
1

Quantifying the Effect of Latency on Game Actions in BZFlag

Latency and Games: Measuring the Effects of Latency on Gameplay in an Online Game

A Major Qualifying Project Report

submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

By:

Christopher Burgess

Nathan Roy

Date: March 4, 2009

Report submitted to:

Professor Mark Claypool

2

Abstract
 Latency’s effect on performance in online games is becoming an increasingly relevant

area of research. While much research has been performed on the broad topic of latency in

games, this project studied the effect of latency on game actions based on their precision and

deadline characteristics. We modified a publically available game to allow for artificially

induced latency, ran experiments in that game with varying precision and deadline

characteristics, and analyzed the resulting data to determine the trends.

3

Contents
Abstract ... 2

Chapter 1: Introduction ... 4

Chapter 2: Background / Related Work .. 7

Chapter 3: Approach .. 10

3.1 Possible Approaches ... 10

3.2 Experiment Design .. 11

Chapter 4: Implementation ... 14

4.1 Code Design and Implementation for Latency Modification .. 14

4.2 Validation of Latency Modification ... 17

4.3 AI Aiming Modification ... 19

Chapter 5: Results .. 23

5.1 Experiment Parameters and Setup ... 23

5.2: Precision Space .. 26

5.3: Deadline Space ... 28

5.4 Precision and Deadline Space ... 31

5.5: Implications of Results ... 32

Chapter 6: Conclusion ... 34

6.1: Future Work ... 35

Works Cited .. 36

4

Chapter 1: Introduction
Online games, which are video games where players play with or against each other

over the Internet, are growing in popularity throughout the world. For example, Blizzard’s

World of Warcraft has gathered over 10 million subscribers throughout the world since its

launch in November, 2004 [1]. In order to provide a better experience for the growing number

of users playing these games, many researchers have turned their focus towards issues

affecting online game performance, such as network latency.

Latency is the delay between when an action is initiated by a game client and when it is

physically recognized by the game server. There have been many studies into the effects of

latency on user performance in commercially available games such as Unreal Tournament 2003

[3], Madden [4], and Warcraft 3 [5]. In these studies, the effects of latency on player

performance were evaluated based upon the player’s overall scores. While the Unreal

Tournament 2003 study did categorize weapons based on precision required, it did not study

the game actions as a whole, which left out actions such as running and jumping and did not

consider the deadline required for each weapon. These studies were effective in showing the

effects of latency and packet loss on individual player performance, but their results cannot be

easily translated or quantified based on the precision and deadline characteristics of game

actions.

While latency can be detrimental to a game’s performance, not all actions within a

game are equally sensitive to latency. Research has been done to provide criteria for which

game actions can be judged based on two properties: the action’s required precision and

deadline [2]. The precision of a game action is the accuracy which is necessary in order to

successfully complete the action. An example of precision is the size of a target within the

player’s crosshairs. The deadline of an action is the time required in order to successfully

achieve the desired outcome. An example of deadline is the time a target remains in the

player’s crosshair before going out of range. The goal of our project is to determine whether or

not actions in games are affected differently by latency based upon their precision and deadline

requirements. For example, actions with high precision requirements and short deadline, such

5

as shooting an enemy in the head from long distance will be more adversely affected by latency

then the act of shooting a cannon ball at an enemy ship.

Although there has been significant research relating to latency in games, to the best of

our knowledge, there has not been any research done into the effects of latency on specific

game actions based on their precision and deadline characteristics. Research into the effects of

latency on game actions with specific precision and deadline requirements can help game

developers understand what actions need to be optimized for network performance and which

actions do not depend so heavily on high network performance.

Our study aims to use a publicly available game called BZFlag (http://BZFlag.org/) to

study the effects of latency on specific game actions which have been categorized by their

precision and deadline requirements. BZFlag is an online multiplayer tank shooter game where

players play as a tank and are tasked with eliminating other players. The game can also be

played by robot players, or bots, which were used extensively during our experiment. The

reason we used bots for our experiments was to eliminate the factor of player skill differences

on our final results. In order to use BZFlag for our experiments, we first modified the game’s

code to allow us to induce specific latencies on the players in the game. We also modified

BZFlag’s code in order to allow us to change tank size and bullet speed, which provided us

control over the precision and deadline characteristics of the game’s main action, shooting.

Lastly, we modified the bot’s AI code to make them more selective Next, we ran tests using

our modified BZFlag game with eight bots and varying levels of induced latency to study the

effects of latency on actions with varying precision and deadline requirements.

After running these tests, the results obtained support the claim that game actions are

affected differently by latency based on their precision and deadline characteristics. We ran

tests in the precision space with varying latencies and found that in games run with higher

precision requirements, a tank with latency performed worse than games run with lower

precision requirements. Next, we ran tests in the deadline space and found that in games run

with shorter deadline requirements, a tank with latency performed worse than games with

longer deadline requirements. Lastly, we ran tests with variances in both the precision and

6

deadline spaces and found that in games with high precision and short deadline requirements,

the tanks with latency performed worse than tanks in a game with low precision and long

deadline requirements. The results are discussed in more detail in Chapter 5.

The rest of this paper is organized as follows: Chapter 2 presents background

information and the discussion of related work. Chapter 3 details our approach and experiment

design for the study of latency on game actions based on their precision and deadline

characteristics. Chapter 4 details the implementation and design of the modification made to

the BZFlag source code. Chapter 5 discusses the results of the experiments outlined in the

approach chapter. Lastly, Chapter 6 discusses the implications of the results of our experiments

with regards to other online games.

