
INTELLIGENT APP DISTRIBUTION – OL2, INC.

Intelligent Simulation of Worldwide Application Distribution for

OnLive’s Server Network
Sam Jaffe, Thinh Nguyen, Brendan Stephen

March 6, 2014

A Major Qualifying Project Report:

submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Sam Jaffe

Thinh Nguyen

Brendan Stephen

Date: March 2014

Approved:

Professor David Finkel, Advisor

Professor Mark Claypool, Advisor

This report represents the work of one or more WPI undergraduate students.

Submitted to the faculty as evidence of completion of a degree requirement.

WPI routinely publishes these reports on its web site without editorial or peer review

INTELLIGENT APP DISTRIBUTION – OL2, INC. ii

Abstract

OnLive is a cloud-based video game streaming service. As part of their service, OnLive

must distribute game content to their servers, but lacks the ability to judge the effectiveness of

the way they have distributed the content. We seek to build a simulation framework with which

OnLive can evaluate the effectiveness of different application distribution strategies. In order to

do this, we built a model of OnLive’s service and re-implemented their Intelligent App

Distribution algorithm into our simulation. Using a genetic algorithm, we were able to

programmatically construct new application distribution ratios that met demand equally as well

as OnLive’s current ratios did while saving a large amount of disk space. Through our

simulation, we were able to determine that OnLive is able to meet current user demand while

reducing the average amount of space used on their servers by over 80%, and can handle much

higher levels of demand with lower disk space usage as well.

INTELLIGENT APP DISTRIBUTION – OL2, INC. iii

Acknowledgements

 The completion of this project would not have been possible without the assistance of

individuals who dedicated their time and talents in making this project a success. First, we would

thank OnLive for presenting us with this opportunity to learn and interact in a real business

environment. We are thankful to Arnold de Leon, John Speck, Rosemarie Carbone, Corey

Ziegler Hunts, Paulo Ang, and the many other wonderful people at OnLive we were able to work

with as a part of this project. We would also like to thank our advisors, Professors David Finkel

and Mark Claypool, for their outstanding support throughout the project.

INTELLIGENT APP DISTRIBUTION – OL2, INC. iv

Contents

Abstract ... ii

Acknowledgements .. iii

1 Introduction .. 1

1.1 OnLive Overview.. 1

1.2 OnLive Network Infrastructure / Environment ... 2

1.3 Project Motivation .. 4

1.4 Objectives ... 5

1.5 Deliverables .. 6

1.6 Report Roadmap ... 7

2 Background Research .. 8

2.1 Intelligent Application Distribution (IAD) ... 8

2.1.1 How the IAD works ... 8

2.1.2 The IAD’s Bin Packing Algorithm .. 10

2.2 Discrete Event Simulation .. 10

2.2.1 Discrete Event Simulation Description .. 10

2.2.2 Purpose of Discrete Event Simulation in our Project11

2.2.3 Network Discrete Event Simulation Algorithm ... 13

2.3 Related Work ... 14

3. Methodology ... 15

3.1 Work Environment and Tools ... 15

3.1.1 OnLive Work Environment Setup .. 15

3.1.2 Our Work Environment Setup .. 18

3.1.3 Java Libraries ... 22

3.2 Division of Labor and Software Engineering Practices .. 23

3.2.1 Main Programmer Role.. 24

3.2.2 Main Tester Role .. 25

3.2.3 Program Manager Role .. 27

3.3 Timetable for Project... 31

4. Results ... 33

4.1 Modeling ... 33

INTELLIGENT APP DISTRIBUTION – OL2, INC. v

4.2 Our Simulator.. 33

4.2.1 Class Hierarchy .. 34

4.2.2 Modularity for Dependency Injection .. 35

4.2.3 Scheduling.. 36

4.3 Finding the right distribution .. 37

4.4 Simulation Model Validation .. 40

4.4.1 Basic Verification Test ... 40

4.4.2 Model Verification Tests .. 41

4.4.3 IAD Verification ... 45

4.5 Genetic Algorithm ... 48

4.5.1 Initial State ... 50

4.6 Simulation Graphical User Interface .. 51

4.7 Behavior Scenario Tests .. 54

4.7.1 Production vs. Simulation Results ... 54

4.7.2 Minimum Number of AppHosts .. 57

5 Conclusion ... 59

5.1 Future Work .. 60

5.1.1 Time Dependent Distribution Changes .. 60

5.1.2 Multi-Site Implementation ... 60

5.1.3 Latency Based on IP Address ... 61

5.1.4 Improve the Genetic Algorithm ... 62

Bibliography ... 64

Appendices .. 66

Appendix A: List of Module Types and Implementations .. 66

Module Types .. 66

Implementations by Module Type .. 66

Appendix B: Software Development Tracking ... 69

Appendix C: Test Coverage Tracking ... 72

INTELLIGENT APP DISTRIBUTION – OL2, INC. vi

Table of Figures

Figure 1: Hierarchy of OnLive's Server Network ... 3

Figure 2: A successful user game request ... 4

Figure 3: An unsuccessful user game request ... 4

Figure 4: Example of a current IAD limitation ... 9

Figure 5: Network Discrete-Event Simulation Algorithm .. 13

Figure 6: Jira ticket management system .. 17

Figure 7: Pidgin chat client ... 17

Figure 8: OnLive Wiki .. 18

Figure 9: Eclipse splash screen ... 20

Figure 10: SourceTree graphical user interface .. 21

Figure 11: Visual Paradigm for UML splash screen ... 22

Figure 12: V-Model for software development ... 24

Figure 13: Abstract test infrastructure pattern (left) and template test class pattern (right) 27

Figure 14: Example of an abstract test driver class pattern .. 27

Figure 15: Burn down chart example.. 29

Figure 16: Coverage progress chart example .. 31

Figure 17: Gant Chart schedule example .. 32

Figure 18: Entity class hierarchy .. 34

Figure 19: Lifecycle of a single user session .. 37

Figure 20: Example Weibull Distribution fitted to OnLive session length data 39

Figure 21: A timing diagram of the basic simulation .. 41

Figure 22: Failure Rate vs. Session Length .. 42

INTELLIGENT APP DISTRIBUTION – OL2, INC. vii

Figure 23: Failure Rate vs. Inter-Arrival Time ... 43

Figure 24: Failure Rate vs. Number of AppHosts with 500 second average session length 44

Figure 25: Failure Rate vs. Number of AppHosts with 1000 second average session length 45

Figure 26: Genetic Algorithm flow chart .. 49

Figure 27: Sample genetic algorithm output per generation ... 50

Figure 28: No modules selected when GUI first opens .. 52

Figure 29: Sub-Module requirements create a yellow alert icon .. 52

Figure 30: All modules selected and the “Load Module”s button is active 53

Figure 31: Fully Initialized GUI, ready to start the simulation ... 54

Figure 32: Total failures vs. demand for in production and genetic content distributions 55

Figure 33: Total user give ups vs. demand for in production and genetic content distributions .. 56

Figure 34: Server activity vs. demand for in production and genetic distributions 58

INTELLIGENT APP DISTRIBUTION – OL2, INC. viii

Table of Tables

Table 1: Entity class hierarchy descriptions .. 34

Table 2: List of current module types and their purpose... 35

Table 3: Example data from OnLive ... 38

Table 4: Variable for Session Length Verification Check ... 42

Table 5: Variable for Inter-Arrival Time Verification Check .. 43

Table 6: Variable for AppHosts Verification Check with 500 second average session 44

Table 7: Variable for AppHosts Verification Check with 1000 second average session length 44

Table 8: Total space used per AppHost ... 57

INTELLIGENT APP DISTRIBUTION – OL2, INC. 1

1 Introduction

This section gives a short introduction about OnLive and their internal infrastructure.

Included are our project’s goals, motivations, and objectives.

1.1 OnLive Overview

OnLive, the sponsor of this project, is a company in the cloud-computing field of

technology. They offer a number of products including: OnLive Game Service, a video game

streaming service, and OnLive Desktop, a desktop running Windows (Bode, 2010). OnLive also

introduced two new services on March 5th: CloudLift, a complimentary gaming service that

allows one to upload their downloaded games to the cloud to play anywhere from services such

as Steam, and SLGo, a platform for players of Second Life to play entirely in the cloud and on

all their devices connected to the internet.

The OnLive Game Service is the company's flagship service. The concept is to allow

gamers to play computer games entirely in the cloud eliminating the need to upgrade personal

hardware components. OnLive installs all of the game content onto their servers and provides

software to stream games onto users’ devices. Customers of the service download only the

OnLive application and play games of interest without downloading them. OnLive serves

desktops, laptops, tablets, and other mobile devices in a cross-platform experience for the user.

One is able to play games across all of their devices and pick up where they last left off. All a

user needs is an Internet connection.

In addition to their cloud gaming service, the company provides OnLive Desktop, a

service that allows users to run Windows on their mobile device. Similar to gaming service, the

operating system content is stored on the cloud and delivered to users’ devices through OnLive

INTELLIGENT APP DISTRIBUTION – OL2, INC. 2

Desktop software. Currently, the software is available on iPad and Android tablets. The Windows

operating system version is Windows Server 2008.

1.2 OnLive Network Infrastructure / Environment

To service their customers, OnLive has built a backend infrastructure around the world.

The network infrastructure at OnLive begins with the following terminologies: region, site,

segment, and apphosts (which are equivalent to a server), as depicted in Figure 1. A region is a

cluster of sites based on geographical location. OnLive currently has two regions, one in the

United States, and one in the United Kingdom. A site is the location of each server farm within a

region. OnLive currently has five sites in the United States region: in California, Texas, Virginia,

Illinois and Georgia (Grant, 2009). OnLive recommends that users be physically located within

1,000 miles of a site in order to receive the best possible user experience (Goldman, 2009). At

each site, the servers are separated into segments, which are a cluster of apphosts. Finally, at the

smallest size, an apphost is a dedicated server capable of serving a single user at any given time.

Each apphost contains a common application named the GSP (Game Service Portal) that is in

charge of serving the welcome screen when users first connect to the gaming service. Each

apphost contains a different subset of games and applications as will be explained why later.

INTELLIGENT APP DISTRIBUTION – OL2, INC. 3

Figure 1: Hierarchy of OnLive's Server Network

The usual scenario when a user first connects to the OnLive service can be depicted as

the interactions between a region, site, and apphost. When a user opens the OnLive software, the

user is connected to the closest site, as shown in Figure 2. Then, the user will be directed to an

apphost with a welcome application named Game Service Portal (GSP), which presents a game

menu. Once a user connects to it, the apphost becomes busy and is unavailable to anyone else for

use. After a user chooses a game to play, the system will identify an apphost containing the

requested game and switch the session to that apphost without revealing the switch to the user.

This switch happens seamlessly. After the user is done playing the game, the user can choose to

request another game, or quit the service.

INTELLIGENT APP DISTRIBUTION – OL2, INC. 4

Figure 2: A successful user game request

There is also a failure state that can occur that does not allow a user to play a requested

game. As stated, a user chooses a game and the system switches to another apphost having the

game. However, if all apphosts capable of serving the chosen game title are currently being used,

then the user will not obtain an apphost and the user will be notified to try again later, shown in

Figure 3.

Figure 3: An unsuccessful user game request

1.3 Project Motivation

Distributing applications onto the apphosts requires the use of an OnLive specific

Intelligent Application Distribution (IAD) script. This script uses an algorithm that creates a

distribution of game content for a given site. This distribution says which apphosts get which

games and applications then deploys this distribution to that site.

INTELLIGENT APP DISTRIBUTION – OL2, INC. 5

One of the largest issues with the IAD is the fact that its input, a file that says how

prevalent each application should be on the apphosts must be calculated manually. Every app is

given a distribution ratio that designates how much it should be present on the system. The IAD

assigns games and applications to apphosts based on a target distribution ratio and distribution

priority. However, the IAD cannot automatically calculate these distribution ratios. Therefore,

every time OnLive needs to change the distribution of games on their apphosts, someone needs

to determine the changes by hand. As a way to make the IAD simpler for human comprehension,

OnLive uses a ratio system that only uses three levels (low, medium, and high). It is difficult to

manually configure more degrees of granularity between ratios but would be more desirable.

Furthermore, OnLive does not have a metric to judge how successfully the IAD creates

content distributions. That means that they must depend on factors like the judgment of whoever

is calculating the distribution ratios and on the number of user complaints to determine if a game

has too much or too little a presence. OnLive would like to have an optimization scheme that

deciphers if a given distribution is more successful than another before deployment.

1.4 Objectives

Our project addressed the limitation of the current application distribution system at

OnLive and provided statistical analysis for it. To do this, we built a simulation framework that

calculated success of the IAD’s different content distributions. This simulation framework

granted the ability to test success of different distribution ratios without making changes to the

actual network infrastructure. We also needed to accurately simulate application distributions on

OnLive’s apphosts and model users’ application usage. Our simulator must behave in a

comparable manner to the real-world server network. We needed to show where users were able

to successfully access the game or application they desired and where the system failed to deliver

INTELLIGENT APP DISTRIBUTION – OL2, INC. 6

content. We also intended to change content distributions by factors such as the size of the

catalog available, the total disk space on the apphosts, the server’s region and the time of day

that the access is attempted.

Our simulator needed to present output statistics that reveal differences in configuration

states. The data our simulator generated needed to be meaningful and include well-defined

success criteria. The success criteria included game requests received and if all apphosts fulfilled

every game request. A successful distribution will minimize the number of instances where a

user was unable to use the requested application. Also, if an app is requested more often than

others, it should have a higher distribution ratio and thus be loaded onto more apphosts to

improve success. Optimizing the granularity between distribution ratios allowed for a more

sensitive configuration that prevented too many or too few instances of a game on the servers.

Another goal for the simulation framework was to generate reports that can be provided

to the Network Operations Center at OnLive. These reports should include analytics of the

simulator’s runs as well as the distribution(s) used. They should provide suggested modifications

to actual distribution of content in production and ideally provide a function to either

automatically or require only a single button press to implement changes on the actual network

infrastructure.

1.5 Deliverables

Over the course of our project, we created several deliverables. At first we created the

simulation framework. This included not only the code of the simulator, but also our verification

tests. Included with the simulator was a graphical user interface that a user could interact with

and run simulations under different parameters. We also tested all of our code in a separate test

directory, and all of those tests were included as well.

