
STREAMING MPEG ANIMATIONS
ON

MOBILE DEVICES

A MAJOR QUALIFYING PROJECT REPORT:
SUBMITTED TO THE FACULTY

OF THE
WORCESTER POLYTECHNIC INSTITUTE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF BACHELOR OF SCIENCE

BY

ZHUO YAO CHEN
ARAM ARMEN DUYLAN

DATE: JANUARY 17, 2005

APPROVED:

PROFESSOR EMMANUEL O. AGU, MAJOR ADVISOR

PROFESSOR MARK L. CLAYPOOL, CO-ADVISOR

 ii

Abstract

This report outlines our progress of porting an existing MPEG-4 player written in C++
for personal computers to a mobile phone coded in a Java programming environment.
We focused on porting animation rather than audio and video due to analyzed
bottlenecks. We also researched MPEG-4 and existing software. The end results are two
programs. The first program parses MPEG-4 graphic files and returns a list of command
calls. The second program reads the calls and uses them to render graphics image on a
mobile phone.

 iii

Acknowledgements

We wish to express our utmost appreciation to the following individuals and agencies:

Professor Emmanuel Agu and Professor Mark Claypool for their comments and
contributions.

The members of IBM alphaWorks for their quick reply to our questions about MPEG-4
and their MPEG-4 Toolkit.

The community at Java’s Developers Forum for their help and suggestions about J2ME
programming.

GPAC for their open source MPEG-4 application, without which, none of this would be
possible.

Last, but not least, we would like to thank our parents for their ever growing support in
our journey through life.

 iv

Table of Contents

Abstract ... ii
Acknowledgements.. iii
Table of Contents... iv
List of Tables ... vi
List of Figures ... vii
List of Acronyms ... viii
Executive Summary ... ix
1 Introduction.. 1
2 Background.. 2

2.1 Overview of Current Mobile Phone Trends.. 2
2.2 The Networks.. 3
2.3 The Market Needs... 5

2.3.1 The Complex Consumer .. 5
2.3.2 Wireless Application Protocol ... 6
2.3.3 Short Message Service... 7
2.3.4 Multimedia Messaging System.. 8
2.3.5 Ringtone, Logo & Game downloads ... 9
2.3.6 Recovery from failure .. 10
2.3.7 Discussion of Market Needs .. 11

2.4 Mobile Phone Technology Trends.. 11
2.4.1 Market representation .. 11
2.4.2 Observed Trends .. 12
2.4.3 Ownership prediction... 13
2.4.4 Discussion of Mobile Phone Trends .. 15

2.5 Java 2 Micro Edition... 16
2.6 Motion Picture Experts Group.. 18

2.6.1 MPEG-1 ... 18
2.6.2 MPEG-2 ... 19
2.6.3 MPEG-4 ... 20

2.7 Current MPEG-4 Software ... 22
2.7.1 IBM Toolkit for MPEG-4 .. 22
2.7.2 MPEG4IP... 24
2.7.3 GPAC... 26
2.7.4 Discussion of MPEG-4 .. 27

3 Methodology.. 29
3.1 Benchmarks... 29

3.1.1 Graphical and Processing Capabilities... 29
3.1.2 Network Transfer Size and Delay.. 33

3.2 Implementation ... 37
3.2.1 GPAC Code Simplification.. 38
3.2.2 Conversion to J2ME Process ... 41
3.2.3 MPEG-4 Network Protocol.. 46
3.2.4 MPEG-4 Renderer ... 46

4 Results and Analysis .. 49

 v

4.1 Constraints of Technology.. 49
4.2 Lack of Documentation... 51
4.3 Implementation of Interface Layer ... 52
4.4 Overview of Our Reduced Prototype.. 52

5 Conclusion and Future Work ... 55
5.1 Recommendations for MPEG-4 Adoption.. 55
5.2 MQP Recommendations ... 56
5.3 Potential Applications... 57

References... 58
Appendix A – Mobile Phone Lifespan ... 61
Appendix B – Mobile Phone Database... 62
Appendix C – Mobile Phone Trends .. 71
Appendix D – Mobile Phone 2005 Predicted Trends ... 77
Appendix E – Graphic Benchmarking Results ... 79

 vi

List of Tables

Table 1: Technology Access... 15
Table 2: Graphic Fill Results .. 30
Table 3: Rectangle Size Test Results.. 32
Table 4: USB Network Performance Test .. 35
Table 5: 802.llb Network Performance Test... 35
Table 6: GPAC Module Structure... 39

 vii

List of Figures

Figure 1: Graphic Fill Chart.. 31
Figure 2: Rectangle Size Test Screenshot... 32
Figure 3: USB Network Delay.. 36
Figure 4: 802.11b Network Delay .. 36
Figure 5: MPEG-4 File Format... 43
Figure 6: Module Conversion Progress .. 45
Figure 7: Draw Triangle J2ME Code.. 48
Figure 8: Our MPEG-4 Prototype... 54

 viii

List of Acronyms

3GPP – 3rd Generation Partnership Project
API – Application Programming Interface
BBC – British Broadcasting Corporation
BIFS – Binary Format for Scenes
CDMA – Code Division Multiple Access
CDC – Connected Device Configuration
CLDC – Connected Limited Device Configuration
DCT – Discrete Cosine Transform
DVD – Digital Video Disc
GIF – Graphics Interchange Format
GPRS – General Packet Radio Service
GUI – Graphical User Interface
HTML – HyperText Markup Language
HTTP – HyperText Transfer Protocol
HTTPS – HyperText Transfer Protocol Secure
IO – Input / Output
ISMA – Internet Streaming Media Alliance
ISO – International Organization for Standardization
JAXP – Java API for XML Processing
J2ME – Java 2 Platform Micro Edition
JPEG – Joint Photographic Experts Group
JVM – Java Virtual Machine
MIDI – Musical Instrument Digital Interface
MMS – Multimedia Messaging Service
MP3 – MPEG-1 layer 3
MPEG – Motion Picture Experts Group
OS – Operating System
PDA – Personal Digital Assistant
PDC – Pacific Digital Cellular
RTSP – Real Time Streaming Protocol
SMS – Short Messaging Service
VCD – Video Compact Disc
VRML – Virtual Reality Modeling Language
WAP – Wireless Application Protocol
WML – Wireless Markup Language
XML – eXtensible Markup Language
XMT – eXtensible MPEG-4 Textual Format

 ix

Executive Summary

 The introduction of mobile devices have changed the way people live their lives,

communicate, and do business. Mobile phones in particular have had the ability to reach

all demographics across the world. Not limited by any boundaries, mobile phone users

can contact other mobile phone users at the touch of a button. As the consumer base

grows larger there is the demand for new phones with more features.

 Manufacturers tried to meet these demands with a mix of technologies including,

text messaging, multimedia messaging, and web access. These services did not attract

customers because they were cumbersome to access, limited in its functionality, and was

overpriced. With the introduction of more powerful phones there needs to be a standard

that can provide users with the content that they want. MPEG-4 could be the media

format that can solve manufacturer’s problems across the board.

 MPEG-4 was developed by the Motion Picture Experts Group to address the need

for reliable transmission and delivery of content rich media. MPEG-4 provides many

features that make it a viable format for years to come. A few of its features include

support for audio, video, streaming, 2D and 3D animation, and interactivity. This

extensive list of features covers most conceivable applications for the near future.

 Java 2 Micro Edition is a reduced Java Virtual Machine (JVM) developed by Sun

Microsystems. It is a programming environment with Application Programming

Interfaces (APIs) that are designed specifically for small embedded devices. Currently,

the manufacturers of mobile phones do not support MPEG-4 but they do support Java 2

Micro Edition.

 x

 Our objective was to create a MPEG-4 2D animation player on the J2ME

platform for mobile phones. To do this we identified existing MPEG-4 applications that

we could use as guidelines. The application that we modeled our player after was GPAC.

GPAC is an open source MPEG-4 player that is currently being developed by Jean Le

Feuvre. GPAC offers robust features, and in particular 2D animation.

 Work began on the conversion of GPAC’s C++ code to J2ME. The process

proved to be difficult due to lack of technical documentation of the MPEG-4 standard.

The final implementation was a combination of tools. It consisted of a heavily modified

version of GPAC, a client program, and partially converted code. The modified version

of GPAC was used to parse and read MPEG-4 files and output command calls that were

used to define the MPEG scene. The command calls were then compressed and stored on

a web server in a raw binary format. The client downloads the command calls from the

web server, decompresses it, and renders the output on a mobile phone. The partially

converted code, once complete, will replace the modified version of GPAC and combine

with the client to form a fully functional MPEG-4 application.

 1

1 Introduction

The introduction of wireless technology has changed the daily lives of millions of

people. The cell phone market in particular, is one of the world’s fastest growing

markets, with over 170 million units sold worldwide in the third quarter of 2004 alone

(ITFacts.biz, 2004). Cell phones have become a common accessory spanning across

geographical, financial, age, gender, and other boundaries. As the popularity of such

mobile devices grows, so do the expectations of what such a device should offer. No

longer satisfied with the ability to make and receive calls, mobile phone users expect

their phones to allow them to access various information and entertainment sources, as

well as to provide extensive multimedia functionality, including the ability to play games,

take pictures, or play music, among others (Batista, 2004).

Such demands are additionally fuelled by the blurring of the lines between the

capabilities of mobile phones and more specialized devices, such as PDAs, digital phones

and MP3 players. As support for features provided by such devices is included in mobile

phones, the users expect the phones to become increasingly versatile and proficient in

their capabilities.

Streaming video appears to be one of the next technological steps in multimedia

and information services for mobile phones and developments in the area are well under

way, led by the 3rd Generation Partnership Project (3GPP) group. The 3GPP group is

comprised of telecommunication companies from around the world to ensure

compatibility of formats across different networks. Most new mobile phone releases

already incorporate a video compression format suitable for streaming, developed by the

3GPP.

 2

However, the majority of the recent success stories in mobile phone technologies

have been those that did not require a phone upgrade or additional purchase of any kind

from the user. Thus, the potential for success is likely to be much higher for a video

streaming implementation that utilizes technologies supported by the devices that the

users already own, rather than the newer devices available. To develop such an

implementation, the mobile phone market needs to be analyzed to identify the applicable

technologies, and a plausible implementation model should be built on these

technologies, taking into account the potential bottlenecks.

Once the set of applicable standards has been identified, including preliminary

testing to ensure none of them creates a significant bottleneck, a set of requirements for

the final implementation can be compiled. Following the requirements an

implementation will be created. With the implementation we can test the capabilities and

versatility of it as well as identifying areas for optimization.

2 Background

2.1 Overview of Current Mobile Phone Trends

Mobile phones today are used for an enormously broad range of applications, the

breadth of which however fades in comparison to the applications that are potentially

possible. Data rates for mobile phones are now comparable to those that were used by

the majority of PC users to connect to the Internet a few years ago.

Besides minor recreational use, the main purpose of the connectivity is usually

stated as providing current information to those “on the go”. But the small and

cumbersome WAP network often offers little to the user who wants information on an

event he/she is missing because he/she is “on the go”. With the increases in transfer rates

 3

that allowed for multiplayer gaming, it could also be possible to follow a sports match, or

to have live access to a news ticker with current developments on the event.

With data streaming, such applications seem more than plausible. An accessible

and working implementation of data streaming for mobile phones is however only

recently starting to appear on SymbianOS-based phones, unaffordable by many, and

centered around pre-recorded video clips (Alvear, 2001). The breadth of the MPEG-4

format specification can allow for actual live streaming of useful content, where useful

content includes more than video, to a wider range of phones.

2.2 The Networks

The Third Generation (3G) mobile networks are composed of three different

networks (3Gtoday, 2004). The networks themselves: CDMA, used in Korea and the

United States; GSM, used throughout the world, and PDC, used in Japan, differ mainly in

the radio frequencies used and their characteristic user base. Those differences are in fact

gradually diminishing; as all three are working towards conforming to the IMT-2000

specifications, but currently still remain incompatible. Their original vision of a 3G

mobile network that would be universally accepted has disappointingly collapsed and the

original networks remain separated. A preferred network should be selected. This will

greatly simplify the process of finding generalizations and patterns needed for the

research, while having little effect on the final implementation, as the specific technology

standards such as J2ME, SMS, MMS and WAP are identical across the different

networks.

In examining the three networks their strengths and weakness were exposed. The

PDC network is only supported in Japan. Despite its handicapped access to the

 4

worldwide market it is widely regarded as most technologically advanced market

(DeZoysa, 2002). This is because 62.7 percent of Japan owns a cell phone and

competition is fierce for customers (Gross, 2004). The competition for a limited number

of customers, forces manufacturers and carriers to offer more features and reduce

subscription fees. Although the PDC carriers offer the latest technology available, it is

not accessible to the rest of the world.

CDMA, unlike PDC, is a global network and is available in many countries

worldwide. Currently, CDMA has a small percentage of the global market. In order to

rectify this problem, CDMA has introduced a new technology named CDMA 450 (Clark,

2004). The CDMA 450 gets it name from its ability to transmit at 450 MHz. This

allows for a greater range of service and requires less transmission towers.

Unfortunately, CDMA faces two major problems that prevent it from capturing a larger

global market. First there are not enough transmission towers built and CDMA

subscribers often find themselves without a signal. The other problem is mobile phone

manufacturers are not creating CDMA mobile phones. Subscribers are limited to a much

smaller selection of mobile phones than other competing networks. Currently, CDMA

does not have a secure global market presence.

GSM network is the largest global mobile phone network. Many mobile phone

manufacturers and carriers support GSM. GSM currently has over 1 billion subscribers

and is continually growing (Pearson, 2004). It is estimated that 81% of the phones sold

globally are GSM phones (Parbat, 2003). Mobile phone manufacturers have produced a

variety of phones, not just in different styles, but also with different capabilities. While

 5

some mobile phones might be a simple black and white phone others can be as complex

as color phone with a built in camera and Java support.

The PDC is clearly not a good choice, due to striking differences in common user

behavior from the rest of the world and the very limited user base. A limited user base,

unique phone use traditions, and strong corporate involvement with the standards,

indicate that CDMA may also be a bad candidate. Easily emerging as the victor, GSM,

offering the largest and most diverse user base, the most open and independent standard,

rapid new technology implementation and a large amount of available research, will be

the presumed network under which our final implementation must function. While likely

to function just as well under the other networks, the implementation may not be as

readily accepted by their average user.

2.3 The Market Needs

2.3.1 The Complex Consumer

With the ongoing trend of technology miniaturization, mobile phones have served

as a perfect example, showing consistent increases in density and reduction of size

throughout the last few years. However in contrast to the market for expensive laptops

and PDAs featuring latest technology developments that have been mostly restricted to

those in need of office mobility and high-end gadget lovers, mobile phones have become

a commonplace accessory.

