Size: 402.77 bytes 
Simulated Data Standard Deviation:  102.06 bytes 
 

 The server was not yet completed at the end of our project, but we are including it 

for the sake of completeness.  Several problems with the seed variables of the model are 

apparent looking at the data above.  The initial timeInterval data values were a guess, and 

turned out to be well off from the average size.  The default times between intervals also 

proved to be significantly off as is shown above.  With some tweaking to the initial 

conditions and some work on the timing aspect, the server application could work well. 
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Actual Data Average Bandwidth:   5988.08 
Actual Data Standard Deviation:    3285.25 
Simulated Data Average Bandwidth:  9705.17 
Simulated Data Standard Deviation:   3166.13 
 

This is shown quite well with the above graph.  Note that the simulated standard 

deviation is quite close the actual standard deviation, despite the large difference in 

average bandwidth.  The simulation does a good job of accurately simulating the size of 

the bandwidth bursts the server creates as well as the lulls in data transmission.  Once the 

packet size problem is corrected, the server would provide an accurate simulation of 

bandwidth consumption.  

Despite the inaccuracies of the simulations, these games can still be simulated 

accurately.  NS has a built-in trace mode that takes a file with sizes and times and sends 

them out in the order specified in the file.  This allows a user to take the analysis 

presented above, generate a trace using that data, and get a more accurate simulation.  We 

have also included several trace files with our MQP to facilitate this usage. 
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6 – Conclusions 
 The amount of research devoted to network games is lacking, even as the 

popularity of network games continues to grow.  We intended to fill some of this 

knowledge gap with a study on how games behave over the Internet, and to provide a 

means of facilitating future research.   

 Our main tasks in this undertaking were to provide some meaningful analysis of 

network traffic generated by multiplayer games, and to simulate this traffic using a 

network simulator.  While we were successful in meeting the former objective, there is 

still some amount of progress to be made on the latter.   

In studying the behavior of multiplayer games over the Internet, we were able to 

construct simulations of two games with the intent that they would be solid 

representations of the games’ traffic patterns.  Our methodology proved true to our initial 

goals, as these games are simulated in NS, and the structure of our code is amicable to 

extension.  However, the modules for these games require some amount of modification 

before they can be considered accurate representations of real traces.   

There are a number of lessons that were learned in implementing our goals.  It 

seems the key to understanding the traffic patterns of a game is to analyze enough data to 

be able to distinguish any factors that may affect the way they behave.  Controlling as 

many factors as possible yields positive results, so it is important to compare game 

sessions played under similar conditions, as well as those that vary in aspects such as 

size, playing style, or network locality of players.   

In addition, it is very important to build simulations early and analyze them 

thoroughly so as to leave time for tweaking it to meet specifications.  More time is spent 

on configuring a game simulator, in our experience, than on building it.   

Most importantly, it seems to be irrefutable that in order to simulate the traffic a 

game generates, one must first perform rigorous analysis on the data to be simulated.  As 

there are a number of factors that can vary the behavior of any given game between 

sessions, they must be compared and contrasted before any simulation attempts can be 

trusted for accuracy. 

As the level of attention devoted to the network aspect of games increases, we 

believe the need for simulating these games will grow as well.  As games and other real-
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time applications were not largely considered in the design of the Internet, they have had 

to adapt to the IP protocol.  Most use a custom-built protocol on top of UDP in order to 

find a balance between advantages and disadvantages of TCP and UDP, but in the future, 

this may not always be necessary.  It is possible that the Internet will begin to conform to 

games; that is, the development of protocols that better serve the behavior of games is 

likely to become a strategy for developers faced with increasingly network-intensive 

games.  Simulation benefits this kind of research, as well.  NS is already in use by 

research groups working on a variety of experimental protocols and routing schemes.   
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7 – Future Work 
 Despite the number of tasks we accomplished, there are always a number of 

opportunities for improvement.  Choices were made throughout the project that required 

discarding options.  We also planned to add more features than we had time for, so the 

addition of those items would be welcome.  Finally, there was a rather large set of topics 

that while interesting and useful, were outside the scope of our particular project.   

 

7.1 – Refinements 
There were two tasks we were still attempting to complete as our project ended.  

While they were completed to some degree, we wanted to work a bit more on them so 

they would be as polished as the rest of the project.  First, we could only perform limited 

analysis on game-app and its related classes in NS.  Our first attempt at game-app gave 

simulations within 10% of expected mean, and with further refinements we were able to 

make it perform within 5% of expected mean.  However, game-app creates simulated 

traffic with bandwidth variance that is much higher than in the real traces, most likely due 

to some problems with timing.  Also, we did not have time to do rigorous testing with 

various bucket distributions.  Some further work in this area should be performed before 

serious usage beyond the scope of our tests using game-app is done. 

