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Abstract

Load sharing in a Beowulf cluster can be done transparently by PANTS. However, PANTS
distributes load using only a measurement of CPU usage to index load. While CPU usage
is the typical metric used in load distribution, other system resources such as disk and
memory can become loaded and be a performance bottleneck. We examine PANTS in
the context of load distribution algorithms, build new load indices, develop benchmarks,
and evaluate performance. We find our load indices can reduce compile time of the Linux
kernel by 1/2 of the time of the original PANTS indices.
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1 Introduction

A Beowulf cluster is a distributed system consisting of inexpensive computers networked

together cheaply, usually via ethernet. It is often desirable in such systems to distribute

workload throughout the cluster.

Ideally, the distribution of workload tries to share load equally among all the machines

in the cluster, decreasing response times and increasing overall throughput. A drawback

of workload distribution in clusters has historically been the need for expertise in both

designing and implementing applications to make good use of the distribution of workload.

PANTS Application Node Transparency System is a load distribution system which

strives to remove the need for expertise required by other load distribution mechanisms

[BG]. This is achieved by adding a layer of transparency to the load distribution mecha-

nism. PANTS intercepts execve() system calls under Linux and transparently shares the

process with other machines in the cluster also running the PANTS load sharing daemon.

PANTS also implements a multicast messaging policy which minimizes messages to nodes

busy with computations and is also fault tolerant to machines failing in the cluster.

PANTS uses the /proc filesystem to obtain a count of jiffies (1/100ths of a second) that

the CPU spent processing in user mode in the past 5 seconds. PANTS then calculates the

total jiffies and finds the percentage of the user mode jiffies to the total. If this percentage

if over 95% then PANTS considers the node loaded or “busy”; otherwise it is considered

“free”. In the current PANTS implementation, any process or workload which does not

generate CPU load will not be shared amongst other machines in the cluster.

Early results from the implementors of PANTS showed a near linear speedup for com-

putationally intensive applications [Moy]. Unfortunately, programs that impart load on
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the CPU of a machine are not the only applications that are desirable to run on Beowulf

clusters. An application could read or write many files to disk imparting load on the I/O

subsystem, maintain large data structures loading memory, or cause system events such

as interrupts and context switches.

Similarly, load measurement does not have to be based on CPU usage. Load measure-

ment could also be based on I/O in terms of number of blocks read and written to the

disks, memory load in terms of total pages read and written per second, context switches

per second, or interrupts per second. Load can also be measured as a mix of all of these

criteria. Compiling the Linux kernel is a typical example of an application which imparts

significant load on the I/O resources of a system. Compiling the kernel requires some

CPU resources, but does not impart significant load on the CPU. When just looking at

CPU usage as the only measurement of load, a system compiling the kernel would not

“load” the system, while there would be a performance benefit if the load measurements

included I/O use.

The goal of this report is to examine PANTS in the context of load distribution al-

gorithms, to devise new methods of capturing load metrics, and also to measure the

performance of new metrics and policies we have devised. We add new ways to measure

load in PANTS such as I/O usage, memory usage, context switches, and interrupts, as

well as improving the way CPU usage is measured. To test the new measures of load we

build a micro benchmark for testing each new measure of load and a macro benchmark for

testing with different mixes of load. To better evaluate the performance of our new load

indices we also used a real-world application as a benchmark: a distributed compilation

of the Linux kernel.
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This report commences as follows: Chapter 2 is an organization and presentation of

work related to our project. This includes an overview of Beowulf clusters and software

tools as well as different load indices and policies. The current configuration of our WPI

cluster is also discussed, specifically the hardware, operating system, and applications

associated with our project. Chapter 3 presents our methodology and approach including:

improvements to the PANTS implementation, load metrics we devised, and discussion of

the benchmarks we created to measure performance. Chapter 4 contains analysis of our

results.
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2 Related Work

To make our design choices clear, we first discuss the background surrounding our project.

After talking about Beowulf clusters in general, and the PANTS system in particular, we

cover the various indices and policies involved in the measurement and management of

load. We also specify the configuration of our hardware and software, and mention the

applications involved in our Beowulf cluster in some detail so that we may see how and

why the load sharing policy can be improved.

2.1 Load

In a system consisting of a typical network of workstations it has been shown in simulated

and analytical studies that there are many idle workstations at any time [ML87]. It is

desirable to distribute load from busy workstations to idle ones, increasing processor

utilization and performance [dS96].

A Beowulf cluster is designed to facilitate sharing of load amongst a number of con-

nected nodes, instead of processing entire tasks from only the node that started them.

Clusters usually have two types of nodes, those that typically interact with users, and

those that can only be used through their network interfaces (ssh,rlogin). The nodes

without monitors are idle, while the nodes with monitors often have high load in response

to user interaction. Load distribution is achieved in WPI’s Beowulf cluster through the

use of the PANTS system, which implements a load distribution algorithm.
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2.1.1 Load Distribution Algorithms

[RR96] suggests several objectives for a load distribution algorithm, of relevance to us

are: minimization of task average response time, balanced distribution of load, and min-

imization of machine idle time. Load distribution algorithms strive to meet each of these

objectives in different ways by balancing the inherent tradeoffs.

[Moy] suggests that load balancing is impractical because it may needlessly transfer

tasks just to achieve balance. Those transfers are often very costly and degrade the

performance of the system. This is supported in work done by Eager, Lazowska, and

Zahorjan, authors of a seminal work in load sharing [ELZ86].

