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Abstract

SRP – Selective Retransmission Protocol is a protocol designed to increase the
performance of multimedia applications.  SRP tries to balance the high loss found in
UDP, and the high latency found in TCP.  SRP uses a decision algorithm to determine
whether or not to ask for a retransmission for a lost packet,  balancing the loss and
latency to an acceptable level for the application’s needs.  We experimentally found SRP
outperformed both TCP and UDP in our quality comparison of the three protocols.
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1. Introduction

Since the beginning, the Internet has been dominated with traffic from text based

applications such telnet, ftp, and recently by http.  With the emergence of new

technologies and an increased diversity of Internet use, there has been a new demand for

non-text based applications, particularly multimedia.   Examples of multimedia

applications include video on demand and teleconferencing.

Text-based applications have some characteristics and requirements in common.

Most, such as telnet, ftp, and http, require guaranteed delivery.  Every unit of data must

be delivered without loss or error.  Otherwise, the result could be corrupted files and

invalid commands.  As a result, these applications use the Transport Control Protocol

(TCP), which provides guaranteed delivery by automatically retransmitting lost or

corrupted data packets.

Certain applications, such as TFTP or DNS, may not need a strictly reliable

protocol, but rather a simple protocol with minimal delay and overhead.  These

applications commonly use the User Datagram Protocol (UDP).  UDP does not provide

any protection against loss, however, it does not have the overhead of retransmission

allowing it to provide a fast, “best effort” delivery.

Multimedia applications have different requirements from text-based applications.

An audio stream, for example, requires that data is received in a timely fashion and is

more forgiving of lost data.  If a data packet arrives at the player too late, it misses the

time it is needed to be played.  This phenomenon, called jitter, causes gaps in the sound

heard by the user.   In many cases, a late data packet in a multimedia application
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contributes nothing to the playback and is equivalent to a loss.  Small losses in the

playback stream can be replaced with substitute data or concealed so that the listener does

not notice.

When designing a multimedia application, a protocol must be chosen that

provides a solution for timing issues such as jitter as well as loss.  TCP is ineffective due

to the overhead of retransmission and ignorance of timing factors.  While it provides a

service with no loss of data, it does not support any time constraints.  Data can arrive at a

receiver with unbounded delay.  UDP, conversely, provides a “best effort” service that is

timely.  It does not, however, offer any guarantees on data loss.  With UDP, potentially

all data sent can be lost.

To provide a balance between the delay of TCP and the loss of UDP, we propose

the Selective Retransmission Protocol (SRP).   SRP retransmits only a percentage of the

data that was lost, providing a compromise between TCP, which retransmits all lost data,

and UDP, which retransmits no data.  The amount that is retransmitted depends on

several Quality of Service (QoS) factors including current loss and latency, round-trip

time, network congestion and the desired quality requested by the user.

The performance of SRP was evaluated using an isolated test network and a

simulated audio stream.  A quality comparison of the protocol was performed against

TCP and UDP where high quality was defined as low average loss and low average

latency.   Several tests were performed with network conditions of low loss/low latency,

low loss/high latency, and high loss/high latency.
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2. Related Work

2.1. Multimedia Factors

When designing a protocol for multimedia, many factors need to be considered.

The quality of multimedia streamed over the Internet is affected by several factors.  Loss,

round trip time, latency, jitter, consistency, data rate, and adaptation to congestion all

change the perceived quality that a user sees or hears from their multimedia application

and the resulting impact on the underlying network.

o Loss can severely affect the quality of a multimedia stream.  If data is lost

during a network transfer, it obviously cannot be played to the user.

Depending on the application, loss can have a greater or lesser affect on

the quality of playback perceived by the user.   Video, for instance, is

more forgiving to loss than audio.  There are also many types of error

correction and concealment that can lessen the effect of a small amount of

network loss.  SRP attempts to reduce the amount of loss by retransmitting

for loss messages if it predicts that latency will not increase too much.

o Round Trip Time (RTT) refers to the amount of time that it takes for a

message to travel from the sender to the receiver or from the receiver to

the sender, and then back again.  In a negative acknowledgement system,

the amount of time to retransmit a lost multimedia message is heavily

dependent on round trip time.  A high round trip time can cause high

latency when retransmitting for lost messages.  The SRP protocol can
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decide not to retransmit a loss due to the high latency penalty caused by a

high round trip time.

o Latency is defined as the time interval from when multimedia data is sent

from the server to when it is seen or heard by the user. Latency becomes

important for interactive applications such as conferencing over the

Internet.  During a conference, people need to have a tool that responds

naturally, in the same way as two people would meet in real life.  Long

delays between words and sentences caused by large latency make

communication unnatural.  Multimedia broadcasting applications, such as

video or audio streamed from a server, are not impacted heavily by latency

since there is no real time interaction from the receiver to the sender.

Latency only causes the playback to start later.  Changes in latency,

however, cause another phenomenon called jitter, which can greatly affect

any multimedia stream.  Latency is controlled under SRP by giving up on

messages that are too late and continuing to the next message.

o Jitter is flickering seen in video or gaps heard in audio, and is caused by

variance in the latency of a system.  For example, assume ten packets of

multimedia data are sent from the sender to the receiver.  The first five

arrive quickly, then the next five take much longer to arrive.  Jitter will be

seen between the fifth and the sixth packets since the first five data

packets have been played back to the user completely before the sixth

packet arrives.  With no data to play, there is a gap in multimedia stream
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until the sixth packet arrives.  Without correction or concealment, the user

will notice these gaps in the playback.

o There have been several studies on network multimedia quality and

perceived quality.  Consistency was found to be a major factor in

perceived quality [BS99].  Audio or video should stay at a consistent

quality, and not fluctuate between high and low quality. If the multimedia

stream is started at a high quality, and then the network becomes saturated

with congestion, a lower quality stream may be sent, and then the high

quality stream may be resumed when conditions return to normal.  The

changes between these different quality levels often degrade the overall

quality for end users.

o The data rate is the amount of data that can be sent between two hosts in a

given time.  This greatly affects multimedia quality and performance

because with a higher data rate more multimedia data can be sent in a

smaller time.  Higher data rates can allow for a higher quality stream, or

added error correction support since each message has more room for

additional multimedia data or redundancy information.

o Congestion is a factor in today’s networks.  If a network is congested, then

data can be lost, greatly affecting multimedia performance issues such as

increased jitter and decreased data rate.  Detecting and adapting to

congestion is important since congestion will not likely correct itself

unless all participants reduce their usage.
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2.2. End-to-end Solutions

There has been a great deal of research and development in the field of

multimedia networking.  Many have considered different combinations of the above

stated factors.  Each has their own characteristics, advantages, and disadvantages with

varying similarities and differences to SRP.

2.2.1.   Streaming Control Protocol

SCP (Streaming Control Protocol) was developed as a new flow and congestion

control scheme to aid real time media delivery over the Internet [CPW98].  Its main

design focuses were to share the network bandwidth fairly with other protocols such as

TCP and to improve smoothness in streaming of media over a network. It accomplishes

these goals by using sender-based discovery of network bandwidth usage and congestion.

This is a similar approach to TCP in which the sender finds the state of the network when

acknowledgments (ACKs) are not received or are received out of order.