7

Chapter 2: Background / Related Work

Other attempts to examine the effects of latency in multiplayer online games have

focused primarily on user studies. Some examples of games studied include Unreal

Tournament 2003 [3], Madden NFL Football [4], and Warcraft III [5]. These user studies

generally focused on a single game or an aspect of a game, and consisted of various users

playing the game both without latency and with latency added. The experiment administrators

would then measure the difference in player performance as latency increased based on the

changes in the player's score. As is to be expected, most of the referenced studies have found

that player performance degrades as latency increases; however, certain types of game actions

are more resistant to performance degradation due to latency, whereas others are more

susceptible to latency. What these user studies generally found was that actions requiring high

precision (like shooting a sniper rifle at a faraway target) or that require a very quick response

(like making a sharp turn in a racing game) are more affected by latency than actions requiring

less precision. While user studies can provide definitive and quantifiable results as to the

effects of latency in the game they focus on, it is often difficult to apply these results and

findings to other games. Another factor with user studies is the skill of the players playing the

game; this can be difficult to measure exactly. Our study attempts to provide a model for the

effects of latency on various actions in a game that can be applied to other games as well.

The variation in the results of latency tests performed on games indicates that there are

different categories of actions that can be executed in a game. The different categories of

game actions will also be affected to different degrees by network latency. It has been

theorized [2] that the susceptibility to latency of a particular action can be categorized based on

two attributes: the precision with which the action must be executed in order to be successful,

and the deadline by which the action must be performed by. Actions with higher required

precision and shorter deadline requirements are more susceptible to latency [2]. Therefore,

actions that require both speed and accuracy are the most difficult to perform in a game

environment. Actions that require either accuracy or quick response time, but not both, are

affected by latency as well; however, the user can compensate partially for the slow network

response time. Finally, those actions that have no precision or deadline requirements are

8

hardly affected at all. The user studies support this hypothesis; games such as first-person

shooters, which require quick and precise actions, are the most adversely affected by latency,

whereas real-time strategy or turn-based games are the least affected. Games of the sports

and role-playing genres, which generally have moderate precision requirements, are

moderately affected by latency. The precision-deadline model of categorizing player actions

can give some insight as to how susceptible a particular game or aspect of a game will be to

latency; however, it too falls short of being able to quantify the difference, as the changes in

performance requirements from one game to another are difficult to evaluate. Also, even

within a specific game, there are many different actions which can be affected by latency to

varying degrees which is something the previous studies have failed to take into account. Our

study aims to categorize specific actions in a game and demonstrate the degree to which they

are affected by latency.

Research has also been done into the effectiveness of latency compensation techniques,

such as dead reckoning, which minimize the impact of latency on gameplay. One such attempt

[6] utilizes a simulation tool known as GLS (Game Latency Simulator) to test the effects of

various latency compensation techniques. GLS is a simplified version of a first-person tank

shooter game, called BZFlag, which pits a set number of computer-controlled tanks against

each other with the goal being to shoot as many of the opposing tanks as possible. The

simulator also has the capability to emulate network latency, and this delay can be adjusted by

the user as the simulation runs. Unlike most actual games, GLS also allows for modifications to

tank speed, bullet size, and shot speed, among other factors. The user can also choose which

form of latency compensation the computer-controlled tanks will use. This customization

makes GLS a useful tool for evaluating latency compensation techniques, but it has other

configurable features which make it useful for game latency studies. GLS’s ability to easily

adjust game mechanics can also be used to adjust the precision required to hit another tank, as

well as the deadline by which to do so. This provides a method to evaluate the effects of

precision and deadline on performance degradation without having to look at different games

in order to do so. However, GLS is very limited in what it can do; each simulation has only two

tanks, latency can only be applied to both tanks, and it also did not track the hits the tanks

9

scored on each other. For our study, we needed to be able to include more than two bots, be

able to induce latency on specific tanks in the game, and also needed to track scores as well as

other statistics.

The Game Latency Simulator is, as stated above, loosely based on an open source tank

shooter game called BZFlag. Like the simulation based on it, the game BZFlag is straightforward

in nature – the goal is simply to control a tank and shoot as many other tanks as possible.

Players can also enhance their tanks' capabilities by picking up “superflags”, each of which grant

a specific bonus, such as increased rate of fire or increased turning speed. Due to the simple

nature of the game, it is relatively easy to design computer-controlled players to play the game

and do so with a reasonable measure of efficiency. The computer players in BZFlag, while not

truly comparable to a skilled human player, are evenly matched when pitted against each

other, and therefore offer a testing medium that eliminates the human skill aspect of a user

study. These factors make the use of BZFlag attractive for our study.

10

Chapter 3: Approach

3.1 Possible Approaches

We researched three games in which to perform our study of the effects of latency on

game actions which have been categorized by their precision and deadline requirements. The

first option was to use a fully commercially released first person shooter game called Quake 3

(http://www.idsoftware.com/games/quake/quake3-arena/). The second choice was to use a

game simulator called GLS (Game Latency Simulator). The final option we had was to use the

publicly available tank shooter game called BZFlag. Out of all of these options, we were tasked

with deciding which choice would provide the best balance between ease of modification and

relevant results.

Our first test bed option, Quake 3, is a commercially available game whose source code

was recently released by the game’s developer, ID Software. Quake 3 is a multiplayer online

first person shooter game which is based on ID Software’s ID Tech 3 engine. The game features

the ability to play with robot players (bots for short), client-server architecture, and the ability

to extend the game’s code to produce complex modifications (or MODs).

While the use of a commercially available game, such as Quake 3, would have made the

results of our study more interesting and relevant to a larger community, it is based on a very

complex code base which would have required a lot of modification in order to work for our

study. Quake 3 does not have the ability to artificially induce latency per player, and adding

such functionality to a complex code base would have proven difficult. Also, modifying the

game’s bots to use specific weapons which have been analyzed based on their precision and

deadline requirements would have to have been implemented. For these reasons, we decided

to not use Quake 3 for our study of the effects of latency on game actions which have been

categorized by their precision and deadline requirements.

An alternative to using Quake 3 was to use the Game Latency Simulator (GLS). GLS,

which is based on the popular game BZFlag, is on the opposite end of the spectrum from Quake

3 as far as market proliferation is concerned. GLS was developed by a group of researchers for

11

the specific purpose of measuring the effectiveness of certain latency compensation

techniques. Since GLS is not a commercially available game, it is hard to judge the quality of the

results and they would be difficult to apply to a more general category of commercial games.