PANTS attempts to distribute work to idle processors away from busy processors

to minimize average task response times [FW95, Moy, DHV00]. This defines PANTS

as a load sharing algorithm instead of a load balancing algorithm. In other words, the

PANTS algorithm makes no attempt to balance the load among machines. PANTS simply

attempts to keep idle machines busy by transferring tasks from busy machines.

[dS96] splits load distribution algorithms into four policy components. What, when,

and where information is collected is the initial part of the algorithm and comprises

the “information policy”. The “transfer policy” uses this information to decide when a

processor should send (or accept) tasks to (or from) the other processors in the system.

The “selection policy” chooses a task. The “location policy” determines which machine

to transfer the task to.

The PANTS load sharing algorithm can be split into the component policies above:

Information policy: The PANTS client daemon, PANTSD, runs on each node of the

cluster. This daemon monitors the load at the node by periodically (in past implemen-
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tation, 5 seconds) checking the CPU usage though the /proc filesystem. If this load is

under the static threshold set at runtime, the machine is considered “free”, and the dae-

mon sends a multicast message to the leader multicast address. This message says that

the node is available to accept tasks. If the load is over this threshold it again sends a

message to the leader stating it is “busy” and can’t accept any tasks. The leader sub-

scribing to the leader multicast address is a PANTS daemon running on a node in the

cluster (this is determined when PANTS is started. It is fault tolerant and handles losing

the leader - see [DHV00]). This leader maintains a list of “free” nodes which are willing

to accept tasks.

Transfer/Selection policy: When a process is started in PANTS , the PREX mechanism

first checks to see if it is migratable. This is done by checking a flag set in the binary

of the executable. If the executable if flagged as non-migratable it is executed normally.

Otherwise, PREX communicates with the local PANTS daemon, and if the last load

measurement indicates the node is free the process is executed normally. If the node is

busy, the process is selected for migration and an attempt is made to transfer the process.

Location policy: Once a process has been selected for migration PANTSD sends a

message to the leader multicast address asking for the address of a free node. The leader

chooses a random node from the free list it has been maintaining and returns the address

to the requesting daemon. The leader then removes the node from the free list, as the

node will soon be busy. If there are no nodes in the free list a blank address is returned.

PANTSD then gives the address to PREX, which either sends the process to the free node

or executes it locally if there were no free nodes in the list.

The important work done by PANTS is in the information policy. All of the past work
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done on WPI’s Beowulf cluster suggests as future work modifying the information policy,

specifically the tuning of load variables [DHV00]. Indeed, these load variables, or more

generally, this quantification of load plays a pivotal role in the information policy of any

load distribution algorithm. Measured load along with several thresholds determines the

state of a node: either free and able to accept tasks, or busy and unable to accept tasks.

The choice of those metrics and thresholds are fundamental to the performance of the

algorithm [dS96].

2.1.2 Load and Load Indices

Load is the demand for services or performance made on a machine or system. From an

operating systems perspective load is the demand or usage of some system resource. The

most common resources are the CPU, system memory, disk access, disk space, network

bandwidth, and attached devices such as printers, etc.

In the context of a load distribution algorithm, load is indexed and measured for use

in the transfer policy. This load metric is then used to determine if a machine is “free” or

“busy”. In other words, the load metric is used to decide if the machine should attempt

to lessen it’s load by transferring tasks, or take on more load by accepting tasks from

other machines in the cluster.

A load index can be comprised of a number of things: CPU queue length, CPU usage,

average response time, I/O queue length, I/O service time, I/O blocks read/written,

memory page-fault rate, idle process run time, CPU load average, or demand on some

other system-specific resource [Moy, dS96].

PANTS monitors the load at a node by periodically checking the CPU usage through
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the /proc file system. The number of jiffies that the CPU spent processing user, system,

nice, and idle processes in the last 5 seconds are obtained. The user, system, and nice to-

tals are summed and divided by the total, obtaining a percentage which is then compared

against a static threshold set at compile time.

2.2 Current Configuration

This section describes the current configuration of hardware and software. This will allow

our results to be understood in context, and also allow them to be reproduced more

exactly in the future. In addition to base hardware and software, our cluster has some

software that should be explained, concerned with the workings of PANTS. This section

is supplemented by the logs of configuration for each node, found in Appendix B.

2.2.1 Hardware

The current PANTS Beowulf cluster (hereafter referred to as ’the PANTS cluster’) is

composed of seven 600MHz Alpha machines. The physical memory ranges from 512MB

on the file server to 64MB on several of the node machines, and all machines run at least

128MB of additional disk swap space. Each machine is equipped with a PCI Ultra-Wide

SCSI controller and UW SCSI hard drives, as well a 100Base-T network card. The network

is arranged in a star topology, with one machine providing a gateway to the outside world

through an additional network card and IP-Masquerading software. The hostnames of

the nodes are Pants, Beowulf, Moscow, Rome, Paris, London, and Shanghai.
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2.2.2 Software

All of the machines in the cluster are running RedHat Linux 7.1, the latest release to

support the Alpha architecture. The Linux kernel is version 2.4.18, each kernel image is

compiled with NFS support, and the build ’flavor’ is specified for each system’s particular

motherboard and processor type. The cluster shares a common /home directory which is

shared via NFS from the file server. This common file system is necessary to facilitate

rsh execution of child processes. The NFS server is the fastest of the machines and it’s

kernel image has a larger maximum read/write block size than default. The read/write

block size settings on remote machines are also increased, for better performance. To see

a listing of all the processes running on each system in the cluster see Appendix B.