For each packet that SCP sends, it marks the time of its transmission and starts a

timer. Based on the timer events and when ACKs are received, the sender adjusts the size

of the congestion window. In this manner, it is able to estimate network buffer size,

bandwidth usage, and round trip time. It uses this information to determine in what state

it should be operating in, slowStart, steady, congested, or paused. In the slowStart state,

SCP increases the congestion window until it detects network congestion or full

utilization of bandwidth. Once it is fully utilizing the bandwidth, it switches to steady

state in which it sends an appropriate number of extra packets in case the bandwidth

increases. SCP switches to congestion mode when it detects that a packet was lost or



11

delayed. It saves the current steady state in case ACKs are received out of order and

restores to the steady state if that is the case. Otherwise, it reduces the congestion window

size in half and increases the timeout for ACKs. This leads to an exponential back off if

packets are consecutively lost. SCP also has a fourth state, the paused state, which

happens when the sender has no data to send.

Although SCP is able to effectively smooth out multimedia playback, it provides

no hooks for multimedia QoS requirements; all data sent using the protocol is treated the

same. Our protocol, SRP, handles different media streams in different manners.  Latency

and loss thresholds are different for varying media streams and these streams cannot be

handled the same way.   SRP deals with this concept by allowing the user to set

parameters specifying the desired loss and latency.  SRP then requests retransmissions for

enough messages to maintain those desired parameters whereas SCP never retransmits.

SRP, using negative acknowledgements, retransmits for more data if total loss is

becoming high, or gives up if latency is becoming too great.  The quality settings for this

decision can be defined differently for any type of multimedia stream.

2.2.2.   Real Time Protocol

RTP (Real-Time) Protocol is another multimedia streaming protocol that is

currently used by multiple applications and is an RFC in the Internet community as RFC

1889/1890 [SCFJ96].  It is an application layer protocol that relies heavily on UDP and

IP as its subcomponents, but can potentially be used over any transport protocol [KR99].

RTP may be used in conjunction with other protocols such as Real Network’s RTSP

(Real-Time Streaming Protocol) which controls the connection, although RTSP is not

obligated to use RTP [SRL98] . RTP is unidirectional, from sender to receiver, but
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supports both unicast and multicast streams by using a helper protocol, RTCP (Real-Time

Control Protocol), also defined in RFC 1889.  RTCP is bi-directional and provides a

control channel between the sender and the receivers. It is used to identify the

participants in a multicast, describe the content, quality of service information, and

request for retransmissions [SCFJ96].

RTP attempts to provide a standard for multimedia applications to communicate

with each other better than they would if using a proprietary protocol. To maintain this

scalability, the RTP header has a 7-bit long field that describes the payload type. This

means that RTP can be used for up to 128 different media types. If two different

applications are using RTP and transferring the same data type there is a good possibility

that they will be able to communicate properly. The RTP header also contains a 16-bit

sequence number used to detect lost or out of order packets. The application can try to

conceal or retransmit missing packets once it has detected loss. This field is not used for

timing of the multimedia playback synchronization. The timestamp, which is a NTP

(Network Time Protocol) standard timestamp, is used for synchronizing media [SCFJ96].

Because video and audio are transmitted via two different RTP sessions, synchronizing of

the data is left up to the application. It uses the timestamp to piece the data together. The

timestamp is not based on the time that the packet was sent, but on when in time the

media was generated. Even if there is no data from the input source, the timestamp is still

incremented.

Although RTP provides the mechanisms for detection and retransmission of lost

data, it does not do so on its own. It places the task of retransmission on the application.

RTP also does not provide any resource reservations or quality of service control and has
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no congestion control policy, which could result in network congestion. Because the

congestion control policy is left up to the application, RTP itself cannot share the network

bandwidth fairly between itself and other protocols [Sc98]. RTP simply adds sequence

numbers and a means for multimedia synchronization on top of UDP. It is efficient as an

addition to UDP because it has a small header of 4 bytes and is completely encapsulated

in a UDP packet, but does not automatically provide retransmission or any congestion

avoidance.

2.2.3.   Selective Acknowledgement

Current implementations of TCP do not do well with multiple lost packets from

one window of data. Because of the way the window size and acknowledgements work in

TCP, some acknowledgements may get delayed and the sender may retransmit

unnecessarily if a timeout occurs [MMR96]. SACK, Selective Acknowledgements has

been proposed and implemented to recover from packet loss in a more efficient manner.

It does not affect TCP’s congestion control algorithms, but only allows the sender to

better know which packets were received or lost [FF96].

TCP SACK is an extension of TCP that allows an acknowledgement to have a

short list of blocks of packets that have been received. Instead of keeping track of

individual packets, the ACK can effectively show which packets were lost and which

were received late. The sender using this SACK info can send lost packets before sending

new ones. SACK also allows the sender to recover from multiple lost packets in one

round-trip time instead of multiple [G97].

Although SACK increases performance for TCP traffic, it is still not suitable for

multimedia. If there is serious network congestion, TCP SACK will still have unbounded
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delay because the protocol times out and waits for retransmissions. Even when used in

conjunction with FACK (Forward Acknowledgement), which keeps track of the total

number of bytes outstanding in the network, it is not capable of delivering media

effectively over the Internet [MMR96].  The concept of multiple messages being

acknowledged using a single message could be added to SRP to provide better bandwidth

usage and better support for blocks of several related multimedia messages.

2.2.4.   Multimedia Enhanced Transport System

The METS (Multimedia Enhanced Transport System) protocol, developed by

Andrew Campbell and Geoff Coulson, incorporates a QoS oriented API and a range of

mechanisms to assist applications in exploiting QoS and adapting to fluctuations in QoS

[CC97].

METS has two methods of flow control, one is the flow scheduler that schedules

application level frames on a coarse grained frames per second basis.  The flow shaper

method is invoked every 1 ms to maintain a token bucket that controls the output level.

Each flow accumulates credits, which represent the number of ATM cells to transmit to

the network over the next interval. When the shaper runs it visits all the flow queues in a

round robin fashion and if the queue contains cells and has available credits, then the

shaper transmits one cell from the queue and decreases the token value.

METS is different from SRP, because it uses a different protocol structure than

SRP.  METS makes a layered approach into the Transport and Network layer to affect the

QoS of the transmitted information.  SRP is implemented on the Application layer, using

the lower layers such as UDP to accomplish QoS requirements.
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METS is also different from SRP because of its use of its use of

acknowledgement packets.  SRP sends negative acknowledgement packets to request

retransmissions for lost packets only if needed.

2.2.5.   UDP with Retransmissions

The well-known and simple TFTP file transfer protocol uses a request-reply

system on top of UDP.  It is a fairly reliable method of transmitting data over a network

because the client requests individual packets from the server.  If the client does not

receive a response from the server in a certain amount of time, it retransmits the request.

It repeats this a number of times and if then it gives up.

When dealing with multimedia streams, this technique is undesirable for several

reasons: the client can fall behind; if a packet is lost, it takes linear time to decide to

retransmit; round trip time is not constant; retransmissions are ambiguous.  The server

has multimedia data available at a constant rate.  The client can easily lag behind if there

is high loss on the line and the requests it sends to the server, or replies from the server,

are lost.  Deciding to retransmit a lost packet takes a fixed amount of time. This timeout

does not take into consideration RTT (Round Trip Time) which is not a constant value.

A solution to this problem uses a smoothed estimate of RTT similar to that of TCP.

Calculating a valid RTT creates another problem.  When a retransmission is sent and a

response is received, the client cannot tell if the response is from the original request, or

from the retransmitted request.  This dilemma is called the retransmission ambiguity

[S98]. A simple solution is for the client to attach a timestamp to each request it sends.

The server would then return the requested data as well as the timestamp that the client

sent.  The client is able to calculate RTT on every reply it receives.  Because the client is
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sending and receiving the timestamps, there is no need to have synchronized clocks on

the client and server.

