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Abstract

Spam is a serious problem that has been increasingly plaguing users of the Internet.
Programs known as spam filters are employed to assist the user in deciding if an
email is worth reading or not. This paper focuses on comparing the filters known as
SpamAssassin and Bogofilter on mailboxes from a variety of users, while providing
a shorter look into the effectiveness of whitelists and blacklists as spam prevention
tools. The performance of these filters was not consistent with neither filter being
more effective at identifying spam than the other. Filtering spam is a difficult task and
mainstream filters still have room for improvement to work for a variety of users.
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1 Introduction

As the Internet started to gain popularity in the early 1990’s, it was quickly recognized

as an excellent advertising tool. At practically no cost, a person can use the Internet to

send an email message to thousands of people. When this message contains an unsolicited

advertisement, it is commonly known as spam. Whether or not spam actually benefits the

advertiser is not really known, but to email users that receive over one hundred unwanted

emails a day, the problem is serious.

Email users fight back against the spammers by trying to avoid having to read spam. If

a user knows ahead of time which emails are spam and which are not, they can waste less

time reading and deleting advertisements. Programs known as spam filters are employed to

assist the user in deciding if an email is worth reading or not.

This paper presents an analysis of spam filters, including a look into the history of spam,

to help understand how this problem was started. In this paper, spam filters are discussed

on a conceptual level and various common algorithms are described. This discussion leads

into descriptions of actual spam filtering software available and how they work.

The meat of this paper is the analysis. Our main goal was to provide a comparison

between the widely-used rule-based filter, SpamAssassin, and the relatively new learning

filter, Bogofilter. Bogofilter is based on a new method of filtering spam where the filter

learns over time. We wanted to see which filter worked better under different conditions on

email from several users. The email we tested came from a wide variety of users, including

computer science students and employees at a small company.

Our other analysis includes a brief look into the effectiveness of whitelists and blacklists.
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These methods involve keeping a list email addresses and either accepting (for a whitelist)

or blocking (for a blacklist) email from addresses on that list. We also determined how much

email differs between users to see how possible it is for one filter to work for all users.

It is important to keep in mind that the field of filtering spam, like most computer-related

fields, is a rapidly changing one. The filters analyzed were the best ones available at the

time this project was started. Improvements to both filters used here were made during the

time the analysis was being performed. While the filters have improved, the concepts behind

them remain the same.

In the remainder of this report, we first give the history of spam and spam filtering in

Chapter 2. In Chapter 3 we describe the sources of the email we used for testing. In Chapter

4 the methods that we used to perform our tests are detailed. The results of our analysis are

presented in Chapter 5 with Chapter 6 containing our conclusions. Future work is discussed

in Chapter 7.
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2 Literature Review

There are many efforts underway to to stop the increase of spam that plagues almost every

user on the Internet. In this section we show how to define and detect spam, the history of

spam, and the various filters that are currently available. Additionally, the results of other

spam filter analyses are mentioned.

2.1 Defining Spam

Before one can really begin to filter spam emails, an accurate definition must first be devised.

Simply claiming it is any unwanted email is too opinionated, and calling it any unasked for

email for is unrealistic. Mail-abuse.org defines spam as follows[8]:

“An electronic message is “spam” IF: (1) the recipient’s personal identity and
context are irrelevant because the message is equally applicable to many other
potential recipients; AND (2) the recipient has not verifiably granted deliberate,
explicit, and still-revocable permission for it to be sent; AND (3) the transmission
and reception of the message appears to the recipient to give a disproportionate
benefit to the sender.”

Others describe spam as simply “unsolicited commercial email sent in bulk”[3].

The history of the usage of the word “spam” being associated with unsolicited commercial

emails is not entirely clear. SPAM was created by Hormel in 1937 as the world’s first canned

meat that didn’t need to be refrigerated. It was originally named “Hormel Spiced Ham,”

but was eventually changed to the catchier name, “SPAM.”

Its connection to email is, according to Hormel and many other sources, due to a sketch

on the British comedy TV show, Monty Python’s Flying Circus. In the skit, a group of

Vikings sing “SPAM, SPAM, SPAM” repeatedly, drowning out all other conversation in the

restaurant [4]. The text of the SPAM sketch is included in Appendix A.1.
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Brad Templeton, founder of ClariNet Communication Corp., the first business on the

Internet, has done the most in-depth research into the history of spam on the Internet [17].

According to him, the first email spam was from 1978, and was sent out to all users on

ARPANET (several hundred users). It was an ad for a presentation by Digital Equipment

Corp., and its full text can be seen in Appendix A.2.

Templeton notes that the origin of spam as we know it started on Usenet and migrated

to email. In an attempt to raise money for college, a college student, Rob Noha, posted to

as many newsgroups as he could find on May 24, 1988 using his account JJ@cup.portal.com.

The post did receive several annoyed responses, but the term “spam” was not used to describe

it until 1996. The full text of this posting is available in Appendix A.3.

It was not until 1993 that a USENET posting was called “spam.” In an attempt to

implement a retro-moderation system that allowed posts to be deleted after they had been

posted, Richard Depew accidentally created a monster. His software, ARMM, had a bug in

it which caused it to post 200 messages to news.admin.policy. Readers of this group were

making jokes about the accident, one person referring to the incident as “spamming.” The

posting and response are available in Appendix A.4 on 78.

USENET seemed like a natural place to spam. Anyone could see all of the available groups

and post to all of them relatively easily. On January 18, 1994, the first large-scale USENET

spam occurred. A message with the subject “Global Alert for All: Jesus is Coming Soon” was

cross-posted to every available newsgroup. Its controversial message sparked many debates

all across USENET, and according to Templeton, the student who posted this message did

get in trouble.

In April of 1994, spamming first became a business practice. Two lawyers from Phoenix,
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Canter and Siegel, hired a rogue programmer to post their “Green Card Lottery- Final

One?” message to as many newsgroups as possible. What made them different was that

they did not hide the fact that they were spammers. They were proud of it, and thought it

was great advertising. They even went on to write the book How to Make a Fortune on the

Information Superhighway : Everyone’s Guerrilla Guide to Marketing on the Internet and

Other On-Line Services [2]. They planned on opening a consulting company to help other

people post similar advertisements, but it never took off.

As the spam problem grew larger, the interest in spam filters grew accordingly. As with

any new technology, new terms were introduced that are used frequently in this paper that

need to be explained. We refer to email that is not spam as ham. We first saw this naming

convention in the program Bogofilter. The newer versions of Bogofilter do not use this

naming convention anymore, however we liked it, and continued using it. The job of spam

filters is to mark emails as spam, and thus, an email marked as spam is a “positive.” We

also use the term “false positive” to refer to a ham message that was incorrectly marked as

spam, and “false negative” as a spam message incorrectly marked as ham. False positives

are the worst outcome of a spam filter. When a user gets a false positive, an email that was

intended for them does not get through. In the case of a false negative, the user merely ends

up seeing an email that they did not want to see. We also use the term “corpus” (plural

“corpora”) to refer to a collection of email from a user.
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2.2 Spam Filters - Conceptual

There are many ways to go about solving the problem of filtering spam. This section describes

several methods of filtering spam that are used. Section 2.3 lists several specific filters and

the methods they use.

2.2.1 Rule-based Filtering

Perhaps the most straight-forward method of filtering spam is a rule-based algorithm. Rules

are defined to classify emails as spam or ham based on different characteristics. An example

rule could be that all emails with magenta-colored text are spam. Another example would

be that all emails that contain the text “order confirmation” are ham. A good rule-based

filter would note which rules match, and make a decision based on all of the rules combined.

A rule-based filter is probably the easiest to write, but making one that works requires

determining a set of rules that makes sense. Version 2.43 of SpamAssassin has 410 different

rules, with weights assigned to each one [16]. The problem with rule-based filters is that the

rules are written by people looking for the obvious characteristics of spam.

The people who actually send out the spam are doing their best to make their spam not

look like spam. It is not uncommon to get spam with a subject like “order confirmation,”

“re: your inquiry,” or a similar phrase. The end result is that it is hard to make simple rules

that will work well in all cases.

2.2.2 Blacklisting

Blacklisting is a form of rule-based filtering that uses one rule to decide which emails are

spam. A blacklist is a list of traits that spam emails have, and if the email being tested

11



contains any of those traits, it is marked as spam. It is possible to organize a blacklist based

on “From: ” fields, originating IP addresses, the subject or body of the message, or any

other part of the message that makes sense. Blacklists can be used on both large and small

scales. A large-scale blacklist would usually be provided by a third party. The user typically

does not contribute to a large list like this. On a smaller scale, the user could simply tell

their email client to not allow email from certain addresses. A small-scale blacklist works

fine if the user gets spam from one particular address. On a larger scale, where the user does

not have any control over the blacklist, there must be a mechanism in place for dealing with

accidental blacklisting of other users.

2.2.3 Whitelisting

While blacklisting is a way of deciding which emails are spam, whitelisting decides which

emails are ham and assumes all other email is spam. Users would presumably whitelist

everyone that they would expect to receive email from, and as long as their friends never

send them spam, all spam will be filtered out. The obvious problem is that it is impossible to

predict who is going to send email, and anyone previously unknown to the user will be filtered

out. One way is to avoid this problem is to read through the filtered email regularly[11], but

there is no point in filtering if the user must view all of the email anyways.

Another method is to let the senders of all emails marked as spam know that their email

was marked as spam while providing them with a method of getting added to the whitelist

[9]. Presumably, no spammer is going to go through the trouble of getting added to a user’s

whitelist, and hopefully friends will. It probably still blocks all spam, but there is still the

problem of dealing with automated order confirmations and mailing lists. When a user joins
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a mailing list, they can easily add the address of that list to their whitelist, but it has to be

done manually. For order confirmations, for example, the user can not always know what

address the confirmation will be coming from, so this approach is not flawless either.

2.2.4 Paul Graham’s Bayesian Filtering

Paul Graham was one of the primary developer’s of LISP and has been working on a deriva-

tive called Arc. In August of 2002 he wrote A Plan for Spam in which he discussed why

rule-based filtering fails to effectively filter spam [5]. The paper proposed a new method of

spam filtering using Bayes’ rule.

Bayesian filters use probabilistic reasoning to decide whether or not a message is spam.

These filters base their choices on Bayes’ rule, which is useful for calculating the probability

of one event when one knows another event is true. In the case of email, the rule is used to

determine the probability that an email is spam given that it contains certain words.

What makes Bayesian filters different from other filters is that they learn. To decide

the probability that an email is spam based on the words it contains, the filter needs to

know about the emails that a user receives. Since the interest is solely in the words and

their frequencies (and not their ordering in this implementation), the solution is to keep a

hash table to record how often each word appears. Spam and ham are kept in separate

hash tables, so that probabilities can be calculated later. When an email is declared spam,

the spam table is updated by incrementing the frequency counts for each word contained

in that email. Ham counts are incremented similarly. Over time, these hash tables begin

to characterize a person’s ham and spam well enough that some basic math can be used to

guess which category a new email fits into. The number of spam and ham emails is also
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recorded for use in later calculations.