2.2.3 PANTS

Each machine runs the PANTS daemon, which provides the bulk of the PANTS dis-

tributed functionality. This daemon controls the availability of a node to accept processes,

the list of currently free nodes, and the allocation of free nodes to processes which request

them.

The PANTS daemon has two procedures for measuring load and determining its avail-

ability, both of which examine the current CPU load. The first method uses the sysinfo()

system call to query the last one minute of CPU load, which returns a status of ’available’,

’unavailable’, or ’overloaded’. This method is not in use by default. The second method,

which presently is in use, examines the CPU jiffies as reported in the /proc/stat file.

This measurement provides the number of jiffies (1/100th of a second) spent by the CPU

processing in user mode in the immediate past. The threshold for ’unavailable’ status is
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set at 95% CPU utilization.

2.2.4 PREX

PREX (PANTS Remote Execution) is the means by which processes are migrated. This

library receives all requests for new processes and examines the requested binary to deter-

mine if it has been flagged migratable. If so, PREX requests a free node from the PANTS

daemon, then executes the binary on that node via rsh. For this system to work the

binary must have the same absolute path on both the host machine and the remote node.

For the current cluster setup this means the binary must be within the /home directory

structure, which is shared via NFS.

2.2.5 Past Benchmarks

The group that implemented PANTS developed a simple benchmark to test functionality.

This test consists of an application which performs summations by splitting a large sum

into multiple chunks and exec’ing a process for each chunk. PANTS then sends processes

away from the originating machine, resulting in a near linear speedup for this specific

application when the sum was sufficiently large enough. They found a 1 second delay of

execution for processes that were migrated [DHV00].
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3 Methodology and Approach

Our methodology consists of improving the PANTS implementation by adding configura-

tion options, and signal handling capabilities. The implementation modifications facilitate

improvements in the load measurement techniques. These improvements include: snap

shot load measurements, configurable exponentially weighted averaging, metric weight-

ing, and adjustable sampling frequency settings. We are now able to accurately measure

the load on the system by looking at CPU usage, I/O usage, context switching, and

memory usage. We have developed benchmarks to load these components, an overall

macro-benchmark, and a real world application. The purpose of these benchmarks is to

improve the performance of the PANTS demon under various loads.

3.1 Improved PANTS Implementation

We made several improvements to the PANTS implementation. These changes include

adding a PANTS configuration file, signal/interrupt handling, and logging. These im-

provements are necessary to make PANTS more robust, configurable, and easier to eval-

uate in terms of performance. Since remote shell (RSH) is used by PANTS to remotely

execute processes, we have also profiled the performance of RSH to establish the cost of

migration in the PANTS system.

3.1.1 Configuration file

In the prior PANTS implementation many variables were static, coded in the main header

file for the PANTS daemon. Included in these variables were multicast addresses, port

numbers, and “timeout” settings. These timeout settings are in place to control the
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granularity of the load measurements. The daemon takes a load measurement, sleeps

for the timeout period and then takes another measurement. Also hard coded into the

implementation is the threshold for determining if a machine was busy based upon CPU

readings being greater or less than this threshold. In order to evaluate the performance

of the PANTS system it is crucial to us to have fine control over these values, preferably

without a recompile of the PANTS code.

To enable this control we have implemented configuration file parsing, (/etc/*.conf

files.) A user can enter textual tokens into the configuration file, for example: log metrics

no disables the logging of the load metrics [also see: Section 3.1.3]. A simple parser was

constructed, and the daemon reads the configuration file on startup.

A user can also cause the daemon to re-read the file by sending the daemon a ‘SIGUSR1’

signal. Support has also been added later for configuring our new load metrics, their

weighting, and also the exponential weighted averaging [see: Section 3.2]. For details on

the valid options in the configuration file see Appendix A.

3.1.2 Signal/Interrupt Handling

The prior PANTS implementation only responded to termination signals, either through

a Ctrl-C key press or a kill system call if the daemon was not invoked by a user inside

a shell. We added support for SIGUSR1 signals, which causes the daemon to reread

the configuration file [see: Section 3.1.1], SIGHUP signals, which cause the daemon to

completely restart, SIGUSR2 signals, which toggle the logging of metrics [see: Section

3.1.3], and SIGTRAP signals, which toggle additional logging to standard error.
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3.1.3 Logging

Logging of daemon information and load data is very important in terms of performance

evaluation. PANTS printed to standard output some information such as availability,

multicast messages it received, etc. Unfortunately, this functionality was limited if the

daemon was started at boot time. There was also too much data being output by the

daemon to make this feature useful if started from a shell.

We improved PANTS by adding compatibility with the standard syslog daemon which

comes with every Linux system. The PANTS daemon now logs to a separate log file in

/var/log/, making data collection and analysis easier. The daemon has multiple levels

of logging: error logging, load metric logging, and all purpose logging, is configurable

through the configuration file [see: Section 3.1.1], and can also be controlled through the

use of signals [see: Section 3.1.2].

3.1.4 Profiling RSH

When a process is going to be remotely executed on another machine, PANTS makes

use of Remote Shell, or RSH [see: Section 2.2.2]. The original implementors of PANTS

developed a simple benchmark [see: Section 2.2.5] and held that performance was only

increased when a sum of substantial size was calculated [DHV00].

They claimed that this was due to the fact that a small summation does not experience

any speedup under PANTS because there was significant overhead (1 second) in executing

a process via RSH. A 1 second overhead could add up if there was large number of short

process migrated by PANTS.