INTELLIGENT APP DISTRIBUTION – OL2, INC. 7

With the simulator, we developed analytics to describe success of different distributions

of content. We found that successful distribution of content to be ones where all users received

their requested application on their first try, and all content was distributed to just enough disk

space on the apphosts. Also, the number of apphosts necessary for our simulation matched how

much demand the system was under. The final deliverable was the documentation for our work.

Our code is well documented as are our tests. To use our software we developed several readme

guides for future developers.

1.6 Report Roadmap

We discuss our preliminary research for our project by looking at what OnLive currently

employs for content distribution. We also research past projects that have solved similar issues to

gain insight into a proper process to be successful. Our process for development discusses how

our team divided work as well as details the many milestones of the project from start to

completion. The main results of our project lists information about our simulator as well as the

verification tests performed on it. We also compare results from our new distribution of content

against the old distribution currently employed at OnLive.

INTELLIGENT APP DISTRIBUTION – OL2, INC. 8

2 Background Research

We investigated the tools, algorithms, and processes that our project required before

starting. To understand how OnLive currently distributes content, we researched the tools and

software used as well as the algorithms employed. To decide how our group was to complete this

project, we researched related work that solved a problem similar to ours in the past.

2.1 Intelligent Application Distribution (IAD)

The Intelligent Application Distribution script is written in Python and is the main

distribution system OnLive employs. All games and applications are distributed based on a

distribution ratio that says how prevalent that game or application should be on the apphosts.

2.1.1 How the IAD works

Every app host has its own disk space and hardware type. Disk space on any given

apphost is less than the space needed to store all the game content in OnLive’s catalog.

Therefore, each apphost can only store a limited number of games. Two potential solutions to

this problem are to use common storage for all the app hosts or an app distribution system that

divides out the games onto each apphost. When evaluating the cost of both solutions, OnLive

decided to go with the second solution, and they called it the Intelligent Application Distribution

(IAD).

 To explain how the IAD works, one thinks of an apphost as a bin and every game or

application as a package. Each package is different in size and each bin has its own capacity. The

IAD’s mission is to distribute all the packages efficiently into the every bin. However, at the

same time, the IAD must carefully consider its distribution mechanism. Since when a user

connects to an apphost, another user cannot obtain it. If the application a user needs is only on an

occupied apphost, that user cannot connect to their requested game or application. This scenario

INTELLIGENT APP DISTRIBUTION – OL2, INC. 9

is problematic because it is possible that app hosts are available, but this user cannot use them

because the app itself is unavailable.

Figure 4: Example of a current IAD limitation

 In Figure 4, User 1first requests to play App Y and was given the first apphost with that

app at Apphost A. When User 2 then connects to OnLive wishing to play App X, he is unable to

complete his request. Even though Apphost B is available, User 2 cannot be served because the

distribution of applications put App X only onto Apphost A. To solve this issue, one can argue

that optimizing the separate mechanism that assigns users to appropriate apphosts to be the best

course of action. However, that option is unlikely to succeed because that would not solve the

issue of assigning enough applications to apphosts based on popularity. In this way, the issue in

Figure 4 would not happen because App Y would be distributed to enough servers to handle the

demand and a user would statistically never request an app when a server does not have it

available. Therefore, our project focuses on investigating how a wise mechanism to distribute

games and applications can help solve this problem.

 When the IAD creates a content distribution, it takes into account attributes such as the

distribution ratio assigned to a game, the disk space it uses, different variants of the title, as well

as the hardware type of each apphost. Based on these attributes, the distribution ratios will adjust

INTELLIGENT APP DISTRIBUTION – OL2, INC. 10

to minimize the number games and applications unable to fit on the apphosts. Unfortunately, the

IAD cannot adjust these fields automatically; the distribution ratios are input manually by the

network operations team at OnLive.

2.1.2 The IAD’s Bin Packing Algorithm

 The way the IAD works and how OnLive needs to be able to distribute applications to its

apphosts is similar to a bin-packing problem. A bin-packing problem’s goal is to find a way to

pack every object in to a number of bins of limited size. Each object to be placed in the bins has

a set size. While the bin-packing problem itself is NP-hard, there exist algorithms to compute

close to optimal solutions in O(n·log(n)) time (Johnson, 1973, page 2).

However, the IAD has a number of constraints on it that make it distinct from the bin-

packing problem. One factor is that our goal is not to place every application on an apphost, but

rather to minimize the number of applications that need to be distributed out to meet demand.

Additionally, an apphost can only take a given application once, and there may be as many

copies of an object as there are apphosts to distribute to, whereas there is no such constraint in

the bin-packing algorithm.

2.2 Discrete Event Simulation

We use discrete event simulation as the primary technology for our project at OnLive. We

chose to use discrete event simulation in part because it would model the target system in a

discrete manner, where each event happens ‘instantly’ at a specified time. This will allow us to

observe user and apphost behavior to make predictions and adjust the model.

2.2.1 Discrete Event Simulation Description

Discrete Event Simulations are programs that are designed to emulate the behavior of a

system under study. They allow us to study discrete-event dynamic systems in which delay is an

INTELLIGENT APP DISTRIBUTION – OL2, INC. 11

intrinsic feature (Fishman, 2001). These systems can range from individual CPUs to large-scale

networks (Jacob, 2013). A simulation will keep track of the state of the simulated system,

allowing data to be measured. One of the primary features of discrete event simulation is that all

changes in state occur ‘instantaneously’ within the simulation. An event is at this instance in time

where the state changes.

While Discrete Event Simulation concepts and designs have existed for around 50 years,

the rapid growth of the PC industry has enabled many simulation techniques to rapidly move

from concept to practical use (Fishman, 2001).

In general, every discrete event system expresses several concepts (Fishman, 2001):

 Work, which denotes the objects that enter the system in need of services

 Resources, which represent objects that can provide the services that are needed

 Routing, which delineates the collection of required services, the resources that will

provide them, and the order in which those services are performed

 Buffers or queues of work, depending on the model, that have an infinite or a finite

capacity. Finite buffers require rules for what to do if work arrives but the buffer is full

 Scheduling is the pattern of availability of resources

 Sequencing represents the order that resources provide services to remaining work

2.2.2 Purpose of Discrete Event Simulation in our Project

Before we put discrete-event simulation into context as a tool of analysis, we describe

how it relates to modeling in general. To study a system, we first accumulate knowledge to build

a model. A model can be a formal representation based on theory or a detailed account based on

empirical observation. According to Fishman (Fishman, 2001), it enables an investigator to

organize his/her theoretical beliefs and empirical observations about a system and to deduce the

INTELLIGENT APP DISTRIBUTION – OL2, INC. 12

logical implications of this organization. This brings into perspective the need for detail and

relevance to the system that leads to improved system understanding. It is also easier to

manipulate a model instead of the main system because a model expedites the speed with which

an analysis can be accomplished. It also provides a framework for testing the desirability of

system modifications and permits control over more sources of variation than direct study of a

system allows.

Discrete-event simulation presents techniques that can approximate the values of

performance descriptors to within a remarkably small error. The approximations come from

running the simulation on the model of interest and analyzing data based on sample paths

generated during the execution. Often, discrete-simulation is used to study the alternatives of the

system. Simulation-generated data can sharpen an investigator’s understanding of the system.

Thereby, he can offer the alternative configurations that lead to the system’s best performance

with regard to explicitly stated criteria.

Discrete-event simulation can benefit the development of optimal or near-optimal

policies for system management. In many situations, one builds an analytical model of a system

in order to determine an optimal policy for managing the system, with regard to a specified

criterion. However, these analytical models may leave out some fundamental properties of the

system and end up displaying inaccurate system performance. Therefore, the analyst may have a

hard time to keep track and maintain important characteristics when creating a model. Discrete-

event simulation can help to resolve this issue. It allows one to build a simulation model that

contains the features in question. A discrete event simulator can launch under the analytically

optimal policy, and then execute under institutional management policies as well. Comparing the

result helps determine the degree in which the analytically optimal policy prevails over the

INTELLIGENT APP DISTRIBUTION – OL2, INC. 13

institutionally based policies. This joint use of analytical and institutional methods considerably

enhances the value of discrete event simulators.

2.2.3 Network Discrete Event Simulation Algorithm

Network simulators are useful in the design and configuration of a computer

communication network. As we build a simulator for OnLive’s cloud gaming service, this

algorithm was helpful to us. A network simulation consists of servers with different state

variables and events that must be executed for given amounts of time in the order of a queue.

After locating the state variables and the events based on both our knowledge of the system

under study and the objectives of the study, we can apply the discrete event simulation algorithm

to our simulation program, shown in Figure 5.

Figure 5: Network Discrete-Event Simulation Algorithm

As each event occurs instantly with regards to the simulation clock, the simulation can be

run on any system and time delays can be introduced with state variables and rescheduling.

NETWORK DISCRETE-EVENT-SIMULATION ALGORITHM

1. Initialize the server state variables

2. Initialize the ‘collection of pending events’

3. Initialize the simulation clock

4. While there are pending events to be handled:

a. Remove the pending event (E) with the smallest timestamp (t)

b. Set simulation clock to that time t

c. Execute the event handler for event E

INTELLIGENT APP DISTRIBUTION – OL2, INC. 14

2.3 Related Work

 We researched similar projects and studies, so that we can broaden our view and find and

process for development that solved problems like this in the past. The study “Aware Virtual

Machine Placement for Cloud Games” aimed to maximize the cloud gaming provider’s total

profit while achieving just-good-enough Quality-of-Experience (Hong, 2013). Similar to our

project, the authors built a simulation to simulate the user, server structure in cloud gaming

service companies. Then, they conducted and implemented their own algorithms to study the

fields of interest. Since the simulator that they built had almost identical properties as ours, we

inherited some properties that they used. For example, we included properties such as gamer

inter-arrival time, gamer session length, and number of servers. Furthermore, we implemented

trace-driven simulation techniques mentioned in their paperwork as well for our heuristic

algorithm.

INTELLIGENT APP DISTRIBUTION – OL2, INC. 15

3. Methodology

 This chapter details the various work environment setups, tools, and practices we

employed in order to complete the project. Work environment setups include descriptions of the

different types of software for use on the project as well as for documentation. Tools include

descriptions of software necessary to produce the code for the project. Practices employed

include details regarding the development process used by the group. It also entails the timeline

for the project as well as distinguished roles for group members.

3.1 Work Environment and Tools

This section depicts the various tools in our work environment as well as the many Java

libraries necessary to write our software. There are software applications used by both OnLive

and our project team that we document here.

3.1.1 OnLive Work Environment Setup

We used the existing technologies at the company as a starting point for our work

environment. This section describes the available tools from OnLive that aided our development

process.

3.1.1.1 GitHub Repository

OnLive has its own version control system through GitHub (source: https://github.com/).

To accommodate this environment, we developed all of our code and used Git as our repository

management system. OnLive has a corporate license with GitHub through the domain name

onlive.github.com, which is accessible through the company’s intranet. For our project, we

created a repository name “toy_sim” on that domain and used version control to push and pull

from it.

https://github.com/

INTELLIGENT APP DISTRIBUTION – OL2, INC. 16

Additionally, OnLive gave us full access on all of the repositories on their domain. This

gave us access to the Intelligent App Distribution (IAD) code and all of the development libraries

necessary for the implementation of their software. We used much of the code available to help

us build our simulation software.

3.1.1.2 Jira, Pidgin, Wiki

Besides using the OnLive GitHub utility, we employed three other tools, namely Jira,

Pidgin and Wiki, in our development process. These three tools helped us collect data as well as

enhance our connection to other departments within OnLive.

OnLive uses a task based ticketing system called Jira (source

https://www.atlassian.com/software/jira), shown in Figure 6, that tracks current development

bugs and tasks for all departments. It is built on a web based framework so all company

departments have easy access. For example, a department posts a status (a ticket) of a bug on

Jira, and assigns the resolution to the corresponding department. The ticket is sent to the

department where they can post comments and updates. When a bug is resolved, the ticket is

closed and stored in the system’s database with information about how it was resolved. In this

way, all tasks and resolutions are documented. Our team used Jira to submit requests for data

collection from other departments.

https://www.atlassian.com/software/jira

INTELLIGENT APP DISTRIBUTION – OL2, INC. 17

Figure 6: Jira ticket management system

Another tool that we used at OnLive was a chat service named Pidgin (source,

https://www.pidgin.im/), which is a Jabber instant messaging client, as shown in Figure 7. Pidgin

is supplied through jabber.onlive.com. OnLive employees use Pidgin to form chat forums, which

serve specific purposes such as answering specific topic for a given department. Seeing the

benefit of this chat service, we created a chat room where our team could ask questions of the

group as well as post statuses of our development process.

Figure 7: Pidgin chat client

https://www.pidgin.im/

INTELLIGENT APP DISTRIBUTION – OL2, INC. 18

Lastly, OnLive has a wiki website located at wiki.onlive.com, as shown in Figure 8. This

website contains all the documentation for various procedures and software created at OnLive.

Every employee at OnLive has a profile and account where they can post documentation and

processes they used as well as add to posts made by others. Information about all the previous

projects at OnLive, including information about the IAD, could be found on the wiki. Our team

found information about the internal infrastructure of OnLive’s systems as well as background

information for our project.

Figure 8: OnLive Wiki

3.1.2 Our Work Environment Setup

We found many other software tools necessary for our project that we included besides

the environment tools OnLive set up for us. This section lists various software tools, languages,

and code libraries we used throughout our project.

INTELLIGENT APP DISTRIBUTION – OL2, INC. 19

3.1.2.1 Simulation Library and Coding Language Choice

Preliminary research for this project focused on different software and languages that are

specifically designed to handle discrete event simulation. There are a few different options that

we investigated that could possibly fulfill our needs to model the OnLive network.

Siman – This general purposes simulation language incorporates special purpose features

for modeling manufacturing systems. These features simplify and enhance the modeling of each

component of a manufacturing system. The advantage of this language is that it works best for

general purpose modeling as compared to other languages. The disadvantages of this languages

use is the initial limited knowledge our project team has with it, as we have better experience

with other languages. If we choose to use this simulation language, we need to purchase it for

use.

Mason – (source, http://cs.gmu.edu/~eclab/projects/mason/) this is a fast discrete event

multi-agent simulation library core in Java. The advantages of using Mason are that it is free, our

group has better experience with Java, and its models are self-contained that can run inside other

Java frameworks. The disadvantages of using Mason are that it is not specific to discrete event

simulation and not optimized for it.