 Second, we were able to design a basic structure for a Counter-strike server 

simulator and partially implement it.  However, the functionality to determine when to 

send the next group of packets has not yet been fully implemented and little testing has 

been performed.  Our early analysis on packet size distribution and burst size was 

promising, and with a little work, this could become fully functional. 

 

7.2 – Additions 
 There were several areas that while within the scope of the project, we lacked the 

time or resources to pursue.  For example, working on more games would take a small 

amount of time while at the same time being very worthwhile.  By the end of the project, 

we had refined the analysis process of a game down to a few hours for some basic 

metrics and a few days for details.  With most games, developing an NS application for 
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them would be limited to bucket generation and testing.  With this refined process, it 

would be possible to compare and contrast several games within several genres with each 

other within a week’s time and generate definitive simulations by genre rather than by 

game. 

 Writing and simulating TCP games is another interesting area of study.  We made 

the decision early on to focus exclusively on UDP games due to the dramatic differences 

between TCP and UDP games.  While the marketplace has overwhelmingly chosen UDP 

for its games, TCP might turn out to have promise if some modifications are made that 

reduce the severe problems a drop packet creates for games.  Similarly, writing an NS 

app that handles TCP games would be a valuable addition to our work. 

 Finally, while the tool we wrote can produce a great deal of different useful types 

of output, it only accepts the output files of one packet sniffer, Commview, to generate 

this data.  Adding modules for other popular sniffers would greatly increase the potential 

user base for the tool. 

 

7.3 – Related Areas of Study 
 When we first started this project, we had two main choices for topics.  We could 

either do in depth analysis on games as a whole, or do a brief overview of the games and 

write a NS addition to simulate them.  However, this area still needs research and with 

some of our tools, this process could become much easier for future groups.  A detailed 

traffic analysis of one or two games identifying what each packet does and the exact 

effects of packet loss and out of order packets could enable even better NS simulations to 

be written as well as demonstrating how such network events affect games. 

Another promising path uses our NS additions to determine how a large number 

of game players on a network would affect congestion, router queuing, and packet loss.  

Research into this area might prove very valuable for both industry and academia.  A 

detailed review in this area could change the way the games operate over networks and 

improve performance for game players and non-game players alike. 
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Appendix A – Structure of a Commview Packet Log 
 Each line represents one packet.  This is an example of one packet. 
 
Original packet: 
#2002F000C01EA00397600045A4187C3005004261D9F0800450000414887000080112
29782D7E4F782D7E4E76987697D002D04567E140000E52E008017957879E8BE1F7A
F91348B66C42391E221851432E10982C2C400F9D00# 
 
Start delimiter: # 
Direction(0 pass, 1 in, 2 out): 2 
Padding: 00 
Minute: 2F 
Padding: 00 
Hour: 0C 
Millisecond: 01EA 
Padding: 00 
Second: 39 
Unknown: 76  
 
Ethernet: 
Destination MAC address: 00045A4187C3  
Sender MAC address: 005004261D9F  
Other ethernet stuff: 0800  
 
IP: 4500 
Datagram Size: 0041 
Identification (packet number?): 4887 
Flags?: 0000 
TTL: 80 
Protocol:11  
Header Checksum: 2297 
Sender IP address: 82D7E4F7 
Destination IP address: 82D7E4E7  
 
UDP: 
Source Port: 6987 
Destination Port: 697D 
Length (header?): 002D 
Checksum: 0456  
 
Payload: 
7E140000E52E008017957879E8BE1F7AF91348B66C42391E221851432E10982C2C40
0F9D00 
End delimiter: # 
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Appendix B – Network Simulator Code 
game-app.h 
 
#ifndef __GAME_APP__ 
#define __GAME_APP__ 
#include "timer-handler.h" 
#include "packet.h" 
#include "app.h" 
 
#include <iostream> 
#include <fstream> 
#include <vector> 
#include <stdlib.h> 
 
#define SIZE_FILE "size.bkt" 
#define TIME_FILE "time.bkt" 
#define MAX_CONSEC_PKT 3 
 
struct pkt_data 
{ 
int iSize; 
double dTimeDelta; 
}; 
 
struct bucket 
{ 
double value; 
int packets; 
}; 
 
 
class GameApp; 
 