Also, GLS would require some modifications in order for it to provide the functionality required

for our study. These changes include modifying GLS’s latency code to allow latency to be

applied to each player individually, and also adding code to keep track of and log player

performance statistics such as hit percentage. However, the game’s code base is far less

complex compared to that of Quake 3, and the required modifications would not be as difficult

to implement. Although GLS remains a suitable option for our study, we decided to use a more

ubiquitous and flexible game in our study.

The game we decided to use for our approach was the publicly available game called

BZFlag. BZFlag is still relatively popular in the online community, with our measurements

showing an average of 20 active servers (servers with 2 or more players connected) at an off

peak hour (11 am EST). Stats regarding the number of servers and players currently playing are

continuously being tracked online (http://stats.bzflag.org/). BZFlag, which is the game that GLS

is based on, provides far more features than GLS does. Also, due to the fact that it allows

human players to participate it affords us the opportunity to perform a user study if time

permits. The use of a relatively popular online game such as BZFlag should provide our study’s

results with more credibility and relevance to possibly interested researchers. BZFlag still

required two major modifications to the game’s code base; adding the ability to induce latency

to the network code and a minor change to the code to allow the game to use a configuration

file to determine tank speed and bullet radius. However, due to the relative simplicity of

BZFlag’s code, the necessary modifications were not expected to be a major undertaking.

3.2 Experiment Design

Once we completed the necessary modifications to the BZFlag source code, we were

able to begin running tests to determine the actual effects of our artificially-induced latency on

in-game action. Our first goal in this regard was to define what constituted a test run of our

experiment, as well as the control values for that test run, both with and without latency. Once

12

we established normal values for the statistics we planned to measure by running an

unmodified game of BZFlag, we then proceeded to modify the precision and deadline

requirements of the game’s basic action of shooting at and hitting an opposing tank.

For our default experimental run, we had eight computer-controlled players, divided

into four teams of two, compete against each other for a predetermined amount of time. This

time was determined by running many tests of different length with eight computer players

and using the time frame which produces the most even results in the shortest amount of time.

Eight computer players is optimal given the size of the default map in BZFlag – it gives us a good

number of test subjects to measure results without making the map too crowded. Also, having

eight players for the test runs is optimal because it is a standard number of players in many first

person shooter game tournaments [8]. Once we have these results, we induced latency to one

of the computer controlled tanks and measure its performance relative to the other players

over the same time period as our control run. This showed the effect of latency on the default

actions of BZFlag.

Once the effect of latency on performance has been established, the next step was to

make a modification to some aspect of the game that changed either the precision or the

deadline required to score a hit against another tank. To measure precision, we modified the

size of the tanks. A larger tank size reduces the precision requirement for a successful shot

because the size of the target is larger. To measure the effects of latency on deadline

requirements, we modified the speed of the bullets that the tanks fire. Modifications which

provide a faster bullet speed afford players more time to plan a shot before firing, thus

affecting the deadline of the action. Once tests were run on the precision and deadline spaces

individually, tests involving modifications to both simultaneously were run. We were most

interested in the extremes of the precision and deadline spaces, so the tests involved the values

at the boundaries of either space.

The above experiments gave us a high quality sampling of statistics on which to base our

analysis. The most basic performance measurement in BZFlag is the player’s score, which is the

difference between number of kills and number of deaths. The computer-controlled players

13

are evenly matched in the latency-free experiments, so if they are allowed to continue to play

for a long enough period of time, they generally accrue scores close to 0. This period of time

was used for all of the experiments in order to provide data with reasonable deviation. The

score of a player affected by latency in a particular experiment was the main focus of our test

and it gave us a good indication of the level of performance degradation latency causes under

those circumstances. Another statistic we monitored is the player’s hit percentage. This is, in

effect, the success rate of the action being performed, and therefore the easiest to quantify

and compare to other games. A player with latency is expected to have a lower hit rate, but

these experiments helped us determine how hit rate is affected by modifications to precision

and deadline characteristics. Finally, the number of shots fired is a statistic that was also

affected by these same factors, as players affected by latency do not have as many

opportunities to take shots.

 In order to perform the experiments required, we first had to make modifications to the

BZFlag source code. The design and implementation details of these required alterations are

detailed in the next chapter.

14

Chapter 4: Implementation
 In order to test our hypothesis, we first had to design a way to introduce latency in a

controlled fashion into a local (robot player) BZFlag match. To do so, we chose to modify the

source code for BZFlag. Also, in the course of our original tests, we found that specific Artificial

Intelligence characteristics were giving lagged tanks an advantage in some cases; we

implemented changes to the AI code in order to address this problem. In this chapter, we will

discuss our code design and implementation for the artificial latency modification and the AI

changes.

4.1 Code Design and Implementation for Latency Modification

In order to add artificial latency to the CPU controlled players (henceforth referred to as

bots) of BZFlag, we first had to deduce a proper design which could easily and flexibly achieve

our desired functionality. During our study of the BZFlag source code, it became obvious that

the time keeping code which was included would not provide sufficient granularity for any

latency inducing modifications and that we would have to first write our own. Fortunately, we

were able to find time tracking code for the Windows platform on the Web [7] which we were

able to include in our modifications to the BZFlag source code.

The design we decided to employ was to create a new class called the

LatencyManager which is responsible for acting as a proxy between the bots and the server,

delaying messages sent for the bots which require artificial latency. The LatencyManager

class does this in two general steps.

After an initial setup, the first step of the process occurs whenever a bot tries to send

information to the server. Before the information is sent, the LatencyManager is first

queried to see if latency should be added to the packet. If so, the LatencyManager then stores

that packet’s required information into a DelayedMessage structure and queues that

structure to be sent at a later time. This process is done in the

LatencyManager::addDelayedMessage() method which is detailed in Figure 4.1.