The use of those newly implemented technologies to provide various services to

the consumer has thus been a significant area of research and development, mainly

because of the large potential user base. However, numerous technologies receiving

significant investment and promotion by corporations have failed miserably to bring in

 6

the expected dividends, including WAP and MMS. While the exact reasons for the

failure of the average user to embrace these technologies remain unclear, one deduction is

generally agreed upon: the mobile phone market is much more complex and diverse than

it appears.

No longer divided into the simple groups of the simple-minded, the trendy, and

the business user, current mobile phone users have demands and expectations that vary

more or less individually, with technophobia, brand loyalty, aesthetics and social status,

among others, becoming important factors (Alcatel, 2003). Broad generalizations can

however be observed when comparing the failure of WAP and MMS to the unexpected

success of SMS and Ringtone/Logo/Game downloads.

2.3.2 Wireless Application Protocol

Wireless Application Protocol (WAP) is a protocol designed to allow access to

the Internet from mobile phones, providing access to services equivalent to a web

browser. Only allowing pages written in the newly designed, XML-based WML

(Wireless Mark-up Language) to be displayed, and using its own transmission layer

protocol, it provides limited features to the Internet. With significant incompatibility, it

was found inadequate and not worthwhile by most users and was publicly recognized as a

failure (Banan, 2000).

The failure of WAP may have been a combination of numerous factors, including

the lack of content, the lack of need for the service, complexity and lack of widespread

availability. The new mark-up language (WML) meant that web content providers had to

write additional, mobile-friendly code, which not many did. The service itself was

inferior to the Internet, and was introduced at a time when many users already had

 7

Internet in their homes. WAP was based from, the Wireless Transaction Protocol (WTP),

and one of the main reasons it failed (Banan, 2000). WTP recreated new protocols that

were similar to those already used but modified them slightly to be incompatible. For

example, WAP replaces UDP with WDP, TLS with WTLS, HTTP with WTP, and

HTML with WML. This make it unnecessarily complicated just to connect to the

Internet with a mobile phone. Those that required connectivity on the road had been long

using their phones as a modem for their laptops, thus the nature of demand for the service

was neither well-defined nor apparent.

The WAP billing system was data-based which was unfamiliar to the average

user, and lack of interconnectivity between WML websites made the service overly

complex. The service was also not a standard option in most user contracts, and even

when the majority of phones had WAP capability, the owners often did not have data

services enabled, lacking a compelling reason to pay the extra fees.

2.3.3 Short Message Service

Short Message Service is a protocol allowing 140 byte messages, primarily

consisting of text to be transferred between mobile phone users. Its use has reached

staggering heights, with 20 billion messages being been sent worldwide in 2003 (BBC

News, 2004).

 Amidst these failures, usage of SMS had rocketed beyond all expectations. While

a major factor in its success may be psychological, rather than technology-related, it is

notable that SMS was available to almost all mobile phone owners and was very easy to

use (Jenson, 2004). In fact, its popularity and broad support led to additional functionality

 8

being built on top of the existing standard, which initially was very basic, and offered

little more capability than to transfer 140 byte blocks of data at a time.

However, it was adapted to support non-ASCII characters (further reducing the

possible message length due to 8-bit character encoding), splitting of long messages, and,

perhaps most unintuitively, the transfer of data such as images and melodies. While the

implementations of these features suffer from a fair amount of awkwardness due to the

restrictions of the original standard, they remain in use to this day, illustrating the

increased importance of availability and usability over robustness.

2.3.4 Multimedia Messaging System

Multimedia Messaging System is a communication protocol designed to be the

logical extension to the Short Message System (SMS), extending its text transfer

capabilities to allow transfer of complex presentations including audio and images. An

MMS message is composed of “slides”, each with a definable duration containing a

combination of text, audio data and/or images. The system, advertised as a replacement

for SMS, failed to live up to its intended purpose, and is mostly used for specific, trivial

tasks, if at all.

Introduced at a time when data services were a relatively common standard

feature, the failure of MMS is perhaps best attributed to its complexity and

unintuitiveness, as well as, to an extent, the lack of camera phones on the market. Billing

per kilobyte of data transferred, rather than the familiar charges per messages sent and

complex configuration options alienated numerous users.

More importantly, however, was the newly designed “slide” structure, completely

novel to users expecting a familiar E-Mail-like “text with attachment” structure or images

 9

embedded within the text. In fact, EMS (Extended Messaging System) technology,

implementing the latter, was more commonly used, even though severe restrictions on the

type and quality of the pictures were imposed. The lack of camera phones on the market,

and thus lack of data a user might want to send via MMS was also a contributing factor.

2.3.5 Ringtone, Logo & Game downloads

Especially popular with teenage users is the ability to customize their mobile

phones to suite their own personal tastes. Common features include ringtone downloads,

allowing customized melodies to be played on incoming calls; logo downloads, allowing

the operator’s name on the phone screen to be replaced with a small graphic; and game

downloads, evolved from being defined by proprietary standards transferred via SMS into

established universal standards transferred via data services. Heavily advertised and used

by teenagers, they have become a major revenue source for the mobile industry.

The currently flourishing market for downloading ringtones, logos and games has

arisen from very humble beginnings. The option to replace the operator logo with one

received via SMS had been an undocumented feature in almost all Nokia phones since

the starting days of the GSM mobile phone market. Unexploited and unknown for a long

time, it started gaining popularity when numerous websites sprung up, offering to have a

new operator logo of your choice sent to you. As popularity grew, fuelled mostly by word

of mouth and users showing off the logos to their peers, both independent companies and

network operators began offering the logos for a fee, and soon the notion of receiving

free logos was eliminated.

 10

The concept of receiving ringtones, and eventually games, were soon introduced,

however interestingly, these were all proprietary standards only available on Nokia

phones. Other manufacturers followed suit with their own proprietary standards in their

new phone releases, however the universal acceptance of JPEG and GIF operator logos,

MIDI ringtones, and Java games was introduced before any manufacturer could compete

with Nokia in terms of users with new logo/ringtone-enabled phones or choice of

available logos/ringtones.

 The adoption of the standardized formats, as one can easily guess, propelled the

market into new heights, aided by the introduction of color screens and polyphonic

melodies. It should also be noted that users happily paid the small fees charged for the

downloads, even though most of these were also available free, but required some

technical knowledge to transfer to the phone. Yet again, this demonstrated the emphasis

users place on simplicity.

2.3.6 Recovery from failure

While WAP and MMS have been widely labeled failures, it should be noted that

their failures primarily arose from of their inability to meet up to expectations and serve

the purpose they were intended for. Phone operators have since adjusted their marketing

of the technologies and attempted to make improvements, with some results. Allowing

non-WML content through their gateways and providing the aforementioned ringtones,

logos and games via WAP has significantly increased WAP usage. MMS advertising has

also been changed to portray the service as a messaging service exclusively for pictures, a

purpose it has fulfilled well and increasingly more often with the growing popularity of

camera phones.

 11

2.3.7 Discussion of Market Needs

The pattern that emerges quite clearly from the data above is that the average

mobile phone user prefers technologies that are easy to use and available, with little

concern for how advanced and robust a technology is (Jenson, 2004). A solution that will

work on as many phones as possible, focused on making the most of the available

technology and overcoming its shortcomings is thus the most likely to succeed.

 Since users have shown themselves to be comfortable with downloading and

launching Java games, it can be assumed that a standalone downloadable program

offering specific streaming information will be well received. Such an implementation is

preferable to a general data streaming front end, where numerous types and sources of

information can be accessed, due to the greater ease of use offered by the former. Thus

providing a backbone to enable data streaming for a range of applications will be

considered to be the desired format of an MPEG-4 implementation. An analysis of the

current trends in mobile phone technology is also required to identify the technologies

that are available to the largest percentage of users.

2.4 Mobile Phone Technology Trends

2.4.1 Market representation

The majority of GSM phone users are within the region often referred to as

EMEA, short for Europe, Middle East and Africa. The area, especially Europe, is quite

representative of the overall GSM phone market, having the highest numbers of mobile

phones per capita. Europe also leads the market trends, being the first to implement new

phone technologies and offer new phone releases. The device market of the area is led by

 12

three companies: Nokia, Sony Ericsson and Siemens, together accounting for 89.8% of

the phones sold in the area (GSMArena, 2004). A database of all mobile phones released

in the past 2 years by those companies for the EMEA market has been compiled to serve

as a representation of the entire GSM phone market (See Appendix B). We will base

most our subsequent forecasts and analysis of phone ownership on this database.

The database contains the release date of each phone and the features relevant to

data streaming, including Internet connectivity, audio playback capabilities, screen

properties and the availability and version of Java implementation among others. A more

compact version has also been produced with a layout that facilitates the identification of

trends (See Appendix C). The phones have been sorted by release date and grouped in 6-

month periods, representing a release date in either the first or second half of a given

year. The general time of introduction of a given technology is readily apparent on the

table, as is its growth towards dominance over preceding technologies among new

releases.

2.4.2 Observed Trends

After an overview of the database, the technologies can be sorted according to the

strength of their establishment in the market. The availability of GPRS connectivity has

been a standard feature for a very long time, and its replacement by EDGE is in the early

stages. Color screens have the second most prominent presence as a standard feature,

with 16-bit color availability showing rapid growth over 12-bit screens. Implementation

of the new version of WAP 2.0, even though introduced a while ago, is showing

relatively slow growth in popularity and has yet to become a de facto standard.

 13

With Java already being a standard feature, its new Mobile Information Device

Profile (MIDP) version 2.0 shows much more rapid growth, its relatively recent

introduction being the reason for its limited availability. The support of sound playback

besides MIDI ringtones is another feature well on its way to becoming a standard. The

popularity of smartphones, using the Symbian OS, is however lacking, experiencing little

growth since their introduction in 2002.

Mobile phone ownership statistics are needed to determine the availability of a

given technology in the general market, where users retain their old phones for lengthy

periods of time. The information provided by the trends should however be used to

ensure that the data streaming solution can take advantage of the new technologies as

they become available.

2.4.3 Ownership prediction

In this section we shall try to predict the ownership of mobile phones after the

device’s initial release date. The concept of the shelf life and lifespan of a given device

can be employed together with its release date as a means of predicting the number of

such devices owned by users at a given time relative to devices released at other times.

The shelf life of a device refers to the amount of time since its release when its market

availability becomes negligible (i.e. it is no longer marketed, has been replaced by a

superior device at the same price level, or is taken off store shelves). The lifespan of a

device refers to the amount of time since its purchase by a user until it is no longer

usable, otherwise damaged or misplaced, or replaced by another device. A mathematical

formulation has been derived for the concept using simplified system dynamics theory

[q+6q(x³/(3(2L+s)³)-x²/(2(2L+s)²))] (See Appendix A). The variables to be defined in

 14

the formulae are the shelf life s, lifespan l, and quantity sold q. The formula gives a

rough estimate for the number of devices that are in the possession of users at a given

time after the device’s release date.

The derived formulae can now be used to predict mobile phone ownership in

2005. By grouping the phones into 5 groups by release date, each group spanning half a

year, with the “announced” phones counted as 2nd half of 2004, the calculations can be

simplified by assuming that the phones in each group were simultaneously released at the

midpoint of the 6 month period, which does not affect accuracy significantly. The

additional phones released before June of 2002 help to compensate for leaving out older

phones from the calculations and March of 2005 will be used as the date for which the

estimation is made and months will be used as units of time.

The average shelf life and lifespan of a mobile phone, as given by some sources

and confirmed by observations, are 18 months and 15 months respectively (Rogerson,

2003). The final variable that is to be defined, q, is arbitrary, since only percentage

values are sought. However, q should account for the average growth of device sales in

the 2002-2004 period of 28% (Gartner, 2004). Hence, after defining it arbitrarily as 100

for 2H 2002, the values of 114, 128, 146 and 164 are assigned to q for the subsequent

groups respectively. Months are the most appropriate units of time for the calculations.

 With all the variables defined, the calculations can be performed, yielding the

following results: in May of 2005, 10.66% of phones owned by users will be from the 2H

2002 group, 19.2% will be from 1H 2003, 29.47% from 2H 2003, 28.74% from 1H 2004

and 11.95% from 2H 2004. This information can be combined with the percentages of

phones in each group that have a given feature, to obtain the percentage of phone users

 15

that will have a given feature on their phone in the first quarter of 2005 as shown below

(See Appendix C for more detailed figures and calculations used):

Table 1: Technology Access

% of mobile phones with access to a given technology in the 1st half of 2005

data transfer sound playback MIDP version colours
CSD/none GPRS EDGE+ no just MIDI yes no Java 1.0 2.0 grey 256-4096 65536+ Symbian

10.34 72.46 17.21 16.95 17.46 65.60 23.29 54.52 22.18 14.14 47.52 38.34 18.03

These values can now be used to forecast the technology available to the average

user at the time of this project’s planned completion and choose the appropriate

technologies for the implementation of a practical data streaming solution.

2.4.4 Discussion of Mobile Phone Trends

With the estimates indicating 80% of mobile phone owners having some sort of

Internet connectivity and 75% having Java capability, a non-proprietary data streaming

solution is certainly feasible and marketable to the vast majority of phone users. With

smartphones holding an estimated 20% share of the market, it is best to avoid a solution

that requires Symbian OS features, thus Java is the preferable choice to C++, which is

only supported in Symbian OS, as the development language.

While the majority of phones will have color screens, most of those will only

support 8 or 12 bit colors, thus the cost of implementation of a feature to determine

screen limitations and compress data accordingly would certainly be justified.

Additionally, audio streaming support should also be considered, as sound playback is

likely to be supported by the majority of phones.

 16

Only one third of Java-enabled phones is predicted to have a MIDP 2.0

implementation, hence using the older MIDP 1.0 should be favored, its compatibility

with MIDP 2.0 ensuring a significantly larger number of users.

The presence of the GPRS standard’s bandwidth restrictions will have to be

assumed, as the faster EDGE technology will only be supported by 20% of the phones,

and it is unclear whether EDGE support by network operators will be widespread at the

time, decreasing the percentage estimate even further.

Additionally, a switch to a less available technology may be necessary if

functionality limitations of the selected technologies pose a significant threat to

successful completion of development.

2.5 Java 2 Micro Edition

 Java 2 Micro Edition (J2ME), one of the technologies to be used by the

implementation as suggested by the trend analysis, was introduced by Sun Microsystems

primarily for use in embedded systems on consumer devices (Sun Microsystems, 2004).

Designed to be flexible and robust enough to allow a wide range of applications, while

compact enough to run in resource constrained environments, J2ME is a stripped down

version of its enterprise and desktop counterparts, with a vast number of classes and

methods found standard in other versions of Java, such as floating number support,

simply omitted.