Graham suggests using a modified Bayes’ rule to calculate probabilities. Bayes’ rule,

when combining multiple probabilities, is:

P (A|B ∧ C) =
P (A|C)P (B|A ∧ C)

P (B|C)

Graham’s modification of Bayes rule is:

P (A|B ∧ C) =
P (A|B)P (A|C)

P (A|B)P (A|C) + (1− P (A|B))(1− P (A|C))

P (A|B ∧ C) would be read is “the probability that event A is true, given that events

B and C are true.” In the case of spam filtering, event A would represent an email being

spam, while B and C correspond to certain words being in the email. That is, we want to

know the probability that an email is spam (A) if it contains words B and C. This equation

would be expanded to include more words (Graham proposes using the most interesting 15

words). Graham’s Bayes’ rule assumes one already knows the probability that an email is

spam for each individual word. This is calculated with the following formula:

P (Spam|word) =
b

nbad
g

ngood
+ b

nbad

where b and g are the number of times a word appears in spam and ham emails, re-

spectively, and nbad and ngood are the total numbers of spam and ham emails received,

respectively.

2.2.5 Sending-side Filters

All of the previous spam filtering methods are devised to work on the receiving end. Spam-

mers have to get their Internet connection through some Internet service provider (ISP) and

cutting it off on the sending side would be the job of the ISP. Whether the spammer uses the

ISP’s email server or their own, it should not be too hard to detect when a user sends out
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thousands of emails. Merel detecting a user sending out email after email and terminating

their access would probably be sufficient to block spammers.

The problem does not lie in detecting the spam, however. The problem is that some ISPs

are willing to let spammers use their service to send out thousands of emails. Convincing all

ISPs to aggressively monitor for and terminate spammers is not an easy task, and is not in

the scope of this project.

2.3 Spam Filters - Practice

Figure 2.1 shows a diagram of the mail transportation process. In theory, spam filters

can be implemented at virtually any location in this process. Also, multiple stages of the

process can occur on the same machine. There are devices one can purchase that will be

a firewall, router, and spam filter all in one. Filtering can also take place on the email

server of either the sender or the receiver, or in the client’s personal email software. All of

the following implementations use some method of filtering that has been described already.

In this study we attempt to analyze the effectiveness of filters on their conceptual level by

testing implementations of each.

For simplicity, all of our tests involved running spam filters using Procmail[6]. Procmail is

a Mail Delivery Agent (MDA) that, in its simplest form, puts emails in users’ mailboxes. We

used Procmail primarily because it is free, widely used, and easy to configure. It is capable

of running any kind of filter, including combinations of filters. It is also capable of working

with several email programs. Above all else, we were familiar with its functionality, and

most spam filters in Linux support the use of Procmail, making it a comfortable solution.
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Figure 2.1: Mail Transport Process
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2.3.1 Bogofilter

Bogofilter[14] is an implementation of Paul Graham’s Bayesian filter. It was written by Eric

S. Raymond in August, 2002. He follows Graham’s algorithm with a few small modifications.

From the Bogofilter README:

“This version substantially improves on Paul’s proposal by doing smarter
lexical analysis. In particular, hostnames and IP addresses are retained as recog-
nition features rather than broken up. Various kinds of MTA cruft such as dates
and message-IDs are discarded so as not to bloat the word lists.”

We chose to test Bogofilter over other Bayesian filters, like Bayesian Mail Filter and

Bayespam, for several reasons. It was written in C which means it is significantly faster than

versions written in other languages. Speed was an important consideration to us because

we would be processing thousands of emails through two different filters. If the computer

used to run the filters is used by more than one user, this test could lock up the machine for

hours. Bogofilter appeared to be the least obtrusive Bayesian filter available.

It takes an email on stdin (the standard input to the program) and it returns 0 or 1

depending on whether or not it thought it was spam. With different command line switches,

it can be told to register a word as spam or ham. It also has the ability to undo a previous

addition to the database if it was erroneous.

2.3.2 SpamAssassin

SpamAssassin[16] is a widely used rule-based spam filter. From the web site:

“Using its rule base, it uses a wide range of heuristic tests on mail headers
and body text to identify “spam”, also known as unsolicited commercial email.

header analysis: spammers use a number of tricks to mask their identities,
fool you into thinking they’ve sent a valid mail, or fool you into thinking you
must have subscribed at some stage. SpamAssassin tries to spot these.
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text analysis: again, spam mails often have a characteristic style (to put it
politely), and some characteristic disclaimers and CYA text. SpamAssassin can
spot these, too.”

Based on comments from many sources, we felt that SpamAssassin was the best rule-

based filter available at the time we started our project, which is why we chose to test

it.

SpamAssassin uses a point system when analyzing an email. Every email is scanned for

instances of each characteristic from its list. If a characteristic is found, that email gains

the number of points associated with that characteristic. Points can be both negative and

positive. For instance, if an email contains the word “GUARANTEED” (in all caps) in the

subject line, that email’s score will gain several points. Ham-like features subtract points

from an email’s score. If the final score of an email is over a certain threshold, configurable

by the user, the email gets flagged as being spam.

The list of email characteristics is extensive, including specific words to the color of text

and beyond. It is also configurable by the user. The job of assigning scores to rules was done

using a genetic algorithm to minimize false positives and false negatives. The SpamAssassin

creators maintain a database of emails, the rules that fit them, and whether or not those

emails were spam. It is not necessary to store the contents of the emails after the matching

rules are calculated, so the actual emails are not stored. The SpamAssassin team encourages

users to contribute to this database to improve SpamAssassin’s accuracy.

Our primary concern with SpamAssassin was its static nature. Everyone using SpamAss-

assin has the same settings and a spammer could easily test their new message on the latest

version of the filter to determine if it would be blocked. There are even services available

online to save the perpetrator the expense of maintaining the latest versions of all spam pre-
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vention software. This static nature is, however, an advantage in regards to implementing

the filter. Since it does not learn, its effectiveness is not based on user input and as a result

requires no maintenance.

2.3.3 Vipul’s Razor (aka SpamNet)

Vipul’s Razor[12] is a distributed blacklisting system. From the web site:

“What is Vipul’s Razor?
For nearly two years, Razor has been successfully fighting spam with the help

of the Unix community and is the technology that has enabled us to build its
windows counterpart, SpamNet, currently in use by more than 100,000 users.
Razor, or SpamNet, is a distributed, collaborative, spam detection and filtering
network. It establishes a distributed and constantly updating catalogue of spam
in propagation. This catalogue is used by clients to filter out known spam. Upon
receiving a spam, a Reporting Agent (run by an end-user or a troll box) calculates
and submits a 20-character unique identification of the spam (a SHA Digest) to
its closest Catalogue Server. The Catalogue Server echoes this signature to other
trusted servers after storing it in its database. Prior to manual processing or
transport-level reception, Filtering Agents (end-users and MTAs) check their
incoming mail against a Catalogue Server and filter out or deny transport in
case of a signature match. Catalogued spam, once identified and reported by a
Reporting Agent, can be blocked out by the rest of the Filtering Agents on the
network.”

Because it is a blacklist, Vipul’s Razor should have no false positives at all. However, due

to the time required for a new email to enter the central database as a certified spam, we

expect that it will have many false negatives. We would expect the accuracy of such a filter

to increase proportional to the number of recipients of each email. As more people receive a

spam email, the chance of it getting reported to Vipul’s Razor increases.

Vipul’s Razor was not formally tested in project for several reasons. The central server

was unresponsive during the day due to high load, limiting the amount of testing we could

perform. A realistic test of Vipul’s Razor would also have to be done as emails arrive, as

opposed to on a mailbox that was collected months earlier. One can assume that the chance
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of an email being blocked by Vipul’s Razor is much higher for an email that was received

several months ago, as it is more likely that someone else had received that same message

and reported it. While testing Vipul’s Razor is not impossible, we did not have time in this

project to construct a test that would have given valid results, and thus, we left it untested.

2.3.4 MAPS mailabuse.org

MAPS[8] stands for Mail Abuse Prevention System. From their website:

“We are a not-for-profit California organization whose mission is to defend
the Internet’s e-mail system from abuse by spammers. Our principal means
of accomplishing this mission is by educating and encouraging ISP’s to enforce
strong terms and conditions prohibiting their customers from engaging in abusive
e-mail practices.”

They are frequently involved in litigation concerning companies that support spam as an

acceptable means of advertising.

MAPS maintains several lists that can be used for blacklisting purposes. Their lists are

available for a small fee in order to keep their quality high. They provide lists of IP addresses

known to spam, IP addresses that belong to dial-up users, IP addresses of mail servers that

allow spam, and several others. What a user does with these lists is up to them.

The issues surrounding this method of blacklisting can be rather serious. When a user’s

IP is on one of these lists, there is little they can do to send an email to someone who filters

based on such a list. Sometimes a user is not even told that their email has been dropped

by the receiver’s email server.
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2.4 Tests of Other Products

PC Magazine[10] has performed an elaborate test on many different spam filters. They

included both personal and corporate filters and evaluated them on much more than just

accuracy, including ease of installation, ease of use, ability to be customized, and many other

factors.

The main focus of PC Magazine’s tests is the same as our’s, namely how effective the

filter is at detecting spam. Eleven personal spam filtering products (Including Microsoft

Outlook’s and Mac OS X Mail’s built-in filtering) and 6 corporate spam solutions (3 that

could be installed inside the company and 3 that used other companies’ mail servers). None

of the products tested worked perfectly and some were clearly better than others. It is

important to note that the email used in this test is only from a single account set up by

the reviewer.

The Editor’s Choice product, SpamAssassin Pro, was not the best performer at detecting

ham or detecting spam, “but it had the best balance for catching spam while minimizing

false positives.” In their tests on about 1000 emails, SpamAssassin Pro incorrectly classified

4.3% of ham as spam (false positives) and 11.1% of spam as ham (false negatives).

The corporate spam prevention products generally performed better than their personal

counterparts. The most effective was CipherTrust IronMail 210, essentially a replacement

email server that is installed on site. It was also the most expensive at $27,000. In PC

Magazine’s test, it had 0.24% false positives and 5.92% false negatives. From the article:

“To combat spam, the IronMail uses an arsenal of techniques. The most
significant for our testing was its statistical lookup service, which lets the device
check a database of spam signatures in real time at the CipherTrust home office.
Additional options include reverse DNS, real-time black holes, header analysis,
and dictionary-based filtering.”
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There are many more corporate spam prevention solutions than were tested in this article

(it lists 17 untested ones) and it is possible that there are more effective tools that exist.

The PC Magazine study shows that while no product perfectly identifies spam, it is

possible for users to get some relief from the constant barrage of unwanted email. All the

personal products that were reviewed needed more refinement to improve their marks.