SimEvents / Simulink – (source, http://www.mathworks.com/products/simevents/) this

software provides a discrete event simulation engine that manages and processes sequences of

asynchronous events. These events help model mode changes and trigger state transitions within

time based systems. The advantage of using SimEvents is that it offers the most robust tools and

variety of options when modeling the network. These tools are all internal to the software and

will not require large amounts of code. It also offers large amounts of internal analytics options

that can be built with Matlab. The disadvantage of this software is that the learning curve is

http://cs.gmu.edu/~eclab/projects/mason/
http://www.mathworks.com/products/simevents/

INTELLIGENT APP DISTRIBUTION – OL2, INC. 20

much greater when compared with the other two that we researched. If we choose to use this

simulation software, we need to purchase it for use.

After evaluation, our team decided to choose the Mason Java library because of its

extensibility and breadth of user guides and documentation for its use. Moreover, because the

team’s members all have extensive experience in Java, using Mason library would benefit us in

development.

3.1.2.2 Integrated Development Environment (IDE) and Version Control

After selecting the Mason Simulation Library and the Java coding language for

development, we found tools that would best setup a development environment.

Eclipse is an IDE tool built specifically for Java development (source,

https://www.eclipse.org/). Its assistance in code correction, library importing, and project build

automation, assist programmers with minor programming issues. The IDE software also has an

extensive library of plug-ins making it more powerful and extendable than other IDEs. We chose

to use Eclipse, shown in Figure 9, because of its features that specifically support Java

development.

Figure 9: Eclipse splash screen

Eclipse has a built in version control feature, but we decided to use another tool that we

have had more experience with handling Git repositories. We chose to use free software called

https://www.eclipse.org/

INTELLIGENT APP DISTRIBUTION – OL2, INC. 21

SourceTree (source, http://www.sourcetreeapp.com/), shown in Figure 10. SourceTree supports

GitHub repository management as well as provides a graphical user interface for tracking

development tasks and resolving conflicts. Additionally, SourceTree easily creates branches that

allow programmers to create their individual coding environments that do not impede on other

programmers. Using this feature, each of us worked simultaneously on our branches before

merging into the master branch. This method helped us avoid accidentally changing the code

others were working on.

Figure 10: SourceTree graphical user interface

3.1.2.3 Documentation

Thorough documentation of our project is essential to hand over and transition our

software development project after we leave. Having well documented software not only assists

OnLive to understand the code better but also allows them to extend it later on. To document our

code, we used Javadoc because it supports internal comments and builds a website from the

comments. To show the Java classes’ relationship, we used software called Visual Paradigm for

UML (source, http://www.visual-paradigm.com/product/vpuml/), shown in Figure 11. This

http://www.sourcetreeapp.com/
http://www.visual-paradigm.com/product/vpuml/

INTELLIGENT APP DISTRIBUTION – OL2, INC. 22

software scans our code and produces class diagrams, sequence diagrams, and package diagrams.

Visual paradigm will help others at OnLive understand our project structure and behavior.

Figure 11: Visual Paradigm for UML splash screen

3.1.2.4 Statistical Modeling Software

During development we needed the ability to estimate the best statistical distribution to a

given set of data. We needed professional statistical estimation software to ensure our

distributions that describe session length, inter-arrival time, and popularity of applications was

the best distributions we could find. This was a crucial step in our verification process. We chose

to use free-to-try software called EasyFit (source, http://www.mathwave.com/). This software

from MathWave Technologies took a sample set of 5000 points of data and compared its

distribution to over 60 different distribution types. It also gave a summary of its calculated best

distribution parameters based on goodness of fit tests. The goodness of fit tests included a

Kolmogorov Smirnov, Anderson Darling, and Chi-Squared tests that ranked the distributions that

best fit these three tests.

3.1.3 Java Libraries

Several of the Java libraries that we used in order to be able to complete the project are

libraries that OnLive itself uses in development. The Jackson library (source,

https://github.com/FasterXML/jackson) is a JSON parsing library that is designed with

efficiency in mind. JSON, which stands for JavaScript Object Notation, is a low-overhead data-

http://www.mathwave.com/

INTELLIGENT APP DISTRIBUTION – OL2, INC. 23

interchange format. OnLive’ s Application Distribution Manifest files are written in JSON

formats, so in order to be able to copy the IAD’s behavior we needed to be able to parse them.

Snakeyaml (source, http://code.google.com/p/snakeyaml/) is a YAML (YAML Ain’t Markup

Language) parser, which provides human-readable data serialization. The primary configuration

files for the IAD are written in a YAML format. Additionally, the IAD needs to be able to

connect to a MySQL database to query information such as the list of available apphosts and app

variants on a site. Log4J is a Java logging API produced by the Apache Software Foundation that

makes it easy to track where our program is and where any errors originate.

Other libraries include JSAT (source, http://code.google.com/p/java-statistical-analysis-

tool/), or Java Statistical Analysis Tool, which allowed us to compute the distributions of our data

efficiently. We also used GNU Trove (source, http://trove.starlight-systems.com), which provides

list and map objects for operating with primitive types, such as int or double, directly, which is

not a feature that is available in Java’s Collection or Map classes.

3.2 Division of Labor and Software Engineering Practices

After arriving at OnLive, we began developing a basic event simulator; we called it

“toy_sim”. This basic simulator allowed us to delve into the Mason library and test its features

before starting official development on the full simulator. To do this, we needed to define roles

each team member can fulfill. Based on our individual backgrounds and experience, we created

three roles: a main programmer, a main tester, and a project manager. Each role fulfilled a

different piece of project development. We organized ourselves into a development process

similar to the V-Model of software development. The V-model is a commonly used management

practice employed by software development program managers as shown in Figure 12 (source,

http://istqbexamcertification.com/what-is-v-model-advantages-disadvantages-and-when-to-use-

http://istqbexamcertification.com/what-is-v-model-advantages-disadvantages-and-when-to-use-it/

INTELLIGENT APP DISTRIBUTION – OL2, INC. 24

it/). This software development model separated development and testing of a piece of code into

two separate paths. While true implementation of the V-Model places the entire project on this

course, we implemented the V-Model on a per feature level. This means that each feature built

into the simulator would have an independent V-Model implementation where programming,

development, and verification were handled separately. This process allowed our group to be

agile and adapt to change. The main programmer was responsible for the development leg, the

main tester was responsible for the testing leg, and the project manager ensured the proper levels

of verification at all levels.

Figure 12: V-Model for software development

3.2.1 Main Programmer Role

The Main Programmer is responsible for the development of code. He is best suited for

the responsibilities involved with the production of our software. He has an extensive

background with best practices in Java development and is able to implement robust program

structure quickly.

http://istqbexamcertification.com/what-is-v-model-advantages-disadvantages-and-when-to-use-it/

INTELLIGENT APP DISTRIBUTION – OL2, INC. 25

3.2.1.1 Development Process

As mentioned above, our development process resembles that of the V-Model

development process with a focus on working on individual features or components at a time. As

part of this, we would first determine the feature of our simulator that we most needed to work

on next, and then applied the V-Model process to that singular part of our overall objective.

Having determined our target feature, we would determine the necessary behaviors or sub-

features that would need to be implemented in order to complete the development. Once we had

determined the necessary steps to complete the chosen feature, we would then code it and begin

testing. Because of the division of roles that we had, other features could be developed while the

completed feature underwent testing.

Because of our feature-driven V-Model process, changes in the direction of the project

would only cause minor inconveniences. This is primarily because one of our goals with this

development pattern was to enforce a high level of modularity on the system. This allowed us to

easily replace behaviors without having to directly modify any of the actual code of the

simulation body. For instance, in one case, our target moved from writing a simulator that would

leverage OnLive’s IAD system to generate accurate distributions to implementing and improving

our own copy of the IAD in Java. Because we had designed our code to be highly modular, once

the IAD code had been ported into Java, linking it to our simulation was trivial.

3.2.2 Main Tester Role

The Main Tester is responsible for the tests that evaluate the code produced by the

Programmer. He has knowledge with testing procedures and implements testing processes to

ensure our software is robust. The tester process includes the following steps; code coverage,

unit test, and integration test. Code coverage ensures that all of the code has been run at least

INTELLIGENT APP DISTRIBUTION – OL2, INC. 26

once in the program. Unit Test verifies all possible input and output variables for a given Java

class does not break the code. Integration Test evaluates that behaviors between all classes and

objects are correct.

3.2.2.1 Testing Process

The testing practice that we used followed the guidelines from Osherove’s, The Art of

Unit Testing where it is recommends to creating a test class for each class of interest (Osherove,

2009, Chapter 2). Also, we aimed to cover each individual logic statement such as “if” and

“while” to make sure the logic statement serves its intended purpose. Additionally, this person

tested the interaction between classes or interfaces. To make sure the interaction behaves

correctly, we wrote a separate test class to test the interaction. This kind of testing is called

integration test. We used stub and mock objects to fake the behavior of real objects by plugging

them into the test object of interest. While the stub objects usually contain trivial operations, the

mock object may carry class fields to see how it interacts with other class fields (Osherove, 2009,

Chapter 2).

Because test cases must be maintainable and extendable, we implemented design pattern

principles into our test cases. We employed three designs patterns that commonly appear in the

testing world: an abstract test infrastructure class pattern, template test class pattern, and abstract

test driver class pattern as described in Figure 13 and Figure 14. Using these patterns, we

effectively conserved development time, maintained the code, and enhanced its readability

(Osherove, 2009, Chapter 6).

INTELLIGENT APP DISTRIBUTION – OL2, INC. 27

Figure 13: Abstract test infrastructure pattern (left) and template test class pattern (right)

Figure 14: Example of an abstract test driver class pattern

3.2.3 Program Manager Role

The Program Manager is responsible for the continued progression of the project and

makes the decisions for when and how next steps of the project are implemented. This individual

was the main contact person for others in OnLive, set up meetings, writes agendas and emails, as

well as developed presentations and report documentation.

As a program manager, he ensures that both the Programmer and Tester have all the

required materials and the help they need to ensure that there are no tasks taking too much time

INTELLIGENT APP DISTRIBUTION – OL2, INC. 28

to complete. To accomplish this, he develops tracking documentation that measures the current

status of the project at all times.

3.2.3.1 Verification Process for Development

Tracking documentation for the program development begins with a list of tasks or

requirements that the Programmer must complete to finish the project. A full listing of the tasks

generated can be found at Appendix B: Software Development Tracking. These tasks are

created in conjunction with the Programmer to outline the entire project from start to finish. If

any task is out of the project scope, but may be included with an increase in scope, it becomes

project growth and does not factor into the current project projection. Every task is then assigned

a difficulty weight or work unit from one to five, with one being extremely easy and completed

in a short amount of time and a five being extremely difficult and taking a large amount of time.

Each task is then set to “Not Started”. As the programmer codes, he selects a task to accomplish,

assigns himself to it, writes the start date of the task, and changes the state of the task to in

progress. After the programmer finishes a task, he writes the completion date of the task and

changes the state of the task to complete.

The tracking document takes the raw information provided by tasks and creates analytics

that follows the progression of development. The weightings of all tasks are added up and

divided by the number of days the project will run. This creates an expected progress rate of a

certain amount of work to be completed each day. Each day this unit of work is deducted from

the total number of units and creates a burn down rate. This rate is compared to the actual rate of

completion for each day. When a task is completed, the amount of work units it had is deducted

from the total number of remaining units on the project. This comparison can be plotted on a

burn down chart. Figure 15 is an example of our burn down chart.

INTELLIGENT APP DISTRIBUTION – OL2, INC. 29

The burn down chart can be used to visualize current development trends and predict

when a project will end. The expected progress (or the total number of weightings distributed

equally each day to the end of the project, in green below), is the target development rate. To

ensure a project is on course, it is important that actual progress be relatively close to expected

progress. If the actual progress goes above the expected progress line too much, it means the

project is too difficult and either more people need to work on it, or tasks need to be removed.

Conversely, if the actual progress is too far below the expected progress line, the project is ahead

of schedule and growth tasks need to be added or reduce the amount of people on the project.

To track how much work is done each day, the blue bars represent the cumulative amount

of tasks completed at a given date. This data describes when there are lulls or increases in

productivity.

Figure 15: Burn down chart example

INTELLIGENT APP DISTRIBUTION – OL2, INC. 30

3.2.3.2 Verification Process for Testing

Tracking documentation for testing progress is similar to development tracking. Instead

of a burn down chart, we chose to use a chart that tracks up how much code has been covered. To

do this, the Tester develops a list of Java classes or modules that need to be tested. A full list of

these classes and the test classes used can be found at Appendix C: Test Coverage Tracking.

These modules are listed with a current percent coverage of 0%. To start testing, the tester

assigns him to the modules he wishes to test and inputs a start date. As he develops JUnit test

cases for the module, he attaches the JUnit test names to the module and increases the code

coverage on the entire module that the JUnit test covers. In this way, the percent covered each

day goes up.

To track progress, a goal code coverage percentage for all code must be selected. Our

team decided on 90% code coverage. This goal code coverage value is the goal coverage for

other software development projects of relative scale. This is a good choice of coverage as on

average, the percentage of code that is untestable on a project of this scale is 10%. To get 90%

coverage over the project’s duration, there is an expected coverage percentage per day that must

be attained. This completion per day can be plotted against the actual code coverage completion

each day on a graph like in Figure 16. The blue bars show how much work was completed each

day of the testing progress. This shows overall productivity each day.

It is important to keep the actual progress and expected progress lines close together. If

the actual progress line goes above the expected line, then one is ahead of schedule. Conversely,

if under the expected line, the actual progress is behind schedule. We used this method to predict

our completion dates as well as be to increase awareness of our current testing rate.

INTELLIGENT APP DISTRIBUTION – OL2, INC. 31

Figure 16: Coverage progress chart example

3.2.3.3 Error Logging

As development progressed, both the tester and the program manager found errors in the

code. To resolve bugs in the software, a document to track errors was created. The document

requested information about the bug to help the program developer resolve issues. Information

required was the module and method with the error, which (if applicable) test found the error,

what exactly the expected result was vs. the actual result, and what was necessary to be changed.

This information could be filled out at any time and it will be submitted to the program

developer where he can resolve at his own pace. After an error was resolved, the program

manager and tester would verify the change was successful.

3.3 Timetable for Project

The project timetable was developed to establish project checkpoints and important dates

in production. The group produced a Gant Chart that outlined when a task should be started and

completed for the entire length of the project. This Gant Chart, shown in Figure 17, includes

INTELLIGENT APP DISTRIBUTION – OL2, INC. 32

several project demos that provided opportunities for individuals invested in the project at

OnLive to see our progress and provide feedback early in development. Also included in the

timetable was space for growth. Growth is a segment of time that can be taken if more tasks are

added to the project without affecting the deadline of the project. We used this time just in case

there were any issues along the way in development.