 J2ME has several configurations, profiles and optional packages available to meet

a wide range of devices with varying capabilities (Sun Microsystems, 2004). Currently

there are two configurations available, Connected Limited Device Configuration (CLDC)

and Connected Device Configuration (CDC). CLDC is designed for devices that have

 17

limited processing power, memory and network connections. This includes most mobile

phones and older PDAs. CDC is designed to take advantage of higher end devices such

as new PDAs, set-top boxes and GPS systems.

 Each configuration has a set of profiles and optional packages to make the most of

each device. For CLDC there are two versions of Mobile Information Device Profile

(MIDP) available. In MIDP 1.0 a standard set of features was introduced for basic

application development. Some of its features include HTTP network connectivity, user

interface, and persistent storage. MIDP 1.0 can be found in the first few generations of

phones marketed as “Java Enabled”.

With the development of MIDP 2.0, many new features were included to enhance

the language’s capabilities (Sun Microsystems, 2004). MIDP 2.0 offers better security

through secure connection (HTTPS) and certifications for applications. MIDP 2.0 also

offers new multimedia function. There are new functions for audio tone generation. This

allows developers to create their own custom songs for their applications. There is also a

new class called Item. The Item class allows developers to customize their own drawing

functions and objects. There is also a new Layer class for game developers. This allows

for easier drawing methods of tiles and sprites.

In addition to the functionality already provided, there are optional packages that

may be supported by developers and device manufacturers. Some of these include XML

parsing, Bluetooth, and 3D graphics. J2ME allows for expandability beyond its current

limitations. In the future when small handheld devices become more powerful, there will

be greater support and availability of new and better applications.

 18

 J2ME is one of the best programming language environments for small handheld

devices. Built upon the familiar framework of Java and already widely available on cell

phones, J2ME is the preferred language for cell phones. Sun Microsystems is making an

effort to incorporate feedback from developers, customers, and manufacturers in each

iteration of its software. By supporting J2ME it ensures availability and continued

support in the future for developers from devices manufacturers.

2.6 Motion Picture Experts Group

 Motion Picture Experts Group (MPEG) is part of the International Organization

for Standardization (ISO), and is in charge of developing standards for audio and video

media. Their work is widely known, as they are the developers of the technology behind

Digital Video Discs (DVD) and MPEG Audio Layer 3 (MP3).

2.6.1 MPEG-1

 MPEG-1 was created in 1993 to address the newly emerging need for transferring

audio and video in a more efficient fashion. Years after its introduction, the usage of

MPEG-1 remains widespread to this day. It is still used as the format for encoding Video

Compact Discs (VCD), the predecessor format to DVDs, and also maintains popularity as

a means for distribution of short movie clips over the Internet.

MPEG-1 success lies in its ability to compress audio and video with very little

detail loss noticeable to the human eye. This is done through a series of compression

techniques. Each frame is divided into smaller parts for compression and compact

transmission. A single image frame is broken down into “Blocks”. From those Blocks,

 19

much larger structures are built, including Macroblocks, Pictures, Group of Pictures and

finally a Sequence, thus forming the basic representation of video in MPEG-1.

Another compression technique that is used takes advantage of human perception.

Instead of saving every frame, the changes between each frame are saved as motion

vectors. When watching a video, such as an actor talking, there are usually only a few

changes occurring during the scene, such as movement of the actor’s mouth and facial

expression changes. By recording and transmitting only those changes rather than the

entire scene, a much more efficient usage of memory is achieved.

To allow smooth playback between frames of video, another type of frame is

needed. Special frames that contain the information about the previous frames (P-

Frames) and bidirectional frames (B-Frames) that contain the information about both the

previous and future frame are used to predict the current frame. These frames ensure the

perceptual accuracy of the video. These special frames are sequenced throughout the

video and allow for removal of temporal redundancy.

The vectors, along with other prediction error checking, are further compressed

using Discrete Cosine Transform (DCT). The DCT transforms the image into a set of

frequencies that are better suited for transmission. The least significant bits are reduced

to zero to allow for further compression but introduces “lossy” compression. The bits

that are dropped however usually represent small amounts of motion, thus the detail lost

after those final stages of compression is near negligible to the human eye.

2.6.2 MPEG-2

MPEG-2 is a more recent standard developed to deliver rich audio and video

content over a much broader range of mediums (MPEG, 2004). MPEG-2 has been

 20

already been adopted and used in many devices including High Definition Television,

Video on Demand, and DVDs, taking advantage of the increases in network bandwidth

through the introduction of new technologies.

The transversal of multiple mediums is due to the introduction of a Transport

Stream. The Transport Stream allows for error free transmission of audio and video

packets. It does this by separating the audio, video and timing information into different

streams, where each individual stream is divided into packets. Each packet along with its

associate timestamp is sent to the receiving end. Once the packets are received, the audio

and video are rebuilt according to the timing information. This feature can be

demonstrated by switching angles while watching a DVD or using Video on Demand

where audio and video synchronization is maintained.

Along with the synchronization, MPEG-2 offers multiple simultaneous streams,

not previously offered in MPEG-1. Multiple streams allow for separate audio and video

to be encoded together. Applications of this can be observed when watching a DVD and

changing the angle or the audio channel. MPEG-2 also offers higher video resolution and

bitrates, and better compression for both audio and video.

2.6.3 MPEG-4

MPEG-4 is a new object-based format that supports more than just audio and

video compression and transmission. It offers a variety of new features to make the

standard more robust and versatile, as well as improving its existing audio and video

compression through the introduction of sprites and layers.

For example, a scene in a movie where an actor is talking and the background

remains still. The extra bits that have to be encoded for the background are wasted since

 21

the image is still. This also lowers the image quality because valuable memory is spent

capturing motion. MPEG-4 resolves this by enabling layers to represent the background

and sprites to represent the actor. Through the separation of layers, more memory is

dedicated towards the image quality and motion of the actor. The background remains

completely stagnant as it is only an image and not video. There is a great range of

possible applications for this technology such as news broadcast and sporting events.

Besides just audio and video representation, MPEG-4 is capable of displaying 2D

vector animation and 3D facial and body animation. For simple 2D animation, rather that

storing it as video block-based motion, it is more efficient to store the shape and the

beginning and ending state and have the renderer calculate the steps in-between. This

reduces the amount of data that needs to be stored in the MPEG-4 file and usually takes

less processing power than displaying video files.

3D facial and body animation was introduced to being able to produce synthetic

human characteristics. In addition to being able to talk to someone it would be possible

to be able to see a 3D representation of that person’s face.

MPEG-4 is also interactive. It allows interaction between the content and the

user. With this technology it is possible not only to have complex menu system but it

also possible to have complex interactive games. Sample applications have already been

developed such as Othello and checkers.

With all these new features of MPEG-4 a new framework had to be created.

BInary Format for Scenes (BIFS), an extension of Virtual Reality Modeling Language

(VRML), was created just for that purpose. BIFS allow for different types of media to be

added, deleted and manipulated over the time of the scene. The media drawn on the

 22

scene is not stagnant; it can be controlled by various BIFS commands such as those for

rotation, translating and scaling.

MPEG-4 combines various types of media and functionality into a single

standard. Based on the successes of their previous technologies, MPEG-4’s more

advanced features will be more widely adopted in the near future.

2.7 Current MPEG-4 Software

 MPEG-4 software tools are currently being developed by several different

organizations. Well known software include DivX and Xvid which are coder-decoder

(codecs) based on of MPEG-4 audio and video compression. Well-known media players

that support MPEG-4 include Apple’s Quicktime and Real Media Player. MPEG-4 has a

variety of different profiles that can be selected depending on the capabilities of the

device. MPEG-4 software that is currently available usually only feature audio and video

profiles and not the more advanced profile such as 2D animation, 3D animation, and

synthetic speech and audio. The few projects that are currently under development are

from the work of IBM and computer enthusiasts. Each program has their set of strength

and discrepancies.

2.7.1 IBM Toolkit for MPEG-4

 IBM Toolkit for MPEG-4 is a set of tools to help aid in the creation and playback

of MPEG-4 files (IBM alphaWorks, 2004). The toolkit is a high level API designed for

content authors and programmers alike to be able to use MPEG-4 now. The toolkit is

designed for Java compliant devices and built on the premise of cross platform

compatibility. The toolkit also extends to the Internet, allowing for MPEG-4 files to be

 23

viewed on any device that is online and Java-compliant. Included with the API are

several sample applications and tools.

 Avgen, is a tool included in the IBM Toolkit for MPEG-4. It is an audio and

video program for creating MPEG-4 files. Built for simplicity and ease of use it employs

a GUI for creating MPEG-4 and Internet Streaming Media Alliance (ISMA) compatible

files. Briefly, ISMA is trying to provide standards to ensure streaming across multiple

platforms. Different media files can simply be dragged and dropped together over a

timeline and output as an MPEG-4 file. Although the interface is simple it allows users

who do not want to use command line tools to create MPEG-4 compliant media. By

providing a simple tool, it allows more users to create and spread MPEG-4 files quickly

and efficiently.

 XMTBatch is command line authoring tool that convertx eXtensible MPEG-4

Textual (XMT) to MPEG-4. Based on XML and Synchronized Multimedia Integration

Language (SMIL), it is a textual scene description language. XMT allows content

authors to compose and edit complex scenes by simply writing text. Since XMT only

directs the scene layout and presentation; it does not edit or change the media files

therefore allowing editing to be done on the fly rather than recompression of large media

files. XMT also allows authors to share their scene with other authors without having to

send all the content. XMTBatch enables programmers to experiment and create MPEG-4

files without having to learn all the complexities of the file format.

 The toolkit also provides three sample programs built upon their API. The API

allows for MPEG-4 compliant player to customized based upon the needs of the end-user

and any device limitations. This allows for a customized player that can be used on

 24

something as resource limited as a cell phone or something as powerful as a high-end

graphical workstation. To demonstrate the potential of their API, they included a stand-

alone application, a Java applet, and a Java applet that plays files from the Internet.

 IBM has designed an easy-to-use, well document, and customizable API that

allows for content authoring and playback on multiple devices. Being based on Java it is

supported on multiple platforms and has many potential uses.

2.7.2 MPEG4IP

 MPEG4IP is an open source audio and video end-to-end streaming solution

(MPEG4IP, 2004). The project is led by several employees of Cisco Systems. The goal

of MPEG4IP is to provide open standard and open source streaming solution. MPEG4IP

combines other open source projects and utilizes them together. Originally written in

C++ for Unix based systems it has since been ported to several different operating

systems including Windows, Solaris, FreeBSD. BSD/OS and Mac OS X.

 MPEG4IP relies heavily on other open source projects especially for its audio and

video codecs. This has both its benefits and downsides. Using existing well-known and

supported software allows developers to focus on their own code and not have to rewrite

software that already exists. This also poses problems as the software is not seamless and

must be patched together in order for it to function properly. End-users must compile

each individual project from separate sources to see if the software works as advertised.

If an error is received there is often no explanation and hours must be spent browsing

forums searching for a solution.

 MPEG4IP is poorly documented and cumbersome to use. Being a patchwork of

existing software requires reading through each individual software guidelines before

 25

MPEG4IP will work. Also, as is common with open source driven projects, there is a

lack of useful documentation and comments. There is often no explanation of what the

sections of the code do. MPEG4IP clearly warns that its software is intended for

developers only and not the end-user, as executables are not provided.

 Despite its difficult nature, MPEG4IP does offer useful technology. MPEG4IP

provides MP4Live, a Linux-only audio and video capturing and streaming program.

With MP4Live it is possible to capture and stream in real-time from any capturing

device, such as a web cam. The possible applications for this technology are live video

broadcasts for both Internet and television audiences. If utilized with more advanced

features of MPEG-4 it would be possible to have interactive live broadcasts.

 MPEG4IP provides a standard set of tools for converting existing audio and video

files into the proper MPEG-4 format. MPEG4IP also provides a process called hinting,

which prepares MPEG-4 files for streaming by adding an additional header and timing

information throughout the file. Received on the client side, the file is then reconstructed

correctly.

 MPEG4IP comes with a MPEG-4 audio and video player. In addition to MPEG-4

it also supports other popular formats such as Xvid and Mp3. The media player also has

the ability to receive streaming MPEG-4 files locally and from the Internet. Files are

streamed through the Real Time Streaming Protocol (RTSP, 2004). By using RTSP, it is

possible to have the server and client to communicate and offer content better suited to

the clients needs.

 MPEG4IP is a good tool but lacks the documentation and organization to present

a solid software package. It supports several great features such as real-time encoding

 26

and streaming of MPEG-4 files but is limited to a select audience. Greater support for

cross platform compatibility and documentation would go a long way in helping

MPEG4IP’s progress.

2.7.3 GPAC

 GPAC Project on Advanced Content (GPAC) is an advanced MPEG-4 player that

supports several functions including both 2D and 3D animation (GPAC, 2004). Being

developed by independent programmers it is an open source project written in C++

whose ultimate goal is to provide a MPEG-4 player that is as intuitive as it is functional.

GPAC started with the bulky reference software provided by MPEG and have since

modified it use less resources. To do this, it relies on other open source programs for

some of its functionality.

 Osmo4 is a 2D MPEG-4 player that was created by the group ENST (ENST,

2003). They have since been disbanded. GPAC has taken the reins and have used the

code provided in Osmo4 to improve upon their own program. This merging of

technology allows GPAC to be able to render 2D MPEG-4 files correctly. 2D animation

is important when considering the limitations of small-embedded devices. Embedded

devices usually do not have the processing power or memory capacity to run full-length

movies or complex sequence of animations. 2D animation however would be ideal for

embedded devices.

 GPAC is currently developing the 3D profile specified by MPEG. It currently

supports 3D through the use of VRML and OpenGL. It currently can display primitive

 27

shapes, texture mapping and materials. Much work has to be done before full integration

of 3D with other aspects of MPEG-4 such as user interactivity with objects.

 GPAC, like the previous tools mentioned, has a set of programs to generate

MPEG-4 files (GPAC, 2004). MP4Box is a command line tool that can produce MPEG-

4 files from other audio and video formats. It can also use scene descriptions written in

XMT and convert it into valid MPEG-4 files. In addition to creating MPEG-4 files, it can

dump information from the files such as XMT and other various statistics.

 GPAC had support for PocketPC/Windows CE platform until version 0.1.4.

Older versions of GPAC could be run on handheld devices with only minor limitations

compared to its Windows counterpart. The PocketPC version of GPAC demonstrated the

possibilities of MPEG-4. GPAC was the only program that could test the claims of the

MPEG-4 standard with real world testing. With its discontinuation, it will now be more

difficult to test the possibilities of embedded devices with MPEG-4.

 GPAC, like most open source projects, suffers from lack of documentation and

complexities making it unusable for everyday computer users. GPAC is a great tool for

developers and enthusiasts who want to experiment with some of the more advanced

features of MPEG-4.