2.5 Summary

Strictly defining spam is not as easy as it may seem. This definition varies from user to user

and building a spam filter that works for everyone is extremely difficult. Spam filtering is

currently an active field of research and filters should continue to improve. There may be a

limit as to how well filters can work, but we believe this limit is not near yet.

There are many spam prevention products available, using several different algorithms

to detect spam. The following techniques are used:

Rule Based Filtering - Uses a pre-defined set of rules to determine if a particular email
is spam.

Blacklisting - Blocking all email from a specific list of senders.

Whitelisting - Only allowing email from a specific list of senders.

Bayesian - Uses probabilities to determine if a particular email is spam. Must be trained
to be effective.

In this project we analyze the effectiveness of two products in particular: SpamAss-

assin (rule based) and Bogofilter (Bayesian). We also investigate the possibilities of using

a whitelist or a blacklist to filter spam. This analysis and the results are presented in the

remaining chapters.
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3 Data Collection

To analyze any spam filter, one needs large amounts of email to test it on. These emails

need to be sorted into two mailboxes; One of spam, one of ham. It is important that these

mailboxes are pure. By pure, we mean that the ham mailbox should contain absolutely no

spam, and the spam mailbox should contain absolutely no ham.

To do a proper analysis, this email should come from many different sources. We were

fortunate to have several people allow our tests to be run on their email. The sections

below describe the sources of the email and how it was collected, along with the names we

associate with each user’s mailboxes. We also describe the steps taken to ensure the purity

of the mailboxes.

3.1 Students

Student 1 and Student 2 are college students in computer science programs. Student 1 does

not receive any spam at all, but has a large collection of ham. The ham mailbox from Student

1 (ST1) contains 1727 emails from November 2001 through September 2002. This was the

personal inbox of that student, after most mailing lists had been filtered out. Student 2’s

mailbox (ST2) was similar to Student 1’s. It has 495 emails, all ham, from March 2002

through November 2002.

3.2 Pure Spam

Because the above mailboxes were purely ham, we needed some spam to which we could com-

pare them. The implications of using email from different sources is described later in Section
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4.1.1. To get pure spam, we used free email accounts from sites like Hotmail and Yahoo.

These accounts will be known as Free Email 1 (FE1) and Free Email 2 (FE2). To retrieve

these emails, we used the freely available Linux programs gotmail [7] and fetchyahoo.pl [13].

The Free Email 1 account that we used was several years old and rarely received ham

anymore. This account gathered 20-30 spam messages every day. From September 8, 2002

to September 23, 2002, 939 messages were collected, all spam. They were checked by hand

to ensure there were no ham emails in the mailbox.

The Free Email 2 account represents a different kind of spam. The biggest difference

between this account and the Free Email 1 account was that the email here was already

marked as “bulk mail” by the account’s provider. They use a system where emails that are

sent in bulk are filtered into a folder named “Bulk Mail.” The exact methods used by this

filter are unknown and not available. The contents of this folder were downloaded nightly

between August 10, 2002, and September 9, 2002. 867 spam emails were collected. These

emails were also checked to make sure that there were no ham emails.

3.3 Professors

We were also able to enlist the help of two computer science professors in our research. To

ensure their privacy, we were never given copies of their mailboxes. We provided them with

scripts to run, and the results were emailed back to us. The purity of their spam and ham

mailboxes was in their hands. To ensure that no spam emails were in the ham mailbox and no

ham emails in the spam mailbox, we encouraged the professors to check them by hand. The

scripts that we provided to them recorded which emails the filters got wrong. If an email was
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accidentally placed in the wrong mailbox, there is a good chance that one of the filters would

get it wrong. For example, suppose we are testing a filter that classifies emails correctly 95%

of the time. If there was a ham email in the spam mailbox, there is a 95% chance that it

would be marked as ham. Because it was identified as ham and was in the spam mailbox,

this would be marked as a false negative and would be saved to a mailbox with any other

false negatives. The user can then look through the mailbox of false negatives and if they see

any ham emails, they can move them from their spam mailbox to their ham mailbox. This

process is much less time-consuming than having to check several thousand emails. After

checking the false positives and false negatives mailboxes and handling any misplaced emails

appropriately, the scripts are re-run and these mailboxes are checked again for errors. While

such a method does not guarantee the purity of the ham and spam mailboxes, it is a good

way to double-check.

From Professor 1 (PR1), we received results from 777 ham emails and 777 spam emails.

He filtered his spam out by hand over the past few months by saving it to a separate folder.

This email was from July 2002 through February 2003.

Professor 2 filtered his email using SpamAssassin into a spam folder. He checked this

folder periodically to see if there were mistakes and he corrected them by moving them to

the correct folder. He gave us results from 1064 ham emails and 1064 spam emails. His

ham was from August 1997 through February 2003 and his spam was from September 2002

through February 2003.
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3.4 Small Company

Merely testing spam filters on computer science students and professors would not yield

results that could be applied to everyone. Another source of data is needed, so we enlisted

the help of a small business. This particular company is a small, family owned farm market

that has sold locally grown fruits and vegetables for over 100 years. They have been selling

gift packs through the Internet for the past few years and as a result, spam has become

quite a problem. On most days, more spam is received than ham, and the owner has been

searching for a solution.

We had several goals in mind with this part of the project. Primarily, we wanted to further

expand our data collection. This small business offered us a different email environment than

the students and professors could. Their email would test the filters in ways we could not. In

addition to business messages, the employees also use their email accounts for personal email,

which we hoped would provide interesting insight into how well the filters could distinguish

between the two. Due to the popularity of their web site and the visible email addresses all

over it, everyone at the company receives a large volume of spam.

The company provided us with a computer and access to it. We installed Red Hat 8.0 and

configured it as an email server. This email server would act as middle-ware to their current

email system. Fetchmail was used to retrieve messages from their current email server and

messages would then be filtered and delivered into the local server’s user mailboxes. It was

then be possible to retrieve the messages from our server via a POP email client.

When new emails arrived, Bogofilter would analyze and flag them accordingly. We added

a new header field to every email and inserted “****SPAM****” into the subject of all
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potential spam emails. Users would then retrieve their email from our server and check the

spam filter’s accuracy.

When messages came in, they were added to whatever corpus Bogofilter thought they

belonged in. If any mistakes were made, it could be harmful to the filter’s accuracy, as it

would be learning based on incorrect information. To remedy these mistakes, corrections

were sent by Company Person 1 and Company Person 2 to a special address where all

incoming email was automatically refiled into the opposite category and deleted from the

original corpus.

We debated over the implementation for correction quite a bit. The most accurate method

would have been for the users to forward all mail to special accounts set up to receive spam

and ham. We decided against this method because of the amount of effort required from

the user. Already receiving hundreds of spams a week, this approach was an unacceptable

solution. We decided to use a system where the users would send in only those emails that

were improperly classified by the filter. This system of correction required the least amount

of effort on the part of the users, especially since, if the filter worked, the number of errors

made by Bogofilter would go down as time went on. Also, since the filter was completely

dependent on learning, there was plenty of incentive to be faithful to our project and send

in all corrections.

The biggest threat to our data collection was not faulty software. Uncooperative users

would have made this whole section of the project a waste of time. Luckily, the volunteers had

been plagued by spam for quite some time, and were eager to find a solution themselves. Still,

we had some concerns about the integrity of our data. Neglecting to send any corrections

will degrade the quality of the filter. On a busy day, it would be quite simple to forget, or
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just not have time, to send in the spam corrections.

The email server processed 955 hams and 1005 spams for Company Person 1, and 308

hams and 358 spams for Company Person 2 from December 2002 through February 2003.

After the Bogofilter trial period was complete, we copied the databases off of the email server

for analysis in their final state. We also manually scanned through the email, separating it

into spam and ham. Using the correction account’s email, this was a simple and quick task.

We found several emails that appeared to have never been corrected. The reason for this

manual sorting was to be able to use the email again for additional testing. After the analysis

was complete, we informally interviewed the employees using the filter to find out how well

the filter worked at their site.

Table 3.1: Summary of Email Data

Person # Ham # Spam Total Start Date End Date
Student 1 1727 0 1727 11/2001 9/2002
Student 2 495 0 1727 3/2002 11/2002

Free Email 1 0 939 939 9/8/2002 9/23/2002
Free Email 2 0 867 867 8/10/2002 9/9/2002

Professor 1 777 777 1554 7/2002 2/2003
Professor 2 1064 1064 2128 8/1997 (ham), 9/2003 (spam) 2/2003

Company Person 1 955 1005 1960 12/2002 2/2003
Company Person 2 308 358 666 12/2002 2/2003

Totals 4626 5010 9636

3.5 Summary

From all these sources, we collected 4626 ham emails and 5010 spam emails. The messages

analyzed come from two sources from each category. In addition to providing more emails

for our primary analysis, the small business allowed the additional testing of Bogofilter. All
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emails were manually sorted by their owner to insure the integrity of the data. Table 3.1

summarizes all the emails involved in the analysis and their origin.
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4 Methodology

There are many ways one can go about testing spam filters. When we started this project in

September of 2002, Bayesian filters were brand new and untested, other than Paul Graham’s

own tests. Rather than spend our time doing brief looks at many different spam filters, we

decided it would be better to do an in-depth look at only two filters: The Bayesian filter,

Bogofilter, and the widely-used rule-based filter, SpamAssassin.

Our analysis includes a side-by-side comparison of Bogofilter and SpamAssassin on all

of our available mailboxes. We also wanted to look at how quickly Bogofilter learns and at

what point it works better than SpamAssassin (if at all). Additionally, SpamAssassin can

be analyzed by itself in great detail to determine the effectiveness of the filter at its default

threshold and the effects of changing this threshold.

In addition, we look into how email differs from user to user. We examine how effective

whitelists and blacklists are when based solely on who an email is from. The results from this

test can be used to show how many different addresses each of our test mailboxes receives

email from. In addition, using Bogofilter’s word frequency databases, we can calculate how

similar the email one user gets is to that of another user, overall.

The sections below describe how we went about performing the tests described above.

4.1 Bogofilter versus SpamAssassin

Since Bogofilter is a learning filter, it makes sense to test it over time. The exact algorithm

we used is described in Figure 4.1. Basically, there are two mailboxes as inputs; one of pure

spam and one of pure ham. It is important that these mailboxes are pure as any emails
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placed incorrectly will skew the results. The basic idea is to test Bogofilter on a single email

and record whether or not it is correct. We know if the email is spam or not by knowing

which mailbox it came from. For example, if the email we are testing is from the ham

mailbox, and Bogofilter marks it as spam, we record a miss for Bogofilter. Then, to teach

Bogofilter, we would add the email to Bogofilter’s ham corpus (even though it was marked

as spam). Next, a spam email would be tested using Bogofilter, its result recorded, and its

contents added to Bogofilter’s spam corpus. We alternate between testing spam and ham

and use the same number of emails from each mailbox. Some emails never get tested because

the user could have one mailbox larger than the other. For instance, if a user has 500 ham

emails and 700 spam emails, we only test 500 from each mailbox.