 
// Sender uses this timer to 
// schedule next app data packet transmission time 
class SendTimer : public TimerHandler { 
 public: 
 SendTimer(GameApp* t) : TimerHandler(), t_(t) {} 
 inline virtual void expire(Event*); 
 protected: 
 GameApp* t_; 
}; 
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// Game Application Class Definition 
class GameApp : public Application { 
 public: 
 GameApp(); 
 void send_game_pkt();  // called by SendTimer:expire (Sender) 
 void send_ack_pkt(); // called by AckTimer:expire (Receiver) 
 protected: 
 int command(int argc, const char*const* argv); 
 void start();       // Start sending data packets (Sender) 
 void stop();       // Stop sending data packets (Sender) 
 
  int totalSizePackets; 
 int totalTimePackets; 
 double elapsedTime_; 
 int totalSent_; 
         vector<bucket> sizes; 
         vector<bucket> times; 
 vector<pkt_data> trace; 
 
         bucket selectBucket(int numPackets,vector<bucket> bucketList); 
int readBucketFiles(char* sizeFileName, char* timeFileName); 
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game-app.cc 
 
// 
// Authors:   Josh Winslow and Dave Lapointe 
// File:      game-app.cc 
// Written:   11/13/01 
// 
 
#include "random.h" 
#include "game-app.h" 
#include "sys/time.h" 
 
 
// GameApp OTcl linkage class 
static class GameAppClass : public TclClass { 
 public: 
  GameAppClass() : TclClass("Application/Game") {} 
  TclObject* create(int, const char*const*) { 
    return (new GameApp); 
  } 
} class_app_game; 
 
 
// When the send timer expires, call send_game_pkt() 
void SendTimer::expire(Event*) 
{ 
//  cout<<"Expired timer"<<endl; 
  t_->send_game_pkt(); 
    
} 
 
 
// Constructor (also initialize instances of timers) 
GameApp::GameApp() : running_(0), snd_timer_(this) 
{ 
 totalSizePackets = 0; 
 totalTimePackets = 0; 
} 
 
 
bucket GameApp::selectBucket(int numPackets,vector<bucket> bucketList) 
{ 
 
        int ran, index; 
 index = 0; 
 ran = (int)(Random::uniform(0,numPackets)+.5); // help with truncating 
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 // run through the buckets subracting the number of  
 // "hits" in that bucket from the randomly selected   
 // number until the generated number hits 0 or less 
        while(ran>0) 
 { 
                ran -= bucketList[index].packets; 
                index++; 
        } 
       index--; 
 
        if(index>0)     // Return the bucket value 
   return bucketList[index];  // from the bucket we  
      // selected above 
        return bucketList[0]; 
}//end selectBucket  
 
 
// trace files are of the format an integer for the size, a single 
// character delimiter, space, and a double time until the next packet 
// should be sent.   
// I.E.  
// 132, 0.0 
// or 
// 1452| 0.3432432  
int GameApp::readTraceFile(char *szFilename) 
{ 
        int totalPacketsCheck=0; 
        int size=0; 
        double time=0; 
        pkt_data* temp; 
        char delimiter;             // so cin works properly 
        ifstream traceFile(szFilename); 
 
        // check that the file handle is valid 
        if(traceFile == NULL ) 
        { 
                cout << "Invalid file handle... trace file NOT read" << endl; 
                return -1; 
        } 
 
        while(traceFile >> size >> delimiter >> time) 
        { 
                if(traceFile.eof()) 
                        break; 
 
                temp = new pkt_data; 



 83 

                temp->iSize = size; 
                temp->dTimeDelta = time; 
                trace.push_back(*temp); 
        } 
        return 0;             
} 
 
 
// bucket files are of the format: double the value of the bucket,  
// single character delimiter, space, and an integer for the number of  
// times that value appeared.  I.E. 
// 132, 36614 
// or  
// 0.3300000000000409, 19 
int GameApp::readBucketFiles(char* sizeFileName, char* timeFileName) 
{ 
        int numPackets=0; 
        int totalPacketsCheck=0; 
        double size=0; 
        double time=0; 
        int i=0; 
        bucket* temp; 
        char delimiter;             // so cin works properly 
        ifstream sizesFile(sizeFileName); 
        ifstream timesFile(timeFileName); 
 