2.7.4 Discussion of MPEG-4

 MPEG-4 is the latest rich media technology standard. Still under development it

will most likely become the new standard for rich media content in the coming years. It

supports advanced features such as animation, interactivity, and 3D modeling. MPEG-

4’s biggest problem currently is the lack of developmental tools and documentation.

MPEG-4, being designed to support all types of devices, will eventually be supported on

 28

embedded and handheld devices. Currently phones are not powerful enough to support

anything more advanced that simple 2D animation and vectors but development in this

area will help MPEG-4 progress in the right direction. In chapter 3, we shall use simple

experiments to establish the resource limits of cell phones, and thus what types of rich

content they can handle.

 29

3 Methodology

 Having chosen J2ME as the development environment for the implementation,

benchmarking programs were created and ran to ensure that bottlenecks would not be

encountered in areas that were identified as potentially problematic. This work included

establishing the graphics processing and networking capabilities of a mobile device,

which were both tested on a mobile phone and a PDA. Portions of the code used for

benchmarking would also be of use in the final implementation.

3.1 Benchmarks

3.1.1 Graphical and Processing Capabilities

One of the bottlenecks that is likely to be encountered when streaming visual data

to mobile phones is the limited display frame rate caused by insufficient processing

power and display speed. An investigation was thus made into the various graphic

display methods offered by Java MIDP 1.0 on mobile phones, and the attainable frame

rates using the different methods.

The phone used for testing was the Siemens model S55, a high-end phone at the

time of its release in 2003, with a 256-colour 101x80 screen and Java MIDP 1.0.

According to results from a popular benchmark database (JBenchmark, 2004) (which

have been included in Appendix B and Appendix C), it is projected to be about 35%

slower than the average phone in the first half of 2005 (see Appendix D for calculations)

in terms of graphics computation and display speed, thus the thresholds of acceptability

should be lowered slightly when evaluating the test results.

 30

The MIDP 1.0 specification allows very few programming library calls of

drawing, with the “Graphics” object being used for drawing on the screen in combination

with the higher level “Canvas” and “Display” objects (Java Community Process, 2004).

Methods for drawing provided by the “Graphics” object include rectangle, arc, string and

line drawing, with no specific pixel or polygon drawing methods. To evaluate which one

of the methods is fastest for drawing a single pixel, as well as to assess achievable frame

rates for video display, a series of testing MIDlets were written. The MIDlets fill a

specified percentage of the screen with pixels with alternating colors. The percentage of

the screen to be drawn were set to increments of ten, and based from the total screen size

of the Siemens S55. Each pixel was drawn using a rectangle, arc or line command

starting from the upper left hand corner then down until it reached the edge where it

would draw the next column. The frame rate was calculated by counting the total number

of screen updates performed in one minute. The frame rate was then displayed upon

completion.

 The following is a table of frame rates that were obtained by running the program

for 60 seconds with various screen fill percentage amounts:

Table 2: Graphic Fill Results

 Frames per second
% of screen Rectangles Lines Arcs
100 0.233 0.217 0.117
90 0.250 0.250 0.133
80 0.283 0.283 0.150
70 0.333 0.317 0.167
60 0.383 0.367 0.183
50 0.450 0.433 0.233
40 0.567 0.550 0.283
30 0.750 0.733 0.367
20 1.133 1.100 0.550
10 2.233 2.167 0.097

 31

0.000

0.500

1.000

1.500

2.000

2.500

0 20 40 60 80 100 120

% of screen

fp
s Rectangles

Lines

Arcs

Figure 1: Graphic Fill Chart

Even with the exponential rate growth with decreasing screen percentage, not

even the lowest frame rates come close to what may be deemed as acceptable, indicating

graphics capabilities to indeed be a significant bottleneck in video streaming. Based on

the low frames rate received from the benchmarks, we believe fast raster video playback

would be implausible on an average mobile phone.

With the possibility of streaming and displaying vector animations encoded in

MPEG-4 still being a possibility, a frame rate estimate for animation display is required.

While running the JBenchmark tool, reasonable frame rates were observed for most of

the animations that filled up the screen, sparking a hypothesis that the graphics speeds

were limited by the number of objects, rather than the screen area.

 To test the hypothesis, another program was written, where the exact same

number of rectangles would be drawn as in the previous program given the number

representing screen percentage in the previous program. However, the rectangles would

be drawn to fill as much of the screen area as possible. Two screenshots comparing the

 32

pattern displayed in the 1st and 2nd programs given an input of 20, and the set of results

are shown below.

Table 3: Rectangle Size Test Results

Figure 2: Rectangle Size Test Screenshot

% of screen Fps.
100 0.233
90 0.250
80 0.283
70 0.317
60 0.367
50 0.450
40 0.550
30 0.733
20 1.100
10 2.167

 33

The frame rate column is almost identical to those for rectangles and lines in the

first program, indicating that the speed of graphic display in fact depends on the number

of objects on the screen. This also suggests that finding algorithms to minimize such

objects would be an important requirement for the project.

Two additional tests were run using the written programs to verify some

assumptions. First, the 2nd program was run 10 times with the same arguments to ensure

there was no random frame rate variation. All 10 runs produced the exact same frame

rate, indicating that the graphic and processing power available to a program on a phone

remains constant. The second test, run on the 2nd program used various arrangements for

a constant number of rectangles, with varying numbers of rectangle rows and columns.

The horizontal to vertical combinations 1x60, 2x30, 3x20, 4x15, 5x12 and 6x10, all of

which require 60 rectangles to draw, were drawn and frame rates recorded. Again, there

was no frame rate variation, further validating the above conclusions.

3.1.2 Network Transfer Size and Delay

 In addition to graphical bottlenecks, conjecture indicates that mobile phone

transfer speed and available bandwidth may be a source of additional problems. To

investigate this hypothesis, we would have to perform tests on currently available

software and hardware. Observing first the limitations of the J2ME software, we found it

has limited support for network protocols. J2ME, as of the time of testing, only

supported HTTP network connections. MPEG-4 defines streaming through RTP/RTSP

but J2ME does not have support for that protocol. This meant that we could not stream

data with J2ME. With this in mind, we decided to test the capabilities of establishing a

network connection and transferring data over HTTP.

 34

 Two tests were performed to test potential network bottlenecks. Our test bed was

a PDA, the iPAQ h4100. The iPAQ was chosen because it could connect to the Internet

in two different ways. In the first test, the iPAQ would connect to the Internet via USB

2.0. In the second test, the iPAQ would connect to the Internet via Wi-Fi (801.11b). The

application that was programmed connects to a web server and downloads a file, copying

it into a byte array. A web server was setup with files of various file sizes ranging from

1000 bytes to 1 MB. Measurements that were taken during the process included the

amount of time to establish a connection with the web server, the memory usage of the

PDA, and total time it took to transfer the downloaded data into a byte array.

 Connection time (Ping) is the time it took for the client application to connect to

the server and request a file. The connection time was calculated by subtracting the

system time after the connection had been established and the system time just before the

connection was requested. The run time (Run) is the time it took to copy the file into a

byte array. Run time was calculated by measuring the system time between the

commands to start copying the file to a byte array. This was done as a representation of

the time it would take to parse a file from beginning to end. The perceived time

(Perceived) is the time the user would have to wait before being able to play the file.

This was the total time beginning with requesting a connection to finish copying the file

to a byte array. Additionally, various memory measurements were made on the PDA.

J2ME supports memory commands that return the amount of memory available and used.

Memory usage is likely to vary across different devices; nonetheless it provides an

interesting perspective of handheld devices. Measurements included the total memory

available on the device, amount used, and the amount available.

 35

Table 4: USB Network Performance Test

File Size

(bytes)
PDA Perceived

(ms)
PDA Ping

(ms)
PDA Run

(ms)
Memory Usage

(bytes)
1000 934 871 8 156928
2000 2486 1471 990 157992
4000 2480 1529 925 160192

10000 2170 1214 930 173248
20000 2430 2230 172 190660
40000 1848 1475 344 225476

100000 3907 2226 1654 295112
200000 4997 1996 2968 434380
400000 4915 1984 2890 712908

1000000 9257 1710 7519 1269964

Table 5: 802.llb Network Performance Test

File Size

(bytes)
PDA Wireless

Perceived (ms)
PDA Wireless

Ping (ms)
PDA Wireless

Run (ms)
Memory Usage

(bytes)
1000 1663 1625 7 152124
2000 978 936 14 158004
4000 1292 1170 97 160172

10000 1336 1124 187 173240
20000 1306 946 333 190660
40000 1508 982 498 225468

100000 3420 913 2478 295104
200000 3978 764 3180 434372
400000 7517 1135 6342 712900

1000000 16556 1066 15465 1269992

 36

PDA Time

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1000 2000 4000 10000 20000 40000 100000 200000 400000 1000000

File Size (bytes)

Ti
m

e
(m

s) PDA Precieved (ms)

PDA Ping (ms)

PDA Run (ms)

Figure 3: USB Network Delay

PDA Wireless Time

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1000 2000 4000 10000 20000 40000 100000 200000 400000 1000000

File Size (bytes)

Ti
m

e
(m

s) PDA Wireless Precieved (ms)

PDA Wireless Ping (ms)

PDA Wireless Run (ms)

Figure 4: 802.11b Network Delay

 37

 From the results obtained, it is clearly observable that as files size increases, so

does the processing time and therefore so does the delay on the user’s end. The time that

the application takes to connect to the web server does not fluctuate significantly,

however it was observed that the USB 2.0 connection was slower than the wireless

connection. Memory usage between the two tests remained consistent. Since these tests

were only performed on the iPAQ, we cannot make recommendations for all handheld

devices, but only suggest a guideline for optimizing network performance. In order to

provide a comfortable user experience, we concluded that it is best to keep file sizes

small to reduce processing time. For the constraints of the iPAQ, keeping file sizes

below 40 kilobytes would be ideal. Smaller devices with limited resources, such as

mobile phones, would probably require file sizes to be even smaller than 40 kilobytes to

run well.

 Additionally, some basic testing was done to ensure that the bandwidth available

to mobile phones is sufficient for streaming, by simply using the Siemens S55 phone as a

modem, and viewing various video streams on a computer connected to the Internet

through the phone. The acceptable playback speed observed in viewing various streams

well exceeding those expected to be streamed to mobile phones in complexity, indicated

that network bottlenecks are not a major point of concern.

3.2 Implementation

With the benchmarking complete, a prototype could now be designed and the

implementation requirements could now be established. Due to the graphics processing

limitations imposed by mobile phones, an implementation would need to support the 2D

animation capabilities of the MPEG standard. Additionally, in conformance with the

 38

initial intentions to provide a solution that is applicable to user base that is as large as

possible, utilizing technologies that are already supported by devices that users own, the

implementation would need to be written in J2ME.

Our final implementation consisted of three separate parts. The first is modified

version of GPAC that returns the internal calls made by GPAC. The next is a client

program, and main implementation of MPEG-4, which has the ability to read the calls

made by GPAC. Lastly, a partial implementation of the MPEG-4 systems that will

eventually replace the modified GPAC version and consolidate both it and the client

program into a stand-alone MPEG-4 animation program.

In the search for existing implementations supporting MPEG-4 animation, GPAC

was found to be the only such open source implementation. It was thus chosen as a

starting point for a solution conforming to the above requirements. This however

introduced several obstacles that needed to be addressed, the most notable of which being

the fact that GPAC was written in the C language. Converting the code to Java was thus

necessary, with the resulting code then to be adapted for J2ME and mobile device

limitation requirements.

3.2.1 GPAC Code Simplification

Before the conversion could commence, simplification of the GPAC code was

necessary. Since GPAC was designed to be a robust, versatile tool, the code was quite

large, incorporating support for modules allowing functionality such as MPEG video

playback, authoring support, and others not explicitly required by the project

requirements. GPAC is approximately 1,200,000 lines of code including the main

systems and plug-in modules, over 40 megabytes in size, and well over 1,200 files.

 39

25 GPAC Modules Required by GPAC Our Implementation
amr_dec

codec_pack

dx_hw not necessary

ffmpeg_in

file_dnload

ft_font

gdip_rend

m4_rend rewrote for J2ME

M4Systems partial conversion to J2ME

mp3_in

MP42AVI

mp4_io rewrote for J2ME

MP4Box

MP4Client

OpenDivx

Osmo4 not necessary

raw_out

render2d

render3d

rtp_in

SDL_out

SGGen

V4Studio

wav_audio

wxOsmo4

Table 6: GPAC Module Structure

Fortunately, the code structure incorporated heavy use of removable modules,

thus the most advanced functionality, such as the ffmpeg video decoding module, could

be easily excluded from the project. Once stripped of the module-based extensions, the

remaining code, the minimum required for playback of MPEG animations, occurred in 5

modules, named M4Systems, mp4_io, mp4_rend, dx_hw and Osmo. Table 6 summerizes

the main GPAC modules, highlighting which ones were converted, rewritten, or not

necessary for our implementation.

 40

The Osmo module, as previously mentioned, consists of the player interface code.

Since the implementation was specified to be in the format of a backbone that could be

adapted for specific applications, with a variety of interfaces to the MPEG-4 data, the

Osmo code did not need to be converted. The dx_hw, also essential for playback on a

computer, consists of code enabling the use of Microsoft DirectX API for displaying the

animation, and also did not need to be converted. These two modules were however

needed during the code stripping process to ensure that the code still compiles and

functions correctly.

The mp4_io and mp4_rend modules provide running environment-specific

functionality for reading the MPEG-4 file and displaying the graphics respectively. The

nature of these modules required a re-write of both in J2ME, rather than a simple

conversion, to ensure compatibility with a mobile phone running environment. The

module written to replace mp4_io would need to provide functionality to retrieve MPEG-

4 data from a server or a file, storing it into a byte stream, while mp4_rend would need to

output simple graphical shapes to the display.

The M4Systems module is the core module of GPAC, providing all of the code

necessary to process MPEG-4 data, and was designed to be completely platform

independent, a feature that was especially beneficial to this project. However, it is

approximately 800,000 lines of code in length, and needed to be stripped of unnecessary

functionality to simplify the major undertaking of converting the C code into Java, as

well as to ensure that it is as compact as possible, in an attempt to avoid any potential

issues with memory limitations on mobile devices.

 41

While a proportion of the functionality that was not essential for playback of

MPEG-4 animation, such as MPEG-4 authoring support, was easy to identify and

remove, the majority of the non-essential code required significantly more effort. The

techniques used to identify non-essential code included searching for code that was no

longer executed after the removal of the additional modules. Anything not explicitly

specified in the implementation requirements were also removed. The latter includes

audio support, interactivity support, support for corrupted and non-standard MPEG-4

files, support for standards such as JPEG2000 and QuickTime, and various minor MPEG-

4 components such as meta data.