We devised an experiment to profile the performance of RSH remote execution. The
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experiment program that we wrote remotely executed commands through RSH on ran-

dom nodes in the cluster and measured the time each took to execute. After one thousand

executions of the same command were executed the average time per execution was cal-

culated. The experiment program also ran the command one thousand times on the local

machine using the system() call, also calculating the average time per execution.

Profiling RSH remote execution
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Figure 1: Remote Execution

In comparing the average execution times of ps aux and rsh host ps aux it is evident

that remote execution through RSH takes approximately 0.06 seconds longer then local

execution. This is confirmed by comparing the average execution times of date and rsh

-l jnick -K host date. Also profiled were different command line options given to

RSH, including the login name and enablement of Kereberos authentication, which has

no significant effect on the average execution time. We concluded that the performance

impact of RSH was small and that there was no reason modify the remote execution

mechanism in PANTS.
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3.2 Improved Load Measurement Technique

The original PANTS daemon measured load by simply looking at the percentage of CPU

jiffies spent processing in user mode over a period of time. While this can be a valuable

measurement, several improvements were made in this implementation to facilitate a more

complete measurement of load.

3.2.1 Modularity

A primary change to the original PANTS implementation was the modularization of the

load measurement code. While the original CPU measurements were only two procedures,

they were contained in the primary source files of the daemon. In order to supplement

this code it was first extracted and placed in its own module outside the existing source

files. This allowed easy modifications of the entire load measurement system with few

alterations to the rest of the daemon, and greatly increased the overall clarity of the

source code. A substantial number of constants were introduced into this module to

increase the readability of the load functions. The module communicates its status to the

daemon by returning a value to indicate its availability.

3.2.2 Snapshot Load Information

The load information used by the daemon is read directly from the /proc/stat file produced

by the proc filesystem. This file provides direct access to kernel data structures which store

accounting information used to make load decisions. By maintaining a series of moments

of information from this file, we can compute a windowed average of the activity of a node.

This series is constantly being updated, to provide a system of snapshots, employed to
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maintain a history of load over several intervals. These snapshots record certain system

accounting variables at a point in time and are time stamped as they are read from

/proc/stat.

3.2.3 Configurable Metric Weighting and Sampling Frequency Settings

This series of snapshots provides several advantages. Primarily it allows exponential load

weighting where the measurement of load on the system at any point in time can be

weighted slightly against past performance. System resources used during each interval

are calculated at each request for system load, and the previous intervals are multiplied

by a fraction. By increasing this fraction the system can flatten statistical ”spikes” in

the load metrics. The system is currently configured to record the past two measure-

ments. The weighting values for these past measurements are configurable from the main

PANTS configuration file and allow easy modification of both the weight of previous load

measurements and the number of past measurements examined. The interval between

snapshots is also controlled in the configuration file and can be changed during execution.

Time stamping each individual snapshot allows for modification of the time interval dur-

ing execution by providing an accurate interval measurement between each snapshot. All

metrics measured are effected equally by any exponential weighting.

3.3 Load Metrics

The actual load variables read from /proc/stat include CPU usage, I/O measurement,

number of context switches, memory pages read and written, and overall interrupts gen-

erated on the system. These numbers are read from /proc/stat into a data structure

16



and are then time stamped. See the manual page for the /proc filesystem for more infor-

mation about the values in /proc/stat. Each metric has a threshold value that is used

to determine the availability of the node. If the measurement produced by the metric is

over this threshold the node is considered loaded and will return an unavailable status to

the leader node. The node will not be listed as available until the loads are under the

thresholds, and the leader node is then informed of the node’s availability.

3.3.1 CPU

The CPU value is read as a series of snapshot readings which represent the overall number

of jiffies (1/100ths of a second) that the CPU spent processing in user, nice, system, and

idle modes since bootup. While the default PANTS load sharing policy looks exclusively

at jiffies spent processing in user mode, our policy totals all jiffies spent in user, system,

and nice mode between snapshots and divides by the total jiffies over that same interval. If

this percentage is over the 95% threshold setting for CPU load metric the node is loaded.

3.3.2 I/O

Input and output are measured in terms of number of blocks read and written to disk. This

value is divided by the interval time to produce blocks/second, which is them compared

against the I/O threshold value to determine if the node is loaded.

3.3.3 Context Switching

Context switches are measured in terms of total switches performed by the system since

bootup. Total switches for an interval are calculated by taking the difference of total

switches in two snapshots. This number is then divided by the time interval between
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the snapshots to produce context switches per second. If this number is above the con-

text switching threshold the node is considered loaded. A significant number of context

switches occur while the system is completely unloaded; this must be taken into account

when setting the context switching threshold.

3.3.4 Memory Usage

Memory is measured in terms of total pages read and written. For the purpose of this

benchmark there is no difference between a page write and a page read, instead they

are added together to produce total memory page operations. The difference in total

page operations between two snapshots is divided by the time interval to produce page

operations per second over the interval. If this value is larger than the memory threshold

the node is considered loaded.

3.3.5 Interrupts

Interrupts are measured as total interrupts generated since bootup. The difference be-

tween the total interrupts measured in two snapshots is divided by the time interval

between the snapshots to produce interrupts generated per second. If this value is larger

than the interrupts threshold the system is considered loaded. A significant number of

interrupts are thrown in normal unloaded system execution which must be observed when

setting the interrupt threshold. This is usually around 100,000 interrupts per second on

our cluster.
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3.4 Micro-Benchmark

A refined understanding of the way that PANTS shares load is made possible by tests

with fine control over the CPU cycles used, interrupts thrown, disk usage, memory usage,

and context switching. The micro benchmarks that have been created for this purpose

allow us to test specific actions of PANTS in controlled situations. For any given test,

different amounts of different kinds of work can be assigned to the system, and the sharing

of work can be studied for tuning and analysis purposes.