        // check that the file handles are valid 
        if((sizesFile == NULL) || (timesFile == NULL)) 
        { 
                cout << "Invalid file handles... bucket files NOT read" << endl; 
                exit(-1); 
        } 
 
        while(sizesFile >> size >> delimiter >> numPackets) 
        { 
  if(sizesFile.eof()) 
   break; 
  
                temp = new bucket; 
                temp->value = size; 
                temp->packets = numPackets; 
                sizes.push_back(*temp); 
                totalSizePackets += numPackets; 
                i++; 
        } 
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        i=0; 
  
        while(timesFile >> time >> delimiter >> numPackets) 
        { 
  if(timesFile.eof()) 
   break; 
 
                temp = new bucket; 
                temp->value = time; 
                temp->packets = numPackets; 
                times.push_back(*temp); 
                totalTimePackets += numPackets; 
                i++; 
        } 
 
        return 0; 
} 
 
 
// OTcl command interpreter 
int GameApp::command(int argc, const char*const* argv) 
{ 
  Tcl& tcl = Tcl::instance(); 
 
  if (argc == 3) { 
    if (strcmp(argv[1], "attach-agent") == 0) { 
      agent_ = (Agent*) TclObject::lookup(argv[2]); 
      if (agent_ == 0) { 
 tcl.resultf("no such agent %s", argv[2]); 
 return(TCL_ERROR); 
      } 
    } 
 
  //add filename loading here. 
 
  } 
 
  return (Application::command(argc, argv)); 
} 
 
 
void GameApp::init() 
{ 
  // seed rng 
  timeval temp; 
  gettimeofday(&temp, NULL); 
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  Random::seed(temp.tv_sec); 
 
  elapsedTime_ = 0; 
  totalSent_ = 0; 
  readBucketFiles(SIZE_FILE,TIME_FILE); 
} 
 
 
void GameApp::start() 
{ 
  init(); 
  running_ = 1; 
  send_game_pkt(); 
} 
 
 
void GameApp::stop() 
{ 
  running_ = 0; 
} 
 
 
// Send application data packet 
void GameApp::send_game_pkt() 
{ 
  if (running_) { 
    int count = 0; 
    double next_time_; 
    bucket size; 
    do  
    { 
      size = selectBucket(totalSizePackets,sizes); 
      agent_->sendmsg(size.value); 
      totalSent_ += (int)size.value; 
      count++; 
    }  while(((next_time_= next_snd_time()) ==  0) && (count <= 
MAX_CONSEC_PKT)); 
    snd_timer_.resched(next_time_); 
  }//end if 
} 
 
 
// Schedule next data packet transmission time 
double GameApp::next_snd_time() 
{ 
  bucket time = selectBucket(totalTimePackets,times); 
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  elapsedTime_ += time.value; 
  return(time.value); 
} 
 
 
// Receive message from underlying agent 
// We don't do anything with it, but it is necessary to declare one 
void GameApp::recv_msg(int nbytes, const char *msg = 0) 
{ 
} 
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starcraft-app.h 
 
#ifndef __STARCRAFT_APP__ 
#define __STARCRAFT_APP__ 
 
#include "game-app.h" 
 
class StarcraftApp; 
 
// Starcraft Application Class Definition 
class StarcraftApp : public GameApp { 
 public: 
 StarcraftApp(); 
 
 protected: 
 int command(int argc, const char*const* argv); 
 void init(); 
 void fillBuckets(); 
 void start(); 
 void stop(); 
 int gameSize_;  // corresponds to number of players in game 
}; 
 
#endif 
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starcraft-app.cc 
 
// Author:    Dave LaPointe 
// File:      starcraft-app.cc 
// Written:   12/02/2001 
 
// THINGS TO DO: 
// 1. ADD NUMBER OF PLAYERS OPTION 
 
 
#include "starcraft-app.h" 
#include "random.h" 
#include "sys/time.h" 
 
// StarcraftApp OTcl linkage class 
static class StarcraftAppClass : public TclClass { 
 public: 
  StarcraftAppClass() : TclClass("Application/Game/Starcraft") {} 
  TclObject* create(int, const char*const*) { 
    return (new StarcraftApp); 
  } 
} class_app_starcraft; 
 
// Constructor (also initialize instances of timers) 
StarcraftApp::StarcraftApp():GameApp() 
{ 
 bind("gameSize_", &gameSize_); 
} 
 