15

void LatencyManager::addDelayedMessage(uint16_t code, uint16_t len, const

void* msg, PlayerId id)

{

 timeval t; //timestamp structure

 /* create a timestamp which represents the time to send the msg*/

 this->createTimeStamp(&t, tank_latencies[id]);

 /*create a DelayedMessage with the proper info */

 DelayedMessage dl;

 dl.code = code;

 dl.len = len;

 /* copy the message and info into the structure */

 dl.msg = (void *)malloc(len);

 memcpy(dl.msg, msg, len);

 dl.player_id = id;

 dl.timeToDeliver.tv_sec = t.tv_sec;

 dl.timeToDeliver.tv_usec = t.tv_usec;

 dl.sent = false;

 /* queue the message */

 messages.push_back(dl);

}
Figure 4.1: LatencyManger::addDelayedMessage() – Queues a packet to be sent later.

In order for the first step to be performed modification of the BZFlag

ServerLink::send() method was required to accommodate the additional logic. The

ServerLink::send() method was chosen because it is the single function that every

sending method calls in order to send data to the server. Therefore, the original contents of

the ServerLink::send() method were moved to a new method called

ServerLink::doSend() and new code was introduced which determined if a packet

should have additional latency. The new ServerLink::send() is detailed in Figure 4.2. In

this code, only the messages for the tank to begin shooting are lagged. The reasons for this are

detailed in Section 4.2.

16

void ServerLink::send(uint16_t code, uint16_t len,

 const void* msg)

{

 //* Only lag the shots of tanks to accurately simulate lag

 if((LatencyManager::instance().getLatencyForTank(this->getId()) != 0)

&& code == MsgShotBegin)

 {

 LatencyManager::instance().addDelayedMessage(code, len, msg,

this->getId());

 }

 else

 doSend(code,len, msg);

}

Figure 4.2: ServerLink::send() – Diverts all packets through the LatencyManager if the

tank has a nonzero value for latency.

The second step in the process is initiated every game update, where the

LatencyManager::Update() method is called. Game updates happen approximately

every 15ms. In this method, the LatencyManager determines if any of the packets in the

queue are ready to be sent, and if so, the LatencyManager calls the appropriate bot’s

ServerLink::doSend() method. The LatencyManager::Update() method is

detailed in Figure 4.3.

17

void LatencyManager::Update()

{

 /* get the current timestamp */

 timeval t;

 this->getTimeOfDay(&t, NULL);

 /* iterate through all of the queued messages */

 vector<DelayedMessage>::iterator it = messages.begin();

 it = messages.begin();

 for (it; it != messages.end(); it++)

 {

 /* if the message is ready to be sent */

 if(timeStampHasExpired((* it).timeToDeliver, t))

 {

 /* send the message and mark the message as sent so

 it can be pruned */

 getServerLinkForTank((*it).player_id)->doSend((*it).code,

 (*it).len, (*it).msg);

 (* it).sent = true;

 }

 }

 /* remove the sent messages from the queue */

 messages = pruneSentMessages();

}

Figure 4.3: LatencyManager::Update() – Checks to see if the latency time has elapsed

for each stored packet, and sends the packet if time has elapsed.

 Through the implementation of the LatencyManager, we were able to artificially induce

latencies on specific bots in BZFlag. Code testing results and performance data will be

explained in the next section.

4.2 Validation of Latency Modification

During the testing of the artificial latency code, we employed log files and timestamps in

order to ensure that desired effects were achieved.

Through our testing efforts, we were able to tune and fix our code in order to obtain our

intended final product, which was a game in which we can induce controlled amounts of

latency to specific players. Originally, all packets sent from a lagged bot would be queued in

the LatencyManager, therefore adding latency to everything the bot does. However, during

testing we found that BZFlag collision detection is handled at the client, which is unusual.

Traditional first-person shooters with a client-server architecture handle collision detection at

18

the server. This meant that the difficulties a lagged tank experienced in successfully hitting

other tanks also applied to the other tanks attempting to hit the lagged tank. This was true

because of the client-side collision detection mentioned above. Since the other bots were not

receiving updates on the current location of the lagged bot, they were unable to shoot it

accurately. In order to address this situation, we decided to lag only shooting messages from

the lagged bots. Delaying only the shot messages allows for all of the other bots to react to the

lagged bot’s position (which emulates how most games keep track of positions server-side) and

therefore be able to shoot at it normally, while the lagged tank has the disadvantage of having

its shots delayed, leading to more misses.

Verification of the desired effects of our artificial latency code can be shown through

the log output during the game’s execution. A snippet of the log output is detailed in Figure

4.4.

--------------- Game Started at: 2009-01-23 10:21:16 ------------------------

Latency of 10000 added to : Nate00 (ID: 1)

...

Packet Queued around: 1232724077 953125

SENDING MESSAGE FROM: 1 2009-01-23 10:21:17

Expected Lagged Deliver Time: 1232724077 963125

Actual Lagged Deliver Time: 1232724077 968750

Figure 4.4: Log Output from Sample Run

Analysis of the log output shows that a latency of 10000 usec (10 ms) has been added to

bot with ID 1. The next message shows that a packet was queued from ID 1 at 1232724077

seconds and 953125 usec. The next message shows that a packet from ID 1 was actually sent at

1232724077 seconds and 968750 usec. This is a difference of 15625 usec (about 15 ms),

showing that there is actually at least 10 ms latency being added to this packet. The extra time

being added to the latency is due to the update rate of the game, which happens every 15ms,

and will be negligible in our tests at higher latencies.

Before testing the latency inducing code in a live game, we first performed a six hour

control test with two un-lagged bots. This was to verify that the bots perform equally well

against each other in the game’s default settings. After the designated time period was over,

each bot finished with extremely similar kill death ratios as well as hit percentage, as we

19

expected. Each of the bot’s hit percentage remained around 25% and each bot had a nearly

even kill to death ration, with a variance of 6 kills/deaths. Figure 4.5 shows the results of the 6

hour control test. These results demonstrate that over a lengthy period of time, there is no

appreciable performance difference between two unmodified bots. This means that when

latency is introduced, any performance decrease that results can be attributed to the effect of

that latency.