The request-reply system works well for simple and small applications such as

TFTP, but when the idea is applied to a multimedia stream, it is not a good alternative.

Many modifications must be made to this system to allow it to efficiently receive data

from a streaming multimedia server.

UDP with retransmissions is very similar to SRP due to the way it adds

retransmissions to UDP.  It is not, however, designed use with multimedia streams.  UDP

with retransmissions does not allow loss and has no timing considerations.  The SRP

decision algorithm also remains unique to SRP.

2.3. Routing Solutions

There are several methods available for solving multimedia issues related on

routers, the intermediate nodes between end systems.   Some of these solutions involve

router queuing algorithms used to decide when a message should be sent or deleted when

there is congestion.  Also, there are Quality of Service (QoS) algorithms that allow for

the reservation of network resources.  Since SRP is an end-to-end protocol, router

algorithms do not directly apply to the implementation of SRP.  They do, however,

influence how effectively SRP can transmit data.  A routing algorithm can assist an SRP

type flow by allocating resources or sending SRP type messages before other types of

messages or, on the other hand, the algorithm can harm or even cripple a SRP flow by

potentially deleting all SRP messages.  Unless very strict bandwidth allocation is

maintained by a routing solution, there still needs to be an end to end control

management system for a multimedia stream.
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2.3.1.   Class Based Queuing

  Class based queuing (CBQ) is a router queuing algorithm that can identify what

type of messages are in its routing queue [PJS99].  Based on this information, the

algorithm can determine a send order or which packets to drop.  Depending on its

configuration, this algorithm has the potential to assist UDP flows, such as SRP, by

acting more favorably to SRP messages than other types of messages.  Conversely, the

algorithm can also be set to act unfavorably to an SRP flow.

2.3.2.   Random Early Detection

Another router queuing algorithm is random early detection (RED) and a flow-

aware version, flow random early detection (FRED) [PJS99].   RED controls router

queue congestion by randomly removing messages from its queue after a certain

congestion threshold is exceeded.  Probabilistically, this algorithm drops more messages

from high bandwidth, non-responsive flows.  FRED increases the fairness of the RED

algorithm by being aware of the specific flows in the queue and removing a percentage

from each.  These algorithms can assist SRP by removing high bandwidth, non-

responsive flows from the network. There is an addendum to RED, RED-DPM, that acts

favorably to multimedia flows and removes “stale” messages (data that is too old to be

played to the user in time) [PJSB98].

2.3.3.   Reservation Protocol

A different type of algorithm that can be used to control the factors related to

multimedia is the reservation protocol (RSVP).  Instead of trying to identify certain types

of flows as they enter the queue, RSVP explicitly allocates bandwidth to specific flows.
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Applications can request the amount of bandwidth expected to be used.  The router can

then manage the amount of bandwidth that is available and the amount that each

application flow requires.

2.4. Multimedia Algorithms

In addition to routing algorithms, there are multimedia algorithms that can allow

transmission of higher quality multimedia.  Some techniques include error correction, the

repair of audio or video data due to loss or error, error concealment, methods of hiding

errors or loss in audio or video so that the problem is not as noticeable to the user, and

encoding techniques such as compression and separating and prioritizing video and audio

data [PHH98].  Since all of these methods deal with the processing of multimedia data,

they are out of the scope of SRP.  These methods affect how effectively SRP performs, as

well as how well the multimedia application tolerates loss from SRP transmission.  SRP,

for instance, can be combined with an error correction or error concealment algorithm to

repair gaps caused by the SRP retransmission scheme.

2.4.1.   Error Correction

Error correction techniques can reconstruct some lost data from a multimedia

stream.  Forward error correction (FEC) is an error correction technique that reconstructs

lost multimedia data by transmitting redundant information in each message.  In a video

application, for example, each frame may be sent in a single message.  Each message

would also contain a portion of the previous frame as well.  If a frame was lost, it could

be partially reconstructed from the redundant information in the next frame.  The

disadvantage of this technique is the increased bandwidth usage.  Interleaving is another
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error correction technique.  It functions by mixing smaller chunks of multimedia data

non-consecutively across several messages.   If a message is lost, there are only short

gaps in the playback spread out over a larger time, rather than a large gap all at once.

2.4.2.   Error Concealment

Another class of multimedia algorithms is error concealment.  Loss or error is

made less apparent to the user during playback.   One technique for error concealment is

data insertion.   When data from a multimedia stream is lost it is replaced by some type of

data so that the gap is less noticeable.  The replacement can vary from pure silence, white

noise, the repetition of the previous data, to interpolation of a new data from surrounding

data or fitting data from a pattern.   The multimedia stream can also be spliced temporally

to completely ignore lost data.  These techniques vary in quality and computation time.

2.4.3.   Encoding

Another application technique related to perceived multimedia quality is

encoding.  Multimedia can be encoded in a multitude of ways, each with differing

quality, compression, data rate, and computation time.  This can greatly affect the impact

of a loss or an error and determines the quality of the playback stream.   Multimedia data

can also be formatted in priority layers.   A low bandwidth, low quality layer provides the

minimum amount of data for a correct playback.  If congestion is low, a higher quality

layer can be added to the minimum layer to provide the full playback potential of the

multimedia stream.
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3. Approach

SRP is an application level protocol that uses UDP to transmit messages.  It

consists of a server that sends a multimedia stream in a series of datagrams at a constant

rate and a client that receives them.  A sender application and receiving application drive

the SRP server and client via interface functions.  The sender application gives data to the

SRP server at even intervals for transmission and the receiver application continuously

calls the SRP client for more data.

Anytime that the client detects that a frame was lost (a packet does not arrive at

the expected time), it makes a decision whether or not to retransmit for the message.  This

decision is performed by an algorithm that takes into account how much loss and latency

quality is requested from the user and the current measured loss and latency.   If the

decision is to retransmit, a retransmission request is sent to the server and the client waits

for the response. If the response does not arrive when expected the decision to retransmit

is evaluated again.  If the decision is to not retransmit, the client gives up on that

particular data message and returns a failure to the receiving application.  Any messages

that are received while waiting for a retransmission are placed in a buffer until it is

needed.

Expected reception times are generated dynamically as messages are received.

The average time between arriving messages is measured and averaged.  Retransmissions

are expected to arrive in one round trip time.  Round trip time is measured though time

probes that are sent to the server and returned periodically.
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3.1. Why UDP?

SRP operates above UDP and offers added functionality to the already established

protocol.  The Internet protocols, TCP and UDP, have been established for several

decades.  Both have been implemented countless times on different computing platforms

with different modifications and have been relentlessly studied and tested.  The result is a

set of stable protocols.  Taking advantage of this, SRP has been designed to leverage off

of UDP. Acceptance of SRP into the Internet community is easier since a SRP message is

essentially the same as a UDP message.

The most important reason UDP was chosen over TCP is that UDP does not

implement retransmission.   Since SRP has its own specialized retransmission system,

TCP would need to be replaced, while with UDP, with no retransmission system, this

functionality could be added with no modification.   Not only does this make it easier to

implement since UDP does not need to be rewritten, but also it maintains the stability and

acceptance of the UDP protocol.  The installation of the SRP protocol into future

applications is easier, as well, because a layer can be added between UDP and the

application leaving nothing further to be modified.