Initially we checked consecutive emails starting at the beginning of each mailbox. This

method meant that for the larger of the two mailboxes, emails towards the end were never

checked. We corrected our tests to use the concept of “stride.” Stride means that for the

larger mailbox, the emails we test are equally spaced throughout the whole mailbox. We feel

this is a better simulation because if the two mailboxes we are testing cover the same time

period, using stride keeps the dates for the emails being tested closer to each other. All of

results presented later in this paper use the idea of stride.

The algorithm that we used for testing SpamAssassin was almost identical to the one we

used with Bogofilter. This algorithm can be seen in Figure 4.2. Because SpamAssassin is

not a learning filter, there is no step to train the filter. Instead, we simply test and record

results.

Testing SpamAssassin over time on its own does not really make sense. One would expect

the accuracy to be pretty constant. If this is true, there are much better ways to analyze
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hamcount ⇐ the total number of ham emails
spamcount ⇐ the total number of spam emails
limit ⇐ min(hamcount, spamcount)
for i = 1 to limit do

hamindex = b(i ∗ hamcount)/limitc
spamindex = b(i ∗ spamcount)/limitc
if Bogofilter thinks ham[hamindex] is spam then

Record false positive
else

Record correct ham identification
end if
Add ham[hamindex] to Bogofilter’s ham corpus
if Bogofilter thinks spam[spamindex] is spam then

Record correct spam identification
else

Record false negative
end if
Add spam[spamindex] to Bogofilter’s spam corpus

end for

Figure 4.1: Bogofilter Analysis Algorithm

hamcount ⇐ the total number of ham emails
spamcount ⇐ the total number of spam emails
limit ⇐ min(hamcount, spamcount)
for i = 1 to limit do

hamindex = b(i ∗ hamcount)/limitc
spamindex = b(i ∗ spamcount)/limitc
if SpamAssassin thinks ham[hamindex] is spam then

Record false positive
else

Record correct ham identification
end if
if SpamAssassin thinks spam[spamindex] is spam then

Record correct spam identification
else

Record false negative
end if

end for

Figure 4.2: SpamAssassin Analysis Algorithm
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it than plotting it over time, however we are interested in comparing it to Bogofilter. We

wanted to be able to pinpoint the number of emails required for Bogofilter to be at least as

accurate as SpamAssassin.

The above algorithms were implemented using a combination of the scripting languages

Bash and Perl. The majority of the code was done in Bash for its simplicity and ease

of running other programs. The actual running of the filters on emails was done inside

Procmail. Both filters were designed to be done in Procmail, and Procmail provides easy

methods for saving emails and stripping headers. Perl was used for post-processing the

results outputted from Procmail. Bogofilter version 0.9.1 and SpamAssassin version 2.41

was used for the mailboxes from the students, small company employees, and free email

accounts. The accounts from the professors were tested on a different computer that had

version 0.9.1.2 of Bogofilter and version 2.31 of SpamAssassin.

4.1.1 Headers or No Headers?

In our initial tests of Bogofilter, after only a handful of emails it had 100% accuracy. While

this certainly looked good for Bogofilter, it was unlikely that any learning filter could learn

in only two or three emails. The problem was that the mailboxes we were testing on were

from two different sources. The ham was from Student 1’s mailbox, and the spam from the

Free Email 2 account. Bogofilter quickly learned that the address of Student 1’s email server

meant ham, and the address of Free Email 2’s mail server meant spam every time! In fact,

even for emails from the same source, sometimes Bogofilter was associating names of months

with ham and spam if the mailboxes were from different time periods.

Procmail supports only sending the body of emails to the filters, but we opted to pipe

33



the emails through a script that would remove all lines of the header except “From:” and

“Subject:”. These two lines should be safe to include, regardless of to whom the email was

addressed. We only removed headers when absolutely necessary, like when using mailboxes

from different sources. For email from the same source and time period we tried to use

headers whenever possible. In our analysis section we will clearly state for each test if we

used headers or not.

4.2 Whitelists and Blacklists

In Sections 2.2.2 and 2.2.3 we talked about using only whitelists or blacklists to filter emails.

In a whitelist, all email from a new sender would be blocked until the receiver gets an email

from them and somehow approves their email address. This concept only works if the number

of different email addresses the receiver gets email from is low. The assumption is that after

running this kind of filter for a while, almost everyone the receiver would ever get email is

already on the whitelist. The same theory can be applied to blacklists, however they are

typically not as critical as blacklists should rarely block a ham message, but it is bad if it

they do.

We constructed a test to see if whitelists are a reasonable method of filtering. Figure

4.3 shows the method we used of doing this test. The output of this algorithm would be a

list of numbers, one for each email in the mailbox. These numbers represent the number of

different email addresses seen at that point. For example, if the 100th line of output read

“30,” it would mean that the first 100 emails in the mailbox were from only 30 different

people. We would expect this to increase most rapidly at first and eventually plateau.

34



count ⇐ 0
mailcount ⇐ the total number of emails in the mailbox
for i = 1 to mailcount do

addr =the From: address of mailbox[i]
if ¬exists(hash[addr]) then

count ⇐ count + 1
hash[addr] ⇐ 1

end if
Output count

end for

Figure 4.3: New Email Addresses Over Time Algorithm

4.3 SpamAssassin Scores

SpamAssassin assigns a score to each email which is the sum of the weights of the rules

that it matches. SpamAssassin comes with a default threshold of 5, but it is adjustable

by the user. Since the scores assigned to each characteristic that SpamAssassin checks for

seem rather arbitrary, it is important to test for SpamAssassin’s best threshold setting. This

could, of course, be different for every user.

In order to determine each user’s appropriate threshold, it was necessary to analyze all

the scores assigned by SpamAssassin for that user’s email. Using the standard Unix “grep”

command, we simply extracted all the scores from each spam and ham file and then used

Microsoft Excel to create a cumulative distribution function (CDF) plot of these scores.

4.4 Data Analysis Script

All of the above methods of analysis were combined into one script to make it easy to use

and more distributable. The script was initially written for our own PC running Linux, but

we wanted to be able to distribute it to other people so that they could run it and send

the results back to us. Given two mailboxes (one of spam, one of ham), the script would
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run a series of tests on them. It first ran the Bogofilter vs. SpamAssassin tests described in

Section 4.1. During these tests, the output of SpamAssassin was saved so that the assigned

scores could be filtered out at a later time. Bogofilter’s verbose output was also saved, which

detailed the words it used to decide if an email was spam or not, along with the probabilities

assigned to each word. This data from Bogofilter was never used other than to make sure it

was working correctly. Following the above tests, the data to analyze new email addresses

over time was collected. All of the data collected was packaged up in a file to email back to

us.

In order to protect the user’s privacy, the script did not make copies of any parts of any

emails of the user. Many users consider their email to be confidential and private, and much

care was taken when developing the script so that the result would protect the user’s privacy

and still provide us with the maximum amount of data.

4.5 Comparing Corpora

Making a universal spam filter is hard because of the differences between users’ emails. We

wanted to see how similar email is from user to another. If the email is similar, it should

be easier to build a filter that will work well for everybody. Learning filters, like Bogofilter,

work regardless of the differences between one user and another because they adapt to the

individuals email. If using one Bogofilter database for multiple users, it is import to make

sure that these users receive similar email. This test should give some idea of how email

differs between users.

Comparing the email of different users presented difficult problems in several ways. First,
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it was necessary to protect the user’s privacy which made viewing their email directly out

of the question. Second, we had no method of drawing a comparison between two sets of

email.

To solve the first problem, we decided to use the databases created by Bogofilter after

the user had run the data analysis script. From the database a list of words with their spam

probabilities could be obtained using Graham’s Algorithm. To compare two corpora, we

used the following procedure with Microsoft Access:

1. Create a separate table of words with their respective spam probabilities for each user.

2. Append all words found only in one table to the other table with a neutral probability
of 0.5.

3. Create a combined table with each word and the respective difference in probability
between the tables. Use this table to create a histogram of the differences.

4. Take the sum of the probabilities and divide it by the number of words in the combined
table.

This procedure gives a number that we use as the percentage difference between the first

and second tables.

4.6 Summary

The series of tests we constructed look at several different areas of spam filtering. We do a

side-by-side comparison of the effectiveness of SpamAssassin and Bogofilter. This provides a

rough look at how well the filters work, and can be used to show how long it takes a Bayesian

filter to reach the effectiveness of a static, rule-based filter. In addition to this, we outlined

our method of examining the effects of changing SpamAssassin’s threshold. The results from

this test can be used to see if the default threshold of 5 is a good choice, and how much the

optimal choice varies from user to user.
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Our tests also include a brief look into whitelists and blacklists using only the “From:”

field of an email. The results of this test will not only show the effectiveness of a simple

whitelist/blacklist, but will also characterize a user’s email by showing how many distinct

email addresses the user gets email from. In addition, we also describe a method of comparing

Bogofilter’s databases between users, to get an idea of how similar one user’s email is to

another. This last comparison is important because it shows how hard spam filtering can

be. If two users get different email, it is unlikely that there will be one universal filter that

will work well for both of them. The next chapter shows the results of these tests.
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5 Analysis

In this chapter we describe the results of testing both filters extensively. Starting with

the comparison of Bogofilter to SpamAssassin and analyzing their performance on each set

of data collected. Next are the results from the whitelist and blacklist tests that were

run on each data set. SpamAssassin is then tested by itself to determine how to find the

best threshold for each user in our project. Bogofilter is then analyzed in detail with the

comparison of the corpus from each user. Lastly, we look into how the small company users

felt Bogofilter worked at their business.

5.1 Spamassassin vs. Bogofilter

In this section we analyze the performance of SpamAssassin and Bogofilter. We ran the

tests described in Section 4.1 on all of our mailboxes. We had mailboxes of both spam and

ham from four users: Company Persons 1 and 2, and Professors 1 and 2. We also had

the two ham mailboxes from Students 1 and 2 along with two spam mailboxes from Free

Emails 1 and 2. From these mailboxes we were able to make four combinations and we

tested all four. Because Bogofilter would have had an easy time distinguishing emails from

two different mailboxes (see Section 4.1.1), we ran Bogofilter using only the “From” and

“Subject” headers for the four mailbox combinations. SpamAssassin, however, was always

run with full headers. Had we tried to run SpamAssassin on emails with missing headers, it

would have likely flagged them as spam because SpamAssassin has rules regarding missing

headers. Keep in mind that in the graphs below, Bogofilter was “crippled” in a sense because

it had limited headers on the combinations of Student and Free Email mailboxes.
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To make an estimation of the effects of not using most headers with Bogofilter, we ran our

Bogofilter test script against the same mailbox, both with and without headers. We chose

to use the mailbox of Company Person 2 because we had full access to it (as opposed to the

Professors’ mailboxes), and its results were typical of Bogofilter, in our opinion. We tested

on 358 email messages each of ham and spam. With headers, there were 38 false positives

(10.6%) and 35 false negatives (9.8%). With only the “From” and “Subject” headers, these

changed to 50 false positives (14%) and 29 false negatives (8.1%). By removing most headers,

there were more ham emails mistakenly identified as spam, and less spam emails mistakenly

identified as ham. The overall accuracy decreased, from 89.8% to 88.9%. In this single

example, the change was slight. We expect the effect of not using most headers to be small

for all mailboxes, as we believe the most important header information is in the “Subject”

and “From” fields.