// OTcl command interpreter 
int StarcraftApp::command(int argc, const char*const* argv) 
{ 
  Tcl& tcl = Tcl::instance(); 
 
  if (argc == 3) { 
    if (strcmp(argv[1], "attach-agent") == 0) { 
      agent_ = (Agent*) TclObject::lookup(argv[2]); 
      if (agent_ == 0) { 
 tcl.resultf("no such agent %s", argv[2]); 
 return(TCL_ERROR); 
      } 
    } 
  } 
 
  return (Application::command(argc, argv)); 
} 
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void StarcraftApp::start() 
{ 
  init(); 
  running_ = 1; 
  send_game_pkt(); 
} 
     
     
void StarcraftApp::stop() 
{    
  running_ = 0; 
} 
 
 
void StarcraftApp::init() 
{ 
  // seed rng 
  timeval temp; 
  gettimeofday(&temp, NULL); 
  Random::seed(temp.tv_sec); 
 
  elapsedTime_ = 0; 
  totalSent_ = 0; 
  fillBuckets(); 
} 
 
 
void StarcraftApp::fillBuckets()  
{ 
 This function contains four very long lists of time deltas and packet sizes, and has 
been cropped to save space.  
} 
 



 90 

cstrike-app.h 
 
#ifndef __CSTRIKE_APP__ 
#define __CSTRIKE_APP__ 
#include "game-app.h" 
 
class CStrikeApp; 
 
 
// Game Application Class Definition 
class CStrikeApp : public GameApp { 
 public: 
 CStrikeApp(); 
 protected: 
 int command(int argc, const char*const* argv); 
 void init(); 
 void fillTimeBuckets(); 
 void fillSizeBuckets(); 
 void start(); 
 void stop(); 
}; 
 
#endif 
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cstrike-app.cc 
 
// Author:    Josh Winslow 
// File:      cstrike-app.cc 
// Written:   11/28/01 
// 
 
#include "cstrike-app.h" 
#include "sys/time.h" 
#include "random.h" 
 
// CStrikeApp OTcl linkage class 
static class CStrikeAppClass : public TclClass { 
 public: 
  CStrikeAppClass() : TclClass("Application/Game/CStrike") {} 
  TclObject* create(int, const char*const*) { 
    return (new CStrikeApp); 
  } 
} class_app_cstrike; 
 
// Constructor (also initialize instances of timers) 
CStrikeApp::CStrikeApp():GameApp() 
{ 
} 
// OTcl command interpreter 
int CStrikeApp::command(int argc, const char*const* argv) 
{ 
  Tcl& tcl = Tcl::instance(); 
 
  if (argc == 3) { 
    if (strcmp(argv[1], "attach-agent") == 0) { 
      agent_ = (Agent*) TclObject::lookup(argv[2]); 
      if (agent_ == 0) { 
 tcl.resultf("no such agent %s", argv[2]); 
 return(TCL_ERROR); 
      } 
    } 
   //add filename loading here. 
  } 
  //call superclass? 
  return (Application::command(argc, argv)); 
} 
 
void CStrikeApp::start()  
{ 
  init(); 



 92 

  running_ = 1; 
  send_game_pkt(); 
} 
 
void CStrikeApp::stop() 
{ 
  running_ = 0; 
} 
 
void CStrikeApp::init() 
{ 
  // seed rng 
  timeval temp; 
  gettimeofday(&temp, NULL); 
  Random::seed(temp.tv_sec); 
 
  elapsedTime_ = 0; 
  totalSent_ = 0; 
  fillSizeBuckets(); 
  fillTimeBuckets(); 
} 
 
void CStrikeApp::fillTimeBuckets() { 
 
 This function also contains a very large amount of packet information, and has 
been cropped to save space. 
 
} 
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cstrikeserv-app.h 
 
#ifndef __CSTRIKESERV_APP__ 
#define __CSTRIKESERV_APP__ 
#include "random.h" 
#include "app.h" 
#include "packet.h" 
#include "timer-handler.h" 
#include <iostream> 
 
#define TOTAL_INTERVALS 5 
 
class CStrikeServApp; 
 
struct timeInterval { 
  double burstPct; 
  double burstCoef; 
  int minEffSize; 
  int maxEffSize; 
  double outlierPct; 
  double outlierCoef;  
}; 
 
class CSSSendTimer : public TimerHandler { 
 public: 
        CSSSendTimer(CStrikeServApp* t) : TimerHandler(), t_(t) {} 
        inline virtual void expire(Event*); 
 protected: 
        CStrikeServApp* t_; 
}; 
 
// CStrikeServApp Application Class Definition 
class CStrikeServApp : public Application { 
 public: 
 CStrikeServApp(); 
 void send_css_pkt(); 
 
 protected: 
        int curInterval; 
 int gameState_; 
 int command(int argc, const char*const* argv); 
 void init(); 
 void start(); 
 void stop(); 
        timeInterval *tiaTimeIntervals; 
 int running_;          // If 1 application is running 
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 double roundTime; 
 CSSSendTimer css_snd_timer_;  // SendTimer 
}; 
 