3.2. Implementation Details

3.2.1.   Assumptions

During the design of SRP, the following assumptions were made:

o The time to send a message from server to client is the same as from client

to server.  Without synchronized clocks between the server and client,

latency cannot be exactly known.  Only the server knows when a message

is sent and only the client knows when it is received.  To estimate latency,
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one must know how long it takes for a message to get from the server to

the client.  This is approximately half of the round trip time if the time for

a message to go from client to server is the same as server to client.

o The client application continuously reads and has a small turn around

time.  Note, if the client spent a long time processing data, the SRP client

will fall behind.

o The server application sends messages at a constant frame rate.  The

server does not have any flow control or knowledge of the client.  This

allows the client to estimate an expected arrival time.

o The application above SRP creates the UDP socket and connects with the

server application before initiating SRP.  The application is also

responsible for tearing down the socket once the transfer is complete.

o During testing, the network conditions during each test is constant.  Even

though there may be variations in network traffic for a particular test, the

loss and latency of the network should remain fairly is constant for each

protocol. Thus, each protocol has to deal with the same type of traffic.

3.2.2.   Server

The SRP server sends a multimedia stream to the client.  The thin server/thick

client design leaves the client responsible for most of the computation.  Upon

initialization, a thread is spawned for receiving.  The main thread returns to the sending

application while the new thread waits for socket activity.  At even intervals, the sending

application requests data to be sent.  The SRP server constructs a SRP data message

including a data sequence number and sends it to the client via UDP.  This data is also
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stored in a buffer where it can be retrieved later if needed for a retransmission.

Simultaneously,  the other thread waits for a reception on a UDP socket.  If a request for

a retransmission is received, the data is retrieved from the buffer and resent.  If the data is

not present, the retransmission request is ignored.  If the thread receives a time probe, it is

immediately sent back to its sender.

3.2.3.   Client

The SRP client is responsible for receiving a multimedia stream from the server

and requesting retransmissions if necessary.   After initialization, the receiving

application requests data from the SRP client.  First, the client’s buffer is checked for the

data with the appropriate sequence number.  If present, it is returned to the calling

application.  Otherwise, the UDP socket is checked for incoming messages.   If a message

is received, the sequence number is checked against what is expected.  If the sequence

number is higher than needed (too early), then the message is stored in the client’s buffer

and the socket is checked for more messages.  If the incoming message has the expected

sequence number then it is returned to the sender application.  If the incoming message

has a sequence number that is less than needed, it is ignored and the socket is checked for

more messages.  If the correct data is not received within before retransmission timeout

(RTO) then a decision algorithm is consulted on whether or not to retransmit for the

needed message.  There are currently two decision algorithms implemented: equal loss

latency (ell) and optimum quality (oq).  If the algorithm decides to retransmit, then a

retransmission is sent and the receiving process is repeated.  Otherwise an error message

is returned to the application.
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3.2.4.   Data id and Expected

Every message sent by the server is assigned a data id.  This id is a sequence

number that begins at one and is incremented for each message that is sent.

Retransmissions do not increment the data id but rather use the same data id that was

included when it was sent originally.  The client maintains an expected data id which is

incremented each time a message is returned to the receiving application or when the

client gives up on that message (discontinues retransmissions).  Maintaining the expected

data id allows the client to know when a incoming message is too early or too late and

also guarantees that the receiving application will get messages in the correct order.

When the data id reaches a constant maximum, it is reset to zero.  To prevent incorrect

ordering the constant maximum needs to be larger than the amount of frames that the

client can be ahead or behind and it must be clear whether an incoming message is

greater or less than the expected data id even if it has been reset.

3.2.5.   Timing

3.2.5.1.   Expected interval

Under optimum network conditions, the client will always receive messages at the

same interval, since the server sends them at even intervals.  The client can measure the

interval and deduce the time that the next message should arrive.  If the message doesn’t

arrive at the expected time then a decision can be made whether or not to retransmit for it.

3.2.5.2.   Retransmission timeout

Since network conditions are rarely optimum, this interval can vary greatly.  To

take this into account, SRP uses a smoothing algorithm based on TCP’s smoothed RTT.
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[S98]  Every time an interval is measured it is averaged into the current smoothed

average as follows:

Sexp = α * Sexp + (1 - α) * Exp

Sexp:  Smoothed expected interval average
Exp:  Current measured expected interval
α:  Smoothing factor.  (SRP uses 0.85 found
experimentally [S98] )

The amount of deviation in the expected interval is then calculated as follows:

Sexpdev = α * Sexpdev + (1 - α) * abs(Exp - Sexp)

Sexpdev:  Smoothed expected interval deviation
Sexp:  Smoothed expected interval average
Exp:  Current measured expected interval
α:  Smoothing factor.  (SRP uses 0.85 found
experimentally [S98])

Deciding when to request a retransmission for a lost message is important.  The

time interval to wait before retransmitting is called the retransmission timeout (RTO).  If

the RTO is to short, then an unnecessary retransmission may be sent for a message that

was just a little late.  If the RTO is too long then a large amount of latency will be

generated waiting for a message that is lost and will never arrive.  To calculate when a

message has likely been lost the expected time and the network variance must be taken

into account.   SRP uses the following formula based from the RTO calculation from

TCP [S98].

RTO = Sexp + 4 * Sexpdev

RTO:  Retransmission timeout
Sexp:  Smoothed expected interval average
Sexpdev:  Smoothed expected interval deviation
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For a retransmission, the expected time is RTT since the server will immediately

return a retransmission request if the data is in the server buffer.  RTO is the following

for a retransmission:

RTO = SRTT + 4 * SRTTdev

RTO:  Retransmission timeout (for a retransmission)
SRTT:  Smoothed round trip time
SRTTdev:  Smoothed round trip time deviation

3.2.5.3.   Time probes

Maintaining an accurate round trip time is important for the client to be able to

compute latency and the expected arrival time of retransmissions.  In order to measure

the current RTT of the network, small time probes are sent to the server.  Each time probe

contains the current time.  When a time probe is received at the server, the server sends

the time probe back.  When the reply time probe is received, RTT is calculated by

subtracting the time stored in the time probe with the current time.  The current RTT is

used in a smoothed average and deviation calculation as follows:

SRTT = α * SRTT + (1 - α) * RTT

SRTT:  Smoothed round trip time average
RTT:  Current measured round trip time
α:  Smoothing factor.  (SRP uses 0.85)

SRTTdev = α * SRTTdev + (1 - α) * abs(RTT - SRTT)

SRTTdev:  Smoothed round trip time deviation
SRTT:  Smoothed round trip time average
RTT:  Current measured round trip time
α:  Smoothing factor.  (SRP uses 0.85)

 To reduce traffic from time probes, timing data is added to retransmission

requests and replies so that RTT can be calculated from the retransmission system as well
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as time probes.  Time probes are then only sent if a new RTT has not been calculated for

a long period of time (one second in our implementation).

3.2.5.4.   Last Normal Reception Time

There are three types of messages that can be received by the client from the UDP

socket: normal data messages, retransmission replies, and time probes.  Normal data

messages are packets that arrive at the client without being retransmitted.  Retransmission

replies are packets that are received by the client as a result of a retransmission request.

Time probes are messages that have no multimedia data but contain timing information.

Only normal data messages arrive at even intervals since retransmission replies

and time probes can be sent by the server anytime.   In order to maintain an accurate

expected interval, only normal data messages can be used in the average.  Determining

the exact time to timeout for a retransmission is then the time that the last normal data

message was received plus the RTO (which is essentially the smoothed expected

interval).  Since messages can be lost, some of the normal data messages might not

arrive.  To maintain the expected arrival time even through loss of normal data messages,

last normal reception time (LNRT) stores the time the last normal data message arrived.