Figure 5.1 shows how well Bogofilter and SpamAssassin performed over time on Company

Person 2’s ham, as an example. This figure started as raw data with a 1 representing a correct

classification and a 0 representing a mistake. To smooth out the results, a moving average

of 10 was used so each point on the graph represents the average of it and the previous 9

points. Finally, this data was plotted using gnuplot with the “smooth bezier” option. We

feel this method provides the best visual interpretation of the results of our tests. Using a

shorter moving average makes the dips much more extreme and a longer one just smooths

the whole plot out too much.

This graph does not clearly show which filter is better. The performance of Bogofilter

and SpamAssassin on each mailbox is later summarized in several tables and graphs to make

it more clear how accurate they were overall. Figure 5.1 is included to give a sense of how
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Bogofilter’s performance changes over time for ham. It starts off low, but increases quickly

to reach the accuracy of SpamAssassin. This graph that Bogofilter does not require much

learning before it is accurate. Figure 5.2 shows a similar plot for Company Person 2’s spam.

In this case, Bogofilter actually outperforms SpamAssassin through most of the mailbox. It

is expected that Bogofilter will get the first few ham emails correct and the first few spam

emails incorrect in each mailbox. In other words, Bogofilter will mark the first few emails

as ham, regardless of what they are. To avoid false positives, Bogofilter is weighted so that

it will mark emails as ham if it is unsure.
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Figure 5.1: Company Person 2’s Ham Over Time

Tables 5.1 and 5.2 show the results of every single email tested. These numbers are

unrepresentative of Bogofilter, however, because Bogofilter needs a learning period before it

can be relied on. Tables 5.3 and 5.4 show the results of the same tests with the results of

the first 50 emails removed. In our experience, 50 emails is more than enough for Bogofilter

to start performing well. This can be seen in Figures 5.1 and 5.2, where Bogofilter performs
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Figure 5.2: Company Person 2’s Spam Over Time
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well almost immediately.

The column and row headers are abbreviated to make them fit better. The columns in

Table 5.1 represent the number and percentage of false positives (FP) for Bogofilter (BF)

and SpamAssassin (SA). Table 5.2 shows the number and percentages of false negatives (FN)

for Bogofilter (BF) and SpamAssassin (SA). The mailbox abbreviations were discussed in

Section 3. The last four mailboxes are combinations of the two Student ham mailboxes with

the two Free Email spam boxes. Remember that Bogofilter was only using limited headers

on the last four mailboxes in each table.

Table 5.1: Summary of Bogofilter and SpamAssassin Performance on Ham
Mailbox # Emails BF # FP BF % FP SA # FP SA % FP

PR1 775 20 2.58% 11 1.42%
PR2 1064 36 3.38% 19 1.79%
CP1 1005 37 3.68% 128 12.74%
CP2 358 38 10.61% 9 2.51%

ST1 - FE1 940 15 1.60% 81 8.62%
ST1 - FE2 878 22 2.51% 57 6.49%
ST2 - FE1 495 8 1.61% 12 2.42%
ST2 - FE2 495 22 4.44% 12 4.44%

All 6010 198 3.29% 329 5.47%

Table 5.2: Summary of Bogofilter and SpamAssassin Performance on Spam
Mailbox # Emails BF # FN BF % FN SA # FN SA % FN

PR1 775 61 7.87% 118 15.22%
PR2 1064 11 1.03% 67 6.30%
CP1 1005 450 44.78% 135 13.43%
CP2 358 35 9.78% 65 9.88%

ST1 - FE1 940 158 16.80% 64 6.81%
ST1 - FE2 878 73 8.31% 59 6.72%
ST2 - FE1 495 56 11.3% 24 4.85%
ST2 - FE2 495 16 3.23% 34 6.87%

All 6010 860 14.3% 566 9.4%
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Table 5.3: Summary of Bogofilter and SpamAssassin Performance on Ham
(Excluding the first 50 emails)

Mailbox # Emails BF # FP BF % FP SA # FP SA % FP
PR1 725 18 2.48% 11 1.52%
PR2 1014 28 2.76% 19 1.87%
CP1 955 32 3.22% 128 13.40%
CP2 308 30 9.74% 8 2.60%

ST1 - FE1 890 10 1.12% 77 8.65%
ST1 - FE2 828 10 1.21% 51 6.16%
ST2 - FE1 445 7 1.58% 12 2.70%
ST2 - FE2 445 15 3.37% 12 2.70%

All 5610 150 2.67% 318 5.67%

Table 5.4: Summary of Bogofilter and SpamAssassin Performance on Ham
(Excluding the first 50 emails)

Mailbox # Emails BF # FP BF % FP SA # FP SA % FP
PR1 725 55 7.59% 105 14.48%
PR2 1014 9 0.89% 67 6.61%
CP1 955 433 45.34% 124 12.98%
CP2 308 31 10.06% 49 15.91%

ST1 - FE1 890 135 15.17% 63 7.08%
ST1 - FE2 828 66 7.97% 54 6.52%
ST2 - FE1 445 43 9.66% 23 5.17%
ST2 - FE2 445 10 2.24% 33 7.42%

All 5610 813 14.49% 518 9.23%
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Figure 5.3: SpamAssassin Vs. Bogofilter on Ham Summary
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Figure 5.1 shows the percentage of ham emails misclassified by Bogofilter and SpamAss-

assin. This figure excludes the first 50 emails, for a fair comparison. On four of the eight

mailboxes, Bogofilter performed better by having less false positives than SpamAssassin. It

is interesting to note that three of these four were from the Student and Free Email combi-

nations, where Bogofilter was run with only limited headers. It is also interesting that for

Company Person 1, Bogofilter significantly outperformed SpamAssassin, while for Company

Person 2 the results were just the opposite.
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Figure 5.4: SpamAssassin Vs. Bogofilter on Spam Summary

Figure 5.1 shows how well Bogofilter and SpamAssassin performed at classifying spam.

This figure also excludes the results of the first 50 emails. Bogofilter outperformed SpamAss-

assin on four of the eight mailboxes. In fact, Bogofilter outperformed SpamAssassin on the

same four mailboxes where SpamAssassin outperformed Bogofilter on the ham. This result

means that neither filter completely outperformed the other filter on any one person’s mail-

box. The most notable occurence in Figure 5.1 is that Bogofilter misclassified around 45%
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of Company Person 1’s spam. Considering how well Bogofilter worked for Company Person

1’s ham, one could conclude that Bogofilter was marking most emails as ham, regardless of

what they were. In the case of ham, it worked well, however for spam it performed horribly.
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Figure 5.5: SpamAssassin Vs. Bogofilter Overall Summary

Figure 5.1 shows the overall summary of Bogofilter and SpamAssassin. In short, Bogofil-

ter did better for ham, while SpamAssassin did better for spam. This summary is an average

of the percentages for each mailbox from the last two figures, with the four Student and Free

Email combinations weighted half as much as the Professors’ and Company Persons’ mail-

boxes. This was done because the four combinations really only represent two ham mailboxes

and two spam mailboxes and the different combinations obviously share many emails.

5.2 Whitelists and Blacklists

Whitelists and blacklists are only effective if the number of addresses a user gets email from

is limited. We looked at how frequently new addresses appear for all of our datasets. It is
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important for these tests that the emails are ordered somewhat chronologically or else the

results will be misleading. These tests only look at the email address in the “From:” header.

Figure 5.2 shows the number of different email addresses a user receives ham email from

proportional to the total number of email they get. If every email received was from a

different address, it would be represented by a diagonal line from the lower left corner to

the upper right. If every email was from the same address, then there would be a line

along the X-axis. The values on the Y-axis are the number of addresses seen divided by the

total number of emails. Both of the professors get email from roughly the same number of

email addresses, as do both of the company persons. The lines for Student 1 and Student

2, however, are not all that close to each other. Observe that none of the lines level off and

are steadily rising throughout the entire mailbox.

Whitelists should, in theory, block all spam. The variable is how much ham gets blocked,

in this case, because it is from a previously unseen email address. For Company Persons

1 and 2, a simple whitelist would block about 20% of their ham. For Student 2, a simple

whitelist would block around 40% of his ham.

Notice that for Professor 2, there is a large flat spot from around 25% of his mailbox

through 50%. We later discovered that his mailbox was not ordered chronologically and had

subfolders that contained mail from only one or a few users. When testing that section of his

mailbox, no new email addresses were seen, and hence, a flat section appears on the graph.

Figure 5.2 shows the same graph only for spam. Note that the Y-axis is scaled differently

from Figure 5.2. This graph is strikingly different from the previous one. Remember that if

every email was from a different user, it would be shown as a straight line from one corner

to the other. The lines in Figure 5.2 are close to this maximum. One could interpret this
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Figure 5.6: New Email Addresses in Ham
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graph as showing that 60% to 80% of all spam comes from different users and that a blacklist

would only stop the remaining 20% to 40%.
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Figure 5.7: New Email Addresses in Spam

While the above graphs showed the number of new email addresses over time, the graphs

below show the rate at which new email addresses appeared. The expected curve starts out

high (as at first, all email addresses are new) and decreases over time, and levels off at some

point. As the curves get closer to 0, it means that the number of new email addresses being

seen is decreasing.

These graphs are essentially a numerical derivative of the previous plots. Every 50 emails,

the number of new addresses seen in the previous 50 emails was calculated. This data was

then plotted using Gnuplot’s “smooth bezier” setting. This fits a bezier curve to the data to

show its general trend. The actual data is not nearly as smooth as these graphs show, but

we feel the bezier curve shows the trends more clearly.

Figure 5.2 shows the rate of new email addresses for ham. Four of the five mailboxes tested
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started high and decreased quickly, as we expected. After the initial drop, the percentage of

new email addresses is in the 10% to 40% range. Regarding whitelists, this means that for

a user like Company Person 1, a whitelist would block about 20% of their ham from being

received. For Student 2, a whitelist could block as much as 40% of their ham from being

received. Note how the line representing Professor 2’s ham starts high, dips low, and then

rises again. As discussed previously, Professor 2’s ham was not ordered chronologically and

the curve is not representative of how this professor’s actual email would perform.
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Figure 5.8: Rate of New Email Addresses in Ham

Figure 5.2 shows the rates of new email addresses for spam. The rates at which new

email addresses are seen is much higher for spam. Company Person 2 has a short dip at one

point, but otherwise the rates stay above 60% the entire time. This means that for these

users, a blacklist could block at most 40% of their spam. For the Free Email 1, a blacklist

would stop about 20% of its spam.
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Figure 5.9: Rate of New Email Addresses in Spam
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5.3 Spamassassin Alone

In this section we investigate the characteristics of SpamAssassin by itself. The intent is to

determine how to adjust SpamAssassin’s threshold to optimally filter spam for each user. It

is also interesting to look at how different each user’s threshold should be.