Player Score Kills Deaths Hit %

Tank 0 -6 640 646 24%

Tank 1 6 646 640 25%

Figure 4.5: Results of 6 Hour 1v1 Control Test

Second, we tested BZFlag with one normal bot and one lagged bot in order to

determine if there was in fact performance degradation due to the added latency. This

simulation was run for 12 hours, in order to definitively eliminate variance due to length of test

run, and the lagged bot finished with noticeably poor results of a score of -674 and a hit

percentage of 26% when compared with the non-lagged bot’s score of +674 and hits

percentage of 32%. Figure 4.6 shows the results of the 12 hours latency test.

Player Score Kills Deaths Hit %

Tank 0 -674 1087 1761 26%

Tank 1 674 1761 1087 32%

Figure 4.6: Results of 12 Hour Latency Test

 The results of the aforementioned tests suggest that the artificial latency code that we

added to the source code of BZFlag works as intended. Upon assurance that the modifications

to BZFlag work as anticipated, we were able to continue on and gather data through running

the experiments laid out in our test plan.

4.3 AI Aiming Modification

 During the course of our original experiment runs, we found that in certain situations,

particularly those with low precision and deadline requirements, lagged tanks actually were

20

shown to have an advantage over non-lagged tanks. The experiments in which this

phenomenon occurred were when bullet speed was reduced to ½ or ¼. The advantage was a

result of the fact that non-lagged AI tanks were choosing to shoot when their chance to hit was

not great enough. The non-lagged tank’s shot would miss and the lagged tank’s shot would

then be sent, effectively causing it to fire with a reduced range, increasing its chance to hit.

This was most prevalent in situations where two enemy tanks were approaching each other

head-on, which is what the AI is programmed to do. The reason this was a problem is because

in BZFlag, a tank may only fire one bullet at a time, and must wait until the previous shot

expires before firing again, which takes 3.5 seconds.

We were able to track the problem down to a behavior in the Artificial Intelligence code

for determining when to shoot. The original AI code, shown in figure 4.6, determined that a

good shot was when the tank’s range to miss their target was not more than one half of the

target tank’s length.

const float missby = fabs(azimuthDiff) *

 (targetdistance - BZDBCache::tankLength);

 // only shoot if we miss by less than half a tanklength and no building

 if (missby < 0.5f * BZDBCache::tankLength &&

 p1[2] < shotRadius) {

Figure 4.6: Original AI Code for Shooting

The constraint of not missing by more than one half of the target’s length was found to be too

imprecise, resulting in a tendency to miss on the initial shot when approaching another tank. In

order to determine a more appropriate choice for this constraint, we tested multiple different

values. The results of these tests are shown in figure 4.7. For these tests, the tanks’ bullet

speed was reduced to ¼, and one tank was lagged by 1000ms because the aforementioned

problem occurred most at these settings.

21

Figure 4.7: Results of Varying Miss by Value Tests

 The graph in figure 4.7 shows the effects of modifying the bots’ AI in one of the

situations where the lagged tank had a slight advantage. The X axis shows the fraction of a

tank-length the shot must be expected to come within hitting another tank by before the tank

will shoot. The Y axis shows the hit percentage. The lagged tank is depicted by a diamond, and

the other tanks in the experiment with crosses. It shows that as the tank AI is modified to be

more selective with its shots, the overall performance of the tank improves, and the

performance of the lagged tank decreases relative to the others. This was determined to be

most effective when the fraction of tank length was set to one eighth. As a result, the AI shot

determination code was modified to change the fraction to one eighth; this change is detailed

in Figure 4.8.

22

const float missby = fabs(azimuthDiff) *

 (targetdistance - BZDBCache::tankLength);

 // only shoot if we miss by less than half a tanklength and no building

 if (missby < 0.125f * BZDBCache::tankLength &&

 p1[2] < shotRadius) {

Figure 4.8: Final Modification to AI Code

 The aforementioned change to the Artificial Intelligence code in conjunction with the

Artificial Latency modification were the major changes added to the BZFlag source code for the

purposes of our experiments. All subsequent results have these code modifications unless

otherwise indicated.

23

Chapter 5: Results

5.1 Experiment Parameters and Setup

 Once the required modifications to the BZFlag source code were implemented, we were

able to begin the testing phase of the project. All experiments were run on one of two

machines. The specifications for each machine are detailed in Figure 5.1.

 Hardware A Hardware B

CPU Intel Core 2 Duo T5550 @ 1.83 GHz Intel Core Duo T2500 @ 2.0GHz

RAM 2 GB 667MHz DDR RAM 1 GB 667MHz DDR2 RAM

Video NVIDIA GeForce 8400M GS 256 MB ATI Mobility Radeon X1600 512MB

Resolution 1440 x 900 1200 x 800

OS Windows XP Windows XP

Figure 5.1: Hardware Specifications

Each machine satisfied the minimum system specifications required to run BZFlag [9]. In order

to determine if the difference in hardware was negligible in the experiments, control tests were

run and results the results were compared. Each test was run for two hours with eight tanks,

organized into teams of two, with no latency added. Results of those tests are detailed in

Figure 5.2.

0%

5%

10%

15%

20%

25%

30%

35%

40%

A B

H
it

 P
e

rc
e

n
ta

ge

Hardware

24

Figure 5.2: Average Hit Percentage vs. Hardware

Figure 5.2 graphs the average hit percentage on the y axis vs. hardware on the x axis. Also

noted are the 95% confidence intervals for both of the hardware platforms (denoted in black).

The results presented in Figure 5.2 show that there is no significant difference in results based

on which hardware the test was run on. Discrepancies in the data can be attributed to random

map generation in BZFlag. The reason random map generation was a factor is that the

randomly placed buildings change the overall layout of the maps, thus creating areas with

varying degrees of openness, effectively determining the range at which the tanks can engage

each other.