Last last normal reception time (last_LNRT) then stores how many normal data messages

have been lost since LNRT was updated.  With this information, the estimated time of

arrival of the next normal data message can be calculated even under losses as follows:
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ETA = (Last_LNRT + 1) * Sexp + LNRT

ETA: Estimated time of arrival
Last_LNRT: Number of normal messages lost since last

LNRT update
LNRT: Last normal reception time
Sexp:  Smoothed expected interval average

The time interval to wait before deciding to retransmit can then be calculated by

taking current time and network deviation into account as follows:

Timeout = (ETA - Curtime) + 4 * Sexpdev

Timeout:  Time to wait until deciding to retransmit
Curtime:  Current time
ETA:  Estimated time of arrival (computed above)
Sexpdev:  Smoothed expected interval deviation

3.2.6.   Message Events

3.2.6.1.   Client Buffer

If a message arrives at the client that has a higher data id than what it is expecting

(too new), it is placed into the client buffer for retrieval later.  The arrival time and round

trip data are stored in addition to the data.  When the receiving application requests data

from the SRP client, the client buffer is first checked to see if the data has already

arrived.  If the message is in the buffer, LRNT and latency are updated using the arrival

time, round trip time information stored in the buffer and last_LNRT is reset.  In order to

prevent the buffer from overflowing, messages that arrive that are too early (based on

buffer size) are not buffered.  When a message is retrieved, it is removed from the buffer

ensuring that the buffer will not contain old messages.  The expected data id is

incremented and the data is returned to the receiving application.
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3.2.6.2.   Too Early

If a message is not found in the client buffer, a socket read is performed.  If a

message is received with a data id that is greater than expected, it is considered too early.

Messages that are received too early are placed in the client buffer for use when needed.

The arrival time and RTT are recorded in the buffer for latency and LNRT calculations.

Since receiving out of order messages is very rare in practice, receiving a message that is

too early while waiting for a normal reception is a good sign that the a message was lost

and should trigger a retransmission decision.

3.2.6.3.   Too Late

If a message received on the socket has a data id that is less than the expected data

id then the message is considered too late.  Late messages are most often highly delayed

retransmissions that were wrongly considered lost.  Since the message was considered

lost and the receiving application was notified that it was lost, the old message cannot be

used and is dropped.

3.2.6.4.   Expected Message

If a message received on the socket has the same data id that is expected it is

considered a good message.  If it was received normally (not a retransmission) then

LNRT is updated with its arrival time.  If the previous message was received normally as

well, then the expected interval is updated by finding the difference between the arrival

times.  If the message was a retransmission then the last_LNRT must be incremented

since a message was received and LNRT was not updated.  Finally, the expected data id

is incremented and the data is returned to the receiving application.
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3.2.6.5.   Timeout

If a message is not received within retransmission timeout (RTO) then a timeout

occurs.  When a timeout occurs the decision function is called to determine whether or

not to retransmit for the expected data id.  RTO is changed depending on whether the

client is waiting for a retransmission or a normal reception.

3.2.6.6.   Retransmit

When it is determined that the expected message has been lost, the decision

function can request a retransmission.  The retransmission request message contains the

data id of the lost message to be retransmitted.  Upon sending the retransmission request,

the current time is recorded for easy calculation of when the reply should arrive.

3.2.6.7.   Give up

When it is determined that the expected message has been lost and the decision

function chooses not to retransmit for the message, there is a give up event.  During a

give up event, last_LNRT is incremented since LNRT has not been updated and the

expected data id is incremented for the next message.  An error code is returned to the

receiving application denoting that the message was lost.  The receiving application then

has the opportunity to use error concealment or correction to the multimedia data.

3.2.7.   Decision Algorithms

A decision algorithm governs whether or not to request a retransmission for a

message that was detected as lost.   This algorithm, in effect, controls the balance

between the overall loss and overall latency of the multimedia stream as seen by the
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application.  Our implementation explored two ideas for this algorithm, equal loss latency

and optimum quality.

3.2.7.1.   Equal Loss Latency (ELL)

The equal loss latency (ELL) decision algorithm decides whether or not to

retransmit by estimating the resulting loss and latency if the expected message is

retransmitted for and if a loss is taken by not retransmitting for it.  Whichever result

better equalizes loss and latency is chosen.  In order to determine the relative value

between loss and latency, the receiving application supplies a desired loss and latency to

the client at initialization.  The current loss ratio is then calculated as follows:

LossRatio = CurLoss/DesiredLoss

LossRatio: Loss ratio
CurLoss: Current loss
DesiredLoss: Desired loss given by application

Clearly, smaller loss ratios are desirable, a loss ratio of zero is perfect and a loss

ratio of one is exactly desired.  The latency ratio is calculated similarly as follows:

LatRatio = CurLat/DesiredLat

LatRatio: Latency ratio
CurLat: Current latency
DesiredLat: Desired latency given by application

Loss and latency ratios are calculated for estimates of when to retransmit and

when not to retransmit.  To estimate the time for a retransmission, round trip time is
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averaged into the current latency before calculating the ratio.  If not retransmitting, one

loss is averaged into the current loss before calculating the ratio.  The difference is then

calculated for each case as follows:

Diff = abs(LossRatio – LatRatio)

Diff: Difference between loss and latency
LossRatio: Loss ratio with estimated loss averaged if

needed
LatRatio: Latency ratio with estimated latency

averaged if needed

The lower of the two differences is then the choice of whether or not to

retransmit.

3.2.7.2.   Optimum Quality (OQ)

The optimum quality (oq) decision algorithm decides whether or not to retransmit

by estimating the resulting loss and latency if the expected message is retransmitted for or

given up on.  Whichever result has a loss and latency closest to zero is chosen.  The loss

and latency ratios estimated for both retransmitting and not retransmitting are calculated

exactly the same way as the equal loss latency algorithm.  To calculate which is better,

the Euclidean distance is calculated of the loss and latency ratio coordinates from the

origin as follows:

SqrDist = LossRatio2 + LatRatio2

SqrDist: Square distance from the origin
LossRatio: Loss ratio with estimated loss averaged if
needed
LatRatio: Latency ratio with estimated latency
averaged if needed
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Whichever distance is closer to zero is chosen as the decision to retransmit or not.

Note that square distance is computed rather than actual distance.  Either could be used as

a comparison, but the square root needed to find the real distance is computationally

expensive and not necessary.

3.2.8.   Sending Application

When designing a server application to interface with the SRP server, there are

several issues to consider.  The server is expected to create a UDP socket and bind it to

port.  The UDP socket number and any UDP parameters, including the SRP client’s

address, must be specified to SRP upon initialization.  The sending application is also

expected to do any handshaking necessary to begin a multimedia session.

The SRP server should be called to send multimedia data at a constant interval.

The SRP protocol is dependent on a constant data stream.  The protocol has the ability to

dynamically estimate the data rate only if it changes slowly.

3.2.9.   Receiving Application

There are several design considerations necessary when making a receiving

application to interface with the SRP client.  The receiving application is expected to

create a valid UDP socket and provide and handshaking necessary to confirm

communications with the sending application.  The SRP client, upon initialization, must

be given the active UDP socket number, the address of the SRP server and any UDP

parameters that are desired.  In addition, the receiving application must give a non-zero

desired loss and latency.
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The receiving application has certain timing constraints.  The application must

continuously poll the SRP client for more data.  The turnaround time between polls

should be minimal so that arrival times of messages remain accurate.