5.3.1 Finding the Right Threshold

Because SpamAssassin outputs the final score of an email in the body of that email, it is not

necessary to run the filter repeatedly to determine how well it performs due to changing its

threshold. By plotting a cumulative distribution function of the scores for a particular user,

it is possible to see the effects of setting the threshold at any point.
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Figure 5.10: CDF - Professor 1’s SpamAssassin Scores

Figure 5.3.1 shows the plot of Professor 1’s email. The X-axis is the SpamAssassin score

and the Y-axis is the percentage of email classified incorrectly. The ham line is actually the

inverse of the CDF (1 minus the normal CDF value at that point). This adjustment allows
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the user to view both the ham line and the spam line in the same fashion. To determine

the effectiveness of SpamAssassin at a particular threshold, pick the point on the X-axis for

that threshold and note the height of the ham and spam lines. The height of the ham line

represents the number of ham emails that would be misclassified as spam. The height of

the spam line represents the number of spam emails that would be misclassified as ham. If

the user were strictly interested in minimizing both ham and spam, they would set their

threshold to wherever the ham line crossed the spam line.

If Professor 1 was interested in minimizing false positives, the professor would set Spam-

Assassin threshold to approximately 6, where the ham line is nearly 0. At 6 however,

SpamAssassin will let about 20% of spam through. Ideally, there would be a point on the

graph where there are 0 misclassifications for both ham and spam. Unfortunately, since that

is not the case, Professor 1 must make a compromise on how much ham to risk being blocked

and how much spam to let through.

Of particular interest on these graphs is the slope of the ham line and the slope of the

spam line. On Professor 1’s graph, the ham line has a steep downward slope, which means

that most of the professor’s ham email falls within a small range of SpamAssassin scores. The

spam line, on the other hand, has a much more gradual slope, meaning the spam messages

have a broad range of scores they can receive. Near the x-axis, both lines appear to stretch

as if they were approaching an asymptote. The graph shows that, although most ham is

easily identified, Professor 1 still receives some ham that looks spam-like.

Professor 2’s graph is shown in Figure 5.3.1, and is similar to Professor 1’s. Professor

2 has a steeper slope on his spam line, which means the received spam is generally farther

from the received ham than Professor 1’s.
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Figure 5.11: CDF - Professor 2’s SpamAssassin Scores
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Figure 5.12: CDF - Company Person 1’s SpamAssassin Scores
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Figure 5.3.1 clearly shows that SpamAssassin did not do well with Company Person 1’s

email. Minimizing false positives would mean setting the threshold at about 13.5 and letting

almost 40% of spam through! The height of the intersection of the spam line and the ham

line shows how difficult it was for SpamAssassin to classify email correctly. 13% of Company

Person 1’s spam had a score of less than 5, while almost 12.5% of the ham had a score of

more than 5.
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Figure 5.13: CDF - Company Person 2’s SpamAssassin Scores

SpamAssassin had a much easier time classifying Company Person 2’s email than Com-

pany Person 1, as shown in figure 5.3.1. The intersection of the spam line and the ham line

is at about the same height, but the ham line continues to plunge to the right of the inter-

section and is not extended like on Company Person 1’s graph. This means that Company

Person 2 could set their threshold to 6.5 and this would minimize false positives without a

gross amount of spam still penetrating the filter.

Figure 5.3.1 shows both students and both free email accounts. Student 1’s ham line
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shows the difficulty that SpamAssassin had with the student’s email. It is interesting to

note that both free email accounts had similar lines. Although the spam in each account is

different, they both had the same distribution of SpamAssassin scores.

5.4 Bogofilter Alone

In this section we dig deeper into how bogofilter works and try to extract characteristics

from the corpora it creates. These characteristics provide for a method to compare one

user’s corpus to another user’s corpus. From here, we can estimate the effectiveness of using

a shared corpus across multiple users.

5.4.1 Corpus Analysis

Merely analyzing the effectiveness of Bogofilter did not seem sufficient. Rather than looking

at how Bogofilter analyzed each email, looking at the spam and ham databases themselves

should provide interesting information. This is not a simple task, however, because each

corpus contains many thousands of words. We also wanted to find a way to compare two

corpora to see how alike they are. The method for comparing one Bogofilter corpus to

another is described in Section 4.5.

5.4.2 Student 1 vs Free Email 1

Table 5.5 shows the most commonly found words in the corpus of 940 ham emails from

Student 1’s mailbox and 940 spam emails from Free Email 1. The most common words in

this corpus are clearly not words that will be used often to determine whether or not an

email is spam. Most of them seem to be close enough to 50% that they would not normally
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Table 5.5: Corpus of Student 1 vs Free Email 1

Word Spam Probability Total Occurrences
the 43.47% 4957
you 53.16% 4244
and 48.48% 3909
http 73.29% 3871
from 51.34% 3798
for 46.03% 3252
this 52.37% 2994
your 60.96% 2792
html 79.45% 2632
subject 48.05% 2329
are 48.76% 2016
arial 79.00% 1957
that 39.73% 1943
here 71.41% 1938
click 79.64% 1906
with 48.39% 1899
email 57.54% 1863
have 41.70% 1760
will 40.34% 1626
our 57.28% 1615
not 52.67% 1443
text 60.39% 1386
nbsp 73.51% 1374

be used at all. There are a few that could be significant. The word “http” was found more

than 3871 times, approximately twice per email. From the spam probability, its easy to see

that spammers use the word “http” quite often, whereas legitimate email does not usually

contain “http” (but sometimes does).

The words “arial” and “click” had the highest spam probability with 79%. While not as

many occurrences as “http”, these are clearly indicative of a spam.

Tables 5.6 and 5.7 list the most commonly found ham and spam words, respectively, with

their counts in Student 1’s email. There is no Spam Probability in these lists because all
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Table 5.6: Student 1 vs Hotmail -
Top Ham Words

Word Total
wpi.edu 911
worcester 271
wpi 271
tuesday 238
guitar 198
bass 171
april 168
cs.wpi.edu 165
musician’s 147
march 147
j.pl 139
dave 134
article 127
musical 125
campus 121
www.wpi.edu 115
bands 115
musicians 114
guests 111
december 110

Table 5.7: Student 1 vs Hotmail -
Top Spam Words

Word Total
collapse 291
border-collapse 274
mortgage 262
loan 131
busycorp.net 120
t.pl 117
irewardstech 106
penis 106
to.pl 99
unsub.cgi 90
obligation 89
www.dagny.com.biz 84
link2buy.com 84
remove.html 82
opt-in 74
www.virtumundo.com 73
cs.jsp 71
opted 70
pill 69
text-align 69

of the top ham words have probability 0% and all of the top spam words have probability

100%.

From the ham words, it is easy to see that this student gets email from a musical mailing

list and from school.

The spam list shows some of the topics of rather common spam and http tags used in many

spam emails. Also in the spam list are companies which frequently send out spam, namely

“busycorp.net”, “www.dagny.com.biz”, “link2buy.com”, and “www.virtumundo.com”. It is

rather ironic that the word “opted” is in the list. After browsing through the spam messages,

many have a line claiming that the reason the owner of the Free Email 1 account received

this email is because he/she opted to, which is not true.
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Including the analysis of all the other corpora would be redundant since they all convey

essentially the same meaning. Looking at the top ham and spam words for each individual

data set does not show information of interest as far as spam filter effectiveness goes. Each

one had the expected results of the most common ham words being associated with the

individual user and the most common spam words being words commonly found in spam.

5.4.3 Comparison of Company Person 1 and Company Person 2

It is more interesting to look at how the corpora compare to one another. Specifically, we

wanted to know whether many users share the same ham words and whether or not all spam

corpora were similar. We first looked at comparing the corpora from Company Person 1 and

Company Person 2.

The comparison was made by creating a table of the words that were in both corpora and

calculating the difference between the two probabilities. Company Person 1 and Company

Person 2 get individual copies of some of the same email so we expected their corpora to

closely match.

The corpus of Company Person 1 had 6,713 words that appeared in emails more than

10 times while the corpus of Company Person 2 had 7,971. There were 6,349 of these words

that occurred in both corpora. Table 5.8 lists the top 20 words with the largest difference in

probability between the two corpora. The count columns refer to the number of times that

particular word appeared in the respective user’s corpus. This table by itself does not show

results of particular interest until one analyzes the probability differences using a continuous

distribution function.

Figure 5.15 shows a continuous distribution function of several corpora comparisons.
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Table 5.8: Company Person 1 vs Company Person 2

Word CP1 Prob CP2 Prob CP1 Count CP2 Count Difference
dvds 100.00% 42.37% 23 118 57.63%
absmiddle 100.00% 45.16% 21 62 54.84%
unsub 26.67% 80.52% 15 77 53.85%
movie 87.50% 33.75% 24 80 53.75%
x-accept-language 0.00% 50.00% 30 62 50.00%
implied 26.67% 76.60% 15 47 49.93%
reproductions 0.00% 46.15% 14 26 46.15%
reliance 91.67% 47.83% 12 23 43.84%
additionally 45.45% 88.68% 11 53 43.22%
decisions 0.00% 42.11% 18 38 42.11%
beach 6.25% 47.37% 16 38 41.12%
usa.net 100.00% 60.00% 18 30 40.00%
cholesterol 100.00% 60.00% 11 30 40.00%
https 10.53% 50.00% 19 54 39.47%
stimulus 0.00% 39.13% 14 23 39.13%
warranties 13.33% 52.38% 30 63 39.05%
upgrade 60.87% 22.06% 23 68 38.81%
cats 10.53% 48.48% 19 33 37.96%
cat 35.71% 72.97% 14 37 37.26%
abuse 20.00% 56.92% 35 65 36.92%

Looking at just one line on the graph shows how different the two corpora are. The steeper

the slope of the line is the closer the two corpora are to each other. The sharp, linear increase

on all lines at the 50% mark (except CP1 vs. CP2) is the result of those words listed in one

corpus but not the other. These words tended to be either entirely ham (0%) or entirely

spam (100%) words in one mailbox, and would be neutral (50%) in the mailbox that had

not seen them before, so there was a group of words with a difference of exactly 50%.

Table 5.9 shows the differences between each corpus we tested. This table shows some

rather interesting results. Company Person 1 and Company Person 2 had very similar

corpora with only 7% difference. This similarity was expected since they both receive copies

of many of the same exact emails. Professor 1 and Professor 2 was the next closest comparison
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Table 5.9: Corpora Comparison Chart

ST1 ST2 CP1 CP2 PR1 PR2
ST1 0% 31.18% 32.53% 32.93% 34.48% 34.78%
ST2 x 0% 34.29% 33.53% 32.05% 33.16%
CP1 x x 0% 7.07% 33.49% 36.02%
CP2 x x x 0% 33.31% 34.84%
PR1 x x x x 0% 26.89%
PR2 x x x x x 0%

with a 27% difference. Every other comparison was between 31% and 36%.