The manner by which the micro benchmark programs implement this control is by

creating a task that consists mainly of one of the types of load we have measured, and

reporting how fast the assigned tasks were completed. A system that shares the load

better will complete the tasks faster. The types of load created and measured by the

benchmarks are CPU usage, I/O to the disk drive or drives, and memory usage. Because

PANTS works by relocating processes before executing them, these benchmarks start a

number of processes on one node, and then allow pants to remotely execute them. Each

benchmark test begins with several minutes of idle time to allow the systems to reach

their baseline measurements.

When the actual benchmark tests begin, they write a time stamp to syslog to mark

the start of their execution. The controlling process will then begin spawning a number

of identical child processes at fixed intervals. These child processes do the actual work

of the benchmark, and are migratable and therefore can be passed to a remote node for

execution. When all the child processes are done, the syslog of the parent is again time

stamped to mark the end of execution.
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3.4.1 CPU Load

The CPU load process consists of a parent process that spawns four child processes along

five minute intervals. Each of these child processes performs a large number of float-

ing point operations (FLOPs). Flops were chosen for this benchmark because they are

frequently used in some distributed computing. This benchmark shows system load condi-

tions under a system that is loaded primarily with CPU intensive processes, while ignoring

other metrics.

3.4.2 I/O Load

The I/O test is designed to load the disks of a machine while leaving the CPU relatively

free. A copy of a large directory structure (384MB including files and directories) was

placed on the local hard disk of each machine. The parent process then spawned four child

processes along five minute intervals. Each child process copied the directory structure

to a new location on the local hard disk. Many small files were involved requiring more

writes than one large sequential file of the same size because new files and directories

must be written as well as the actual data of the files. The file system used was the Linux

ext2fs.

3.4.3 Memory Usage

The memory usage test consisted of a parent process that spawned four child processes

along five minute intervals. Each of these child processes used the malloc() function

to allocate 100MB of memory, and then it used the mmap() function to map an existing

section of memory into this allocated area. After the memory was allocated and mapped
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it was released using the free() function. This method was repeated ten times in each

child process, creating a rise and fall of virtual memory. None of the systems involved

started the test with 100MB of free physical memory, so each machine must page memory

in and out of its swap space during each cycle to provide enough virtual memory to fit

the allocated structure.

3.5 Macro-Benchmark

Our micro-benchmark successfully loads individual components in the system. Most ap-

plications don’t load a single aspect of a system, but instead load several. We developed

a “Macro Benchmark” which loads multiple system resources, specifically memory and

I/O access.

Similar to the micro-benchmarks this benchmark is highly tunable. It takes as com-

mand line parameters a number of processes to exec and an integer load factor. The

optimum number of processes to spawn is the same as the number of nodes in the cluster.

The number of processes are spawned, each set an alarm via the setitimer() system call

to 100*load factor, and begin loading the system. This loading is achieved by opening

a 130 megabyte file, reading strings out of it via scanf(), and outputting those same

strings to another file via printf(). The alarm goes off after the specified time, giving a

load in relation to time proportional to the parameter load factor.

By reading the large file many I/O operations are requested, along with a sizable

amount of memory usage (enough to exhaust the physical memory and cause page thrash-

ing), while CPU usage is kept relatively low. If PANTS were to quantify load based only

upon a CPU metric, as it formerly did, processes like this would receive no load sharing

21



benefit.

3.6 Real-world application

To further evaluate the performance of PANTS we chose to use a real-world application as

a benchmark. The application is a distributed compilation of the Linux kernel, which is

executed by the standard Linux program make. This distributed compilation exemplifies

an application which imparts significant load on the I/O and memory resource with lower

load on the CPU.

To make the compilation distributed via PANTS we had to make modifications to the

compiling process. First, we marked the gcc compiler binary as migratable, which allows

PREX to remotely execute gcc on remote nodes. Second, we modified the standard

Makefile included with the Linux source tree to use a script program (my gcc) as the

compiler. This script program simply made any file references passed from make into

absolute paths. Relative paths to files are not translated properly when sent to remote

nodes, as the working directory is where the binary is located on the filesystem.

The my gcc script then uses an execve() of the real gcc giving it the absolute file

names it determined as arguments. PREX then intercepts this execve() call, checks

and sees that gcc is migratable, and then hands the process to the PANTS system. We

also modified ld, the link editor program used by make. We modified it to wait until all

the files were present on the NFS mount before it attempted to link them. This added

robustness to the compilation, but in practical use we feel it is unnecessary as a properly

tuned NFS server can keep up with the demand placed on it during the compile.

The Linux kernel source tree was located on the NFS mount and all output files were
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sent to this same location. This made all of the files available to all the nodes. The build

was started from any node in the cluster by simply typing make vmlinux from the NFS

mounted Linux kernel directory.

4 Results

Results are based off the log files produced by the PANTS daemon. These log files

contained metric information for CPU, memory, disk, context switching, and interrupts at

five second intervals. We measured the load on an idle machine and obtained the following

baseline measurements for each metric: CPU load at 0%, I/O load at 250 blocks/sec,

memory load at 0 blocks/sec, interrupts at 103,000 interrupts/sec, and context switches

at 950 switches/sec.