4. Tests

After developing the SRP protocol, its performance needed to be tested against

the performance of the standard Internet protocols, TCP and UDP.  Testing comprised of

transferring a simulated audio stream over a test network with competing traffic.

Average loss and latency was gathered for each protocol under several different network

conditions and compared.  Quality was determined as the least amount of average loss

and average latency.

4.1. Test Network Topology

The following topology diagram describes the network used to test the SRP, TCP,

and UDP protocols.  The network consists of a sender whose purpose is to simulate a

multimedia server, a receiver that simulates an end user client, and a router to simulate an

Internet router.  In addition, two traffic generators are used to flood the test network and

simulate congestion from outside users.
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4.2. Test Scenarios

The SRP protocol was tested in comparison to TCP and UDP on the above test

network.  The network is designed to provide a sample client and server audio session

across a router with competing traffic.

In order to create a stream that approximates an audio stream, multimedia data

must be sent at the correct rate.  A typical audio stream over a network has a data rate of

8000 bytes/sec with a sample rate of 160 ms.  Each message then must be

8000 bytes/sec * 0.160 sec = 1280 bytes.  For each protocol, 1280 bytes of random data

were sent every 160 ms.

  Four main tests were performed: a low loss/low latency test, a low loss/high

latency test, and a high loss/high latency test.  A high loss/low latency test was not

performed since situation this is uncommon on the Internet [WS97]. Traffic generating
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tools and a token bucket filter routing algorithm were used to create identical traffic

conditions for each protocol.  Each protocol was controlled by identical applications with

the exception of the different actions needed to initialize each protocol such as the TCP’s

connect and SRP’s srp_client_start function calls.

4.3. Tools

4.3.1.   Token Bucket Filter Router

The router between the sender application and receiving application uses a token

bucket filter algorithm to handle queue management.  Under this scheme, a constant

transmission rate is maintained.  If messages are received at a faster rate than they can be

transmitted, leftover messages are stored in a queue.  If the queue fills to maximum

capacity, extra packets are discarded.  Functionality was added to the normal token

bucket filter algorithm to randomly discard packets by a chosen probability.  This enabled

us to create the desired loss for the network.

4.3.2.   Traffic generator

One tool used to create competing traffic for the network tests was a UDP packet

blaster.  UDP packets of size 1024 were sent at a very fast rate across the network.  These

packets filled the router’s queue and created latency across the network  If the router

queue become full, then a small amount of loss occured as the router discarded

overflowing packets.   Varying the sending rate of the traffic generator and the size of the

routing queue created the desired latency for each test.

4.3.3.   Test Server Application
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An application was created to send a multimedia stream across the network to the

client.  The application first initialized the protocol under test with any addresses and

parameters necessary to facilitate the multimedia stream.  Random numbers were used

for the simulated multimedia data along with a sequence number to identify each packet.

After each packet is sent the application sleeps, so that the data rate of the multimedia

stream is the same as a standard audio stream.

4.3.4.   Test Client Application

An application was created to receive the test multimedia stream.  After

initializing the protocol with any parameters and addresses needed, the client application

receives from the network socket in a tight loop.  Every time the socket receiving call

returns, the time is recorded as test data and the sequence number of the incoming

multimedia message is checked.  If the sequence number is not correct, a loss is recorded

as test data.  When complete, the client application again waits for a reception on the

network socket.

4.4. Human Perception

SRP requires parameters from the application describing the desired loss and

latency for the multimedia stream.  Certain studies have found that humans can perceive

a 10% loss and a 250 ms latency in a multimedia stream [WS97].  For both tests and

analysis of each protocol, a loss of 10% and latency of 250 ms is considered desirable.

4.5. Experimental Control

In order to determine the average loss and latency of the test network due only to

the traffic generators, a method was devised to test the state of the network before the
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tests were performed.  Before starting each experiment, the traffic generators for the test

were started and a single ping was started at a slow transmission rate to measure the state

of the network.  Many samples of the ping were averaged together to find the round trip

loss and round trip time of the network during traffic contention.

4.6. Test Parameters

The following table lists the one way loss and round trip time of the network

measured by ping flows for each test as well as the routing parameters used to obtain

those conditions.

Name Loss Round trip time Router Queue Router rate
Low loss/low lat. 3% 50ms 30000 bytes 295Kbps
Low loss/high lat. 3% 400ms 130000 bytes 295Kbps
High loss/high lat. 15% 275ms 70000 bytes 255Kbps

5. Analysis

During the medium and heavy traffic tests on each of the protocols, loss and

arrival time statistics were gathered for analysis.  The data was complied and graphed so

that the performance of the protocols could be compared.  Each protocol’s performance is

analyzed separately and then all the results are compiled together and compared.

5.1. Data Analysis Procedure

During data analysis, special care was taken to correctly gather the desired

statistics needed to compare the performance of each protocol.  Loss, latency and average

frame rate were of particular interest.

o Loss statistics were gathered by the test applications by checking the

sequence numbers of incoming multimedia messages returned from the
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protocol’s network socket.  Gaps in the sequence numbers of messages

were considered losses.

o Latency cannot be calculated exactly without synchronized clocks

between the client and server.  In order to approximate latency using

round trip time and arrival time, latency is estimated as the time for a

message to travel from the server to the client plus the time the protocol

adds to the latency due to waiting for messages that were lost or for

retransmissions.  The time for a message to travel from server to client can

be estimated as round trip time / 2 and is identical for every protocol.  The

time added by the protocol can be estimated as the variance in the arrivals,

the average distance of all arrivals from the mean.

o Average frame rate is the average rate that messages are received.  The

frame rate can describe how much the server’s transmission rate was

slowed due to blocking in the protocol’s send command.  This is of

particular interest in TCP because exponential backoff severely reduces

the average frame rate to the point where the protocol cannot be used for a

multimedia stream.

5.2. Data and Graphs

For each of the following latency/loss graphs,  approximate latency and the total

number of lost messages are plotted for each incoming multimedia message.  The scale

on the left side is for the latency while the scale on the right side shows the number of

total messages that have been lost.
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The following quality graphs plot how well each protocol performs with respect

to the desired loss of less than 10% and desired latency of less than 250ms.  This is

calculated by finding the ratios of average loss to desired loss and average latency to

desired latency.  These ratios are plotted for each protocol.  The origin of the graph

represents the best possible performance, where there is no loss and latency.  A value of

one for loss or latency represents exactly the desired loss or latency.  The distance to the

origin of each point is related to quality such that the closer the point is to the origin, the

better the performance.  Distance is calculated using the Pythagorean theorem

(distance = 22 latencyloss + ).  The arc shown on the graph encapsulates the points

within the desired quality.

As an example, refer to figure 1a below.  Along the X-axis, packet number refers

to the sequence number of the message.  For each packet number, the data plot indicates

the amount of time in milliseconds that it took for the message to travel from the sender

to the receiver (latency).  Note at approximately packet number 270, there is a spike in

the latency data.  This is likely a retransmission attempt where the algorithm had to wait

for a message to be retransmitted.  The scale for this data is given on the left hand side.