#endif 
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cstrikeserv-app.cc 
 
// Author:    Josh Winslow 
// File:      cstrikeserv-app.cc 
// Written:   11/28/01 
// 
 
#include "cstrikeserv-app.h" 
 
// CStrikeServApp OTcl linkage class 
static class CStrikeServAppClass : public TclClass { 
 public: 
  CStrikeServAppClass() : TclClass("Application/CStrikeServ") {} 
  TclObject* create(int, const char*const*) { 
    return (new CStrikeServApp); 
  } 
} class_app_cstrikeserv; 
 
void CSSSendTimer::expire(Event*) 
{ 
  t_->send_css_pkt(); 
 
} 
 
// Constructor  
CStrikeServApp::CStrikeServApp() : running_(0), css_snd_timer_(this)   
{ 
} 
// OTcl command interpreter 
int CStrikeServApp::command(int argc, const char*const* argv) 
{ 
  Tcl& tcl = Tcl::instance(); 
 
  if (argc == 3) { 
    if (strcmp(argv[1], "attach-agent") == 0) { 
      agent_ = (Agent*) TclObject::lookup(argv[2]); 
      if (agent_ == 0) { 
 tcl.resultf("no such agent %s", argv[2]); 
 return(TCL_ERROR); 
      } 
    } 
   //add filename loading here. 
  } 
  //call superclass? 
  return (Application::command(argc, argv)); 
} 
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void CStrikeServApp::start()  
{ 
  init(); 
  running_ = 1; 
  gameState_ = 0; 
  send_css_pkt(); 
} 
 
void CStrikeServApp::stop() 
{ 
  running_ = 0; 
} 
 
void CStrikeServApp::init() 
{ 
  tiaTimeIntervals = new timeInterval[TOTAL_INTERVALS]; 
  tiaTimeIntervals[0].burstPct = 5; 
  tiaTimeIntervals[0].burstCoef = 6.00; 
  tiaTimeIntervals[0].minEffSize = 400; 
  tiaTimeIntervals[0].maxEffSize = 610; 
  tiaTimeIntervals[0].outlierPct = 15; 
  tiaTimeIntervals[0].outlierCoef = .5; 
 
  tiaTimeIntervals[1].burstPct = 5; 
  tiaTimeIntervals[1].burstCoef = 6.00; 
  tiaTimeIntervals[1].minEffSize = 350; 
  tiaTimeIntervals[1].maxEffSize = 550; 
  tiaTimeIntervals[1].outlierPct = 15; 
  tiaTimeIntervals[1].outlierCoef = .5; 
 
  tiaTimeIntervals[2].burstPct = 5; 
  tiaTimeIntervals[2].burstCoef = 6.00; 
  tiaTimeIntervals[2].minEffSize = 300; 
  tiaTimeIntervals[2].maxEffSize = 500; 
  tiaTimeIntervals[2].outlierPct = 15; 
  tiaTimeIntervals[2].outlierCoef = .5; 
 
  tiaTimeIntervals[3].burstPct = 5; 
  tiaTimeIntervals[3].burstCoef = 6.00; 
  tiaTimeIntervals[3].minEffSize = 250; 
  tiaTimeIntervals[3].maxEffSize = 450; 
  tiaTimeIntervals[3].outlierPct = 15; 
  tiaTimeIntervals[3].outlierCoef = .5; 
 
  tiaTimeIntervals[4].burstPct = 5; 
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  tiaTimeIntervals[4].burstCoef = 6.00; 
  tiaTimeIntervals[4].minEffSize = 200; 
  tiaTimeIntervals[4].maxEffSize = 400; 
  tiaTimeIntervals[4].outlierPct = 15; 
  tiaTimeIntervals[4].outlierCoef = .5; 
 
  curInterval = 0; 
  roundTime = 0; 
 