 We also needed to determine the length of time for which to run each experiment,

while minimizing score variance and the length of the test. Therefore, we ran experiments with

the goal of reducing the variance of the bot’s scores as much as possible, while also minimizing

the amount of time each test would require. In order to do this, we ran multiple tests of

differing length, and compared the variance in hit percentage of the eight tanks in the

experiment. The results are shown in Figure 5.3.

Figure 5.3: Variance in Hit Percentage vs. Test Length

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00

H
it

 %

Time (hours)

25

The graph in Figure 5.3 shows the distribution of hit percentages for each test run of varying

length. As test length increases, the variance decreases. Based on these results, we chose to

use a test length of two hours for our experiments, as this was long enough to eliminate a large

portion of the variance but also short enough to allow us to run more experiments within our

time constraints.

With these results, we were able to perform actual experiments to determine the effect

of latency on actions with varying levels of precision and deadline requirements, regardless of

hardware. First, we tested the precision space by varying the sizes of the game’s tanks and

performing tests with a variety of latency values. Next, we tested the deadline space by varying

the tank’s bullet speed and running experiments with various latencies. Lastly, we tested the

precision and deadline space by varying both tank size and bullet speed and experimenting with

various latency values.

All subsequent experiments performed in the individual precision or deadline spaces

used the same precision and deadline intervals and latency values. The intervals and latency

values are detailed in Figure 5.4.

Precision and Deadline Values

¼ default

½ default

1 x default

2 x default

4 x default

Latency Values

0 ms

100 ms

500 ms

1000 ms

Figure 5.4: Precision and Deadline Values and Latency Values used in Experiments

The latency values show in Figure 5.4 were chosen due to their significance in most current

online games and the different categories of latency we wanted to represent. A latency of 0

milliseconds, categorized as no lag, between the client and server is ideal and no performance

degradation should be experienced. A latency of 100 milliseconds, categorized as normal

network lag, is the threshold of delay which can be tolerated in First Person Shooter games [2].

26

Likewise, a latency of 500 ms, categorized as moderate lag, is widely considered the threshold

which can be tolerated in a Massively Multiplayer Online Game, but is significantly detrimental

to First Person Shooters. Lastly, a latency of 1000ms, categorized as high/severe lag, is

generally considered to be the threshold which can be tolerated in a Real Time Strategy Game,

but is too high of a value in which to adequately play most online games, especially First Person

Shooters. Each latency value provides insight into the implications our results have on many

types of online games. In addition to these values, it is important to note that normal Tank Size

is 6 meters by 2.8 meters. The default battle field size for all tests is 800 meters by 800 meters.

In all cases, the tests were run with eight tanks divided into four teams of two; all of the tanks

are equal, and one tank was assigned a latency value between 100 milliseconds and 1000

milliseconds.

5.2: Precision Space

 The first set of tests in our experiments involved varying the precision requirements of

the game. In order to alter the precision requirements of the game, we modified the size

(length and width) of the tanks. As tank size increases, the precision requirements decrease

because the size of the target is larger. Conversely, as tank size decreases, the precision

requirements increase due to the fact that the target is smaller. Figure 5.4 details the

variations of the Tank Size and the latency values which were run for each tank size. Each tank

size value was run once with each of the listed latency values.

 The results of the precision space experiments are plotted with respect to latency in

Figure 5.5 and with respect to tank size in Figure 5.6. The graphs shown in Figure 5.5 and Figure

5.6 show the scores, the kills for the tanks minus the deaths for the tank, of latency induced

tanks from two hour experimental tests run with varying Tank Sizes.

27

Figure 5.5: Score vs. Tank Size with Respect to Latency

Figure 5.6: Score vs. Latency with Respect to Tank Size

The results show that latency has less of an effect on a tank’s score as tank size

increases. Conversely, as tank size decreases, the effect of latency on a tank’s score becomes

-175

-150

-125

-100

-75

-50

-25

0

25

0.00 1.00 2.00 3.00 4.00

Sc
o

re

Tank Size (Precision)

0 ms

100 ms

500 ms

1000 ms

-175

-150

-125

-100

-75

-50

-25

0

25

0 200 400 600 800 1000

Sc
o

re

Latency

1/4x Tank Size

1/2x Tank Size

1x Tank Size

2x Tank Size

4x Tank Size

28

more significant. Also, you can see a significant drop off in performance between tanks with

100 ms and 500 ms of latency, showing that there is a threshold in which latency more

significantly impacts performance. The results in the graphs above show that as the precision

decreases, the tanks are less adversely affected by latency. Likewise, as the precision increases,

the tanks are impacted more severely by the introduction of latency.

The results detailed in Figure 5.5 and Figure 5.6 support our original hypothesis about

the precision space. The next section will discuss the results from tests run in the deadline

space.

5.3: Deadline Space

 The other aspect of gameplay which we examined was deadline. We changed the

deadline requirements of the game by modifying the speed of the shots that the tanks fire.

Changing the bullet speed has several effects on gameplay in BZFlag. Increased bullet speed

results in the shots taking less time to reach their target, making it more difficult for opposing

tanks to evade these shots. This makes the initial shots from tanks more likely to score hits,

making it beneficial to get a shot off quickly. Also, the range at which shots are reasonably

likely to hit is increased, meaning the tanks engage each other more quickly, and less time

elapses before a tank can effectively rejoin the battle after respawning. Overall, this leads to

faster-paced gameplay. For slower bullet speeds, the converse is true; shots are more likely to

miss, and tanks must get closer to each other before firing, resulting in a slower overall pace for

gameplay.

Because the speed of the bullets has a direct correlation with the speed of gameplay, it

is a reasonable representation of movement along the deadline axis in the precision-deadline

space. As bullet speed increases, deadline decreases due to the faster pace of gameplay and

the need to fire shots as quickly as possible. Conversely, as bullet speed decreases, deadline

increases due to the shower pace of gameplay. Since performance is known to degrade more

significantly from latency as deadline decreases, we hypothesized that latency would have a

greater effect on performance as bullet speed increases.