4.1 Micro benchmark results

The micro benchmarks were run on unloaded systems, only running basic system services.

These services included the inetd daemon, which is responsible for rsh, the system logging

deamon, crond, swapd, and a few other services. To see a listing of all the processes

running on each system in the cluster see Appendix B.

4.1.1 CPU benchmark

The CPU benchmark displayed the typical behavior of the PANTSD system. As each

node surpassed 95% CPU utilization, it was removed from the list of free nodes and did

not take any more processes. The total load of the benchmark was divided evenly between

all four nodes. See Figure 2 for the average load cluster wide for each metric during the
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benchmark.
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Figure 2: CPU micro benchmark

4.1.2 Memory benchmark

The memory benchmark was first run with only the CPU metric enabled, with the CPU

threshold at 90%. The parent node never became unavailable, as CPU utilization stayed

around 7%. However, memory usage on the parent node was extremely heavy, and the

machine became unresponsive to user control for most of the test. The total runtime for

this test was 1 hour, 33 minutes and 43 seconds. See Figure 3 for the average load cluster

wide for each metric during the benchmark. While the memory load is high, the I/O is

also quite loaded. This is because the memory metric is page faults per second and page

faults by their nature effect the load on the I/O subsystem. The standard deviation for

the memory metric in this benchmark is approximately 12,000 page faults/sec, which is

expected as no load is being distributed.

The memory metric was then enabled for the second run, with the threshold set at

10000 pages/second. After the first process was spawned the parent node (London) showed

50000 pages/second, switched to the unavailable state and was removed from the free node
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Figure 3: Memory micro benchmark with PANTS

default policy
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Figure 4: Memory micro benchmark with PANTS

new policy

list. The second process was then passed to Rome, which immediately became unavailable

when it displayed 100000 pages/second. The third process was passed to London, and

the fourth to the leader node, Paris. Total execution time for this run was 10 minutes

and 53 seconds. The average load for each metric cluster wide is shown in Figure 4. The

memory load average is increased as the previously idle nodes are now participating, and

the standard deviation is much lower at 575 page faults/sec. The load on the I/O system

is much lower for two reasons: the load on memory is not as high so not as many disk

accesses are necessary to swap pages, and some machines in the cluster have more memory

than others and not as many swaps are needed are required on these machines.

4.1.3 I/O benchmark

The disk benchmark was first run with only the CPU metric enabled, with the CPU

threshold at 90%. CPU utilization stayed between 4% and 8% for the duration of the

run. The parent machines was fairly responsive to user input until the second process

was spawned, at which time it stopped responding to other commands until the test
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Figure 5: I/O micro benchmark with PANTS default

policy
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Figure 6: I/O micro benchmark with PANTS new

policy

completed. The average load for each metric cluster wide is shown in Figure 5. While the

average for I/O load is low, the standard deviation is very large.

For the second run the disk threshold was set to 10000 blocks/second in addition to the

CPU threshold at 90%. Immediately after the first process was spawned the parent node

displayed 20000 blocks/second and because unavailable. The second process was passed

to Beowulf, which immediately displayed over 100000 blocks/second and also immediately

becomes unavailable. The third process was passed to Rome, and the fourth process to

the leader, Paris. Cluster wide load averages can be seen in Figure 6. The average is

considerably increased, but the standard deviation is greatly decreased, as this load is

more evenly distributed.

4.2 Linux Kernel Compile as a Real-World Benchmark

Our performance evaluation of the distributed compilation of the Linux kernel involved

several steps. We obtained timing measurements for several variations of the compilation

for comparison purposes. Our first variation was a compile were the files where stored on
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Figure 7: CPU Usage: Local
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Figure 8: CPU Usage: NFS

the local hard disc and no PANTS load distribution. The second was a compile of the

kernel tree which was stored on the NFS mounted disc. The next three were all compiles

where the source was mounted over NFS with PANTS running. In the first of these three

the gcc binary was not migrateable, in the second PANTS used the default load metrics,

and finally PANTS used our new load metrics and policy.

The Linux kernel version was 2.4.18, the build was configured to compile a kernel

image identical to those on which the machines in the cluster currently ran. Overall, 432

files were compiled, with the mean source file size being 19KB. Five compile times were

averaged to obtain the results shown.

Figure 7 shows the CPU usage for a local disc compilation, which shows considerable

load being imparted on the CPU. However, when the kernel source code is accessed via

NFS, some delay is induced and subsequently the processor is not loaded, as can be seen

in Figure 8.

The compilations with PANTS running but migration disabled was achieved by flagging

the gcc binary as not migratable. This evaluation was done to give baseline results and
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Figure 9: CPU Usage: PANTS default
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Figure 10: Disk Usage: PANTS default

an idea of the overhead involved with running the PANTS daemon. We conclude that

there was very little overhead incurred: the compile with PANTS running took 5 seconds

longer out of a total of 1520 seconds than an NFS compile. This overhead is the slight

delay induced by prex’s checking the gcc binary for migratability, which was done at least

432 times during the course of the compile. Additional checks were made of the make

binary, and the utilities that make uses, such as ld and ar.