The task was made immensely more difficult due to lack of comments in the

code. With no explanations of data structures, the functions performed by methods, and

the purpose of various properties and components, the process required guesswork and a

time consuming trial-and-error approach to identify whether code was essential.

Throughout the process of code removal, the program was repeatedly tested,

ensuring that it compiled and played back MPEG-4 animation files. Despite such

extensive code stripping, approximately 500,000 lines of C code still remained in the

M4Sytems module. This was mainly due to the design of the MPEG-4 format, intended

to allow it to be highly versatile, with a number of different data structures that need to

work together to allow even a simple file to be processed.

3.2.2 Conversion to J2ME Process

The remaining code of the M4Systems module was then ready to be converted

into J2ME. As the module was also further divided into numerous smaller modules, they

were tackled individually. Since the conversion was expected to be a lengthy process, an

 42

assessment was first done on whether it was plausible to complete it within the time

constraints of the project by converting a single module first. The module that was

chosen for this was the code to handle BIFS, presumed to be a representative module,

fundamental in rendering 2D animation.

BIFS in an MPEG-4 file are used for positioning various objects on the screen and

transforming them, as well as animating such transformations. While conversion time for

the BIFS code indicated that a complete conversion of the GPAC code was plausible,

later it became apparent that the module, consisting primarily of mathematic calculations,

especially matrix manipulations, was not representative of the majority of the code to be

converted.

This was however revealed in later stages, as the code, the purpose of which was

better understood was converted first. The next module that was tackled was thus chosen

to be the atom parsing code, as the concept of atoms was outlined by numerous sources.

Atoms are used to define the hierarchal structure of MPEG-4 files, where a particular

type of atom contains a particular type of data. Atoms are generally nested within each

other, with the “moov” atom being at the top of the hierarchy, and atoms such as “hint”,

“mdat” or “trak”, containing hinting, video data or track information respectively,

contained within it.

 43

Figure 5: MPEG-4 File Format

However, since GPAC included support for over 50 different types of atoms, with

no coherent explanation of their purpose given, the task was rendered much more

difficult. Some helpful information was extracted from the documentation of Apple’s

QuickTime format, on which the MPEG-4 file structure is based, with additional help

from an open-source Java application that could read and display the atom hierarchy of

QuickTime and MPEG-4 files. The latter helped identify the atoms encountered in

sample MPEG-4 files containing 2D animation, and the code to handle those was fully

converted. Due to time restraints, the code for the other atom types was replaced with

generic code to skip over such atoms as a temporary measure.

The rendering code, which parsed various types of objects contained in the atoms,

such as polygonal objects, text, areas of interactivity and many others, was then

attempted to be converted, as its workings appeared to be quite straightforward. The basic

functionality for 2D object support was converted, with the rest of the code planned to be

attempted at a later stage, once overall functionality was achieved.

 44

The remaining M4Systems code, however, proved to be a significantly greater

ordeal to convert. While the code of the modules outlined above did not make use of

extensive abstract data structures, and was of a primarily mathematical nature, the

remaining modules incorporated not only complex abstract data structures coded in a

somewhat awkward manner, but also dealt with concepts that were themselves abstract

and vaguely defined. The near complete absence of documentation in the GPAC code

was also one of the primary factors complicating the task.

Due to these obstacles, only partial work was done on the remaining modules,

with focus shifted to the mp4_io and mp4_rend interface modules that needed to be re-

written. The modules where only partial conversion attempts were made include the

Scene Graph, Stream Management and Object Descriptor modules. The purpose of the

modules was partially obtained by conjecture, due to the ambiguity of the code and lack

of documentation. However, Scene Graph appears to be responsible for constructing a

graph of the object hierarchy within a scene, additionally defining objects or groups of

objects that BIFS transformations apply to. The Stream Management module is mainly

concerned with synchronization of audio, video and other tracks, providing timing

information, as well as helping manage tracks from different sources, such as streamed

media. The Object Descriptor module provides numerous data structures allowing the

manipulation of abstract objects, such as atoms and tracks among others. One of the

major obstacles in performing the conversion caused by those modules was their

awkward use of direct memory access for data structure conversion, overcoming the

shortcomings of the C language, which does not provide object-oriented programming

support.

 45

Due to the aforementioned difficulties encountered in the conversion process and

the fact that the various modules are required to work as a whole to be able to parse even

the simplest MPEG-4 files, it became apparent that a complete conversion was

implausible within the time constraints. Converting the interface modules allowed a

method of confirmation that a working implementation would be functional on a mobile

device if the M4Systems code was eventually converted. Figure 6 illustrates the progress

made on converting the various GPAC modules, with darker shades used to fill the

module boxes indicating more progress made towards full completion. If the unfinished

portions of the MPEG-4 parsing code are completed, the interface implementations

guarantee correct and efficient functionality of the player as a whole on a mobile device.

Figure 6: Module Conversion Progress

 46

3.2.3 MPEG-4 Network Protocol

 MPEG-4 defines streaming media through RTP/RTSP. MPEG-4 also has various

error-correction algorithms to ensure delivery and playback. Unfortunately, J2ME

currently does not support RTP/RTSP and only supports HTTP. J2ME does offer the

Generic Connection Framework. The Generic Connection Framework provides an

outline to establish such a protocol in the future.

Since J2ME cannot support streaming, HTTP had to be used. The client program

via HTTP accesses the compressed calls on the web server. The URL is simply inputted

and the client then downloads the file. Once downloaded the file is stored in a byte array

to be processed by the renderer.

Ideally, the RTP/RTSP protocols should be used, but under the constraints of

available technology, HTTP was used instead. By using J2ME’s native support for

HTTP, the client can download any MPEG-4 file available on the Internet. With future

support and additions, migration to RTP/RTSP could be implemented for true streaming.

3.2.4 MPEG-4 Renderer

 Our MPEG-4 player takes compressed GPAC calls and outputs them in the J2ME

environment. Data is stored and downloaded from a web server and decompressed by the

client. Each set of bytes represent the calls and their parameters necessary for output.

The calls are then interpreted and displayed on the screen of the mobile device. The calls

represent simple figures such as squares, rectangles, triangles, lines and circles.

 47

 The drawing functions are coded in the J2ME environment. The drawing

functions are optimized to minimize the number of objects stored in the memory. Rather

than using the defined objects provided by J2ME, we defined our own drawing objects

that paint directly onto the canvas. So instead of each pixel, line, rectangle or arc being

represented as an object, the group is defined within the canvas as a singular object. This

reduces part of the memory bottleneck and allows for customization further down the

line.

 Figure 7 is a snippet of code that defines how to draw a triangle in J2ME. The

calls, although simple, were transferred and displayed correctly on our client. Due to

hardware problems, our MPEG-4 player could only be tested on an emulator. Being built

on J2ME, the program should work with mobile device that supports the standard and has

Internet access.

 48

public void drawTriangle
(Graphics g, int x0, int y0, int x1, int y1, int x2, int y2, int color)
/**
* Draws triangle using DDA Algorithm
**/
{
int dxdy1 = 0, dxdy2 = 0;
int edge1 = 0, edge2 = 0;
int start = 0, end = 0;
int y;
int tempx,tempy;

// sort the triangle vertices by y

if (y0 > y1) {
 tempx = x0;
 tempy = y0;
 x0 = x1;
 y0 = y1;
 x1 = tempx;
 y1 = tempy;
}

...

// being rendering with selected color
g.setColor(color);

// calculate top half of triangle
// initialize edge
edge1 = edge2 = (x0 << FIXPOINT_SHIFT) + FIXPOINT_ROUNDUP;

// perform slope calculation
if (y0 != y1) {
 dxdy1 = ((x0 - x1) << FIXPOINT_SHIFT) / (y0 - y1);
 dxdy2 = ((x0 - x2) << FIXPOINT_SHIFT) / (y0 - y2);

 if (y0 < 0) {
 start = 0;
 if (y1 < 0) {
 edge1 += (y1 - y0) * dxdy1;
 edge2 += (y1 - y0) * dxdy2;
 }
 else {
 edge1 += (-y0) * dxdy1;
 edge2 += (-y0) * dxdy2;
 }
 }
 else { start = y0; }

 if (y1 > SCREEN_HEIGHT - 1) { end = SCREEN_HEIGHT - 1; }
 else { end = y1; }

// draw lines
 for (y = start; y < end; y++) {
 g.drawLine(edge1 >> FIXPOINT_SHIFT,y,edge2 >> FIXPOINT_SHIFT,y);
 edge1 += dxdy1;
 edge2 += dxdy2;
 }
}
// calculate bottom half of triangle
...

Figure 7: Draw Triangle J2ME Code

 49

4 Results and Analysis

This chapter presents the results gathered from the conversion of GPAC to a

mobile phone environment. Presented first is the original vision of the implementation,

the problems that were encountered, their solutions, and the final version of the

implementation. Our final results were a modified version of GPAC and a client program

that was capable of rendering graphics on mobile phones. In addition to the programs,

several of the core systems of MPEG-4 were converted.

The original objective of this project was to create a MPEG-4 player on a mobile

phone. After researching available software, documentation, and limitations of both

hardware and software, our objective changed slightly. Instead of a full implementation

of a MPEG-4 player, it would be capable of MPEG-4 animation for mobile phones.

GPAC was chosen to be stripped down to just its animation core and converted into a

J2ME application. This was our objective, but unforeseen problems make the task

difficult.

We encountered problems from the limitation of current hardware, software, and

documentation. The problems revealed the infancy for support of the MPEG-4 format.

Although MPEG-4 will most likely be adopted by the audio and video industry in the

future, progress outside of large companies is slow due to lack of resources. Creation of

a viable MPEG-4 player for mobile devices proved difficult under these circumstances.

4.1 Constraints of Technology

 During the porting of GPAC to J2ME, we encountered bottlenecks due to

technological limitations of both hardware and software. The greatest limitation for

mobile devices is CPU processing power and available memory. These bottlenecks were

 50

exposed during the preliminary testing of graphics capabilities on the Siemens S55. This

was also observed in the final implementation of our MPEG-4 player. When trying to

load a complex vector image, such as that of a tiger or clown, the player returned a

memory overload exception. This constraint limits MPEG-4 graphics to relatively simple

shapes.

 The development platform we chose, J2ME, also had constraints. J2ME MIDP

1.0 was chosen because of its availability on a wide range of mobile phones. MIDP 1.0 is

the first version of the platform, and like most initial versions of software there is a

limited number of features and plenty of room for improvement. In particular it did not

have support for floating-point numbers or complex graphics capabilities. Although this

does not affect older less powerful mobile phones, it does hinder newer phones that have

the capability to execute complex applications.

J2ME also had other limitations. Currently J2ME only supports HTTP network

connections. With only HTTP support it is impossible to have real time streaming as

defined by MPEG-4 standard. Without streaming capabilities, our client application was

limited to the amount of memory available on the mobile phone. The client was forced to

download the entire graphic before it could be displayed. With real time streaming,

smaller chunks of data would be needed at any given time to display an animation, rather

then the entire animation.

The remedies for these constraints are to improve the hardware and software on

which MPEG-4 is used. As phones continue to increase in functionality, so will CPU

speed and available memory. This will lead to applications that can take advantage of the

increases, such as J2ME. With each future release of J2ME and better support from

 51

manufacturers, mobile devices will become more capable of performing the functions of

complex applications.

4.2 Lack of Documentation

 The greatest obstacle in the development of a MPEG-4 player is the lack of freely

available technical documentation. MPEG is not an open standard and requires a fee to

view documentation. The documents that are freely available are general descriptions of

MPEG-4 features. In addition, the majority of the documents focus only on audio and

video profiles. Without a detailed description of the MPEG-4 standard it is difficult to

complete a full implementation.

 An alternative to achieve a technical understanding MPEG-4 was to reverse

engineer the standard. There exist several open source projects developing MPEG-4

applications. It was our intention to go through these bodies of code to learn about

MPEG-4 and to create an implementation. The complexity of the MPEG-4 standard

combined with poor documentation and lack of useful comments made the task much

more difficult. This was true for GPAC as many sections of code were uncommented

and remained a mystery of its true functionality. It became a trial-and-error search for

understanding MPEG-4 and the GPAC modules.

 MPEG-4 has been praised and labeled as the technology of the coming future. It

is unlikely that MPEG will release its documents for free, but there is a chance that other

open source projects will become available or the current open source projects will

provide better comments. The growth of interest will push for better documentation and

technical journals to be released. As for now, MPEG-4 documentation remains in the

confines of large companies and organizations.

 52

4.3 Implementation of Interface Layer

 Our MPEG-4 player is a partial implementation of the standard. It is built upon

the core of GPAC with J2ME interfacing code written upon it with the porting at various

completed stages. The interface layers replace the functionality of mp4_io and mp4_rend

modules of GPAC but are coded in J2ME. Through the programs implemented, it is

possible to view simple MPEG-4 graphics.

 As the program functions now, it requires MPEG-4 media to be passed through a

modified version GPAC to output its command calls. The list of command calls is then

compressed and available for the client program to use. The client contacts the web

server, downloads the calls, and renders the output on a mobile device.

 If technical documentation becomes available, future work can remove the

modified GPAC that is required for parsing and reading MPEG-4 files, and in its place a

fully ported version of GPAC. Through our work it has been shown that an MPEG-4

player is a viable option for mobile devices for the near future. For a complete

implementation of an MPEG-4 standard documentation, hardware, and software issues

need to be resolved.

4.4 Overview of Our Reduced Prototype

To overcome the obstacle of converting GPAC into a J2ME program, we

modified GPAC to work with a J2ME interface. We separated our original goal of a

MPEG-4 player into two programs. The modified version of GPAC was used to open

and parse MPEG-4 files that would then be passed to our client J2ME interface via the

 53

Internet. This was the only feasible approach to be able to parse MPEG-4 files since we

do not have the information to write our own parser.

GPAC was modified to output its own internal calls and BIFS code into a text file.

The textual calls made were then compressed using bytes to represent the calls and

parameters. This was done to reduce the amount of memory required to store textual

calls. In turn, mobile phone memory for both transferring and storing the data is reduced.

To get a better understanding of the calls, we parsed simple MPEG-4 files with shapes

through the modified GPAC. In viewing the calls made, most of them represented

drawing functions for lines, connections, colors, and gradients. Once compressed, the

calls are then stored on a web server to be downloaded by the client. Figure 8 shows our

MPEG-4 prototype.

 54

Figure 8: Our MPEG-4 Prototype

 The overall conversion process is a small fraction of the GPAC, and even smaller

fraction of the whole MPEG-4 standard. From GPAC we rewrote network input, the

graphics renderer, and partially converted the MPEG-4 main systems. From the MPEG-4

standard we tried to implement the 2D profile for animation, but could not get all the

systems required for animation to work together.