29

 The default speed for shots in BZFlag is 100 m/s, which is four times the default tank

speed of 25 m/s. It takes 3.5 seconds for a bullet to travel its default maximum range of 350m,

and this is also the reload time during which the tank cannot shoot. The default map is an

800m x 800m square, which means that tanks can shoot about halfway across the map at most,

although the chances of hitting are low at maximum range. After the modifications we made to

the AI, which are detailed in Section 4.3, the average chance of a tank’s shot hitting at normal

bullet speeds is about 44%.

 In order to properly conduct the bullet speed tests, an adjustment to range was also

required. This is because BZFlag bases the reload time for the bullets on the amount of time a

bullet takes to reach its maximum range. When a bullet reaches maximum range and

disappears, the tank may fire again, regardless of changes to the reload time variable. Changing

the reload time had a greater effect on gameplay than modifying the range did, so we decided

to modify the range and keep reload time fixed at 3.5 seconds. Since the default range is

almost half of the map, increasing the range had little effect on gameplay since obstacles

generally interfered with shots at distances greater than this. For the slower bullet speeds, the

range reduction only eliminated shots that were largely inadvisable (very low chance of hitting).

The results of our experiments with bullet speed are shown in Figures 5.7 and 5.8. The

multipliers and latency adjustments are the same as described in Section 5.1.

30

Figure 5.7: Score as Latency Increases

Figure 5.8: Score as Bullet Speed Increases

The two graphs in Figure 5.7 and Figure 5.8 show the performance degradation from

latency for the different bullet speed multipliers. This is represented by the scores (kills minus

deaths) of the latency-induced tanks. A non-lagged tank was shown to accrue a score of 0 over

-300

-250

-200

-150

-100

-50

0

50

0 200 400 600 800 1000

Sc
o

re

Latency (ms)

1/4 speed

1/2 speed

1x speed

2x speed

4x speed

-300

-250

-200

-150

-100

-50

0

50

0 50 100 150 200 250 300 350 400

Sc
o

re

Bullet Speed (m/s)

None

100ms

500ms

1000ms

31

time due to its kills and deaths being even. These experiments were run with the settings

described In Section 5.1.

Figure 5.7 shows the score trend lines for each bullet speed setting as latency increases.

Figure 5.8 shows the same data in the form of trend lines for each latency value as bullet speed

increases.

The results show that low latency values have very little effect on a tank’s score,

regardless of bullet speed. At higher latency values, the speed of the bullets does become a

factor; the slower the bullet speed, the higher the latency value needed before a drop-off in

performance occurs. Faster bullet speeds result in a greater decrease in performance from

latency, and reduced performance can result even from lower latency values.

Again, the results support our hypothesis. Performance decreases steadily as latency

increases for all bullet speeds, and the drop-off in performance is sharper with bullet speed

than with tank size. This indicates that for BZFlag, a modification to the Bullet Speed (deadline)

has a greater quantitative effect than the same modification to the Tank Size (precision). The

next section will discuss the results when both requirements are modified.

5.4 Precision and Deadline Space

 Although our previous results from both the precision space and the deadline space

supported our hypotheses, we also decided to run tests modifying both spaces to determine

the relationship between them. The tests involved modifying both the tank size and the bullet

speed parameters of the game and running tests with no latency and with severe latency.

 These tests were focused on the extremes of precision and deadline requirements, and

as such only involved four combinations of the limits of the Tank Size and Bullet Speed

modifications. The tests were run once with no induced latency and again with one tank

receiving 1000 milliseconds of induced latency. The results of the tests are detailed in Figure

5.8.

B
u

ll
et

Sp

e

ed

(D
e

ad
li

n
e)

 Tank Size (Precision)

4 x (lowest) ¼ x (highest)

32

¼ x
(lowest)

-71 -51

4 x
(highest)

-161 -201

Figure 5.8: 1000ms Lagged Tank’s score vs. Tank Size and Bullet Speed

Figure 5.8 shows the score of the tank with 1000ms of induced latency in the various special

case tests. In games with the strictest precision and deadline requirements, the lagged tank has

the worst performance when compared with the other special cases. Also, the data shows that

in BZFlag, deadline requirements influence the performance of the tank more so than the

precision requirements. However, while the tank was expected to perform the best relative to

the other extreme scenarios when the precision and deadline requirements were the lowest, all

of the tanks were guilty of significantly more team kills in this scenario due to the size of the

tanks, thus driving down scores. This was due to the fact that the tank AI does not take into

account their increased Tank Size when attempting to evade bullets in the game world and as a

result, they are hit by shots that they think they have evaded. However, it can still be said that

as precision and deadline requirements increase, the effect of latency becomes much more

significant.

 Through the tests described above, we were able to determine that actions in BZFlag

are affected differently based on their precision and deadline requirements. We measured the

effects of latency on both precision and deadline individually and then the combination of the

two. However, although our tests were run using BZFlag, the results of our tests are applicable

across online games in general. All game actions can be described in terms of their precision

and deadline requirements and thus, our results can be applied to those actions to determine

how susceptible they are to network latency. The next section will discuss the implications of

the results obtained from all of the experiments.

5.5: Implications of Results

BZFlag in general is fairly low on both the precision and deadline scale for a first-person

shooter game. Default bullet speed is slow relative to the speed of the tanks, meaning misses

are common and even if a tank is hit, it generally has time to shoot back before being killed.

33

The target to hit is fairly large and there is no height component to the shots, so precision along

the z axis is not required when firing. This means that the default settings for BZFlag generally

do not match those of other first-person shooter games. However, some of the experiments

involving faster bullet speed and smaller tank size do approach the precision other shooting

games require. If another game has similar values for bullet speed, target size, target speed,

and rate of fire, then the data from the appropriate experimental test run can be used to give

an approximation for the effect of latency on that game.

 One major drawback in applying these results to other games stems from the fact that

only a tank’s shots were lagged in this simulation. A tank with latency could still evade other

tanks’ shots in real-time, and could respond instantly to other tanks’ movements, shots fired,

and deaths. Network latency would affect all these actions as well and not just the shooting

component. Therefore, it can reasonably be said that in a game with similar precision and

deadline requirements to BZFlag, the performance degradation from latency would be greater

than the data represented here. The BZFlag data could therefore be used to quantify a lower

bound for performance degradation, but it could not accurately be used to provide anything

more than a rough estimate of the actual effect of latency in another game.