 
} 
void CStrikeServApp::send_css_pkt() 
{ 
 
  int effRange = tiaTimeIntervals[curInterval].maxEffSize- 
   tiaTimeIntervals[curInterval].minEffSize; 
  int numPackets,pktSize; 
  double rand; 
  if(running_) { 
    numPackets = (int)(Random::uniform(2)+1.5); 
    rand = Random::uniform(100); 
    if(rand<tiaTimeIntervals[curInterval].burstPct) { 
      numPackets = (int)(numPackets*tiaTimeIntervals[curInterval].burstCoef); 
    }//end if 
    for(int i=0;i<numPackets;i++) { 
 pktSize = (int)(Random::uniform(effRange)+.5); 
 pktSize += tiaTimeIntervals[curInterval].minEffSize; 
     rand = Random::uniform(100); 
     if(rand<tiaTimeIntervals[curInterval].outlierPct) { 
   rand = Random::uniform(0,1); 
   if(rand>.5) 
    pktSize = pktSize += 
(int)(pktSize*Random::uniform(tiaTimeIntervals[curInterval].outlierCoef)); 
   else  
    pktSize = pktSize -= 
(int)(pktSize*Random::uniform(tiaTimeIntervals[curInterval].outlierCoef)); 
 
 }//if 
    agent_->sendmsg(pktSize); 
    }//end for 
    double next_time_ = .1; 
    roundTime += next_time_; 
    if( roundTime/(curInterval+1)>20 ) { 
 if(curInterval<TOTAL_INTERVALS-1 ) {  
   curInterval++;  
 } else {  
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   curInterval=0; 
   cout<<"Reset"<<endl; 
 } 
    } 
    css_snd_timer_.resched(next_time_); 
  }//end if(running_) 
}//end send_css_pkt 
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Appendix C – Useful Perl Scripts 
 
packet_concatenator.pl 

 
Author: Dave LaPointe 

 
#!/usr/bin/perl -w 
 
use strict; 
 
my($currentfile, $filename, $filter); 
 
$filter = "none"; 
 
print "This script will concatenate all .ccf files in this directory into one file.\n"; 
print "This process can produce a very large file!  You have been warned.\nContinue? 
(y/n) > "; 
 
## process command line args and input 
if(<> eq "y\n") 
{  
 ## get packet filtering options 
 while(!(($filter eq "tcp") || ($filter eq "udp"))) 
 { 
  print "Select a filtering option:\n1) Filter out all tcp packets\n2) Filter out 
all udp packets\n3) No filtering\nOption: "; 
  
  $filter = <>; 
  
  if($filter eq "1\n") 
  { 
   print "TCP packets will be removed\n"; 
   $filter = "tcp"; 
  } 
 
  elsif($filter eq "2\n") 
  { 
   print "UDP packets will be removed\n"; 
   $filter = "udp"; 
  } 
 
  elsif($filter eq "3\n") 
  { 
   $filter = "none"; 
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  } 
 
  else 
  { 
   die "Unrecognized option: ARGV[0]"; 
  } 
 } 
} 
else  
{ 
 die ("Program aborted by user"); 
} 
 
## create the big file 
open(OUTFILE, ">allpackets"); 
 
## open every Commview file in current directory (start a loop) 
while($filename = glob("*\.ccf")) 
{ 
 $currentfile = ""; 
 
 print "processing $filename\n"; 
 
 ## open each file 
 open(CMFILE, $filename) or die ("Open failed"); 
 
 ## read it in 
 until(eof CMFILE) 
 { 
  $currentfile .= <CMFILE>; 
 } 
 
 ## check filter options 
 if($filter eq "tcp") 
 { 
  ## get rid of tcp packets (spots 67 and 68 in file} 
  $currentfile =~ s|^.{66}06.*$||gm; 
 } 
 elsif($filter eq "udp") 
 { 
  ## get rid of udp packets (spots 67 and 68 in file} 
  $currentfile =~ s|^.{66}11.*$||gm; 
 } 
 
 ## remove excess newlines 
 $currentfile =~ s|\n\n+|\n|g; 
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 ## concatenate 
 print OUTFILE $currentfile; 
} 
 
## final comments 
print "Files combined into file named \"allpackets\". If you choose to add a .ccf 
extension, you should\n"; 
print "avoid redundancy by removing this file from the current directory before running 
this script again.\n"; 
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codegen.pl 

 
Author: Dave LaPointe 

 
#!/local/usr/bin/perl -w 
 
# This script generates code to stuff the contents of a bucket file into GameApp bucket 
structs  
 
use strict; 
 
# define some vars 
my($sizesfilename, $timesfilename, $sizesline, @sizes, @sizenums, $timesline, @times, 
@timenums, $i, $value, $numsizes, $numtimes, $TIMES, $SIZES, $OUTPUT, 
$totaltimepackets, $totalsizepackets); 
 
$numsizes = 0; 
$numtimes = 0; 
$totaltimepackets = 0; 
$totalsizepackets = 0; 
 
# get the bucket info 
open($TIMES, "<time.bkt") or die('time.bkt not found\n'); 
open($SIZES, "<size.bkt") or die('size.bkt not found\n'); 
 