In each row of the first column in the Gant Chart in Figure 17 is a task from the task

listing. Each column represents a date of the project from start on the left, to end on the right.

When a task must be worked on at a given date, the cell intersection is colored green. These cells

show over the course of the project timeline what tasks are being worked on.

Figure 17: Gant Chart schedule example

INTELLIGENT APP DISTRIBUTION – OL2, INC. 33

4. Results

This chapter details the results of our project and explains our findings. Our results

include a description of the simulator and models built to represent OnLive’s server network and

system usage. It discusses how we verified the accuracy of our software through various tests. A

section on our graphical user interface depicts how we translate our simulator and modules into a

graphical representation. We also present a comparison between the old Intelligent App

Distribution and the new simulated version through calculated metrics.

4.1 Modeling

Identifying the entities and how the entities interact with each other was crucial because it

acted as the skeleton for our later work. Moreover, identifying complications in the model early

helped remove unnecessary entities that could have led to an over complicated system.

We identified four major entities that interact within the OnLive system: users, sites,

apphosts (servers), and appvariants (applications). Each entity has different parameters that alter

the behavior of the system and interacts with other entities in different ways. A single user entity

will arrive discretely in time to a site that has multiple apphosts. The user will then request an

appvariant. The site will identify a free apphost having the application, then route the user to it. If

there is no apphost available, the user will retry a set number of times before giving up.

We combined this knowledge of the OnLive system and our knowledge of discrete event

simulation to create a basic model that simulates this minimal behavior.

4.2 Our Simulator

INTELLIGENT APP DISTRIBUTION – OL2, INC. 34

4.2.1 Class Hierarchy

 As we implement the basic model into our simulation, we created a class hierarchy in

Figure 18 and a description of the different entities in Table 1. We use the class UserSession to

describe a user in OnLive’s network because we make certain assumptions about a user’s

behavior that is more apply described as a user engaging in a single session on OnLive’s service,

or user-session.

Figure 18: Entity class hierarchy

Class Description

Users This is the main controller of the simulation

UserSession Contains information such as play duration, name, number of retry, etc.

AppHost Contain all the fields related to the server hardware and catalog.

AppHost.Spec The hardware and operating system specifications of an AppHost, encapsulated. Represents that apphosts

could be considered identical if only looking at their specs.

AppVariant Stores application information.

Site An aggregate of apphosts corresponding to a ‘site’ in OnLive’s network.

Table 1: Entity class hierarchy descriptions

INTELLIGENT APP DISTRIBUTION – OL2, INC. 35

4.2.2 Modularity for Dependency Injection

In addition to these basic entity classes, we expanded the scope of our model,

compartmentalizing different behaviors into modules, which allowed us to use a dependency

injection approach to constructing the strategies in our model. This will allow OnLive to easily

extend the strategies we have created or to design their own.

These modules range from simple behaviors such as the SessionLength module, which

provides a distribution for the amount of time a user will be playing a specified application, to

more sophisticated ones, such as the AppHostCatalogProvider, which assigns catalogs of

appvariants to the apphosts. Our java implementation of the IAD is an example of an

AppHostCatalogProvider module type. Information about module types is in Table 2, and for a

complete list of implementation of each type please see Appendix A: List of Module Types

and Implementations.

Module Purpose

AppHostCatalogProvider Controls how appvariants are distributed to apphosts

IADArguments Reads command-line arguments that would normally be passed to the

iad.py file from a configuration file.

Summarizer Summarizes the IAD run, includes all features

DistributionRuleProvider Provides YAML configuration data for dist ratios

AppHostGroupAssigner Performs the assignment step of the IAD algorithm

TargetAppHostSelector Selects the best-suited apphost to be assigned an appvariant group in a

step of AppHostGroupAssigner

SurplusUnloader Unloads (selects) surplus apphosts from an appvaraint group

AppSelectionProvider Determines which appvariant a user wants to play

ArrivalInterval Determines when a user will arrive

SessionLength Determines how long the user will play for

AppHostSelector Determines which apphost (if any) will serve the user

WeakestLinkFinder Finds the weakest link in a generation

MetricCalculator Computes the objective function of a simulation run

InitialConfiguration Computes the initial distribution ratios for the DistributionRuleProvider

MetricComparer Compares metrics together to determine if the results are better than

before or are within certain thresholds
Table 2: List of current module types and their purpose

INTELLIGENT APP DISTRIBUTION – OL2, INC. 36

4.2.3 Scheduling

 The Mason simulation library manages the simulation process. It holds a structured

scheduler that builds a stack of events and sets the events to occur at a chosen point in time. The

initial schedule is generated before the simulation starts. During the simulation, the scheduler

triggers the behavior of the user-session objects in its queue according to time. As the simulation

runs, objects can add themselves to the queue, and in the case that a user is unable to obtain an

apphost, the user-session will reschedule itself to be run again later. After the session

successfully completes, the instance will be disposed, and the system calls the next event in the

scheduler.

 To execute, a user session needs to obtain an available apphost in the system. A user

session may not receive an apphost when requested if the application is not present or if other

users occupy all other apphosts that can serve the app. When a user session cannot acquire an

apphost, it will go to sleep, register its wake up time to the scheduler, and request the application

again when getting up. Moreover, if the user session cannot obtain an apphost after a certain

amount of requests, it will give up and not subscribe itself in the scheduler again. Figure 19

depicts the lifecycle of a user session

INTELLIGENT APP DISTRIBUTION – OL2, INC. 37

Figure 19: Lifecycle of a single user session

4.3 Finding the right distribution

Defining parameters to a user session to make it behave like a real user session requires a

distribution analysis of real data. We identified three parameters that required modeling in the

simulation: the length of a user-session (how long one user uses one application), the time

between users starting sessions, and the user’s choice of application.

In order to determine the appropriate values for each of these, we applied several

different analysis techniques to a data set of approximately 1.6 million user sessions provided to

INTELLIGENT APP DISTRIBUTION – OL2, INC. 38

us by OnLive. A small subset of this data is in Table 3. This data listed the start and end times,

the site the user was on and the appvariant that the user requested. The simplest to compute was

the distribution of the application users are interested in. We used this data directly in order to

form a popularity distribution to assign the popularity of different applications. This allows us to

model the preferences of users for what applications they use based on real world data.

Additionally, these ratios can be adjusted to correspond to real-world changes in popularity of

applications.

site start_time end_time duration application_id

eac 11/30/2013 19:13 12/1/2013 0:44 19874515000 aSDzfpSSLfEQkOhAKAwOIc

ead 11/30/2013 19:21 12/1/2013 2:12 24611251000 alRFS9y5vizAv8CE6fWtGM

lab 11/30/2013 19:31 12/1/2013 1:06 20132353000 aHiDtVs0LkjB6XcYijEEM7

dae 11/30/2013 20:05 12/1/2013 0:26 15650868000 ayBFDBBs5nw44xfVFepFq5

ead 11/30/2013 20:12 12/1/2013 0:36 15844387000 af-0cnUOHmAy1L9fI5YjV9
Table 3: Example data from OnLive

Exponential distributions are often used for modeling the inter-arrival times in a process

such as connecting to OnLive’s apphosts. As such, we parsed the data from OnLive and applied

estimation techniques to compute the best fitting exponential distributions for each application

on OnLive’s apphosts.

Computing the duration of user sessions required a more in-depth approach. One of the

most-used distributions to describe connection duration to a site is the gamma distribution, but

we found that the gamma distribution would poorly fit our data with the use of the professional

statistical fitting software. We used EasyFit, and found that a Weibull distribution to be a superior

distribution. The Weibull distribution is used to model processes where there exists a certain

failure rate, which can increase, decrease or remain constant over time, depending on one of the

distribution’s parameters. An example comparison between actual data from OnLive for a single

game title and the Weibull distribution estimated from that trace data is shown in Figure 20. For

INTELLIGENT APP DISTRIBUTION – OL2, INC. 39

this data set, we obtained a p-value of 0.018 using the Chi-Squared test, discarding the noisy first

few minutes of data. This statistic was generated comparing approximately 1500 data points on

session length. As the Chi-Squared test statistic tends to increase as the comparison sample size

increases, even a well-suited distribution will receive a very small p-value, so we consider this to

be a well-suited distribution.

Figure 20: Example Weibull Distribution fitted to OnLive session length data

Using the EasyFit statistical analysis software, we found that a four-parameter

generalized gamma distribution often fit our session data better than the Weibull distribution,

with a statistic approximately two-thirds that of the Weibull distribution on the Kolmogorov-

Smirnov test (K-S test). With the K-S test, the null hypothesis states that there is not a

statistically significant difference between the expected values and the empirical values, so

failing to reject the null hypothesis is indicative that our expected distribution is well suited. For

example, on the game Civilization V, the four-parameter generalized gamma distribution failed to

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0:00:00 0:15:00 0:30:00 0:45:00 1:00:00 1:15:00 1:30:00 1:45:00 2:00:00 2:15:00 2:30:00 2:45:00 3:00:00

P
ro

p
o

rt
io

n

Session Length (hh:mm:ss)

Session Length Distribution

Game Data Weibull Distribution

INTELLIGENT APP DISTRIBUTION – OL2, INC. 40

reject the null hypothesis at a confidence level of α=0.05, where we rejected the null hypothesis

with the fitted Weibull distribution. We decided that the accuracy of the Weibull distribution was

sufficient for our purposes and would be much easier to compute through our own software.

4.4 Simulation Model Validation

 With the models and distributions calculated by our model, we needed to verify that our

calculations were accurate. This is one of the most important steps in the creation of our

simulation as it validates our model to be an accurate representation of the real world. We first

verified basic factors, such as mimicking the number of apphosts and applications in OnLive’s

network. We also verified the estimated statistical distributions that described session length,

inter-arrival time, and popularity of applications. Finally, we put our simulation through

verification checks to verify that it behaved in a predictable manner when parameters such as the

average session length or number of apphosts present were adjusted while holding all other

parameters constant.

4.4.1 Basic Verification Test

 The first verification check that we applied to our model was a ‘base case’ type of check.

We placed the model under strict conditions such that the expected results could be computed by

hand. To do this, we reduced the number of users to three, the number of apphosts and

applications to one, and provided fixed arrival times and session lengths to each user.

 A user would arrive at times of zero, 50 and 100 seconds, with a session length of 100

seconds. If no apphosts were available for the user, then the user would wait for 60 seconds

before trying again. As seen in Figure 21, this is the expected state of the apphost and behavior of

the users. User #2, despite arriving second at a time of 50 seconds, would end up failing to get

INTELLIGENT APP DISTRIBUTION – OL2, INC. 41

the requested session at times of 50, 110 and 170 seconds, before finally acquiring the apphost at

a time of 230 seconds.

Figure 21: A timing diagram of the basic simulation

Using these input parameters, we ran our model and found that we received the expected

results in output in our simulation’s log file.

4.4.2 Model Verification Tests

 In addition to a verification of our model that could be checked by hand, we also ran

several simulation runs in which we modulated one input parameter while keeping all other

parameters constant. The different parameters that we changed were average user session length,

average user inter-arrival time and number of apphosts at two different average session lengths.

The session lengths were normally distributed with a standard deviation of 10 seconds and the

inter-arrival time was distributed according to an exponential distribution. Because the apphost

catalogs were assigned at random, we ran each simulation several times in order to reduce noise

caused by the distribution of applications among apphosts.

One of our checks was to show that the failure rate would increase as the session length is

increased. In order to see the effect of only session length, shown in Figure 22, we fixed the

number of apphosts and the average arrival interval as shown in Table 4. We can see that in this

INTELLIGENT APP DISTRIBUTION – OL2, INC. 42

simulation case the number of failures begins to increase rapidly after the average session length

reaches approximately 300 seconds and continues to rise until it approaches a failure rate of 1.0

with an average session time of 800 seconds. While these numbers do not correspond to real

world data, they show that there will points exist where large session lengths can completely

overwhelm a site’s ability to service users.

Number of AppHosts 15

Average Session Length variable

Average Inter-arrival Time 52 seconds

Table 4: Variable for Session Length Verification Check

Figure 22: Failure Rate vs. Session Length

Our second such check made the inter-arrival time the variable and held the number of

apphosts and session length constant, as seen in Table 5. By reducing the inter-arrival time we

can see that the failure rate is increased in Figure 23. Though there is a large amount of noise, we

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400

F
ai

lu
re

 R
at

e

Average Session Length (seconds)

INTELLIGENT APP DISTRIBUTION – OL2, INC. 43

observe that the failure rate decreases at a diminishing pace as we increase the value of the

average inter-arrival time. This follows an exponential distribution as shown in the trendline.

Number of AppHosts 15

Average Session Length 300 seconds

Average Inter-arrival Time variable

Table 5: Variable for Inter-Arrival Time Verification Check

Figure 23: Failure Rate vs. Inter-Arrival Time

We then explored the change in failure rate as a function of the number of apphosts. We

had two different testing configurations. Our first investigation had an average session length of

500 seconds (Table 6). We observe that as the number of apphosts increases, the failure rate

rapidly approaches zero in Figure 24. With an average session length of 500 seconds, there exists

a threshold at around 20 apphosts present on a single site where failure rate drops to nearly zero.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

30 35 40 45 50 55 60 65 70 75 80

F
ai

lu
re

 R
at

e

Inter-Arrival Time (seconds)

INTELLIGENT APP DISTRIBUTION – OL2, INC. 44

Number of AppHosts variable

Average Session Length 500 seconds

Average Inter-arrival Time 52 seconds

Table 6: Variable for AppHosts Verification Check with 500 second average session

Figure 24: Failure Rate vs. Number of AppHosts with 500 second average session length

 Similar to the 500-second average session length graphs, we also tested at an average of

1000 seconds in Table 7. Similar in pattern to the 500-second average session test, the 1000-

second test has a threshold of approximately 30 apphosts present in the site in Figure 25. The

shapes of the failure rate plots are similar as well noting a consistent behavior just a shift in the

number of required apphosts on a site.