5.4.4 Small Company Test Results

Installing Bogofilter at the small company provided us with insight into the possibilities of

implementing a learning filter for use by multiple people. Even though only two people were

using the filter, Bogofilter had a difficult time identifying their spam and ham.

Actual statistics regarding Bogofilter’s effectiveness at the small company would be im-

possible to compute because on several occasions, Bogofilter’s ham and spam databases

needed to be rebuilt from pre-sorted email and the process started over. On one occasion,

one of the databases became corrupt and every email was being flagged as spam. On another

occasion, Bogofilter was misclassifying more emails than it was correctly classifying.

After talking with both users of the filter, it became clear how sensitive a learning filter

can be. Bogofilter’s accuracy was poor throughout the test period. Company Person 1

estimated that only 60% of all incoming email was being classified correctly. It was obvious

the filter was not being trained as rigorously as it needed to be. This lack of training created

a situation where the ham and spam databases were incorrect and did not apply specifically

to either user.
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5.5 Summary

The results from comparing SpamAssassin to Bogofilter are rather surprising. Neither was

more effective than the other at sorting ham emails from spam emails. In addition, ad-

justments to the SpamAssassin threshold can make the filter behave more appropriately

depending on the email a particular user receives.

Whitelisting and blacklisting, while effective at reducing false negatives and false posi-

tives, are still undesirable solutions when used on their own. For all the users we tested, the

rate at which email from new addresses arrived for both ham and spam were just too great

to make these solutions acceptable.

Comparing the corpora created by Bogofilter provided some interesting information. It

would appear that each user’s email isn’t that different from any other user’s email. But

it also appears that the amount by which each user’s corpus differs is consistent across all

corpora. This implies that each individual user has a somewhat different set of email with

many emails similar, but still having some that are different from everyone else.

The trial at the small company revealed that implementing Bogofilter for use by multiple

users who share a corpus is not simple task. Maintaining integrity of the database relies on

all users properly using the filter and making all necessary corrections in a timely manner.
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6 Discussion

In this chapter we describe the meaning of the results from our analyses. Starting with the

comparison of Bogofilter to SpamAssassin, followed by whitelists and blacklists. Additionally,

the separate investigations into SpamAssassin and Bogofilter are summarized. Finally, we

review the results from the small company experiment.

Both SpamAssassin and Bogofilter had inconsistent results in the analysis. In the com-

parisons of both ham emails and spam emails, each filter was better at exactly half of the

data sets being tested. When Bogofilter performed better for a user’s ham, SpamAssassin

performed better on their spam. The reverse of this is also true, that when SpamAssassin

performed better on a user’s ham, Bogofilter performed better on that user’s spam. Based

on these results, despite Bogofilter and SpamAssassin using different methods of analyzing

an email, their effectiveness is about the same.

Whitelists and blacklists are the most basic form of rule-based email filtering. For many

years email programs have allowed users to sort their email based on who it is to (in the case

of mailing lists) or who it is from. Spammers know that even the most inexperienced user

will learn quickly how to block email from a particular address. Our tests confirmed that

most spam email (60% to 80%) comes from an email address that the user has never seen

before. This means that blacklists become lists of email addresses that a user has received

spam from, but only 20% to 40% of the user’s future spam email will come from addresses

on this list. In other words, blacklists can reduce a user’s spam, but the majority of it will

still get past the blacklist.

Whitelists, on the other hand, can be useful if the user tends to only receive ham email
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from a small, established group. Our tests showed that whitelists could effectively mark 60%

to 80% of a user’s email as ham correctly. The remaining email could either be marked as

spam, or perhaps run through another filter (like SpamAssassin).

Whitelists and blacklists did not show promising results when used alone, but in com-

bination with other filters, they can only improve the results of those filters, assuming that

there are no addresses mistakenly listed.

The analysis of SpamAssassin’s threshold revealed that the default setting of 5 was close

to the best threshold for every data set. Slight adjustments of this threshold could be made

by the user to conform to their personal preference, but any major change, either positive

or negative, would result in a dramatic increase in misclassifications. This result is not

surprising, as SpamAssassin’s authors chose weights for rules using a genetic algorithm to

minimize mistakes using the default threshold of 5.

Analyzing each user’s corpus allowed a unique view of that user’s email. Bogofilter

provided us with databases listing how frequently different words appeared in a user’s ham

and spam. Using these databases, we were able to make comparison’s between users on a

word-by-word basis. The analysis showed that there was a consistent difference between

virtually all the data sets we analyzed. Table 5.9 shows that almost every data set is

between 25% and 35% different. This means that the average difference of the probabilities

of words between any two given corpora is about 0.3. The graphs show that while there are

similarities, each user’s email is unique.

The Bogofilter trial at the small business was ultimately inconclusive. Quite a few prob-

lems cropped up while it was running and left the users rather unmotivated to participate

fully for the length of the trial. When it was later discovered how much trouble Bogofilter
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had in our primary analysis in identifying Company Person 1’s spam, the frustration of the

users is understandable.

When we first started the project we had hopes of finding one filter that would be much

better than others. After performing these analyses and looking at many spam emails, we

have concluded that filtering spam accurately across different users is difficult. While the

majority of spam is easy to spot, there are some messages that are designed to get around

filters. These messages try to masquerade as legitimate email by sounding conversational,

often linking to a web site rather than advertising directly. For a filter to to be accurate, it

needs to understand the intention of the email and be able to decide if the user wants to see

that email.
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7 Conclusion

In this chapter, we discuss how our results can be used in future projects, along with what

we could have done differently.

7.1 Bayesian or Bayesish?

Paul Graham’s Bayesian filter algorithm has come under scutiny from a programmer and

mathematician named Gary Robinson [15]. Robinson argues that Graham made too many

false assumptions when he was creating his Bayesian algorithm, and that the math he uses

does not make as much sense to use. In fact, he believes that Graham’s algorithm can

only be called Bayesian when some obscure assumptions hold true. This aside, he offers

several improvements to Graham’s algorithm. These improvements include a new formula

for calculating probabilities for single words that has more desirable results when a word has

been used very infrequently. His other large change is to the formula to combine probabilities.

His method uses all of the words in the email, instead of using just 15 words. Graham’s

method ignores most of the words in large emails because it only chooses 15 words.

Robinson’s algorithm is included in newer versions of Bogofilter as the default algorithm.

We did no formal testing of Robinson’s algorithm, but for the small set of emails which we

observed it on, it outperformed Graham’s algorithm.

7.2 Improvements

There are several parts of this project that could have been done differently, if we had to do

them again. Some of these changes would have had no effect on the analysis, while others
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could have improved results. We offer these changes here to benefit anyone who may work

on a similar project in the future.

7.2.1 Script Improvements

There are several changes to the scripts we wrote that would have made them run an order

of magnitude faster, in addition to making it possible to reduce the number of scripts. These

changes would have had no effect on the outcome of the scripts, but would have made them

more portable to different systems for other users to run, in addition to making them faster.

Procmail could have been avoided altogether. For each email tested, a new instance of

Procmail was run. The functionality of Procmail could have been simulated using Bash or

Perl. Procmail is a good tool for testing filters on emails, however it is hard to work with for

complex projects and has limited output abilities. We worked around Procmail’s inability to

make useful output by using a Perl scripts for post-processing, but these additional scripts

could have been removed entirely by not using Procmail.

We also made the decision to use the mbox format for storing mailboxes. This format

uses a flat file to store the emails. As a result, accessing the last email in a mailbox requires

reading through all of the emails before it. In fact, in our scripts, for each email tested, the

mailbox was opened, all emails up to the one we wanted was read, and then the mailbox

was closed. This means that the execution time of our scripts scaled quadratically with the

size of the mailbox. Mailboxes with 50 emails would be tested in under a minute, but ones

with with 500 emails would take an hour.

To get around this problem, a format like MH[1] should have been used. MH format stores

each email in a separate file, allowing any email to be accessed instantly. We did rewrite
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some of the scripts to work with MH format, but it was not heavily tested or distributed.

7.2.2 Corpora Comparisons Improvements

Since, as far as we know, no one has ever tried to compare two bogofilter corpora before,

we had make some decisions regarding how to calculate the difference between two lists of

words with associated probabilities. In this report, we used the spam word list and ham

word list combined into one list for each user and compared those. It would most likely be

more accurate to compare them separately in the same fashion we used and discuss how one

user’s ham corpus compares to another user’s ham corpus.

7.3 Whitelists and Blacklists

Our tests showed that whitelists and blacklists are not effective when used alone. Combining

them with other filters, however, should yield different results. Assuming that no addresses

are whitelisted or blacklisted incorrectly, these lists can only improve the accuracy of a spam

filter. For example, a user has a filter setup where any email from a user on their whitelist

always gets placed in their inbox. Similarly, any email from a user on their blacklist is

delivered to a spam mailbox. Any email which is not on either list is sent on to a filter like

SpamAssassin. Based on our data, 20% to 40% of a user’s ham and 60% to 80% of a user’s

spam would not be on either list, and would be sent to this filter. This technique reduces

the number of emails that the filter has to look at. Assuming that every email found on the

whitelist or blacklist is placed correctly, the accuracy of the overall system is improved over

using just the filter alone (with no lists).
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7.4 Site-Wide Implementations of Bogofilter

Bogofilter was designed to be used by individuals. The results of sharing wordlists for

multiple users are not been widely known. For our tests at the small company, we shared

wordlists between the two users as an experiment. The trial at the small company showed

how even just two people sharing a common Bogofilter database can cause problems for the

filter. It was not clear from this test if the poor results were due to the filter being trained

incorrectly or simply the filter not performing well.

One additional method we came up with but were not able to test involved all users

sharing a spam corpus and simultaneously maintaining their own individual ham corpus.

The assumption behind this method is that all users receive similar spam, but different ham.

This technique ensures that all users benefit from one user receiving a new spam, but still

accepts that different users receive different email. We believe this method could improve

the results of using a Bayesian filter with multiple users.

7.5 Future Work

There are a lot of future projects that could be done involved spam filtering. Many of the

ideas presented earlier in this section would be excellent topics to research.

Robinson Algorithm - Test the effectiveness of Gary Robinson’s improvements to Paul
Graham’s bayesian algorithm.

Whitelists and Blacklists - A more thorough look into whitelists and blacklists would
involve looking at more than just who an email was from. Integrating whitelists and
blacklists into other filters to improve their performance should also be looked at. Also,
it may be worth looking into the usefulness of the lists provided by mailabuse.org.