The data series increasing as a diagonal line shows the losses in the stream.  Any time the

line steps up, there has been a loss.  The scale on the right hand side shows the total

number of losses in the stream.  Note that some tests do not have losses.  TCP never has

any loss.
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5.2.1. Low loss/Low latency
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 Figure 1a:  Loss/Latency SRP ELL algorithm under 3% network loss and 50ms round trip time
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 Figure 1b:  Loss/Latency SRP OQ algorithm under 3% network loss and 50ms round trip time
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UDP (3% loss, 50 ms)
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 Figure 1c:  Loss/Latency UDP under 3% network loss and 50ms round trip time

TCP (3% loss, 50ms)
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Figure 1d:  Loss/Latency TCP under 3% network loss and 50ms round trip time
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Protocol Latency Loss Distance
ELL 0.114217 0.618238 0.6287
OQ 0.121493 0 0.121493
UDP 0.11523 0.340426 0.359399
TCP 1.171937 0 1.171937
Table 1e: Average latency and loss ratios.  Euclidean distance from origin.
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Figure 1e:  Quality of all protocols under 3% network loss and 50ms round trip time

This test simulates relatively good network conditions.  There is loss, but it is

small, and the latency is low as well.  From figure 1e, all protocols except TCP lie within

the desired quality level.  TCP is an outlier because exponential backoff throws off the

latency calculation.  Ignoring backoff, TCP performs very similarly to SRP – OQ.  The

exponential backoff makes TCP slow down and have slightly worse latency than SRP –

OQ.

SRP – OQ performs well since the OQ decision algorithm is designed to maintain

the least distance from the origin as possible.  In this case, since latency is very low, the
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optimum decision is to retransmit for every lost message, keeping loss low.  Latency is

slightly higher than UDP because SRP – OQ needs to wait for the retransmissions of lost

messages while UDP does not wait.  This causes UDP loss to be higher.

SRP – ELL does not perform well in this test.  The algorithm is designed to

equalize loss and latency.  In this case, an equal loss and latency is not optimal quality

with these network conditions.  In fact, the loss reported by SRP - ELL is higher than the

actual loss of the network.  This can occur because a very late packet can be detected as a

loss.  To equalize the loss and latency, the algorithm decides to give up on the message

even though it was just late and hasn’t been lost.  It may seem that loss is high in

comparison to latency and that the algorithm is not making them equal.  This is not the

case because loss and latency are weighted averages not totals.  Only the last set (about

15 packets with the experimental smoothing factors) is effective in the average, allowing

the average to adapt to network changes.   The average loss soon becomes close to zero

since most messages are received correctly.  A loss of zero and a non-zero latency are not

equal and the algorithm causes a loss to correct it.
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5.2.2. Low loss/High latency

SRP - ELL (3% loss, 400ms)
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Figure 2a:  Loss/Latency SRP ELL algorithm under 3% network loss and 400ms round trip time

SRP - OQ (3% loss, 400ms)
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Figure 2b:  Loss/Latency SRP OQ algorithm under 3% network loss and 400ms round trip time
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UDP (3% loss, 400ms)
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Figure 2c:  Loss/Latency UDP under 3% network loss and 400ms round trip time

TCP (3% loss, 400ms)
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Figure 2d:  Loss/Latency TCP under 3% network loss and 400ms round trip time
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Protocol Latency Loss Distance
ELL 0.863121 1.738901 1.941327
OQ 0.829688 0.692755 1.080876
UDP 0.805832 0.302315 0.860674
TCP 344.6209 0 344.6209
Table 2e: Average latency and loss ratios.  Euclidean distance from origin.
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Figure 2e:  Quality of all protocols under 3% network loss and 400ms round trip time

This test presents a network that has a high latency but little loss.  Only UDP

performs within the desired quality.  TCP performs poorly in this test since there is a

large penalty for retransmission and TCP must retransmit for every message lost.

Exponetial backoff again plays a major role.

SRP – ELL and SRP – OQ both perform poorly because of the high penalty for

retransmission.  The decision algorithm will almost always give up on a lost message.

Loss can then increase higher than network traffic since late messages can be detected as

losses.
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Since UDP never retransmits, it is not penalized by the high round trip time.  Due

to the lack of latency penalty and a low network loss, UDP performs relatively well.



49

5.2.3. High loss/High latency

SRP - ELL (15% loss, 275ms)
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Figure 3a:  Loss/Latency SRP ELL algorithm under 15% network loss and 275ms round trip time

SRP - OQ (15% loss, 275ms)
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Figure 3b:  Loss/Latency SRP OQ algorithm under 15% network loss and 275ms round trip time
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UDP (15% loss, 275ms)
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Figure 3c:  Loss/Latency UDP under 15% network loss and 275ms round trip time

TCP (15% loss, 275ms)
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 Figure 3d:  Loss/Latency TCP under 15% network loss and 275ms round trip time
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Protocol Latency Loss Distance
ELL 0.848745 1.353781 1.59784
OQ 0.846382 0.270718 0.888623
UDP 0.605343 1.733696 1.836339
TCP 511.3582 0 511.3582
Table 3e: Average latency and loss ratios.  Euclidean distance from origin.

15% Loss , 275 ms Round Trip Time
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Figure 3e:  Quality of all protocols under 15% network loss and 275ms round trip time

This test represents a high traffic network with high loss and high round trip time.

SRP – OQ is the only protocol that performed within the desired quality.  TCP, mostly

due to exponential backoff, does not have a reasonable quality and could not even be

considered for a multimedia stream.  The TCP client only received approximately 800

messages during six minutes, while the other protocols received nearly 2000.  UDP has a

high loss rate causing SRP – OQ and SRP – ELL to exceed its quality.
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6. Conclusion

Two networking protocols, TCP and UDP dominate the Internet.  Both protocols

have limitations when transmitting multimedia streams.  TCP has high latency and no

loss while UDP has high loss and low latency, neither of which is good for multimedia.

We created a protocol that is better suited for these streams by combining the properties

of both TCP and UDP.  SRP provides lower latency than TCP and lower loss than UDP

by retransmitting some, but not all lost packets.

SRP performed very well in our experiments and outperformed both TCP and

UDP in respect to our quality comparison.  It exceeded the quality of TCP and UDP in all

network conditions except over a low loss, high latency network.  This phenomenon is

caused by the way SRP drops packets that don’t arrive on time, which results in a higher

loss rate than a non- retransmitting protocol such as UDP.  Although SRP didn’t perform

as well as UDP in this instance, it did better than TCP in all network conditions.

Although SRP currently lacks some functionality such as back-off and flow

control, it has been shown experimentally that it performs better than UDP and TCP in

most circumstances.  Even though SRP performed poorly in the low loss, high latency

network, other retransmission decision algorithms can be written to deal with such

conditions.  SRP’s flexibility and performance make it a desirable protocol for

multimedia applications.

7. Future Work

7.1. Tuning SRP
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While performing each test, several characteristics were observed about the SRP

protocol.   Some improvements to these characteristics have been suggested .

SRP performs poorly when network conditions change radically and quickly.

This characteristic is most likely caused by the need for the SRP protocol to gather

statistics about the network such as round trip time and expected arrival time.  SRP needs

time to adjust these averages to sharp changes in the network.  The retransmission

timeout needs to be very carefully adjusted.  Waiting too long for a message causes high

latency.  Not waiting long enough causes either a unnecessary retransmission (causing

higher network traffic) or a loss even though the message will arrive.

It is possible for SRP to get behind if a very large chuck of messages is lost or is

very late.  Typically, this only occurs if the route from the server to the client is broken.

If the expected data id on the client is much smaller than the data id of the message being

sent by the server then the client will drop all messages since they are all too new.

Adding a reset function that corrects the expected data id can fix this issue.

It is possible that the decision algorithm can always give up or always retransmit.

Usually, this happens only if one of the above conditions occur.  The reason this can

occur is because there is a natural upper bound on loss (100%), however latency can

increase indefinitely.  Latency can then overpower even a 100% loss and cause either a

decision to always retransmit or always give up.  Careful design of the decision algorithm

or caps on the amount of loss and latency reported to the decision algorithm can prevent

this from occurring.