Number of AppHosts variable

Average Session Length 1000 seconds

Average Inter-arrival Time 52 seconds

Table 7: Variable for AppHosts Verification Check with 1000 second average session length

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70

F
ai

lu
re

 R
at

e

Number of Servers

INTELLIGENT APP DISTRIBUTION – OL2, INC. 45

Figure 25: Failure Rate vs. Number of AppHosts with 1000 second average session length

OnLive has indicated that they are currently able to meet user demand because they

simply have more apphosts available on every site than the minimum required. Through our

simulator verification tests, we observe a similar behavior. After crossing a certain threshold of

apphosts, we are able to meet every user request essentially without fail.

These verification checks demonstrate that our model is capable of accurately modeling

changes in the input parameters. From this, we are able to deduce that given the appropriate

configuration parameters and strategies, we would be able to properly model the state of one of

OnLive’s sites.

4.4.3 IAD Verification

 To allow for accurate bin packing of apps onto apphosts we converted the Python

implementation of the IAD into Java for use in our simulation. The Python implementation is

what OnLive uses to put applications onto their apphosts with a bin-packing algorithm. As this

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70

F
ai

lu
re

 R
at

e

Number of Servers

INTELLIGENT APP DISTRIBUTION – OL2, INC. 46

Python script is essential to OnLive’s production process, we needed to ensure our IAD in Java

behaved identically on our simulator. To do this, we pulled a YAML (YAML Ain’t Markup

Language) configuration file currently in use on the production IAD code and ran it on our

simulated IAD. The YAML file contains distribution ratio and ordering rules for different

appvariants and apphosts. We then compared the logged outputs, and found by hand that the

distribution ratios were identical. With our results validated, we moved to optimizing the IAD

code.

4.4.3.1 IAD Complexity Improvements

 In order to understand the current operation of the IAD, a few new terms must be

introduced. An apphost is the term OnLive uses to refer to a single server that streams content to

a user. Appvariant refers to a single version of a single application/game title; there are separate

appvariants for things such as a game and its associated demo. An appvariant group is a group of

appvariants. It has the property that, as far as disk space is concerned, all appvariants in a group

have a large amount of overlap in their code. An example of this is Borderlands, which has a

game, a game demo and several DLC content packs, each of which is an appvariant. Looking at

all of these appvariants as a single, cohesive group saves a large amount of space. While a single

apphost can hold a very large number of appvariants, and thus appvariant groups, it can only

serve one user one appvariant at a time. We use the term configuration rule to refer to a line in

the YAML configuration file. A configuration rule can have fields such as ‘app’ or ‘os’, which

provide it with filters for which appvariant-apphost pairs to apply the rule to and values like

‘dist_ratio’, which tell the IAD what proportion of apphosts to try and distribute the given

appvariant to. Another important term is work queue, which represents a heap of actions that the

INTELLIGENT APP DISTRIBUTION – OL2, INC. 47

IAD takes as part of its distribution process. Each entry in the work queue associates an

appvariant group with a list of apphosts that are being targeted for distribution.

 As part of reverse engineering the IAD code into Java, we profiled parts of it in order to

get a better understanding of how it worked. The IAD distribution process can be divided into

two steps: the bin-packing step and an assignment step. In the bin-packing step, each pairing of

apphost and appvariant is run through a series of precondition checks before being assigned to an

appvariant group (several appvariants that share code content). We determined several important

factors in this step of the code: the number of apphosts (h), and the number of appvariants (v)

being immediately visible. After going through all of the preconditions, all of the apphost-

appvariant pairs’ distribution ratios are computed from the IAD’s YAML configuration file input.

We found that with each pair that reached this part, another (l) steps would be taken to search

through the list of configuration rules for applicable ones. Some rules may define an “apps”

field, which lists several appvariants at once, having an average number of (n) apps listed in a

rule. With this, the bin-packing step would take O(v·h·l·n) time.

We found that the number of rules defined in a standard configuration file to be roughly

proportional to the number of appvariants and number of appvariants in each apps list. As such,

we can reduce our first analysis of the bin-packing step to officially take place in O(v2·h) time.

We had noticed that this sort of complexity was present when first porting the IAD code. With

this analysis, we refactored the way rules were handled. We changed the code to precompile the

rules into a map object. This meant that we no longer needed to search a long list for values,

reducing our time complexity to O(v·h). This process went from taking about 45 seconds to

about one second for a single simulation run over 400 apphosts and 700 appvariants.

INTELLIGENT APP DISTRIBUTION – OL2, INC. 48

 The next part of the IAD algorithm is the assignment phase. The assignment algorithm

first creates a series of work queues that contain all of the appvariant groups. This takes

O(h·v·log(v)) time to generate the work queues. This is because we need to insert each group into

its position in the queue and search for incorrectly configured apphosts in each group.

Additionally, with each step of the distribution, the first work item in the queue is popped and

may or may not be replaced. We then search all target apphosts to find the optimum target at an

additional O(h2
·v) time to assign appvariants to apphosts. This gives us a total time complexity

of O(h·v + h·v·log(v) + h2
·v) time, which reduces to O(h·v·(h + log(v))). With our optimizations,

a single 2.67GHz processor core computes the distribution for the 400 apphosts and 700

appvariants in a time of around two seconds.

4.5 Genetic Algorithm

 Our primary goal was to build a framework for OnLive to evaluate the effectiveness of

different distributions. Unfortunately, as OnLive creates distributions by hand, it would be

difficult for them to take proper advantage of the benefits that our simulation allows. As such, a

method to programmatically generate a better distribution is needed to provide better

configurations.

 In order to do this, we implemented a genetic algorithm that runs our simulation, analyzes

the results and uses those results to create new configuration parameters for the next generation,

as seen in Figure 26 below. The heuristic used while running the simulation subtracts points from

an appvariant for a miss (where a user was unable to get the app requested) and for a give up

(after a user tries too many times to get the app requested). At the end of the simulation the

scores for all appvariants are compared. The appvariant with the worst score is what the genetic

algorithms alters next. The worst app variant’s distribution ratio is then increased incrementally

INTELLIGENT APP DISTRIBUTION – OL2, INC. 49

in several child generations. Each child generation is then run through the IAD simulation again

generating new tallied metrics. From the children, the one with the best score survives and is

used as the next generation’s starting point. This process runs until a certain success ratio is

reached for all appvariants.

Figure 26: Genetic Algorithm flow chart

To allow OnLive maximum flexibility in further development of the genetic algorithm,

factors such as the method by which the simulation metric is calculated and how a generation is

created are placed in modular sections. This way, OnLive may replace their functionality as they

develop a better idea of what success criteria looks like. Our current metric takes the sum of the

number of failures and one hundred times the number of times a user gives up, and is printed in

Figure 27 as a pair of those counts. An example of what the genetic algorithm outputs for each

INTELLIGENT APP DISTRIBUTION – OL2, INC. 50

generation are shown in Figure 27. In it, we see the genetic algorithm attempting to improve the

distribution of the game NBA 2011, trying increasing distribution ratios to determine is an

improvement can be made.

Figure 27: Sample genetic algorithm output per generation

4.5.1 Initial State

 One of the major objectives in developing our genetic algorithm was to construct an

initial state that is well suited to usage data. Such a starting point serves two purposes. First, it

allows us to be closer to our target solution without having to run the genetic algorithm for too

many iterations. Secondly, a poorly suited distribution scheme will drastically increase

completion time for each simulation run. By analyzing popularity data extracted from session

data provided by OnLive, we can construct a starting distribution that reflects the balance of

popularity of applications in OnLive’s services. By scaling the distribution ratios off of the most

popular title, we were able to create a starting distribution that was both well-suited to the system

and allowed us to meet our target distributions with a large amount of disk space remaining on

the apphosts.

 The initial state has two different implementations. The first is to create a new state based

only off of popularity data. This implementation will be used when migrating from the old IAD

Testing configuration parameter {dist_ratio=0.810, app=NA-2K-NBA2K11-10059/01.003/18706} for iteration 2

The score for configuration {dist_ratio=0.810, app=NA-2K-NBA2K11-10059/01.003/18706} was (948, 49)

Testing configuration parameter {dist_ratio=0.905, app=NA-2K-NBA2K11-10059/01.003/18706} for iteration 2

The score for configuration {dist_ratio=0.905, app=NA-2K-NBA2K11-10059/01.003/18706} was (925, 51)

Testing configuration parameter {dist_ratio=1.000, app=NA-2K-NBA2K11-10059/01.003/18706} for iteration 2

The score for configuration {dist_ratio=1.000, app=NA-2K-NBA2K11-10059/01.003/18706} was (667, 32)

We have successfully improved the configuration with {dist_ratio=0.240, app=NA-2K-NBA2K11-10059/01.003/18706},

causing an increase of 1450.0 points

INTELLIGENT APP DISTRIBUTION – OL2, INC. 51

code to our new simulated IAD code in production. In future use of our IAD, one uses the second

form of implementation for the start state. This form takes in a given YAML configuration and

assigns the initial state ratios to what is specified in the file. This means that in production our

simulator can take a previously run YAML configuration and test its success on new system load

levels and popularity changes. The second implementation will only change distributions that

have changed. This means when our new IAD is run from month to month, for example, changes

on the live system will only update the app variants that require change.

4.6 Simulation Graphical User Interface

 The graphical user interface for our simulator was based on altering the modular system.

Being able to select what modules to run for a given simulation is crucial functionality to express

with a GUI. To get this functionality, we employed the Reflections Java library. This library is a

Java runtime metadata analyzer that scans the classpath, indexes the data, and makes it queryable

at runtime (source: https://code.google.com/p/reflections/). With Reflections we can generate the

list of modules in our software and gather dependencies between different modules. In this way,

if OnLive produces a new module for the simulation, the GUI will automatically pull its

information and present it without ever touching the code.

When the GUI is first opened, a window named “Module Loader” appears and lets a user

select which modules to run for a simulation. At first, all the modules are unselected and have a

red alert sign letting the user know seen in Figure 28. As the user selects which modules to use,

there is a possibility that a module requires the selection of sub-modules. When this happens, the

required selection fields and a yellow alert icon appear as shown in Figure 29. The yellow alert

icon also has a tooltip attached that informs the user what sub-modules must be included. After

https://code.google.com/p/reflections/

INTELLIGENT APP DISTRIBUTION – OL2, INC. 52

all modules and sub-module have been selected, the alert icons change to green checkmarks and

the “Load Modules” button becomes active, as shown in Figure 30.

Figure 28: No modules selected when GUI first opens

Figure 29: Sub-Module requirements create a yellow alert icon

INTELLIGENT APP DISTRIBUTION – OL2, INC. 53

Figure 30: All modules selected and the “Load Module”s button is active

When the “Load Modules” button is pressed, the simulator builds the configuration

requested. The console window prints out a list of all the modules loaded and the initial startup

of the simulator. Once the modules have successfully loaded, a new window opens up called the

“Simulator Console” as shown in Figure 31. This console window is from the Mason Library and

it controls the simulator (play, pause, and stop). It also allows the option to change parameters

like number of users, number of servers, inter-arrival time and retry counts for uses between

simulation runs. In this way OnLive can easily analyze the behavior of different simulation states

with a single configuration. The simulation itself is normally only run once, however if a user

selects the use of the genetic algorithm, it will run until the termination state.

INTELLIGENT APP DISTRIBUTION – OL2, INC. 54

Figure 31: Fully Initialized GUI, ready to start the simulation

4.7 Behavior Scenario Tests

 With the simulator built, we tested different behavioral scenarios with it. Among the tests

included how well current distributions on the OnLive server network compare to what our

genetic algorithm created and how well we can optimize the distribution of applications.

4.7.1 Production vs. Simulation Results

 We created a baseline test that took a current YAML configuration from production and

generated metrics for its configuration of app variants. This allowed us to generate a base case

for how successful a current distribution is on the network. The success metric was designed

with a maximum possible score of zero points, with negative points awarded for each time a user

requests an appvariant but fails to receive an apphost (-1) and for each time a user gives up (-

100). The reason for this heuristic was because a user that retries and successfully receives an

apphost is much a more forgivable failure than a retry that fails so many times the user gives up.

Next we ran our genetic algorithm to create a new distribution. The genetic algorithm used the

success metric as a heuristic to alter generation distributions. After the genetic algorithm reached

INTELLIGENT APP DISTRIBUTION – OL2, INC. 55

a termination state where it performed as best it could, a new game content distribution was

generated.

We took the old content distribution from production and compared it to the new content

distribution generated from our genetic algorithm by running the simulation on each with

increasing usage densities. Usage density is how much demand a site incurs based on user inter-

arrival time. The smaller the inter-arrival time, the more users are accessing the site at any given

time. We compared densities from zero to 15 times the current demand density. The density

stress tests were then plotted to observe performance of the distribution compared to demand. We

compared the current content distribution used in production on one of the sites against the initial

and final state of our genetic algorithm. We plotted both the number of failures, shown in Figure

32, and the number of users giving up in Figure 33. The figures show where a distribution begins

to fail and how much it fails.

Figure 32: Total failures vs. demand for in production and genetic content distributions

0

100000

200000

300000

400000

500000

600000

700000

800000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
u

m
b

er
 o

f
F

ai
lu

re
s

Demand Multiplier (1 = 1x demand)

Production Genetic Final Genetic Initial

INTELLIGENT APP DISTRIBUTION – OL2, INC. 56

Figure 33: Total user give ups vs. demand for in production and genetic content distributions

From our metrics, it is important to note that with actual site density, 1x demand, there

were no failures incurred by either the in production distribution or the genetic algorithm’s

distribution. This means that these two distributions can handle current demand for the site under

test. At five times the density however, the initial state of the genetic algorithm begins to incur

both users failing to receive and apphost and users giving up. At around 8x demand density, both

the in production distribution and the genetic algorithm final distribution begin to incur failures

and give ups. Also from the two figures, at 15x the demand density we see that the genetic

algorithm at both the initial state and final state perform better than the current in production. At

extreme usage demand increases, we see that the in production distribution to be inferior to what

distributions we create with our simulator. At current demand levels, it is important to note that

our distribution performs just as well as the now in production distribution.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
u

m
b

er
 o

f
G

iv
e

U
p

s

Demand Multiplier (1 = 1x demand)

Production Genetic Final Genetic Initial

INTELLIGENT APP DISTRIBUTION – OL2, INC. 57

Knowing that both distributions can handle current demand, we then observed what

differences the distributions had. We found that the biggest difference between the distributions

was the amount of space the distributions required. Because the in production distribution was

not altered between density runs, the average free space per apphost was the same, at an average

use of 620 GB. In contrast, the average amount of space used on an apphost for our genetic

algorithm’s final distribution was only 87 GB as shown in Table 8. This means that our simulated

distribution saves space on apphosts without causing any stress to the system’s performance. The

amount of space saved for each apphosts is significant. This increase in space can be used as

space where OnLive can grow their catalog of games and applications without purchasing any

new hardware. We see that even as we increase demand, we continue to save space with our

distribution. This means that our simulations distribute applications at a much lower ratio while

maintaining OnLive’s ability to handle every user’s request up to a much higher demand level.