# open some output files 
open($OUTPUT, ">code.txt") or die('error opening/creating output file'); 
 
# get the stuff 
for($i = 0; $timesline = <$TIMES>; $i++) 
{ 
 $timesline =~ m/^(.*?), (.*?)$/; 
 $times[$i] = $1; 
 $timenums[$i] = $2; 
 $totaltimepackets += $timenums[$i]; 
 $numtimes++; 
} 
 
for($i = 0; $sizesline = <$SIZES>; $i++) 
{ 
 $sizesline =~ m/^(.*?), (.*?)$/; 
 $sizes[$i] = $1; 
 $sizenums[$i] = $2; 
 $totalsizepackets += $sizenums[$i]; 
 $numsizes++; 
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} 
 
# make code 
# time deltas array 
print $OUTPUT 'double temptimes[] = {'; 
 
for($i = 0; $i < $numtimes; $i++) 
{ 
 if($i == ($numtimes-1)) 
 { 
  print $OUTPUT "$times[$i]\}\;\n"; 
 } 
 
 else 
 { 
  print $OUTPUT "$times[$i],"; 
 } 
} 
 
# time packet number array 
print $OUTPUT 'int temptimenums[] = {'; 
 
for($i = 0; $i < $numtimes; $i++) 
{ 
 if($i == ($numtimes-1)) 
 { 
  print $OUTPUT "$timenums[$i]\}\;\n"; 
 } 
 
 else 
 { 
  print $OUTPUT "$timenums[$i],"; 
 } 
} 
 
# size array 
print $OUTPUT 'int tempsizes[] = {'; 
 
for($i = 0; $i < $numsizes; $i++) 
{ 
 if($i == ($numsizes-1)) 
 { 
  print $OUTPUT "$sizes[$i]\}\;\n"; 
 } 
 
 else 
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 { 
  print $OUTPUT "$sizes[$i],"; 
 } 
} 
 
# size packet number array 
print $OUTPUT 'int tempsizenums[] = {'; 
                          
for($i = 0; $i < $numsizes; $i++) 
{ 
 if($i == ($numsizes-1)) 
 { 
  print $OUTPUT "$sizenums[$i]\}\;\n"; 
 } 
 
 else 
 { 
  print $OUTPUT "$sizenums[$i],"; 
 } 
} 
 
# total packets for each 
print $OUTPUT "totalTimePackets = $totaltimepackets\;\ntotalSizePackets = 
$totalsizepackets\;\n"; 
print $OUTPUT "int timeArraySize = $numtimes\;\nint sizeArraySize = $numsizes\;\n"; 
 
# the loop to set it all up 
print $OUTPUT <<EOD 
bucket* temp; 
 
for(int i = 0; i < timeArraySize; i++) 
{ 
 temp = new bucket; 
 temp->value = temptimes[i]; 
 temp->packets = temptimenums[i]; 
 times.push_back(*temp); 
}   
 
for(int i = 0; i < sizeArraySize; i++) 
{ 
 temp = new bucket; 
 temp->value = tempsizes[i]; 
 temp->packets = tempsizenums[i]; 
 sizes.push_back(*temp); 
 
}EOD 
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results.pl 

 
Author: Dave LaPointe 

 
#!/local/usr/bin/perl -w 
 
# This script parses out.tr for 2 NODE TOPOLOGIES THAT USE UDP 
# records the size and time of each packet 
# records bandwidth for each second in a separate file 
 
use strict; 
 
# define some vars 
my($tracefile, $outfile, $bwfile, $line, $totalbytes, $time); 
 
$time = 1;  # apps usually start at 1.0s 
$totalbytes = 0; 
 
# open trace file and output files 
open($tracefile, "<out.tr") or die("out.tr not found\n"); 
open($outfile, ">results.txt") or die ("could not open\/create results.txt\n"); 
open($bwfile, ">bandwidth.txt") or die ("could not open\/create bandwidth.txt\n"); 
 
# handle it all in one loop to conserve memory 
while($line = <$tracefile>) 
{ 
 if($line =~ m/^\+ (.*?) . . udp (.*?) -.*?$/) 
 { 
  print $outfile "$1, $2\n"; 
 
  if($1 < ($time + 1)) 
  { 
   $totalbytes += $2; 
  } 
 
  else 
  { 
   print $bwfile "$time, $totalbytes\n"; 
   $time++; 
   $totalbytes = 0; 
  } 
 } 
} 
 
# clean up 
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close($tracefile); 
close($outfile); 