The next evaluations were with PANTS running using the default load metrics. Specif-

ically, as noted in section 2.2.3, the CPU metric was the only one being used and the

threshold was set at 95%. As shown in Figure 9, the CPU usage during a compile rarely

goes above 95%, and only at these times are process migrated. This lack of migration

yields no throughput increase or load distribution throughout the cluster. In Figure 10, it

is clear that the disk is being heavily loaded. In addition to the disk usage, the memory is

being loaded and there is also a large number of context switches and interrupts generated

during the compilation.
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4.2.1 Establishing thresholds
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Figure 11: CPU

In order to evaluate the performance of our new load sharing policies, we first had to

establish thresholds for each load metric. Figures 11 - 15 compare the average load on

the originating node when using the default load sharing policies with the load of a quiet,

unloaded system. The unloaded measurements were obtained by running the PANTS

daemon and measuring the load over a one hour long period of time. Particularly for

the context switching and interrupt metrics it was important to determine the baseline

for these metrics on an unloaded system. We then took an iterative approach, moving

the threshold from this baseline towards the average load we obtained with the default

polices. If these thresholds were too low, the remote nodes would become too loaded too

quickly and most of the load would stay on the originating node. Eventually we obtained

the following thresholds: CPU Usage at 95%, I/O at 1000 blocks/second, memory at 4000

pages/second, interrupts at 115000/second, and context switches at 6000/second.
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4.2.2 Results of new load metrics and policies

Using our new load metrics and policies the throughput and load distribution is dramat-

ically increased. Figures 16 - 20 show a system level perspective of the results of our

new metrics and policies. These figures compare the average load for each metric using

the PANTS default policy, and the new policy and metrics we created. The standard

deviation is decreased considerably, and the maximum and minimum values are brought

closer to the average.

Several metrics show interesting behavior: the I/O and memory load average went

down using our new policy. This may seem counter intuitive, but can easily be explained

by the fact that some machines in the cluster have more RAM then others. This means

that these machines don’t have to use swap space and very few page faults are generated.
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There still remains some amount of variance in the load between different machines in

the cluster using our new policy. This is due to the fact that there is some load which

cannot be migrated from the originating node. This load includes that of running the

make program and managing over 400 rsh remote executions.

In Figure 21, we compare the average time it took for each compilation method. From a

user’s perspective, our new metrics and polices result in a 54% reduction in the compilation

time over the default policy, that just measured the load on the CPU. Furthermore, we

decrease the time of the local disc compilation by 56%, and the NFS compilation by 56%.

Figure 21 summarizes the total time for these experiments.
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Figure 21: Summary of Linux kernel compilation Application Results
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5 Conclusions

A Beowulf cluster is a distributed system consisting of inexpensive computers networked

together cheaply, usually via ethernet. It is often desirable in such systems to distribute

workload throughout the cluster.

Ideally, the distribution of workload tries to share load equally among all the machines

in the cluster, decreasing response times and increasing overall throughput. PANTS

Application Node Transparency System [DHV00] is a load distribution system which

strives to remove the need for expertise required by other load distribution mechanisms

[BG].

By default, PANTS used the /proc filesystem to obtain a count of jiffies (1/100ths of

a second) that the CPU spent processing in user mode in the past 5 seconds. PANTS

then calculated the total jiffies and found the percentage of the user mode jiffies to the

total. If this percentage was over 95% then PANTS considered the node loaded or “busy”;

otherwise it was considered “free”. Any workload that did not generate CPU load would

not be shared amongst other machines in the cluster.

However, programs that impart load on the CPU of a machine are not the only appli-

cations that are desirable to run on Beowulf clusters. An application could read or write

many files to disk imparting load on the I/O subsystem, maintain large data structures

loading memory, or cause system events such as interrupts and context switches. We

implemented ways to measure these additional types of load and included them in the

PANTS load sharing policy.

We developed micro benchmarks to test our new load metrics and to get a better

understanding for how the system was behaving when loaded. We then developed a
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macro benchmark, which was more of a realistic mix of load. Finally, we chose a real

world application as a benchmark.

For our real world application we chose to evaluate the performance a distributed com-

pilation of the Linux kernel with PANTS. When using the default PANTS load metric and

policy, only examining CPU load, we found that there was very little process migration.

Subsequently, there was no increase in throughput and no sharing of load throughout the

cluster.

Using our new metrics and policy we achieve better throughput, decreasing the length

of the compile by more than 50% from the default policy. From a system level perspective,

we lowered the standard deviation from the average cluster-wide load for each of the

metrics considerably sharing load very well amongst the nodes in the cluster. Clearly,

including I/O, memory, context switches, and interrupt load metrics has many benefits

when used in load distribution.

36



6 Future Work

Preemptive migration is the term used describe the act of stopping a process that has

started execution, moving it to another machine, and resuming the execution. Some load

distribution algorithms make use of preemptive migration to allow overloaded nodes to

send processes currently running to other nodes which were busy when the execution

started but have become free. PANTS may benefit from using preemptive migration,

but it has not yet been implemented because most preemptive migration techniques are

architecture bound. In the latest development versions of the Linux kernel (2.5.*) there

is some support for preemption, perhaps this mechanism could be utilized by PANTS.

Including a network component of the load metrics may be beneficial to PANTS. The

current metrics may overlap network usage somewhat, as context switches and inter-

rupts are caused by network activity. This metric could be as simple as parsing informa-

tion retrieved by the ifconfig command, or slightly more elegant by making use of the

/proc/net information.

Perhaps the most benefit can be found in the use of adaptive thresholds. Currently, the

thresholds used by PANTS are static, although they can be modified without restarting

the daemon. If the thresholds were adaptive PANTS might be able to respond more

appropriately when the load on the system fluctuates.
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A PANTSD Configuration File Options

By default the PANTS daemon reads configuration information from /etc/pantsd.conf.

When starting pantsd you can supply a pathname to a config file for pants to use (example:

/home/jnick/my conf pantsd.conf). The daemon will insert default values if an option

is not specified in this file.