 55

5 Conclusion and Future Work

 MPEG-4 will become the standard media format for rich content delivery in the

near future. The MPEG-4 standard was created to meet the needs of growing consumer

and technological needs. MPEG-4 was designed for a large range of devices. These

devices include everything from small-embedded devices such as mobile phones, PDAs,

set top boxes, to high-end systems such as High Definition TV. Through its support of

multiple platforms and wide range of features, MPEG-4 has a lot of potentially useful

applications.

5.1 Recommendations for MPEG-4 Adoption

 Although MPEG-4 is a feature rich media format, it still has a limited amount of

support outside of large corporations. Only large companies such as Apple and IBM

have been developing applications to support the varied features of MPEG-4. Other

organizations are still only supporting the lowest profile of MPEG-4, namely the audio

and video profiles. In order to push for complete support of the MPEG-4 standard it has

to be made publicly aware on both industry and consumer levels.

 For MPEG-4 to be supported on mobile phones, both hardware and software have

to improve. Currently, mobile phones are not powerful enough to support the complete

standard of MPEG-4. The mobile phones that are being released with MPEG-4 only

support poor quality audio and video streaming. The MPEG-4 standard addressed the

limited capabilities of small-embedded devices by defining multiple profiles. Ideally for

devices such as mobile phones, layers, sprites, vectors, and 2D animation would be used

to overcome the limitations.

 56

 To gain support for MPEG-4, more organizations have to work on applications

for the standard. The largest community of talented technical individuals exists on the

Internet on programming forums. To gain the support of programming enthusiasts,

MPEG has to release better technical documentation of its format. Better documentation

allows more individuals to understand the format and begin work on projects. By gaining

the support of individual programming enthusiasts and the programming communities

available online, there will be a growth of open source MPEG-4 projects. Thus

increasing the support for MPEG-4.

5.2 MQP Recommendations

 There are many MQPs that could be created directly from this project or involve

MPEG-4. Most notably is the continuation of this project to achieve a working

implementation of the MPEG-4 standard for mobile phones. This would mean

completing the conversion of GPAC code to Java. Another project involving MPEG-4

could test MPEG-4 audio and video streaming performance over a selection of varied

networks. Since MPEG-4 has robust error correction features it would be instructive to

test it under different circumstances.

Other branches could involve the technologies that MPEG-4 is based upon;

technologies such as Apple’s Quicktime, VRML, or SMIL. This could be creating a

player for mobile phone or researching the similarities and differences of the formats. A

better understanding of the technologies that MPEG-4 is based on might help to

understand the new format. The benefits of this approach are the availability of technical

documentation for the existing formats.

 57

It is also possible to continue the work on a PDA or desktop computer. This

could be supporting the other profiles of MPEG-4. Regardless of the project,

continuation or new, it is suggested that the technical documentations be bought, which

will make it considerably easier for any sort of implementation of MPEG-4.

5.3 Potential Applications

 MPEG-4 has many potential applications because of its broad range of features.

MPEG-4 could be used for improving the quality and detail for television programs or

making a broadcast interactive. Both the entertainment and education industry could

benefit from MPEG-4. With MPEG-4, games such as a ‘choose-your-own-adventure’

type game could help to educate and entertain young children. With MPEG-4’s stream

management it would be possible to start watching a movie on television and finish

watching a lower resolution version on a mobile phone. The potential of MPEG-4 covers

most conceivable applications for the near future.

 58

References

3Gtoday (2004). 3G is Here Today. Retrieved September 9, 2004, from World Wide

Web: http://www.3gtoday.com/index.html

Alcatel (January 2003). Understanding the Mobile Phone Market Drivers. Retrieved

September 9, 2004, from World Wide Web:
http://www.privateline.com/archive/alcaatel.pdf

Alvear, Jose (June 29, 2001). RealNetworks Partners with Symbian. Retrieved September

9, 2004, from World Wide Web:
http://www.streamingmedia.com/article.asp?id=7609

Apple Computer Inc (2004). MPEG-4: The Next Generation. Retrieved September 9,

2004, from World Wide Web: http://www.apple.com/mpeg4/

Banan, Mohsen (May 26, 2000). The WAP Trap: An Expose of the Wireless Application

Protocol. Retrieved January 13, 2005, from World Wide Web:
http://www.freeprotocols.org/wapTrap/split/main.html

Baron, Stanley N (1996). Digital Image and Audio Cmmunications : Toward a Global

Information Infrastructure. New York : Van Nostrand Reinhold

Batista, Elisa (March 19, 2004). New Cell Phones Smarter, More Fun. Retrieved

September 9, 2004, from World Wide Web:
http://www.wired.com/news/wireless/0,1382,58085,00.html

BBC News (January 2004). Text record smashed for New Year. Retrieved September 9,

2004, from World Wide Web: http://news.bbc.co.uk/1/hi/technology/3368815.stm

Clark, Robert (January 2004). CDMA 450 – All You Need to Know. Retrieved January

12, 2005, from World Wide Web:
http://www.telecomasia.net/telecomasia/article/articleDetail.jsp?id=94929

Datta, Kanika (June 2004). Nokia Makes a Connection. Retrieved September 9, 2004,

from World Wide Web: http://www.business-
standard.com/strategist/storypage.php?chklogin=&autono=158076&lselect=3&lef
tnm=lmnu7&leftindx=7

DeZoysa, Sanjima (March 2002). Japan and Europe – Worlds Apart? – Profitable Carrier
Strategies. Retrieved January 13, 2004, from World Wide Web:
http://www.findarticles.com/p/articles/mi_m0IUL/is_3_36/ai_84211212

ENST (2003). Osmose @ ENST. Retrieved September 24, 2004, from World Wide Web:

http://www.comelec.enst.fr/osmo4/

 59

Gartner (2004). Press Releases. Retrieved September 9, 2004, from World Wide Web:
http://www4.gartner.com/press_releases/pr2004.html

Gartner (2004). Quick Statistics. Retrieved September 9, 2004, from World Wide Web:

http://www4.gartner.com/media_relations/asset_61934_1595.jsp

GPAC (2004). GPAC Project on Advanced Content. Retrieved August 16, 2004, from

World Wide Web: http://gpac.sourceforge.net/

Gross, Daniel (2004). Buy Cell – How Many Mobile Phones Does the World Need?

Retrieved January 13, 2005, from World Wide Web:
http://slate.msn.com/id/2101625/

GSMArena (April 2004). EMEA Mobile device market Q1 2004. Retrieved September 9,

2004, from World Wide Web:
http://www.gsmarena.com/newsdetail.php3?idNews=37

IBM alphaWorks (December 2004). IBM alphaWorks – Emerging Technologies. .

Retrieved Decemeber 13, 2004, from World Wide Web:
http://www.alphaworks.ibm.com/

ITFacts.biz. (2004). 170 mln mobile phones sold in Q3 2004. Retrieved December

12, 2004, from World Wide Web: http://www.itfacts.biz/index.php?id=P2039

Java Community Process (2004). JSR-000037 Mobile Information Device Profile

(MIDP). Retrieved September 9, 2004, from World Wide Web:
http://jcp.org/aboutJava/communityprocess/final/jsr037/index.html

JBenchmark (2004). JBenchmark 2.0 Results. Retrieved September 9, 2004, from World

Wide Web: http://www.jbenchmark.com/index.html?F=2

Jenson, Scott (2004). 16 Default Thinking: Why consumer products fail. Retrieved

September 9, 2004, from World Wide Web:
http://www.jensondesign.com/DefaultThinking.pdf

Knudsen, Jonathan. (November 2002). What's New in MIDP 2.0. Retrieved December

18, 2004 on the World Wide Web:
http://developers.sun.com/techtopics/mobility/midp/articles/midp20/

Kosch, Harald (2004) Distributed Multimedia Database Technologies : Supported by

MPEG-7 and MPEG-21. Boca Raton, FL : CRC Press.

Mobil.cz (2004) Mobil.cz. Retrieved September 9, 2004, from World Wide Web:

http://www.mobil.cz

 60

MPEG4IP (2004). MPEG4IP Open Streaming Video and Audio. Retrieved August 10,
2004, from World Wide Web: http://www.mpeg4ip.net/

Nokia (2004). Nokia Forum. Retrieved September 9, 2004, from World Wide Web:

http://forum.nokia.com

Parbat (August 5, 2003). GSM Overtakes CDMA in Q1, Surges 81% Globally. Retrieved

January 13, 2005, from World Wide Web:
http://economictimes.indiatimes.com/cms.dll/html/uncomp/articleshow?msid=112
991

Pearson, Chris (February 24, 2004). 1 Billion for GSM Wireless. Retrieved January 13,

2005, from World Wide Web: http://www.3g.co.uk/PR/Feb2004/6631.htm

Rogerson, Simon (October 2003). What is wrong with mobile phones? Retrieved

September 9, 2004, from World Wide Web:
http://www.ccsr.cse.dmu.ac.uk/resources/general/ethicol/Ecv13no5.html

RTSP (2004). rtsp.org Real Time Streaming Protocol Information and Updates. Retrieved

August 22, 2004, from World Wide Web: http://www.rtsp.org/

Siemens (2004). Siemens Mobile Phone Overview. Retrieved September 9, 2004, from

World Wide Web: http://www.siemens-mobile.com/developer

Sony Ericsson (2004). Sony Ericsson Phone Specification Overview. Retrieved

September 9, 2004, from World Wide Web: http://developer.sonyericsson.com/

Sun Microsystems, Inc. (November 2002). J2ME Technologies Overview. Retrieved

December 18, 2004 on the World Wide Web:
http://java.sun.com/j2me/docs/j2me-ds.pdf

Sun Microsystems, Inc. (May 2004). J2ME Web Services (JSR-172) White Paper.

Retrieved December 18, 2004 on the World Wide Web:
http://java.sun.com/j2me/docs/webserv/Webservices172.pdf

Sun Ming-Ting (2000). Compressed Video Over Networks. New York : Marcel Dekker.

 61

Appendix A – Mobile Phone Lifespan

Assume the sales of a mobile phone follow a pattern as shown
on the graph:

(A new phone release generally tends to have low demand,
gradually increasing due to price decreases, special offers and
acceptance of newly implemented technologies if any.
Reaching a peak in the middle of the phone’s shelf life, the
demand withers as the phone becomes obsolete.)

According to the definition of a phone’s lifespan, the devices
misplaced, disposed of, damaged or replaced can thus be
represented as shown:

(If the lifespan of a phone represents the average amount of
time a user keeps the phone, the highest number of phones
misplaced/replaced/etc will occur at one average lifespan after
the peak in demand, and the number of phones remaining
after two lifespans since the last phone sold can be considered
insignificant.)

The equation of the first curve in terms of s and q can now be
found:

 The general form of the equation: Ax²+Bx+C

• since Ax²+Bx+C=0 when x=0 => [C=0]

• since the peak (inflection point) occurs at (1/2)s => d/dx(Ax²+Bx+C)=0 when x=(1/2)s

2Ax+B => 2A*(1/2)s+B=0 => [B=-As]

• since the area from 0 to s under the graph is q => ∫(Ax²+Bx+C)dx=q when x=s

(1/3)Ax³+(1/2)Bx²+Cx => [(1/3)As³+(1/2)Bs²+Cs=q]

• solving the simultaneous equations yields: (1/3)As³-(1/2)As³=q => A(-s³/6)=q

=> [A=-6q/s³]
• and: [B=6q/s²]

The first curve can thus be written as [(-6q/s³)x²+(6q/s²)x] (Eq.1)

The equation of the second curve can be derived by substituting s=(2L+s) and q=-q
 yielding: [(6q/(2L+s)³)x²-(6q/(2L+s)²)x] (Eq.2)

The total number of units sold at any given point x if (x<s) is the sum of the areas under both curves in the region from 0
to x, thus is equal to: ∫(Eq.1)dx+∫(Eq.2)dx
Integrating yields:[6q(-x³/(3s³)+x²/(2s²))+6q(x³/(3(2L+s)³)-x²/(2(2L+s)²))]

When (x=>s), the equation is simplified to: [q+6q(x³/(3(2L+s)³)-x²/(2(2L+s)²))]

Also, if (x>2L+s), the number of units by definition is 0.

 62

Appendix B – Mobile Phone Database

A database of all mobile phones released in the past 2 years by those companies for the EMEA
market has been compiled to serve as a representation of the entire GSM phone market. The data
was gathered from the respective companies website and from Jbenchmark.

Release Date
(YYYY.MM):

Data
Transfer:

WAP Version: Sound Formats:

SIEMENS

square brackets indicate formats that
cannot be played by the loudspeaker

M50 2002.05 GPRS 1.2 MIDI (mono)
C55 2002.09 GPRS 1.2.1 MIDI, WAV
A50 2002.12 CSD 1.2.1 mono
S55 2003.01 GPRS 1.2.1 MIDI, SMAF
A55 2003.04 CSD 1.2.1 poly
SL55 2003.04 GPRS 1.2.1 MIDI, SMAF
M55 2003.07 GPRS 1.2.1 parts 2.0 MIDI, WAV
ST55 2003.08 GPRS 2.0 MIDI, SMAF
A52 2003.09 CSD 1.2.1 poly
MC60 2003.11 GPRS 1.2.1 parts 2.0 MIDI, WAV
C60 2003.11 GPRS 1.2.1 MIDI
A60 2003.12 GPRS 1.2.1 poly
C62 2003.12 GPRS 1.2.1 MIDI
SX1 2004.02 GPRS 2.0 MIDI, WAV
ST60 2004.03 GPRS 2.0 MIDI (and probably more)
CF62 2004.05 GPRS 1.2.1 parts 2.0 MIDI, WAV
CX65 2004.05 GPRS 2.0 MIDI, WAV
C65 announced GPRS ? ?
M65 announced GPRS ? ?
S65 announced GPRS ? ?
U10 ? UMTS 1.2.1, 2.0 MIDI, WAV, MP3, AAC
U15 ? UMTS 1.2.1, 2.0 MIDI, WAV, MP3, AAC

 63

Screen
Width:

Screen
Height:

Colours: MIDP
Version:

Additional Java APIs:

SIEMENS

all phones with Java have CLDC 1.0
unless specified otherwise

M50 101 64 2 1.0 Game API
C55 101 64 2 1.0 Game API
A50 101 64 2 N/A
S55 101 80 256 1.0 Game API
A55 101 64 2 N/A
SL55 101 80 4096 1.0 Game API
M55 101 80 4096 1.0 Game API
ST55 120 160 65536 N/A
A52 101 64 2 N/A
MC60 101 80 4096 1.0 Game API, Bitmap API
C60 101 80 4096 1.0 Game API
A60 101 80 4096 N/A
C62 128 128 4096 N/A
SX1 176 220 65536 1.0 Game API, JSR-(120,135,82)
ST60 120 160 65536 2.0 ?
CF62 130 130 65536 1.0 (probably Game API)
CX65 132 176 65536 2.0 (probably JSR-184 and more)
C65 ? ? 65536 ?
M65 132 176 65536 2.0
S65 132 176 65536 ?
U10 176 220 4096 yes
U15 176 220 65536 yes

 64

SymbianOS

Version:
Additional Info: Jbenchmark

Rating:

SIEMENS

the 3GPP video standard uses the
H.263 codec

M50 552
C55 489
A50 N/A
S55 763
A55 N/A
SL55 543
M55 651
ST55 N/A
A52 N/A
MC60 549
C60 330
A60 N/A
C62 N/A
SX1 6.1 Series60 1.2.2, 130Mhz TI OMAP 310 1971
ST60 729
CF62 224
CX65 1426
C65 800
M65 3GPP 1213
S65 MPEG-4 1376
U10 MPEG-4 ?
U15 MPEG-4 ?