 Actual Site Density 5x Site Density 10x Site Density

In Production Distribution 620 GB 620 GB 620 GB

Genetic Algorithm’s Distribution 87 GB 186 GB 480 GB

Reduced Used Space By: 533 GB (86%) 434 GB (70%) 140 GB (23%)

Table 8: Total space used per AppHost

4.7.2 Minimum Number of AppHosts

After analyzing our data from the simulation, we saw the average number of apphosts in

use increased proportionally to a change in the arrival density. We then tested what the minimum

number of apphosts for a site would be given user demand. In Figure 34, one can see that as

density increases so does the number of servers in use. This data shows that the number of

apphosts necessary to accommodate a given demand correlates linearly. Five times the density

means five times the number of apphosts are necessary so the site is not overwhelmed.

INTELLIGENT APP DISTRIBUTION – OL2, INC. 58

Figure 34: Server activity vs. demand for in production and genetic distributions

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
v

er
ag

e
n

u
m

b
er

 o
f

se
rv

er
s

in
 u

se

Demand Multiplier (1 = 1x demand)

Production

Genetic Final

INTELLIGENT APP DISTRIBUTION – OL2, INC. 59

5 Conclusion

OnLive needed a process to calculate the success of their content distributions. Our

project addressed the limitation of their current distribution system and provided a tool to

calculate success.

Our team successfully built a simulator that accomplished this goal as well as

implemented a new distribution algorithm. To accomplish this, we integrated a model of the

OnLive network with the Mason simulation library. We developed distribution-matching tools

for the simulator to fit data to statistical distributions. We then carefully performed verification

checks to confirm the simulation output data matched the real life data OnLive gave us. We

developed a genetic algorithm that automates the process to find a better distribution by

repeatedly changing distribution ratios between generations. In addition, we successfully defined

success criteria for distributions that were not known before the project. Moreover, we build

graphical and console interfaces for the project that allows the user to load different modules and

modify different properties of the simulation. We ensured all the code was well documented and

testing coverage was more than 90%.

We found that our simulator better distributes content to OnLive’s worldwide server

network. We conclude, after running the simulation, that OnLive currently uses more space on

their apphosts than is minimally required to meet demand. The average free space per apphost is

large in our new distribution, and our application configuration behaves as successfully as the

current distribution on the network. We provided OnLive a tool that can better estimate system

behavior without making changes to the live network until desired. Our simulator can test

different behavioral scenarios and distribute content when a better distribution is found.

INTELLIGENT APP DISTRIBUTION – OL2, INC. 60

5.1 Future Work

There remain opportunities for growth, and this section outlines various growth initiatives

for our software. These future work opportunities are optional functionality that proved attractive

during development and can be implemented after the conclusion of our project.

5.1.1 Time Dependent Distribution Changes

There exists a cost when making a distribution change on live apphosts. This cost occurs

when content must be added or removed from the disk space on the apphost. When a change is

being made, the apphost enters a busy state and cannot be used by customers until the change is

complete. This means that some apphosts will be taken down whenever a change is made at the

expense of the users. The amount of time that an apphost remains inactive is based on how much

must be added or removed. More data that must be changed means more time that the apphost

will not be in use. This time may be predicted by our simulator at the end of the distribution

change as well. This can even be an argument in the genetic algorithm. The more data that must

be added or removed the worse a generation can look in the genetic algorithm. In this way, for

future development, add to the success metric in the genetic algorithm a parameter for how much

space / time a distribution change will make. In this way, the genetic algorithm will work

towards finding not only an optimal distribution, but one that take the least amount of time to

make a distribution change. Implementing this feature could solve the minimum-cost flow

problem.

5.1.2 Multi-Site Implementation

Our current simulator only calculates better distributions for one site at a time. While we

have functionality to observe and analyze global data, our simulator only alters distribution

configuration on a site basis. To improve the functionality of the simulator, it is possible to allow

INTELLIGENT APP DISTRIBUTION – OL2, INC. 61

for multiple site alterations at once. This is possible by specifying which sites need to be altered

before starting the simulation. The software can then run the simulation and genetic algorithm

simultaneously for each site and output separate configuration files for each of these sites. As the

usage data can be input from a data dump file of global data, our simulator can sift through that

data and pull out only relevant usage statistics for the site in the simulation. Implementing this

feature will allow the functionality to update all sites in production at once.

5.1.2.1 Site Switching

It is possible to extend the software further after implementing multiple site

optimizations. If we allow for multiple sites to be interpreted at once, one can find distributions

that work across sites. In the future, if a user is unable to get an apphost at the site they are

currently at because the app requested is unavailable, perhaps it is possible to switch to a site that

does have that app available. This process of site switching changes the user behavior and app

session behavior. This is a possible optimization for region usage data and for when the app

catalog becomes too large to fit entirely on a single site.

5.1.3 Latency Based on IP Address

OnLive catalogs user data including the IP address and where a user is connected to

connect a user to a site they are closest to geographically. The reason for this is because the

further a user is from the site they are connected to, the greater the latency of content. In this

way, the users in our simulation can add a parameter that specifies where they are located in the

world in relation to the sites currently in operation. We can analyze real world data stored in

OnLive databases and trace where users are located so that the simulator matches actual

worldwide geographical behavior. With this parameter, our simulator can calculate which sites

and users suffer from the greatest amount of latency. With this information, our simulator may

INTELLIGENT APP DISTRIBUTION – OL2, INC. 62

even be extended to suggest a location in the world to place a new site to best satisfy usage

geographically.

5.1.4 Improve the Genetic Algorithm

The genetic algorithm functions well enough to converge to a better distribution than

what existed previously, but there are improvements that can be made. This section outlines a

few changes that may be applied in the future.

5.1.4.1 Initial State Improvement

One way to make the simulation run faster is to improve the genetic algorithm starting

point. Our current implementation of the genetic algorithm creates an initial state solely based on

popularity. This is a good enough starting point to push forward in our development, however it

can be improved to also factor in session length. If an app is not very popular but has a very long

average session length, then it needs to be distributed more. Calculating session length’s

influence on distribution ratio can be done through multiple runs of the current genetic algorithm

to find how apps with the largest session lengths were altered. Then the initial state generator

algorithm can account for this relationship to front load computations that would have been

sorted out in more time with the genetic algorithm

5.1.4.2 Change Multiple Distribution Ratios at Each Generation

Another improvement to the genetic algorithm is how it currently changes distribution

ratios between generations. The genetic algorithm, as it works in our implementation, only

changes the worst distribution ratio for a single app and tests various ratios for that one app. This

functionality can change to alter multiple app distribution ratios at once. To do this, rather than

changing the one worst app, the genetic algorithm can change all distributions that had errors in

INTELLIGENT APP DISTRIBUTION – OL2, INC. 63

the last run with multiple permutations. If done right, the genetic algorithm will take less time to

find a better distribution.

5.1.4.3 Scale-Back Algorithm

The genetic algorithm works to find a distribution with the most misses and then

increases that app’s distribution ratio. However, there is no way to go about reducing a

distribution ratio if it has no misses and is distributed too much. One way to go about this would

be to reduce all application distribution ratios that did not see any misses by a given number,

perhaps 5%. The genetic algorithm will then continually reduce the distribution until it records

an app’s first miss, then it will set the app’s distribution ratio to the last ratio with no misses.

This will ensure that no app is overly distributed. It is important to add this feature, as it will

make sure that apps are distributed just enough and not any more. This saves space on the

apphosts as well as make sure distribution do not just grow and grow over time.

INTELLIGENT APP DISTRIBUTION – OL2, INC. 64

Bibliography

Bode, Karl. (June, 2010). "Broadband Streaming Game Platform OnLive Launches".

DSLreports.com. http://www.dslreports.com/shownews/Broadband-Streaming-Game-Platform-

OnLive-Launches-108955

Fishman, George. (2001). Discrete Event Simulation - Modeling, Programming, and

Analysis. New York: Springer-Verlag.

Grant, Christopher. (April 2009). "GDC09 interview: OnLive founder Steve Perlman

wants you to be skeptical". Joystiq. http://www.joystiq.com/2009/04/01/gdc09-interview-onlive-

founder-steve-perlman-wants-you-to-be-sk

Goldman, Tom. (December 2009). "OnLive Fully Detailed in Columbia University

Presentation". The Escapist. http://www.escapistmagazine.com/news/view/97182-OnLive-Fully-

Detailed-in-Columbia-University-Presentation

Hua-Jun Hong, De-Yu Chen, Chun-Ying Huang, Kuan-Ta Chen, and Cheng-Hsin Hsu.

(October 2013). “QoE - Aware Virtual Machine Placement for Cloud Games”. Department of

Computer Science, National Tsing Hua University. http://mmnet.iis.sinica.edu.tw/pub/

hong13_cloud_game_vm.pdf

Jacob, Matthew. (January 2013). Discrete Event Simulation. Resonance, Volume 18, Issue

1, Pages 78 - 86.

Johnson, David S. (1973). Near-optimal bin packing algorithms. Massachusetts Institute

of Technology. Dept. of Mathematics. Massachusetts Institute of Technology.

http://hdl.handle.net/1721.1/57819

Leadbetter, Richard. (January 2010). In Theory: Is this how OnLive works?.

http://www.eurogamer.net/articles/digitalfoundry-onlive-beta-article

http://www.dslreports.com/shownews/Broadband-Streaming-Game-Platform-OnLive-Launches-108955
http://www.dslreports.com/shownews/Broadband-Streaming-Game-Platform-OnLive-Launches-108955
http://www.joystiq.com/2009/04/01/gdc09-interview-onlive-founder-steve-perlman-wants-you-to-be-sk
http://www.joystiq.com/2009/04/01/gdc09-interview-onlive-founder-steve-perlman-wants-you-to-be-sk
http://www.escapistmagazine.com/news/view/97182-OnLive-Fully-Detailed-in-Columbia-University-Presentation
http://www.escapistmagazine.com/news/view/97182-OnLive-Fully-Detailed-in-Columbia-University-Presentation
http://mmnet.iis.sinica.edu.tw/pub/%20hong13_cloud_game_vm.pdf
http://mmnet.iis.sinica.edu.tw/pub/%20hong13_cloud_game_vm.pdf
http://hdl.handle.net/1721.1/57819
http://www.eurogamer.net/articles/digitalfoundry-onlive-beta-article

INTELLIGENT APP DISTRIBUTION – OL2, INC. 65

Mason. (2013). George Mason University, Evolutionary Computation Laboratory, GMU

Center for Social Complexity. http://cs.gmu.edu/~eclab/projects/mason/

Mathworks. (2013). Discrete-Event Simulation in Simulink. MathWorks.

http://www.mathworks.com/products/simevents/description2.html

Osherove, Roy. (2009). The Art of Unit Testing: With Examples in .Net. New York:

Manning Publications.

Pegden, Dennis. (1985). Introduction to Siman. Pennsylvania State University.

http://informs-sim.org/wsc85papers/1985_0013.pdf

http://cs.gmu.edu/~eclab/projects/mason/
http://www.mathworks.com/products/simevents/description2.html
http://informs-sim.org/wsc85papers/1985_0013.pdf

INTELLIGENT APP DISTRIBUTION – OL2, INC. 66

Appendices

Appendix A: List of Module Types and Implementations

Module Types

Module Purpose

ApplicationConfigModule Configures appvariant data

ResultOutputModule Outputs statistics about the simulation

ServerConfigModule Configures apphost data

PerSimConfigReader Sets configuration parameters such as number of
users on a per-sim basis

AppHostCatalogProvider Controls how appvariants are distributed to apphosts

IADArguments Reads command-line arguments that would normally be
passed to the iad.py file from a configuration file.

Summarizer Summarizes the IAD run, includes all features

DistributionRuleProvider Provides YAML configuration data for dist ratios

AppHostGroupAssigner Performs the assignment step of the IAD algorithm

TargetAppHostSelector Selects the best-suited apphost to be assigned an
appvariant group in a step of AppHostGroupAssigner

SurplusUnloader Unloads (selects) surplus apphosts from an
appvaraint group

AppSelectionProvider Determines which appvariant a user wants to play

ArrivalInterval Determines when a user will arrive

SessionLength Determines how long the user will play for

AppHostSelector Determines which apphost (if any) will serve the
user

WeakestLinkFinder Finds the weakest link in a generation

MetricCalculator Computes the objective function of a simulation run

InitialConfiguration Computes the initial distribution ratios for the
DistributionRuleProvider

MetricComparer Compares metrics together to determine if the
results are better than before or are within certain
thresholds

Implementations by Module Type

ApplicationConfigModule Purpose

ApplicationConfigReader Reads application.config

IADAppVariantReader Calls a modified iad.py to get the
appvariant list

TraceAppConfigReader Gets the applications from a trace file

SerializationDatabaseRunner De-serializes data

DatabaseDumpRunner Reads a dump of database queries
matching GLuMySQLDatabaseRunner

GluMySQLDatabaseRunner Queries the GluDB, just like the IAD
does

INTELLIGENT APP DISTRIBUTION – OL2, INC. 67

ResultOutputModule Purpose

NullReporter Does not output anything

ExcelReporter (not included by default) Outputs to an
excel file, uses a lot of memory

RatioToMissReporter Reports the product-key, app type,
(target) distribution ratio and number
of g16s

ServerInUseCountReporter A time map of how many servers are in
use

ServerConfigModule Purpose

ServerConfigReader Reads server.config for server prototype
data

SerializationDatabaseRunner De-serializes data

DatabaseDumpRunner Reads a dump of database queries
matching GLuMySQLDatabaseRunner

GluMySQLDatabaseRunner Queries the GluDB, just like the IAD
does

PerSimConfigReader Purpose

SimulationConfigReader Applies each line from simulation.config
once

RepeatingSimulationConfigReader Applies a single line from
simulation.config endlessly

AppHostCatalogProvider Purpose

RandomCatalogProvider Randomly assigns a random number of Apps
to a server

IADCatalogProvider Calls a modified iad.py

DistribtuionAlgorithm An IAD Skeleton in java

IADArguments Purpose

IADConfigurationHelper Reads from iad.config arguments that
would be passed in on command-line to
the IAD