Combining Bogofilter and SpamAssassin - Bogofilter can be used as a rule in Spam-
Assassin. Does this actually improve the results of SpamAssassin?
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Collaborative Filters - Filters like Vipul’s Razor, discussed in the literature review, were
not looked at in this paper, but could be useful tools. Vipul’s Razor can also be used
as a rule in SpamAssassin.

Site-wide Filters - Determine the effects of having a site-wide spam corpus, along with
individual ham corpora for each user.

Spam filtering is a rapidly growing area of research, and we believe that any future

project should attempt to analyze the state of the art in filters. For this project, we tested

bayesian filters because they were new and mostly untested. At the time of this writing,

Robinson’s algorithm is becoming more popular than Graham’s, but there may be still more

improvements in the future. One thing still for sure, however; this war is far from over!
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A Historical Spam

A.1 Monty Python : ”Flying Circus”, Spam

Scene A cafe. One table is occupied by a group of Vikings with horned helmets on. A man
and his wife enter.

Man (Eric Idle) You sit here, dear.

Wife (Graham Chapman in drag) All right.

Man (to Waitress) Morning!

Waitress (Terry Jones, in drag as a bit of a rat-bag) Morning!

Man Well, what’ve you got?

Waitress Well, there’s egg and bacon; egg sausage and bacon; egg and spam; egg bacon
and spam; egg bacon sausage and spam; spam bacon sausage and spam; spam egg
spam spam bacon and spam; spam sausage spam spam bacon spam tomato and spam;

Vikings (starting to chant) Spam spam spam spam...

Waitress ...spam spam spam egg and spam; spam spam spam spam spam spam baked
beans spam spam spam...

Vikings (singing) Spam! Lovely spam! Lovely spam!

Waitress ...or Lobster Thermidor au Crevette with a Mornay sauce served in a Provencale
manner with shallots and aubergines garnished with truffle pate, brandy and with a
fried egg on top and spam.

Wife Have you got anything without spam?

Waitress Well, there’s spam egg sausage and spam, that’s not got much spam in it.

Wife I don’t want ANY spam!

Man Why can’t she have egg bacon spam and sausage?

Wife THAT’S got spam in it!

Man Hasn’t got as much spam in it as spam egg sausage and spam, has it?

Vikings Spam spam spam spam (crescendo through next few lines)

Wife Could you do the egg bacon spam and sausage without the spam then?

Waitress Urgghh!
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Wife What do you mean ’Urgghh’? I don’t like spam!

Vikings Lovely spam! Wonderful spam!

Waitress Shut up!

Vikings Lovely spam! Wonderful spam!

Waitress Shut up! (Vikings stop) Bloody Vikings! You can’t have egg bacon spam and
sausage without the spam.

Wife (shrieks) I don’t like spam!

Man Sshh, dear, don’t cause a fuss. I’ll have your spam. I love it. I’m having spam spam
spam spam spam spam spam beaked beans spam spam spam and spam!

Vikings (singing) Spam spam spam spam. Lovely spam! Wonderful spam!

Waitress Shut up!! Baked beans are off.

Man Well could I have her spam instead of the baked beans then?

Waitress You mean spam spam spam spam spam spam... (but it is too late and the Vikings
drown her words)

Vikings (singing elaborately) Spam spam spam spam. Lovely spam! Wonderful spam!
Spam spa-a-a-a-a-am spam spa-a-a-a-a-am spam. Lovely spam! Lovely spam! Lovely
spam! Lovely spam! Lovely spam! Spam spam spam spam!
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A.2 The first Spam email

This email was sent out to every single user of ARPANET in 1978. The “To:” field was 400
lines long, and omitted from this report.[17]

Mail-from: DEC-MARLBORO rcvd at 3-May-78 0955-PDT
Date: 1 May 1978 1233-EDT
From: THUERK at DEC-MARLBORO
Subject: ADRIAN@SRI-KL
DIGITAL WILL BE GIVING A PRODUCT PRESENTATION OF THE NEWEST MEMBERS OF THE
DECSYSTEM-20 FAMILY; THE DECSYSTEM-2020, 2020T, 2060, AND 2060T. THE
DECSYSTEM-20 FAMILY OF COMPUTERS HAS EVOLVED FROM THE TENEX OPERATING SYSTEM
AND THE DECSYSTEM-10 <PDP-10> COMPUTER ARCHITECTURE. BOTH THE DECSYSTEM-2060T
AND 2020T OFFER FULL ARPANET SUPPORT UNDER THE TOPS-20 OPERATING SYSTEM.
THE DECSYSTEM-2060 IS AN UPWARD EXTENSION OF THE CURRENT DECSYSTEM 2040
AND 2050 FAMILY. THE DECSYSTEM-2020 IS A NEW LOW END MEMBER OF THE
DECSYSTEM-20 FAMILY AND FULLY SOFTWARE COMPATIBLE WITH ALL OF THE OTHER
DECSYSTEM-20 MODELS.

WE INVITE YOU TO COME SEE THE 2020 AND HEAR ABOUT THE DECSYSTEM-20 FAMILY
AT THE TWO PRODUCT PRESENTATIONS WE WILL BE GIVING IN CALIFORNIA THIS
MONTH. THE LOCATIONS WILL BE:

TUESDAY, MAY 9, 1978 - 2 PM
HYATT HOUSE (NEAR THE L.A. AIRPORT)
LOS ANGELES, CA

THURSDAY, MAY 11, 1978 - 2 PM
DUNFEY’S ROYAL COACH
SAN MATEO, CA
(4 MILES SOUTH OF S.F. AIRPORT AT BAYSHORE, RT 101 AND RT 92)

A 2020 WILL BE THERE FOR YOU TO VIEW. ALSO TERMINALS ON-LINE TO OTHER
DECSYSTEM-20 SYSTEMS THROUGH THE ARPANET. IF YOU ARE UNABLE TO ATTEND,
PLEASE FEEL FREE TO CONTACT THE NEAREST DEC OFFICE
FOR MORE INFORMATION ABOUT THE EXCITING DECSYSTEM-20 FAMILY.
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A.3 The first Spam USENET post

This is the first known instance of USENET Spam.

From: JJ@cup.portal.com (JJ@cup.portal.com)
Subject: HELP ME!
Newsgroups: comp.graphics, comp.ivideodisc, comp.lang.ada, comp.lang.apl

Date: 1988-05-23 17:00:08 PST

Poor College Student needs Your Help!! :-(

Hi. I just finished my junior year in college, and now I’m
faced with a major problem. I can’t afford to pay for my senior
year. I’ve tried everything. I can’t get any more student loans,
I don’t qualify for any more scholarships, and my parents are as
broke as am I. So as you can see, I’ve got a major problem. But
as far as I can see, there is only one solution, to go forward.
I’ve come along way, and there is no chance in hell that I’m going
to drop out now! I’m not a quiter, and I’m not going to give up.

But here is why I’m telling you all this. I want to ask a favor of every
one out here on the net. If each of you would just send me a one
dollar bill, I will be able to finish college and go on with my life.
I’m sure a dollar is not much to any of you, but just think how it
could change a person’s life. I’d really like to encourage all of you
to help me out, I’ve no other place to go, no other doors to knock
on. I’m counting on all of you to help me! (PLEASE!)
If you would like to help a poor boy out, please send $1 (you can
of course send more if you want!! :-)

Jay-Jay’s College Fund
PO BOX 5631
Lincoln, NE 68505

PS. Please don’t flame me for posting this to so many newsgroups,
I really am in dire need of help, and if any of you were as desparate
as I am, you just might resort to the same thing I am. Also, please
don’t tell me to get a job! I already have one and work over 25 hrs
a week, plus get in all my classes, plus find time to study! So hey,
please consider it! It would really mean a lot to me. Thank you!

NOTE: Any extra money I receive will go to a scholarship fund to help
others in the same situation. :-)
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A.4 The first time Spam was called “Spam”

What follows is an example of one of the 200 posts that were made to news.admin.policy
when Richard Depew’s retro-moderation program failed. Below it is a response in which the
term “spam” is used to describe an email of this sort for the first time.

Newsgroups: news.admin.policy,news.software.b
From: red@redpoll.neoucom.edu (Richard E. Depew)
Subject: ARMM: ARMM: ARMM: ARMM: ARMM: ARMM: ARMM: Supersedes or Also-Control?
Message-ID: <AAAAAAAC4qG8t.B8y@redpoll.neoucom.edu>
Supersedes: <AAAAAAC4qG8t.B8y@redpoll.neoucom.edu>
Supersedes: <AAAAAC4qG8t.B8y@redpoll.neoucom.edu>
Supersedes: <AAAAC4qG8t.B8y@redpoll.neoucom.edu>
Supersedes: <AAAC4qG8t.B8y@redpoll.neoucom.edu>
Supersedes: <AAC4qG8t.B8y@redpoll.neoucom.edu>
Supersedes: <AC4qG8t.B8y@redpoll.neoucom.edu>
Supersedes: <C4qG8t.B8y@redpoll.neoucom.edu>
Followup-To: news.admin.policy
Keywords: preference?
Organization: Home, in Munroe Falls, OH
Date: Wed, 31 Mar 1993 02:58:04 GMT
Lines: 30

Automated Retroactive Minimal Moderation (tm) by ARMM5. Press ’n’ to skip.

Automated Retroactive Minimal Moderation (tm) by ARMM5. Press ’n’ to skip.

Automated Retroactive Minimal Moderation (tm) by ARMM5. Press ’n’ to skip.

Automated Retroactive Minimal Moderation (tm) by ARMM5. Press ’n’ to skip.

Automated Retroactive Minimal Moderation (tm) by ARMM5. Press ’n’ to skip.

Automated Retroactive Minimal Moderation (tm) by ARMM5. Press ’n’ to skip.

Automated Retroactive Minimal Moderation (tm) by ARMM5. Press ’n’ to skip.

I’ve had a few complaints that my earlier ARMM5 moderated posts
with "Also-Control: cancel" headers were not being handled correctly,
and it has been suggested that I use "Supersedes:" in place of
"Also-Control: cancel".

Is there any reason to prefer one over the other if the intent is to
replace one article with another?

*This* post carries the Supersedes header. It behaves just like the
Also-Control header with C-news, at least so far as I can tell.
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Dick
--
Richard E. Depew, Munroe Falls, OH red@redpoll.neoucom.edu (home)
"...plug the RS-232 connector on the back side of the Mini Modem 2400 into
the RS-232 connector on your computer, then screw up." - modem instructions

Joel Furr posted a response containing this suggested change to the Jargon File.

Usenet History, I tell you. This needs its own listing in the Jargon File:

:ARMM: n. A USENET posting robot created by Dick Depew of Munroe Falls, Ohio.
Originally intended to serve as a means of controlling posts through
anon servers (see also {anon servers}). Transformed by programming
ineptitude into a monster of Frankenstein proportions, it broke loose
on the night of March 31, 1993 and proceeded to spam news.admin.policy
with something on the order of 200 messages in which it attempted, and
failed, to cancel its own messages.
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