7.2. Added Functionality
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In the interest of further developing the performance and functionality of the SRP

protocol, several improvements can be made.  The SRP server can be adapted to handle

multiple clients at once, flow control can be added to slow down the transmission rate

under heavy traffic conditions, modifications can be made to better handle other media

types such as video, and video conferencing with audio and the SRP client may be

modified to allow for a reset function if the client gets too far behind in receiving

messages.  In addition, the decision algorithms used with loss and latency can easily be

modified or added to allow for flexibility in different network conditions and desired

functionality.

The SRP server can be made to allow multiple clients to attach to one server and

request different streams of information.  This is important because, in practice, one

server could potentially be serving many clients simultaneously.  Some changes that

would need to be made to the server would involve creating server_socket structures for

each connection so that each session can have its own buffer and state information.  The

server can then share a common receiving thread for all clients.  Whenever a

retransmission request is made, it would have to be able to identify which session’s

buffer to retransmit from.

In order for SRP to be friendly to other streams on the network, it is important to

implement a type of flow control.  When TCP recognizes that traffic is high on the

network, it automatically reduces its bandwidth usage in a method called exponential

backoff.  Exponential backoff can be implemented on the SRP server.  The client

maintains the current loss and latency.  This information can be communicated to the

server by piggy backing the information onto time probes and retransmission requests.
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Since it is more likely for messages to be lost when traffic is high, losses of time probes

and retransmission requests can also be used as an indicator to the server that backoff is

needed.

Due to the standard maximum transmittable unit (MTU) size of a UDP message

over Ethernet, SRP was designed to handle audio streams because an entire multimedia

sample will fit in one message.  In order to use SRP for video, frames would need to be

split into multiple messages in order to fit within the MTU.  Care would need to be taken

so that a loss of a message does not render subsequent dependent messages useless.  A

priority scheme may need to be investigated so that important key frames are given more

chances to be retransmitted over less important frames.

One other advancement to the client would be a reset function that could be called

when the expected data id is far greater or far smaller than the data ids being received.

The function would resynchronize the client with the server by setting the expected data

id to the id of the latest normal received message.  This is important because messages

that are too far ahead or behind the current stream are not useful.

SRP is currently written as an application layer protocol, this allows for easy

porting into many different platforms, but some performance is lost because of the

translations through the lower layers. Advancement in performance could come from

moving SRP from the application layer to the transport layer. This will increase the speed

of the protocol by an application using SRP function calls to transfer data from a client to

a server.

There are currently two main decision algorithms that SRP uses to determine

whether to request a retransmission or take a loss based on the current network
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performance. SRP is adaptable in that other types of decision functions could easily be

added into the system for testing and debugging. Other specific algorithms could be

created depending on the network traffic, quality desired, or specific characteristics of a

network such as large amounts of loss, delay or round trip time because of factors such as

distance or technology utilized in the network.
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8. Appendix

8.1. Client Interface Functions

8.1.1.   srp_client_start

NAME

srp_client_start – Initializes the SRP client using a UDP socket.

SYNOPSIS

struct srp_client_socket *srp_client_start(int sock, unsigned int flags, const struct

sockaddr *to, int tolen, float loss, int lat)

DESCRIPTION

The srp_client_start() function will initialize a SRP client to prepare for a multimedia

stream.  A standard UDP socket must be created and its socket descriptor must be passed

as the sock parameter.  The parameters flags, to, and tolen are identical to the parameters

given by the standard function sendto and describe the network address of the SRP

server.  The parameter loss must be greater than zero and less than one and describes the

desired loss percentage constraint of the network stream.  The parameter lat given in

milliseconds must be greater than zero and describes the desired latency constraint of the

network stream.



58

RETURN VALUES

Upon successful completion, a pointer to a valid srp_client_sock structure will be

returned which can be used to subsequent calls to other SRP functions. Otherwise a null

pointer will be returned.

8.1.2.   srp_client_stop

NAME

srp_client_stop – Stops the SRP client and cleans up memory used in internal buffers.

SYNOPSIS

void srp_client_stop(struct srp_client_socket *sock)

DESCRIPTION

The srp_client_stop() function will clean up the structures used by SRP. It will also

remove the socket descriptor from use.  The parameter sock is the pointer returned from

srp_client_start().

RETURN VALUES

This function does not return any values.

8.1.3.   srp_recvfrom

NAME

srp_recvfrom – Receives data from the SRP multimedia stream
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SYNOPSIS

 int srp_recvfrom(struct srp_client_socket *socketStr, void *buffer, int max_data_size)

DESCRIPTION

The srp_recvfrom() function permits an application program to get data from a SRP

stream.  The socketStr paramater must be created from srp_client_start(). The parameter

buffer will be filled with the multimedia data from the stream. The max_data_size

paramater describes the size of the buffer and the maximum amount of data to be read. If

there is more data available, it will be truncated to max_data_size.

RETURN VALUES

Upon successful completion the function will return the actual number of bytes read. If

the data was lost then it will return zero. if there was a socket error, EPIPE will be

returned.

8.2. Server Interface Functions

8.2.1.   srp_server_start

NAME

srp_server_start – Initializes the SRP server using a UDP socket.

SYNOPSIS

struct srp_server_socket *srp_server_start(int sock, unsigned int flags, const struct

sockaddr *to, int tolen)
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DESCRIPTION

The srp_server_start() function will initialize a SRP server to prepare to send a

multimedia stream.  A standard UDP socket must be created and its socket descriptor

must be passed as the sock parameter.  The parameters flags, to, and tolen are identical to

the parameters given by the standard function sendto and describe the network address of

the SRP client.

RETURN VALUES

Upon successful completion, a pointer to a valid srp_server_sock structure will be

returned which can be used to subsequent calls to other SRP functions. Otherwise a null

pointer will be returned.

8.2.2.   srp_server_stop

NAME

srp_server_stop – Stops the SRP server and cleans up memory used in internal buffers.

SYNOPSIS

void srp_server_stop(struct srp_server_socket *sock)

DESCRIPTION
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The srp_server_stop() function will clean up the structures used by SRP and stop any

threads created by srp_server_start(). It will also remove the socket descriptor from use.

The parameter sock is the pointer returned from srp_client_start().

RETURN VALUES

This function does not return any values.

8.2.3.   srp_sendto

NAME

srp_sendto – Sends data to the SRP multimedia stream

SYNOPSIS

int srp_sendto(struct srp_server_socket *srp_sock, const void *msg, int len)

DESCRIPTION

The srp_sendto() function sends multimedia data to the SRP multimedia stream.  The

parameter srp_sock is a pointer to the srp_server_socket structure returned by

srp_server_start().  The pointer msg must point to the data that will be sent across the

multimedia stream and len is the size of the data pointed to by msg.

RETURN VALUES

Upon successful completion the function will return the actual number of bytes sent.

Otherwise an error will be returned.
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8.3. SRP Packet Definitions

SRP uses the data packet, nack packet, and probe packet to transmit data on the

network. The data packet has a maximum size of 1496. The standard header information

is 16 bytes long and the rest is reserved for the data.  The nack packet has a size of 16

bytes, and the probe packet has a size of 8.

SRP data packet

Type time
info

data id data
size

Data…

data…

SRP NACK packet

Type time
info

status data id NOT USED IN SRP NACK PACKET

SRP time probe packet
Type time

info
NOT USED IN SRP PROBE PACKET
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