Summarizer Purpose

IADSummarizer Summarizes the IAD results in the same
way the IAD does now

DistributionRuleProvider Purpose

YAMLDictionaryHelper Reads from iad_config.yaml the YAML
configuration rules for the IAD
distribution

INTELLIGENT APP DISTRIBUTION – OL2, INC. 68

AppHostGroupAssigner Purpose

IADDistributionAssigner Generates the IAD’s work queues and
executes them

TargetAppHostSelectior Purpose

IADTargetMostSpace Selects the “host-est with the most-est”

SurplusUnloader Purpose

RandomSurplusUnloader Unloads apphosts above target at random

AppSelectionProvider Purpose

PopularitySelectionProvider Weights appvariants by popularity

RandomSelectionProvider Rolls a fair die

TraceAppRunner$TraceAppSelectionProvider Reads a line from a session trace

ArrivalInterval Purpose

ExponentialAnalysisArrivalInterval An exponential distribution

GenericExponentialArrivalInterval An exponential distribution estimated
from a session trace

TraceAppRunner$TraceAppDistribution Reads a line from a session trace

SessionLength Purpose

GenericGammaSessionLength A gamma distribution

GenericLevySessionLength A Lévy distribution

GenericNormalSessionLength A normal distribution

GenericWeibullSessionLength A Weibull distribution

WeibullAnalysisSessionLength A Weibull distribution estimated from a
session trace

TraceAppRunner$TraceAppDistribution Reads a line from a session trace

AppHostSelector Purpose

FirstFitAppHostSelector Grabs the first available apphost

LeastPopularAppHostSelection Grabs the apphost with the least popular
catalog

LeastWasteAppHostSelector Grabs the apphost with the fewest
appvariants

RandomAppHostSelector Grabs a random available apphost

WeakestLinkFinder Purpose

MostMissesLinkFinder The weakest link is the appvariant that
had the most failures, but is not at 1.0
distribution

MetricCalculator Purpose

INTELLIGENT APP DISTRIBUTION – OL2, INC. 69

FailureCounter Sums up all failures and one hundred
times all giveups

InitialConfiguration Purpose

DefaultInitialConfiguration Uses iad_config.yaml as a starting point

GeneticSeedConfiguration Computes a starting point from the
propularity.txt trace data

MetricComparer Purpose

FailureCounter$FailureMetricComparer Allows -50% growth to be considered an
improvement.

Appendix B: Software Development Tracking

Tasks List Description of Task Difficulty? Progress

GUI config
GUI interface that changes configuration and runs
simulation (no display) 3 Completed

Better data recording
Improve the efficacy of the ExcelReporter by recording
data like failures and sessions 2 Completed

Configuration file for
servers

Create a configuation scheme to define different
server types and the ratios at which they appear on
the site 1 Completed

Configuration file for Apps

Create a configuration scheme to define the
applications that will be placed on servers for the
simulation run 1 Completed

Configuration for content
distribution

Create a configuration scheme that allows the
customization of how Apps are distributed to the
servers 2 Completed

Configuration for content
selection

Create a configuration scheme that distributes how
users choose the application that they wish to play 2 Completed

Model user play time
accurately

Improve the accuracy of the calculation of how long a
user will play the application that they have requested 3 Completed

Copy IAD process

Create a CatatlogProvider that is able to mirror the
distribution process of the IAD on a given system to a
reasonable degree of accuracy 5 Completed

Generate list of
applications such that it
mirrors OnLive's catalog

By having our App catalog mirror the catatlog used by
OnLive, we can more closely model the reality of
OnLive's services 2 Completed

INTELLIGENT APP DISTRIBUTION – OL2, INC. 70

Generate server config
such that it mirrors a target
site

By mirroring the server distributions of an OnLive Site,
we can show that our model can simulate a real-world
environemnt successfully 2 Completed

Sanity Check model
Create a case that can be worked out by hand to show
that the model behaves as expected 1 Completed

GUI Tracking Failures
Chart A graph that displays Failures over time 2 Completed

GUI Tracking Graph Track Failures on a real-time graph through the GUI 3 Completed

Integrate IAD - lightweight
Import an our project to the site whose applist we wish
to simulate. 4 Completed

Make the clock distibutions
modular

We want to make modules that can be loaded without
touching the code that change the way things like
session length are distributed 2 Completed

Console output for the GUI
When the GUI opens, we also have a console window
that prints out everything like the Console in Eclipse 2 Completed

Server Selection as
module

The method by which the server is selected may
change over time, so we wish to make a convenient
way to change the way servers are selected to serve a
user 2 Completed

Construct a trace example
of onlive's services

Being able to run our simulation using a trace of real
world data allows us to check our model against the
real world to prove its accuracy 3 Completed

Add real-time analytics to
simulation

In order to improve our simulation's usefulness, we
need to be able to analyse factors like server load in
real time so as to best be able to improve our model. 4 Completed

Modular System
Easy to integrate modules that configure the
simulation 4 Completed

Re-write IAD from Python
into Java

Re-writing the IAD into Java will allow better
integration with our model and allow us to build on the
functionality at our will 5 Completed

Set up Window Builder
Get the Window Builder Library and set it up for the
actual GUI implementation 2 Completed

Pull from Site Database
Glu commands that pull usage data for list of apps
from a live site 3 Completed

Analyze Site Data and
configure the model

changes # of sessions/users/play time based
on popularities in the current system state 3 Completed

INTELLIGENT APP DISTRIBUTION – OL2, INC. 71

Validate Trace to server
configuration that mimics
onlive's systems

In order to demonstrate that a trace simulation is a true
representation of OnLives systems, validate our output
with live servers 3 Completed

Serialize site data
Serialize site data as a way to run the simulation
without pulling from the GLU db every time 2 Completed

Model user app selection
accurately

Construct a SelectionProvider that is able to provide
application selections that mirror real-world conditions 3 Completed

GUI for configuring Module
use

Drop Down or check boxes that let you select which
modules you would like to run for the simulation, back
end 3 Completed

GUI Load and Save Config Load and Save Configurations from the GUI 2 Completed

GUI User Experience Make the GUI more user friendly 3 Completed

Develop structure for
Genetic Algorithm
Implementation

A Genetic Algorithm will run the simulation until a
better distribution is found. Based on various
parameters. Requires a metric and Records 4 Completed

Develop Metrics for use in
Genetic Algorithm

The metric must differentiate different runs of the
simulator. A more successful distribution is a stronger
metric. 3 Completed

Develop better initial state
for genetic algorithm

In order to improve the efficiency of our genetic
algorithm, it should be able to compute a good starting
point to iterate from 2 Completed

Genetic Algorithm
Feedback

Able to output a new config and use as input for the
GA. A refactor 3 Completed

GUI Treading Issue

Resolve an issue where the GUI becomes inert when
running a simulation. Need to extract the threading
procedure from MASON code. 4 Completed

General GUI
Improvements GUI improvements to improve usability. 2 Completed

(Growth) Time dependent
distribution changes

There is a cost of time for each change to the
distribution that puts some app hosts in a busy state
when updating their catalog. Predict this time.
Minimum-cost flow problem 4 Growth

(Growth) Multi-Site
Implementation

Able to run multiple sites in a single simulation (pull
site specific data and run the simulation for ever site
with one button) 3 Growth

(Growth) Latency based
on IP address Calculate latency for users based on distance from site 5 Growth

INTELLIGENT APP DISTRIBUTION – OL2, INC. 72

(Growth) Site Switching

How does the affect of user site switching change
behavior (when a user gets g16, does changing to
another site help?) 2 Growth

(Growth) Develop better
algorithm for generations

Our genetic algorithm should be able to alter more
than one parameter per generation and do so without
adversely affecting other app variants 4 Growth

Appendix C: Test Coverage Tracking

Java Classes tested for Code Coverage Name of Tests that test the class

% Code
Coverag

e

toy_model\FilePaths.java A Class that keeps constant String 98.20%

toy_model\ServerGenerator.java
generateServers_numServerInConfigGreaterThanZero_ReturnListOfServerNotEmpty();
generateServers_numSeversInConfigIsZero_ReturnEmptyServerList() 95.70%

toy_model\analysis\Analyzer.java
analyze_PassInTraceDataWithEmptyRawData_ReturnNull();
analyze_PassValidTraceData_ReturnExpectedTraceAnalysis(); 100.00%

toy_model\analysis\DistributionData.java see toy_model\analysis\Modeler.java 100.00%

toy_model\analysis\Modeler.java This class generate distribution data and was tested visually 70.40%

toy_model\analysis\TraceData.java see toy_model\analysis\TraceDataReader.java 77.80%

toy_model\analysis\TraceDataReader.java
computeTrace_parseFile_getASetOfTraceDataMatchesTheTrace();
computeTrace_parseFileTraceExisted_addSession() 82.60%

toy_model\analysis\TraceToDist.java

testComputeTraceData()
testWritePopularityData()
testWriteArrivalData()
testWriteSessionData() 46.40%

toy_model\config\AbstractConfigReader.java <Abstract
Class>

contructor_EmptyFile_emptyConfigReader(); constructor_TwoLinesFile_ListOfTwoString();
getNextLine_EmptyFile_returnEmptyString(); getNextLine_TwoLinesFile_returnFirstLine();
getNextLine_LinesWithEmptyLineOnTop_returnNull() 75.70%

toy_model\config\ApplicationConfigReader.java
testConfigure_SetsApps()
testConfigure_HasAppAsExpected() 85.90%

toy_model\config\Configuration.java

intialize(); hasNextUserConfiguration_perSimisNotNull_returnTrue();
hasNextUserConfiguration_perSimisNull_returnFalse();
hasNextUserConfiguration_perSimhasOneConfigFilebutTheFileIsEmpty_returnFalse();
hasNextUserConfiguration_perSimhasTwoConfigFilesbutBothFileIsEmpty_returnFalse();
hasNextUserConfiguration_perSimhasThreeConfigFilesButOnlyOnehasContentInIt_returnTrue();
getNextConfiguration_perSimisNull_returnDEFAULT_CONFIG();
getNextConfiguration_perSimhasThreeConfigFilesButOnlyOnehasContentInIt_returnConfiguration
() 93.60%

INTELLIGENT APP DISTRIBUTION – OL2, INC. 73

toy_model\config\IADAppVarientReader.java
testInternalExtractAppData_HasNineApps()
testInternalExtractAppData_HasGooButHasNoGSP() 50.30%

toy_model\config\RepeatingSimulationConfigReader.java configure_testFile_configureTheSameNumberFromTheTestFile() 98.80%

toy_model\config\ServerConfigReader.java
testConfigure_HasThreePrototypes()
testConfigure_HasExpectedRatio() 100.00%

toy_model\config\SimulationConfigReader.java testConfigure_HasExpectedValues() 100.00%

toy_model\config\TraceAppConfigReader.java
testConfigure_HasThreeApplications()
testConfigure_HasGSPAlienMoW() 100.00%

toy_model\config\entity\ExtendedServerPrototype.java

create_listOfsiteHostIsEmpty_instanceVarIsZero()
create_listOfsiteHostIsEmpty_returnDefaultExtendedProtoAppHost()
create_ListOf2AppHostCallCreate2Time_returnTheSecondAppHost()
create_ListOf1ElementCallCreate2Times_returntheDefaultAppHost()
create_addToListofElement_checkifInstanceCountIsCorrect() 100.00%

toy_model\config\entity\ServerPrototype.java
getInstanceCount_TestServerTypeName_ReturnInstanceCountEqualToSize();
create_TestCreateServerFromOneServerPrototype_ReturnServerWithCorrectServerType() 100.00%

toy_model\config\module\ModuleConfiguration.java This class actually coverage is 96.3%; the other 8% cannot be covered 96.30%

toy_model\config\module\ModuleConfigurator.java

search_moduleNotExistInModuleList_returnFalse()
search_moduleExistInModuleList_returnFalse()
checkDependencies_theRequiresModuleClassDoesnotImplementModule_ThrowException()
checkDependencies_DontHaveTheDependencyClass_ThrowException()
validateAllModules_theRequiresModuleClassDoesnotImplementModule_ThrowException() 95.10%

toy_model\database\DatabseChunkConfigurator.java

testDatabaseChunkConfigurator()
testConstructPrototypeList()
testExtractAppCerts()
testExtractAppHost_IsNotNull()
testExtractAppHost_HasExpectedIdentity()
testExtractAppVariant_IsNotNull()
testExtractAppVariant_HasExpectedIdentity()
testExtractAppVariant_HasNoNodes()
testExtractAppVariant_AfterInitNodes_HasNodes()
testExtractContainerNodeData()
testExtractPreloadData() 100.00%

toy_model\database\DatabaseDumpRunner.java

testGetAppVariants_HasSizeThree()
testGetAppVariants_HasAmnesiaAsSecondEntry()
testGetAppHosts_HasSizeTwo()
testGetAppHosts_IsFiftyFifty() 100.00%

toy_model\entity\AppVariant.java

equals_IfAppAHasIdenticalIDAsAppB_ReturnTrue();
equals_IfOneAppDoesnotHasIdenticalIDAsTheOtherApp_ReturnFalse();
equals_IfParamIsNotAnApp_ReturnFalse(); equals_IfParamIsNull_ReturnNull();
equals_IfParamIsNull_ReturnFalse() 100.00%

toy_model\entity\AppHost.java

addApplication_AppSpaceLargerThanAppHostSpaceAvailable_ReturnFalse();
addApplication_AppSpaceLowerThanAppHostSpaceAvailable_ReturnTrue();
addApplication_AppSpaceEqualAppHostSpaceAvailable_ReturnTrue();
addApplication_AppSpaceisNegative_ReturnFalse() 97.60%

toy_model\entity\Site.java

supports_appInSite_ReturnTrue(); supports_siteDontHaveApp_ReturnFalse();
supports_appIsNull_ReturnFalse(); getServers_InvalidApp_ReturnEmptyListOfServer();
getServers_ValidApp_ReturnListOfServer(); getServers_NullApp_ReturnEmptyListOfServer();
getAServer_AppIsValidAndAllServerAvailable_AppHost();
getAServer_AppIsValidAndAllServerNotAvailable_ReturnNull();
getAAppHost_AppIsNull_ReturnNull(); getAServer_AppIsInvalid_ReturnNull() 100.00%