34

Chapter 6: Conclusion

 The goal of our research was to provide definition for the effect of latency on the

precision-deadline space by quantifying the effect of latency on actions with varying precision

and deadline requirements. Our hypothesis was that actions are affected differently by latency

depending on these requirements. The motivation for this research was to provide a model by

which developers can categorize all actions within a game and also approximate the effect of

latency on those actions.

 To do this, we chose to modify a publically available game called BZFlag to allow us to

induce controlled latency to robot players in the game, then run a series of experiments and

analyze the results. While BZFlag had some qualities that made it suitable for this purpose,

there were design choices in the game that are not standard for online games of its genre, and

which created complications when implementing the changes we desired to make.

We decided to run tests in the precision space, the deadline space, and finally in both

spaces simultaneously. In order to collect data on the effect of precision modifications, we

chose to modify the tank size. Similarly, in order to examine the effect of deadline, we adjusted

the bullet speed. We then ran a series of two-hour experimental test runs with varying

latencies. Through our experiments, we were able to produce a series of data to define the

effect of latency over the precision-deadline space. While the experiments we ran with BZFlag

supported our hypothesis and provided some quantifiable data about performance degradation

due to latency, there are still limitations when applying this data to analyze performance

degradation in other games.

While BZFlag has characteristics that make it different from many online games, the

results obtained from our experiments are still applicable to other games. Our results can be

used as an effective lower bound when analyzing the impact of latency on actions in another

game that have similar precision-deadline requirements. More generally, our results support

the theory that actions requiring high precision or deadline are more adversely affected by

latency than actions with lower precision or deadline requirements.

35

6.1: Future Work

 Additional research into the precision-deadline space could involve making further

adjustments to the BZFlag code to allow for more accurate test results. In particular,

implementing code to induce latency to all aspects of a tank’s actions, not just shooting would

be needed. In order to do this, the collision detection code would need to be migrated to the

server-side, and the existing LatencyManager functions modified to include reading

messages as well as sending them.

 Other options for exploring the precision-deadline space might include modifying the

BZFlag code to take into account the bullet radius during collision detection, something it

currently does not do. Changing the size of a bullet would modify the precision requirement

and could be used to simulate games where shot accuracy is a lesser consideration due to an

explosion splash radius. Finally, tank speed is another option that can be modified in order to

simulate the movement speeds of other games.

 Finally, another way to further improve these models would be to conduct a user study

with BZFlag. A user study could provide a model that incorporates player skill into determining

the effects of latency. However, this would require a code modification, as the current code

only applies the latency to robot players, not human players.

 All of these suggestions can be used to further and improve upon the research

presented in this report. This is not an exhaustive list by any means, but it provides options

which can and should be explored in projects which intend to build upon the research detailed

in this project.

36

Works Cited

[1]Leigh Alexander. World of Warcraft Hits 10 Million Subscribers In: Gamasutra, 22 Jan. 08

Online at: http://www.gamasutra.com/php-bin/news_index.php?story=17062

[2] Mark Claypool and Kajal Claypool. Latency and Player Actions in Online

 Games, Communications of the ACM, Volume 49, Issue 11, November 2006.

 Online at: http://www.cs.wpi.edu/~claypool/papers/precision-deadline/

[3] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel

 Agu, and Mark Claypool. The Effects of Loss and Latency on User

 Performance in Unreal Tournament 2003, In Proceedings of ACM Network

 and System Support for Games Workshop (NetGames), Portland, OR, USA,

 September 2004. Online at:

 http://www.cs.wpi.edu/~claypool/papers/ut2003/

 [4] James Nichols and Mark Claypool. The Effects of Latency on Online

 Madden NFL Football, In Proceedings of the 14th ACM International

 Workshop on Network and Operating Systems Support for Digital Audio

 and Video (NOSSDAV), Kinsale, County Cork, Ireland, June 16-18,

 2004. Online at: http://www.cs.wpi.edu/~claypool/papers/madden/

 [5] Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, and Emmanuel

 Agu. The Effect of Latency on User Performance in Warcraft III, In

 Proceedings of ACM Network and System Support for Games Workshop

 (NetGames), Redwood City, CA, USA, May 2003. Online at:

http://www.cs.wpi.edu/~claypool/papers/war3/

[6] Evaluating dead reckoning variations with a multi-player game

simulator In: Network and Operating System Support for Digital Audio and Video

(NOSSDAV 2006), pp. 20--25, ACM Press (ISBN: 1-59593-285-2)

http://home.ifi.uio.no/paalh/publications/files/nossdav2006-palant.pdf

[7]Gettimeofday function for windows In: C/C Programming Blog, Dec 26 2007. Online at:

http://www.openasthra.com/c-tidbits/gettimeofday-function-for-windows/

[8] 4x4 Xbox 350 Ladder In: Global Gaming League. Online at:

http://www.ggl.com/index.php?controller=MatchManager&method=view&id=150

http://www.gamasutra.com/php-bin/news_index.php?story=17062
http://www.cs.wpi.edu/~claypool/papers/precision-deadline/#_blank
http://www.cs.wpi.edu/~claypool/papers/ut2003/#_blank
http://www.cs.wpi.edu/~claypool/papers/madden/#_blank
http://www.cs.wpi.edu/~claypool/papers/war3/#_blank
http://home.ifi.uio.no/paalh/publications/files/nossdav2006-palant.pdf#_blank
http://www.openasthra.com/c-tidbits/gettimeofday-function-for-windows/
http://www.ggl.com/index.php?controller=MatchManager&method=view&id=150

37

[9] BZFlag System Requirements In: BZFlag Wiki. Online at:

http://my.bzflag.org/w/Download#System_Requirements

http://my.bzflag.org/w/Download#System_Requirements