Here is the format information for the config file, with what the key is for the config

file, the name of the member in the options structure it represents, and the default value.

‘‘multi leader address", PANTS MULTI LEADER, 224.10.0.1

‘‘multi available address", PANTS MULTI AVAIL, 224.10.0.2

‘‘query port", PANTS QUERY PORT, 0x9F

‘‘transfer port", PANTS TXFER PORT, 0x9F7

‘‘highwater mark", PANTS HWM, 10

‘‘lowwater mark", PANTS LWM, 2

‘‘leader timeout", PANTS LDR TIMEOUT SEC, 5

‘‘leader timeout usec", PANTS LDR TIMEOUT USEC, 0

‘‘interval", PANTS INTERVAL SEC, 5

‘‘interval usec", PANTS INTERVAL USEC, 0

‘‘forced update count", PANTS FORCED UPDATE COUNT, 6

‘‘local port", PANTSD LOCAL PORT, 0x9F8

‘‘max free node list", PANTS LISTMAX, 128

‘‘threshold", THRESHOLD, 95

‘‘weight 0", WEIGHT 0, 0

‘‘weight 1", WEIGHT 1, 0
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‘‘weight 2", WEIGHT 2, 0

‘‘log stderror", LOG STDERROR, ‘‘no"

‘‘log metrics", LOG METRICS, ‘‘yes"

Lines starting with # are treated as comments and are ignored.

The following is an example of valid pantsd.conf file:

# Set threshold

threshold 75

# Log to standard error

log stderror yes

PANTSD responds to the following signals:

SIGINT - terminates the deamon

SIGHUP - restarts the deamon, causing the config file to be re-read, and all load measure-

ments to be reset

SIGUSR1 - causes the daemon to re-read the config file

SIGUSR2 - toggles whether or not the daemon logs load metrics

SIGTRAP - toggles whether of not the daemon also logs to stderr
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B Process listing

USER       PI D %CPU %MEM   VSZ  RSS TTY      STAT START   TI ME COMMAND
r oot          1  0. 0  0. 2  1784  336 ?        S    Apr 14   0: 03 i ni t
r oot          2  0. 0  0. 0     0    0 ?        SW   Apr 14   0: 00 [ kevent d]
r oot          3  0. 0  0. 0     0    0 ?        SWN  Apr 14   0: 00 [ ksof t i r qd_CPU0]
r oot          4  0. 0  0. 0     0    0 ?        SW   Apr 14   0: 02 [ kswapd]
r oot          5  0. 0  0. 0     0    0 ?        SW   Apr 14   0: 00 [ bdf l ush]
r oot          6  0. 0  0. 0     0    0 ?        SW   Apr 14   0: 00 [ kupdat ed]
r oot          7  0. 0  0. 0     0    0 ?        SW<  Apr 14   0: 00 [ mdr ecover yd]
r oot        390  0. 0  0. 2  1968  336 ?        S    Apr 14   0: 04 sysl ogd - m 0
r oot        395  0. 0  0. 0  1864   96 ?        S    Apr 14   0: 00 kl ogd - 2
r pc        409  0. 0  0. 0  2136   56 ?        S    Apr 14   0: 00 por t map
r pcuser     427  0. 0  0. 0  2256   88 ?        S    Apr 14   0: 00 r pc. st at d
r oot        500  0. 0  0. 0     0    0 ?        SW   Apr 14   0: 00 [ r pci od]
r oot        501  0. 0  0. 0     0    0 ?        SW   Apr 14   0: 00 [ l ockd]
r oot        551  0. 0  0. 1  2296  144 ?        S    Apr 14   0: 00 / usr / sbi n/ aut omou
daemon     563  0. 0  0. 1  1920  160 ?        S    Apr 14   0: 00 / usr / sbi n/ at d
r oot        585  0. 0  0. 8  3848 1048 ?        S    Apr 14   0: 00 xi net d - st ayal i ve
r oot        625  0. 0  0. 8  8768 1104 ?        S    Apr 14   0: 00 sendmai l :  accept i
r oot        638  0. 0  0. 2  1832  352 ?        S    Apr 14   0: 00 gpm - t  ps/ 2 - m / d
r oot        650  0. 0  0. 3  2248  440 ?        S    Apr 14   0: 00 cr ond
xf s        686  0. 0  0. 2  6440  352 ?        S    Apr 14   0: 00 xf s - dr oppr i v - da
r oot        712  0. 0  0. 1  1736  232 t t y1     S    Apr 14   0: 00 / sbi n/ mi nget t y t t
r oot        713  0. 0  0. 1  1736  232 t t y2     S    Apr 14   0: 00 / sbi n/ mi nget t y t t
r oot        714  0. 0  0. 1  1736  232 t t y3     S    Apr 14   0: 00 / sbi n/ mi nget t y t t
r oot        715  0. 0  0. 1  1736  232 t t y4     S    Apr 14   0: 00 / sbi n/ mi nget t y t t
r oot        716  0. 0  0. 1  1736  232 t t y5     S    Apr 14   0: 00 / sbi n/ mi nget t y t t
r oot        717  0. 0  0. 1  1736  232 t t y6     S    Apr 14   0: 00 / sbi n/ mi nget t y t t
r oot      12617  0. 0  1. 5  4232 1920 ?        S    01: 04   0: 00 i n. r shd
j ni ck    12618  0. 0  0. 9  4136 1240 ?        R    01: 04   0: 00 ps aux
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