INTELLIGENT APP DISTRIBUTION – OL2, INC. 74

toy_model\entity\distribution\FirstFitAppHostSelector.java

select_IfListOfServerIsEmpty_ReturnNull() select_IfAllServerNotAvail_ReturnNull()
select_ListNotEmptyAndAllServerAvail_ReturnServer()
select_ListHasOneElement_ReturnThatElement()
generateServers_numSeversInConfigIsZero_ReturnEmptyServerList()
generateServers_numServerInConfigGreaterThanZero_ReturnListOfServerNotEmpty() 100.00%

toy_model\entity\distribution\IADCatalogProvider.java assignCatalog_testIfTheIADCatalogProvidergivePopulateCorrectAppliCationList_returnVoid() 81.30%

toy_model\entity\distribution\LeastPopularAppHostSelector.j
ava

toPopularity_passInCollectionOfAppVariant_returnTotalPopularity()
select_IfListOfServerIsEmpty_ReturnNull() select_IfAllServerNotAvail_ReturnNull()
select_ListNotEmptyAndAllServerAvail_ReturnServer()
select_ListHasOneElement_ReturnThatElement()
generateServers_numSeversInConfigIsZero_ReturnEmptyServerList()
generateServers_numServerInConfigGreaterThanZero_ReturnListOfServerNotEmpty() 100.00%

toy_model\entity\distribution\LeastWasteAppHostSelector.ja
va

select_ListOfTwoAppHost_ReturnAppHostWithTheLeastWaste()
select_IfListOfServerIsEmpty_ReturnNull() select_IfAllServerNotAvail_ReturnNull()
select_ListNotEmptyAndAllServerAvail_ReturnServer()
select_ListHasOneElement_ReturnThatElement()
generateServers_numSeversInConfigIsZero_ReturnEmptyServerList()
generateServers_numServerInConfigGreaterThanZero_ReturnListOfServerNotEmpty() 100.00%

toy_model\entity\distribution\PopularitySelectionProvider.jav
a

excecute_putInListOfPopularity_returnExpectedValue()
selectApp_RandomIsZeroPoint4_returnAppVariant()
selectApp_RandomIsZeroPoint9_returnAppVariant() selectApp_RandomIs1_returnAppVariant() 94.80%

toy_model\entity\distribution\RandomAppHostSelector.java

select_IfListOfServerIsEmpty_ReturnNull() select_IfAllServerNotAvail_ReturnNull()
select_ListNotEmptyAndAllServerAvail_ReturnServer()
select_ListHasOneElement_ReturnThatElement()
generateServers_numSeversInConfigIsZero_ReturnEmptyServerList()
generateServers_numServerInConfigGreaterThanZero_ReturnListOfServerNotEmpty() 100.00%

toy_model\entity\distribution\RandomCatalogProvider.java

getApplications_checkIfApplicationPassesInCorrectly_returnListOfApplication()
assignCatalog_10AppVariantAndChooseRandomly8OfThem()
assignAllCatalog_10AppVariantAndChooseRandomly8OfThemForEachAppHost() 94.20%

toy_model\entity\distribution\RandomSelectionProvider.java

select_IfListOfServerIsEmpty_ReturnNull(); select_IfAllServerNotAvail_ReturnNull();
select_ListNotEmptyAndAllServerAvail_ReturnServer();
select_ListHasOneElement_ReturnThatElement();
generateServers_numSeversInConfigIsZero_ReturnEmptyServerList();
generateServers_numServerInConfigGreaterThanZero_ReturnListOfServerNotEmpty();
generateServers_NumServerIsNegative_ReturnEmptyServerList() 100.00%

toy_model\entity\distribution\TraceAppRunner.java

testTraceAppSelectionProvider()
testSelectApp()
testNextSLength_ThrowsWithoutInitedTraceAppSelectionProvider()
testNextArrival_ThrowsWithoutInitedTraceAppSelectionProvider()
testNextSLength_ThrowsWithoutMatchingTraceAppSelectionProviderCall()
testNextArrival_ThrowsWithoutMatchingTraceAppSelectionProviderCall()
testNextSLength_WorksWithMatchingTraceAppSelectionProviderCall()
testNextArrival_WorksWithMatchingTraceAppSelectionProviderCall() 91.70%

toy_model\entity\distribution\iad\DistributionAlgorithm.java

equals_twoKeyDoubleisIdenticalInSomeSpecificField_returnTrue()
equals_twoKeyarenotIdentical_returnFalse() equals_oneKeyTupleisNull_returnFalse()
equals_comparetoNullKey_returnFalse()
equals_twoGroupHaveAreIdenticalInKeyTuples_returnTrue()
equals_twoGroupHaveKeyTuplesThoseAreNotIdenticalToEachOther_returnFalse()
equals_compareToNullGroup_returnFalse() equals_compareToObject_returnFalse() 100.00%

toy_model\entity\distribution\iad\IADConfigurationHelper.jav
a testConstructor_passInFile_checkIfReadCorrectly() 100.00%

toy_model\entity\distribution\iad\IADDistributionAssigner.jav
a

equals_twoWorkItemIdentical_returnTrue() equals_twoWorkItemNotIdentical_returnFalse()
equals_compareWithNullObject_returnFalse() equals_ObjectIsNotWorkItemTuple_returnFalse()
compareTo_TwoWorkKeyTupleIsIdentical_return0()
compareTo_SurplusRatioEqualButRandomIsGreater_ReturnValueGreaterThan0()
compareTo_SurplusRatioEqualButRandomIsSmaller_ReturnValueGreaterThan0()
compareTo_SurplusRatioSmaller_ReturnValueGreaterThan0()
compareTo_SurplusRatioGreater_ReturnValueGreaterThan0() 100.00%

toy_model\entity\distribution\iad\IADPreconditions.java

testIADPreconditions_NullArgument() testIADPreconditions_NotNullArgument()
testIsAppHostAllowed_AcceptsWpi() testIsAppHostAllowed_RejectsNotWpi()
testMeetsServiceReqs_MatchesInclusive_Accept()
testMeetsServiceReqs_MatchesExclusive_Reject()
testMeetsServiceReqs_DoesntMatchInclusive_Reject()
testMeetsServiceReqs_DoesntMatchExclusive_Accept()
testDeferAppVariant_DeferIfNoContainers() testDeferAppVariant_DoNotDeferIfContainers()
testIsHostOperational_DeniesInoperativeHost() testIsHostOperational_AllowsOperativeHost()
testIsAppEnabled_AcceptsEnabledAppVariant() testIsAppEnabled_DeniesUnenabledAppVariant() 100.00%

toy_model\entity\distribution\iad\IADSummarizer.java just print methods 100.00%

INTELLIGENT APP DISTRIBUTION – OL2, INC. 75

toy_model\entity\distribution\iad\IADTargetMostSpace.java

compareTo_return0() compareTo_returnNegativeNumber()
fitInCache_notEnoughASpace_ReturnNull() fitInCache_enoughSpace_returnNotNull()
popBestTargetAppHost_appHostListIsEmpty_returnNull()
popBestTargetAppHost_appHostListHas1ElementButThatElementCannotFit_returnNull()
popBestTargetAppHost_appHostListHas1ElementButThatElementIsFit_returnThatElement() 96.00%

toy_model\entity\distribution\iad\LoadState.java This is an enumerator class 100.00%

toy_model\entity\distribution\iad\RandomSurplusUnloader.ja
va selectSurplusAppHostsToUnload_returnListOfAppHost() 100.00%

toy_model\entity\distribution\iad\RuleHelper.java

parseBounds_FirstAndLastCanBeParseIntoInteger_returnInteger()
parseBound_FirstAndLastCannotBeParseIntoInteger_throwException()
parseBound_dataIsEmpty_returnDefault() evalSliceFiler_sliceIsNotOfCorrectFormat_returnNull()
evalSliceFiler_sliceIsOfCorrectFormat_returnAPredicate()
evalSliceFiler_sliceIsOfCorrectFormatButNotInteger_returnNull()
evalSliceFiler_sliceValueDontHaveDash_returnAPredicate()
testPredicate_ValidSliceRange_returnTrue() testPredicate_InvalidSliceRange_returnFalse()
testPredicate_passInSingleValue_returnTrueIfEquals()
testPredicate_passInSingleValue_returnFalseIfNotEquals() 100.00%

toy_model\entity\distribution\iad\SliceFilterHelper.java

testEvalSliceFilter_SingleArgAcceptsSelf() testEvalSliceFilter_SingleArgDoesntAcceptsOther()
testEvalSliceFilter_TwoArgAcceptsSelfs() testEvalSliceFilter_RangeArgAcceptsRange()
testEvalSliceFilter_RangeAndSingleArgAcceptsRange() testEvalSliceFilter_SkipsBadFormat()
testParseBounds_RequiresAtLeastTwoArgs() testParseBounds_RequiresNumericalArguments()
testParseBounds_RequiresIntegerArguments() testParseBounds_CanTakeEmptyArguments()
testParseBounds_DoesParseArgs() 100.00%

toy_model\entity\distribution\iad\YAMLDisctionaryHelper.jav
a

80.00%

toy_model\entity\extended\AppHostExtendedData.java

execute_loadNewKeyValueToEmptyList_returnTrueAndListHas1Element()
execute_loadNewKeyValueofEmptyList_checkReturnValueField()
execute_unloadEmptyList_ListStillEmpty() execute_unloadListHas1Element_ListBecomeEmpty()
execute_load2ElementThenunload1Element_ListContain1ElementLeft()
execute_unloadListHas2Element_CheckreturnValue()
execute_loadKeyAlreadyEsist_returnValueDontIncrease()
loadAppVariant_containerNodesContain2Elements_returnValueDesired()
unloadAppVariant_containerNodesContain2Elements_returnValueDesired() 97.80%

toy_model\entity\extended\AppVariantExtendedData.java

equals_TwoAppVariantExtendedDataHasTheSameID_returnTrue()
equals_TwoAppVariantExtendedDataHasDiffID_ReturnFalse()
equals_OneAppVariantExtendedDataIsNull_ReturnFalse() 100.00%

toy_model\genetic\DefaultInitialConfiguration.java testGetInitialState() 100.00%

toy_model\genetic\FailureCounter.java
testComputeMetricFor()
testComputeMetricFor_HasNSurrenders() 100.00%

toy_model\genetic\GeneticSeedConfiguration.java

testGetInitialState_AssignsDistRatioOneToMostLikedApp()
testGeneratePopularityMap_NotNull()
testGeneratePopularityMap_NoGSP()
testGeneratePopularityMap_HomeFrontIsMax() 87.90%

toy_model\genetic\GeneticUsers.java

GeneticUsers.GenerationRuleProvider:
testGenerationRuleProvider_NotNull()
testGetDirectives_IsNull()
testOffer()
testSetDirectives()

GeneticUsers: This class' actual coverage is 8%, the other 92% belongs to the simulation code
and cannot be tested 8.00%

toy_model\genetic\MostMissesLinkFinder.java

testComputeWeakestLink()
testComputeWeakestLink_NotSame()
testComputeWeakestLink_TryImproveNotNull()
testGetWeakestApp() 88.00%

toy_model\genetic\RatioToMissReporter.java
testWriteData()
testComputeRatios() 61.70%

INTELLIGENT APP DISTRIBUTION – OL2, INC. 76

toy_model\genetic\ServerInUserCounterReporter.java testWriteData() 56.70%

toy_model\records\ExcelReporter.java

testAsExcelTime()
testGetOrCreateSheet_NewSheetNotNull()
testGetOrCreateSheet_RepeatCallIsSame()
testWriteArray()
testWriteConfig()
testWriteFailureData()
testWriteFailures()
testWriteServerData()
testWriteServerLoadData()
testWriteSessionData()
testCreateAndSetWithValueXSSFSheetXSSFRowCollectionOfAppVariantTObjectIntMapOfAppVar
iant()
testCreateAndSetWithValueXSSFSheetXSSFRowIntDouble()
testCreateAndSetWithValueXSSFSheetXSSFRowIntInt()
testCreateAndSetWithValueXSSFSheetXSSFRowIntString()
testGetFirstEmptyRow_NotNull()
testGetFirstEmptyRow_StartsAtZero()
testGetFirstEmptyRow_RepeatCallIsSame()
testGetFirstEmptyRow_NullCellIsEmptyRow()
testGetFirstEmptyRow_EmptyStringIsNotEmptyRow()
testGetFirstEmptyRow_NonEmptyStringNotEmptyRow()
testGetFirstEmptyRow_NonEmptyStringNotEmptyRow_Index()
testNextRow_NotNull()
testNextRow_IsIndexPlusOne()
testNextRow_RepeatCallIsSame() 80.90%

toy_model\records\Records.java

testRecords()
testRecordsListOfAppHost()
testRecordsListOfAppHostHasMatchingList()
testGetAllServers_startsEmpty()
testAddServer()
testGetAllFailures_startsEmpty()
testAddFailure()
testGetAllSessions_startsEmpty()
testAddSession()
testGetFailuresPerApp()
testSetServersPerApp()
testSetUsersPerApp() 100.00%

toy_model\records\Session.java

testSession()
testGetDuration()
testGetFinishTime()
testGetStartTime() 90.90%

toy_model\util\CollectionHelper.java

union_AunionB_returnUnionSet() intersection_AintersectB_returnIntersectSet()
intersection_AandBDoNotIntersect_returnEmptyList() intersection_AcontainB_returnB()
difference_AandB_returnTheDifference() difference_AContainB_returnElementInAButNotB()
difference_AContainB_returnEmptyList() containsAny_thereExistIntersection_ReturnTrue()
containAny_thereIsNoIntersection_returnFalse() 100.00%

toy_model\util\ConstructorHelper.java See toy_model\config\module\ModuleConfigurator.java 57.10%

toy_model\util\Pair.java

equals_twoPairisIdentical_returnTrue() equals_TwoPairIsNotIdentical_returnFalse()
equals_FirstFieldMatchButNotTheSecond_ReturnFalse()
equals_SecondFieldMatchButNotTheFirst_ReturnFalse() equals_ParameterIsNull_ReturnFalse()
equals_ParameterIsNotAPairObject_ReturnFalse() toString_returnDesireName() 95.30%

toy_model\util\Predicate.java

both_bothPredicateIsTrue_returnTrue() both_onePredicateisFalse_returnFalse()
both_firstPredicateisNull_returnValueOfSecondPredicate()
both_secondPredicateisNull_returnValueOfFirstPredicate() not_predicateIsTrue_returnFalse() 95.90%

toy_model\util\TraceAnalysisDataReader.java extractAllTraceData_passedInTestFile_checkparams() 93.60%