 65

Release Date
(YYYY.MM):

Data
Transfer:

WAP Version: Sound Formats:

NOKIA

3410 2002.05 CSD 1.1 poly
7650 2002.06 GPRS 1.2.1 MIDI, AMR
7210 2002.11 GPRS 1.2.1 MIDI
5100 2002.12 GRPS 1.2.1, TCP/IP MIDI
6100 2002.12 GPRS 1.2.1 MIDI
6610 2002.12 GPRS 1.2.1 MIDI
3510i 2003.02 GPRS 1.2.1 MIDI
6800 2003.03 GPRS 1.2.1 MIDI
3650 2003.04 GPRS 1.2.1 MIDI, AMR
7250 2003.05 GPRS 1.2.1 MIDI
8910i 2003.06 GPRS 1.2.1 mono
2100 2003.06 N/A 0 mono
3300 2003.07 GPRS 1.2.1 MIDI, WB-AMR, [MP3, AAC]
N-GAGE 2003.10 GPRS 1.2.1 MIDI, AMR, WAV, MP3, AAC
3100 2003.11 GPRS 1.2.1 MIDI
6220 2003.12 EDGE 1.2.1, TCP/IP MIDI
3200 2004.01 EDGE 1.2.1 MIDI, AMR, [MP3, AAC]
7600 2004.01 UMTS 2.0, TCP/IP MIDI, AMR, MP3, AAC
6600 2004.02 GPRS 2.0, TCP/IP MIDI, WB-AMR
6820 2004.02 EDGE 2.0, TCP/IP MIDI, AMR
1100 2004.02 N/A 0 mono
7200 2004.05 EDGE 2.0, TCP/IP MIDI, AMR
6230 2004.05 EDGE 2.0, TCP/IP MIDI, AMR, MP3, AAC
7610 2004.06 GPRS 2.0, TCP/IP MIDI, WB-AMR, WAV, MP3, AAC, Real
6650 ? UMTS 2.0, TCP/IP MIDI
N-GAGE QD announced GPRS 1.2.1, TCP/IP MIDI, AMR, WAV
3220 announced EDGE 2.0, TCP/IP MIDI
3660 announced GPRS 1.2.1 MIDI, AMR
5140 announced EDGE 2.0, TCP/IP MIDI, AMR
7700 announced EDGE TCP/IP MIDI, AMR, WAV, MP3, AAC, Real
9500 announced EDGE TCP/IP MIDI, AMR, WAV, MP3, AAC

 66

Screen
Width:

Screen
Height:

Colours: MIDP
Version:

Additional Java APIs:

NOKIA

3410 96 65 2 1.0 UI API, JSR-120
7650 176 208 4096 1.0 UI API
7210 128 128 4096 1.0 UI API
5100 128 128 4096 1.0 UI API
6100 128 128 4096 1.0 UI API
6610 128 128 4096 1.0 UI API
3510i 96 65 4096 1.0 UI API
6800 128 128 4096 1.0 UI API, JSR-120
3650 176 208 4096 1.0 UI API, JSR-(120,135)
7250 128 128 4096 1.0 UI API
8910i 96 65 4096 1.0 UI API
2100 96 65 2 N/A
3300 128 128 4096 1.0 UI API, JSR-(120,135)
N-GAGE 176 208 4096 1.0 UI API, JSR-(120,135)
3100 128 128 4096 1.0 UI API, JSR-120
6220 128 128 4096 1.0 UI API, JSR-120
3200 128 128 4096 1.0 UI API, JSR-120
7600 128 160 65536 1.0 UI API, JSR-(120,135)
6600 176 208 65536 2.0 UI API, JSR-(120,135,82)
6820 128 128 4096 1.0 UI API, JSR-120
1100 96 65 2 N/A
7200 128 128 65536 1.0 UI API, JSR-120
6230 128 128 65536 2.0 UI API, JSR-(120,135,185,82), CLDC 1.1
7610 176 208 65536 2.0 UI API, JSR-(120,135,82)
6650 128 160 4096 1.0 UI API
N-GAGE
QD 176 208 4096 1.0 UI API, JSR-(120,135)
3220 128 128 65536 2.0 UI API, JSR-(120,135), CLDC 1.1
3660 176 208 65536 1.0 UI API, JSR-(120,135)
5140 128 128 4096 2.0 UI API, JSR-(120,135,185), CLDC 1.1
7700 640 320 65536 2.0 UI API, JSR-(120,135,82)
9500 640 200 65536 2.0 UI API, JSR-(120,135,82,185,36,46,75),

File Connections, Personal Profile

 67

SymbianOS

Version:
Additional Info: Jbenchmark

Rating:

NOKIA

note: the full specifications for the Siemens 6X
series haven't been released yet.

3410 541
7650 6.1 Series60 1.0 2524
7210 Series40 1.0 692
5100 Series40 1.0 679
6100 Series40 1.0 760
6610 Series40 1.0 705
3510i Series40 1.0 941
6800 Series40 1.0 954
3650 6.1 Series60 1.0, 3GPP 2229
7250 Series40 1.0 752
8910i Series40 1.0 838
2100 N/A
3300 Series40 1.0 700
N-GAGE 6.1 Series60 1.0, 3GPP 2169
3100 Series40 1.0 794
6220 Series40 1.0 768
3200 Series40 1.0 869
7600 Series40 1.0, 3GPP, GPRS 1913
6600 7.0s Series60 2.0, 3GPP, MPEG-4, Real 2411
6820 Series40 1.0, 3GPP 943
1100 N/A
7200 Series40 1.0, 3GPP, MPEG-4 614
6230 Series40 2.0, 3GPP 1953
7610 7.0s Series60 2.0, 3GPP, MPEG-4, Real 2704
6650 Series40 1.0 2415
N-GAGE
QD 6.1 Series60 1.0, 3GPP ?
3220 Series40 2.0, 3GPP ?
3660 6.1 Series60 1.0, 3GPP ?
5140 Series40 2.0, 3GPP 768
7700 7.0s Series90 2.0, 3GPP, MPEG-4, Real, touchscreen 954
9500 7.0s Series80 2.0, 3GPP, MPEG-4, Real 861

 68

Release Date
(YYYY.MM):

Data
Transfer:

WAP Version: Sound Formats:

SONY-
ERICSSON
T68i 2002.04 GPRS 2.0 mono
R600 2002.09 GPRS 1.2.1 mono
T200 2002.10 GPRS 1.2.1 mono
T300 2002.10 GPRS 2.0 MIDI, AMR
T600 2002.11 GPRS 1.2.1 mono
T100 2003.01 CSD 1.2.1 mono
P800 2003.02 GPRS 2.0 MIDI, AMR, MP3, RMF
T310 2003.03 GPRS 2.0 MIDI, AMR
T610 2003.10 GPRS 2.0 MIDI, AMR
P900 2003.11 GPRS 2.0 MIDI, AMR, MP3, RMF
T230 2003.12 GPRS 2.0 MIDI, AMR
Z600 2003.12 GPRS 2.0 MIDI, AMR
T630 2004.02 GPRS 2.0 MIDI, AMR
Z200 2004.03 GPRS 1.2.1 MIDI, SMAF
K700i announced GPRS 2.0 MIDI, AMR, MP3
S700 announced GPRS 2.0 MIDI, AMR, MP3
Z500 announced EDGE 2.0 MIDI, AMR, MP3
Z1010 announced UMTS 2.0 MIDI, AMR, MP3

 69

Screen
Width:

Screen
Height:

Colours: MIDP
Version:

Additional Java APIs:

SONY-
ERICSSON

T68i 101 80 256 N/A
R600 101 65 2 N/A
T200 101 67 4 N/A
T300 101 80 256 N/A
T600 101 65 4 N/A
T100 101 67 4 N/A
P800 208 320 4096 1.0 PersonalJava
T310 101 80 256 N/A
T610 128 160 65536 1.0 JSR-135
P900 208 320 65536 2.0 JSR-(135,120,82), PersonalJava
T230 101 80 4096 N/A
Z600 128 160 65536 1.0 JSR-135
T630 128 160 65536 1.0 JSR-135
Z200 128 160 4096 N/A
K700i 176 220 65536 2.0 JSR-(135,120,184), CLDC 1.1
S700 240 320 262144 2.0 JSR-(135,120,184), CLDC 1.1
Z500 128 160 65536 2.0 JSR-(135,120,184), CLDC 1.1
Z1010 176 220 65536 2.0 JSR-(135,120), CLDC 1.1

 70

SymbianOS

Version:
Additional Info: Jbenchmark

Rating:
SONY-

ERICSSON
T68i N/A
R600 N/A
T200 N/A
T300 N/A
T600 N/A
T100 N/A
P800 7.0 UIQ 2.0 + specific APIs, 3GPP, MPEG-4, RMF 2436
T310 N/A
T610 692
P900 7.0 UIQ 2.1 + specific APIs, 3GPP, MPEG-4, RMF 2203
T230 N/A
Z600 693
T630 803
Z200 N/A
K700i 3GPP, MPEG-4 2691
S700 3GPP, MPEG-4 ?
Z500 3GPP, MPEG-4 ?
Z1010 3GPP, MPEG-4 2572

 71

Appendix C – Mobile Phone Trends

The database contains the release date of each phone and the features relevant to data streaming,
including Internet connectivity, audio playback capabilities, screen properties and the availability
and version of Java implementation among others. The data was gathered from the respective
companies website and from Jbenchmark.

Release Date
(YYYY.MM):

Data
Transfer:

WAP Version: Sound Formats:

T68i 2002.04 GPRS 2.0 mono
M50 2002.05 GPRS 1.2 MIDI (mono)
3410 2002.05 CSD 1.1 poly
7650 2002.06 GPRS 1.2.1 MIDI, AMR
C55 2002.09 GPRS 1.2.1 MIDI, WAV
R600 2002.09 GPRS 1.2.1 mono
T200 2002.10 GPRS 1.2.1 mono
T300 2002.10 GPRS 2.0 MIDI, AMR
7210 2002.11 GPRS 1.2.1 MIDI
T600 2002.11 GPRS 1.2.1 mono
A50 2002.12 CSD 1.2.1 mono
5100 2002.12 GRPS 1.2.1, TCP/IP MIDI
6100 2002.12 GPRS 1.2.1 MIDI
6610 2002.12 GPRS 1.2.1 MIDI
S55 2003.01 GPRS 1.2.1 MIDI, SMAF
T100 2003.01 CSD 1.2.1 mono
3510i 2003.02 GPRS 1.2.1 MIDI
P800 2003.02 GPRS 2.0 MIDI, AMR, MP3, RMF
6800 2003.03 GPRS 1.2.1 MIDI
T310 2003.03 GPRS 2.0 MIDI, AMR
A55 2003.04 CSD 1.2.1 poly
SL55 2003.04 GPRS 1.2.1 MIDI, SMAF
3650 2003.04 GPRS 1.2.1 MIDI, AMR
7250 2003.05 GPRS 1.2.1 MIDI
8910i 2003.06 GPRS 1.2.1 mono
2100 2003.06 N/A N/A mono

 72

Screen
Width:

Screen
Height:

Colours: MIDP
Version:

Additional Java APIs:

T68i 101 80 256 N/A
M50 101 64 2 1.0 Game API
3410 96 65 2 1.0 UI API, JSR-120
7650 176 208 4096 1.0 UI API
C55 101 64 2 1.0 Game API
R600 101 65 2 N/A
T200 101 67 4 N/A
T300 101 80 256 N/A
7210 128 128 4096 1.0 UI API
T600 101 65 4 N/A
A50 101 64 2 N/A
5100 128 128 4096 1.0 UI API
6100 128 128 4096 1.0 UI API
6610 128 128 4096 1.0 UI API
S55 101 80 256 1.0 Game API
T100 101 67 4 N/A
3510i 96 65 4096 1.0 UI API
P800 208 320 4096 1.0 PersonalJava
6800 128 128 4096 1.0 UI API, JSR-120
T310 101 80 256 N/A
A55 101 64 2 N/A
SL55 101 80 4096 1.0 Game API
3650 176 208 4096 1.0 UI API, JSR-(120,135)
7250 128 128 4096 1.0 UI API
8910i 96 65 4096 1.0 UI API
2100 96 65 2 N/A

 73

SymbianOS

Version:
Additional Info:

T68i N/A
M50 552
3410 541
7650 6.1 Series60 1.0 2524
C55 489
R600 N/A
T200 N/A
T300 N/A
7210 Series40 1.0 692
T600 N/A
A50 N/A
5100 Series40 1.0 679
6100 Series40 1.0 760
6610 Series40 1.0 705
S55 763
T100 N/A
3510i Series40 1.0 941
P800 7.0 UIQ 2.0 + specific APIs, 3GPP, MPEG-4, RMF 2436
6800 Series40 1.0 954
T310 N/A
A55 N/A
SL55 543
3650 6.1 Series60 1.0, 3GPP 2229
7250 Series40 1.0 752
8910i Series40 1.0 838
2100 N/A

 74

Release Date
(YYYY.MM):

Data
Transfer:

WAP Version: Sound Formats:

M55 2003.07 GPRS 1.2.1 parts 2.0 MIDI, WAV
3300 2003.07 GPRS 1.2.1 MIDI, WB-AMR, [MP3, AAC]
ST55 2003.08 GPRS 2.0 MIDI, SMAF
A52 2003.09 CSD 1.2.1 poly
N-GAGE 2003.10 GPRS 1.2.1 MIDI, AMR, WAV, MP3, AAC
T610 2003.10 GPRS 2.0 MIDI, AMR
MC60 2003.11 GPRS 1.2.1 parts 2.0 MIDI, WAV
C60 2003.11 GPRS 1.2.1 MIDI
3100 2003.11 GPRS 1.2.1 MIDI
P900 2003.11 GPRS 2.0 MIDI, AMR, MP3, RMF
A60 2003.12 GPRS 1.2.1 poly
C62 2003.12 GPRS 1.2.1 MIDI
6220 2003.12 EDGE 1.2.1, TCP/IP MIDI
T230 2003.12 GPRS 2.0 MIDI, AMR
Z600 2003.12 GPRS 2.0 MIDI, AMR
3200 2004.01 EDGE 1.2.1 MIDI, AMR, [MP3, AAC]
7600 2004.01 UMTS 2.0, TCP/IP MIDI, AMR, MP3, AAC
SX1 2004.02 GPRS 2.0 MIDI, WAV
6600 2004.02 GPRS 2.0, TCP/IP MIDI, WB-AMR
6820 2004.02 EDGE 2.0, TCP/IP MIDI, AMR
1100 2004.02 N/A N/A mono
T630 2004.02 GPRS 2.0 MIDI, AMR
ST60 2004.03 GPRS 2.0 MIDI (and probably more)
Z200 2004.03 GPRS 1.2.1 MIDI, SMAF
CF62 2004.05 GPRS 1.2.1 parts 2.0 MIDI, WAV
CX65 2004.05 GPRS 2.0 MIDI, WAV
7200 2004.05 EDGE 2.0, TCP/IP MIDI, AMR
6230 2004.05 EDGE 2.0, TCP/IP MIDI, AMR, MP3, AAC
7610 2004.06 GPRS 2.0, TCP/IP MIDI, WB-AMR, WAV, MP3, AAC, Real
C65 announced GPRS (probably 2.0) (probably MIDI and more)
M65 announced GPRS (probably 2.0) (probably MIDI and more)
S65 announced GPRS (probably 2.0) (probably MIDI and more)
K700i announced GPRS 2.0 MIDI, AMR, MP3
S700 announced GPRS 2.0 MIDI, AMR, MP3
Z500 announced EDGE 2.0 MIDI, AMR, MP3
N-GAGE QD announced GPRS 1.2.1, TCP/IP MIDI, AMR, WAV
3220 announced EDGE 2.0, TCP/IP MIDI
3660 announced GPRS 1.2.1 MIDI, AMR
5140 announced EDGE 2.0, TCP/IP MIDI, AMR
7700 announced EDGE TCP/IP MIDI, AMR, WAV, MP3, AAC, Real
9500 announced EDGE TCP/IP MIDI, AMR, WAV, MP3, AAC

 75

Screen
Width:

Screen
Height:

Colours: MIDP
Version:

Additional Java APIs:

M55 101 80 4096 1.0 Game API
3300 128 128 4096 1.0 UI API, JSR-(120,135)
ST55 120 160 65536 N/A
A52 101 64 2 N/A
N-GAGE 176 208 4096 1.0 UI API, JSR-(120,135)
T610 128 160 65536 1.0 JSR-135
MC60 101 80 4096 1.0 Game API, Bitmap API
C60 101 80 4096 1.0 Game API
3100 128 128 4096 1.0 UI API, JSR-120
P900 208 320 65536 2.0 JSR-(135,120,82), PersonalJava
A60 101 80 4096 N/A
C62 128 128 4096 N/A
6220 128 128 4096 1.0 UI API, JSR-120
T230 101 80 4096 N/A
Z600 128 160 65536 1.0 JSR-135
3200 128 128 4096 1.0 UI API, JSR-120
7600 128 160 65536 1.0 UI API, JSR-(120,135)
SX1 176 220 65536 1.0 Game API, JSR-(120,135,82)
6600 176 208 65536 2.0 UI API, JSR-(120,135,82)
6820 128 128 4096 1.0 UI API, JSR-120
1100 96 65 2 N/A
T630 128 160 65536 1.0 JSR-135
ST60 120 160 65536 2.0 ?
Z200 128 160 4096 N/A
CF62 130 130 65536 1.0 (probably Game API)
CX65 132 176 65536 2.0 (probably JSR-184 and more)
7200 128 128 65536 1.0 UI API, JSR-120
6230 128 128 65536 2.0 UI API, JSR-(120,135,185,82), CLDC 1.1
7610 176 208 65536 2.0 UI API, JSR-(120,135,82)
C65 ? ? 65536 ? (2.0)
M65 132 176 65536 2.0
S65 132 176 65536 ? (2.0)
K700i 176 220 65536 2.0 JSR-(135,120,184), CLDC 1.1
S700 240 320 262144 2.0 JSR-(135,120,184), CLDC 1.1
Z500 128 160 65536 2.0 JSR-(135,120,184), CLDC 1.1
N-GAGE
QD 176 208 4096 1.0 UI API, JSR-(120,135)
3220 128 128 65536 2.0 UI API, JSR-(120,135), CLDC 1.1
3660 176 208 65536 1.0 UI API, JSR-(120,135)
5140 128 128 4096 2.0 UI API, JSR-(120,135,185), CLDC 1.1
7700 640 320 65536 2.0 UI API, JSR-(120,135,82)
9500 640 200 65536 2.0 UI API, JSR-(120,135,82,185,36,46,75),

File Connections, Personal Profile

 76

SymbianOS

Version:
Additional Info:

M55 651
3300 Series40 1.0 700
ST55 N/A
A52 N/A
N-GAGE 6.1 Series60 1.0, 3GPP 2169
T610 692
MC60 549
C60 330
3100 Series40 1.0 794
P900 7.0 UIQ 2.1 + specific APIs, 3GPP, MPEG-4, RMF 2203
A60 N/A
C62 N/A
6220 Series40 1.0 768
T230 N/A
Z600 693
3200 Series40 1.0 869
7600 Series40 1.0, 3GPP, GPRS 1913
SX1 6.1 Series60 1.2.2, 130Mhz TI OMAP 310 1971
6600 7.0s Series60 2.0, 3GPP, MPEG-4, Real 2411
6820 Series40 1.0, 3GPP 943
1100 N/A
T630 803
ST60 729
Z200 N/A
CF62 224
CX65 1426
7200 Series40 1.0, 3GPP, MPEG-4 614
6230 Series40 2.0, 3GPP 1953
7610 7.0s Series60 2.0, 3GPP, MPEG-4, Real 2704
C65 800
M65 3GPP 1213
S65 MPEG-4 1376
K700i 3GPP, MPEG-4 2691
S700 3GPP, MPEG-4 ?
Z500 3GPP, MPEG-4 ?
N-GAGE QD 6.1 Series60 1.0, 3GPP ?
3220 Series40 2.0, 3GPP ?
3660 6.1 Series60 1.0, 3GPP ?
5140 Series40 2.0, 3GPP 768
7700 7.0s Series90 2.0, 3GPP, MPEG-4, Real, touchscreen 954
9500 7.0s Series80 2.0, 3GPP, MPEG-4, Real 861

 77

Appendix D – Mobile Phone 2005 Predicted Trends

Predicted average phone in the first half of 2005 in terms of graphics computation and
display speed. Based on Mobile Phone Lifespan formula and data from Jbenchmark.

 data transfer sound playback MIDP version colours
 CSD/none GPRS EDGE+ no just MIDI yes no Java 1.0 2.0 grey 256-4096 65536+ Symbian total

2H 2002 2 12 0 6 5 3 6 8 0 7 7 0 1 14
1H 2003 3 9 0 4 3 5 3 9 0 3 9 0 2 12
2H 2003 1 13 1 2 4 9 5 9 1 1 10 4 2 15
1H 2004 1 8 5 1 0 13 2 7 5 1 3 10 3 14

no.

announced 0 7 5 0 1 11 0 2 10 0 2 10 4 12
2H 2002 14.29 85.71 0.00 42.86 35.71 21.43 42.86 57.14 0.00 50.00 50.00 0.00 7.14
1H 2003 25.00 75.00 0.00 33.33 25.00 41.67 25.00 75.00 0.00 25.00 75.00 0.00 16.67
2H 2003 6.67 86.67 6.67 13.33 26.67 60.00 33.33 60.00 6.67 6.67 66.67 26.67 13.33
1H 2004 7.14 57.14 35.71 7.14 0.00 92.86 14.29 50.00 35.71 7.14 21.43 71.43 21.43

%

announced 0.00 58.33 41.67 0.00 8.33 91.67 0.00 16.67 83.33 0.00 16.67 83.33 33.33
 1H 2005 10.34 72.46 17.21 16.95 17.46 65.60 23.29 54.52 22.18 14.14 47.52 38.34 18.03
 w/constant q 11.19 73.84 14.97 18.91 19.05 62.04 24.86 56.25 18.89 16.10 49.99 33.90 17.14

 months till

1H 2005 q q on 1H
2005

% in 1H
2005

 2H 2002 30 100 31.64 10.66
 1H 2003 24 114 57.00 19.20
 2H 2003 18 128 87.50 29.47
 1H 2004 12 146 85.34 28.74
 2H 2004 6 164 35.47 11.95

 78

 data transfer sound playback MIDP version colours % of
 CSD/none GPRS EDGE+ no just MIDI yes no Java 1.0 2.0 grey 256-4096 65536+ Symbian 1H 2005

2H 2002 14.29 85.71 0.00 42.86 35.71 21.43 42.86 57.14 0.00 50.00 50.00 0.00 7.14 10.66
1H 2003 25.00 75.00 0.00 33.33 25.00 41.67 25.00 75.00 0.00 25.00 75.00 0.00 16.67 19.20
2H 2003 6.67 86.67 6.67 13.33 26.67 60.00 33.33 60.00 6.67 6.67 66.67 26.67 13.33 29.47
1H 2004 7.14 57.14 35.71 7.14 0.00 92.86 14.29 50.00 35.71 7.14 21.43 71.43 21.43 28.74

(%)

announced 0.00 58.33 41.67 0.00 8.33 91.67 0.00 16.67 83.33 0.00 16.67 83.33 33.33 11.95
(%) 1H 2005 10.34 72.46 17.21 16.95 17.46 65.60 23.29 54.52 22.18 14.14 47.52 38.34 18.03

 % of mobile phones with access to a given technology in the 1st half of 2005
 data transfer sound playback MIDP version colours
 CSD/none GPRS EDGE+ no just MIDI yes no Java 1.0 2.0 grey 256-4096 65536+ Symbian
 10.34 72.46 17.21 16.95 17.46 65.60 23.29 54.52 22.18 14.14 47.52 38.34 18.03

 Jbenchmark: 2H'02 1H'03 2H'03 1H'04 2H'04
 552 763 651 869 800
 541 941 700 1913 1213
 2524 2436 2169 1971 1376
 489 954 692 2411 2691
 692 543 549 943 768
 679 2229 330 803 954
 760 752 794 729 861
 705 838 2203 224
 768 1426
 693 614
 1953
 2704
 Sum: 6942 9456 9549 16560 8663
 Average: 868 1182 955 1380 1238 1124.4 (JBenchmark rating for the average phone)
 % in 1H'05: 10.66 19.2 29.47 28.74 11.95 1145.4 (JBenchmark rating for the average phone in 1H 2005)

 79

Appendix E – Graphic Benchmarking Results

Benchmarking graphic results. Data collected from the tests that were done on the
Siemens Model S55 mobile phone.

 fps (rectangles) fps (arcs) fps (lines) rectangle numer equivalent
% of screen 1 2 3 1 2 3 1 2 3 1 2 3

100 0.2 0.2 0.2 0.15 0.15 0.15 0.2 0.2 0.2 0.25 0.25 0.25
75 0.3 0.3 0.3 0.15 0.15 0.15 0.25 0.25 0.25 0.3 0.3 0.3
50 0.4 0.4 0.4 0.2 0.2 0.2 0.4 0.4 0.4 0.45 0.45 0.45
25 0.75 0.75 0.75 0.4 0.4 0.4 0.75 0.75 0.75 0.9 0.9 0.9
10 1.75 1.75 1.75 0.95 0.95 0.95 1.7 1.7 1.7 2.15 2.15 2.15

5 3.25 3.2 3.2 1.7 1.7 1.7 3.15 3.15 3.15 4.2 4.2 4.2
1 9.15 9.15 9.15 5 4.95 5 8.95 8.9 8.9 9.7 9.7 9.7

 Frames per second

% of screen Rectangles Lines Arcs
100 0.233 0.217 0.117

90 0.250 0.250 0.133
80 0.283 0.283 0.150
70 0.333 0.317 0.167
60 0.383 0.367 0.183
50 0.450 0.433 0.233
40 0.567 0.550 0.283
30 0.750 0.733 0.367
20 1.133 1.100 0.550
10 2.233 2.167 1.117

% of screen Fps.
100 0.233

90 0.250
80 0.283
70 0.317
60 0.367
50 0.450
40 0.550
30 0.733
20 1.100
10 2.167

	 Abstract
	 Acknowledgements
	 Table of Contents
	 List of Tables
	
	 List of Figures
	
	List of Acronyms
	
	 Executive Summary
	1 Introduction
	
	2 Background
	2.1 Overview of Current Mobile Phone Trends
	2.2 The Networks
	

	2.3 The Market Needs
	2.3.1 The Complex Consumer
	2.3.2 Wireless Application Protocol
	2.3.3 Short Message Service
	2.3.4 Multimedia Messaging System
	2.3.5 Ringtone, Logo & Game downloads
	2.3.6 Recovery from failure
	2.3.7 Discussion of Market Needs

	2.4 Mobile Phone Technology Trends
	2.4.1 Market representation
	2.4.2 Observed Trends
	2.4.3 Ownership prediction
	2.4.4 Discussion of Mobile Phone Trends

	2.5 Java 2 Micro Edition
	2.6 Motion Picture Experts Group
	2.6.1 MPEG-1
	2.6.2 MPEG-2
	2.6.3 MPEG-4

	2.7 Current MPEG-4 Software
	2.7.1 IBM Toolkit for MPEG-4
	2.7.2 MPEG4IP
	2.7.3 GPAC
	2.7.4 Discussion of MPEG-4

	
	 3 Methodology
	3.1 Benchmarks
	3.1.1 Graphical and Processing Capabilities
	3.1.2 Network Transfer Size and Delay

	3.2 Implementation
	3.2.1 GPAC Code Simplification
	
	3.2.2 Conversion to J2ME Process
	
	3.2.3 MPEG-4 Network Protocol
	3.2.4 MPEG-4 Renderer

	 4 Results and Analysis
	4.1 Constraints of Technology
	4.2 Lack of Documentation
	
	4.3 Implementation of Interface Layer
	4.4 Overview of Our Reduced Prototype

	
	 5 Conclusion and Future Work
	5.1 Recommendations for MPEG-4 Adoption
	5.2 MQP Recommendations
	5.3 Potential Applications

	 References
	 Appendix A – Mobile Phone Lifespan
	 Appendix B – Mobile Phone Database
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 Appendix C – Mobile Phone Trends
	
	
	
	
	
	
	
	
	
	
	 Appendix D – Mobile Phone 2005 Predicted Trends
	
	
	 Appendix E – Graphic Benchmarking Results
	

