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Abstract 
Endicia operates in the shipping software solution market space providing services to 

warehouses and e-commerce merchants. This project aims to branch out from Endicia’s shipper 

oriented solutions, and instead form a connection with the recipients of packages, the e-

commerce buyers. For an effective connection to be formed, buyers must be given enticing 

reasons to connect, offered an easy method of registration, and provided valuable services. By 

conducting market research, establishing product requirements, and pursuing feature driven 

implementation, we have developed a buyer link prototype and laid the groundwork for Endicia 

to expand into the e-commerce buyer market. The prototype includes a mobile application, a web 

application, an API backend, and a database built with modern frameworks and technologies. 
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1.  Introduction 

As the global population becomes more comfortable with the Internet as a marketplace, 

people are more frequently turning to online vendors to supply their needs. Vendors of all sizes 

are offering goods available through online purchase. Massive vendors like Amazon operate and 

control many of these sales, and provide services like direct delivery, package tracking, and 

order history. Smaller scale vendors do not have the same funds and infrastructure to support a 

distribution and warehousing network. Instead, small and medium size vendors look to outside 

services to provide mailing, delivery and package tracking. 

Endicia provides these vendors with the software solutions to offer direct shipping and 

package tracking to their customers. Endicia’s primary offering to online vendors is the ability to 

print shipping labels, but they continue to develop new services as vendor needs arise. Endicia 

works with vendors in an attempt to provide their customers with the best purchasing experience 

possible. One service customers have come to expect is an ability to track their packages as well 

as view their order histories. Endicia enables vendors to send individual tracking emails to 

customers, but there is no centralized order history for users to view that information. For each 

item purchased through a vendor working with Endicia, the customer receives an email with 

links to both an Endicia based package tracker and the USPS package tracker, which gathers data 

from various package stopping points across the country. 
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 There is an opportunity for Endicia to expand this service and enter the market for 

providing services to e-commerce buyers. To enter this market, Endicia must first begin 

establishing relationships and building trust with buyers. With this in mind, our project goals are: 

 

 To establish a prototype that can connect e-commerce buyers to Endicia 

 To ensure the prototype can appeal to users across mobile and web platforms 

 To explore new technologies that can expedite the development process of mobile 

applications for Endicia’s developers 

 To create a scalable architecture that can incorporate data from Endicia and its partners to 

provide valuable services to users 

 

 Our solution includes four parts: a cross platform mobile application offering cross-

carrier package services, a web application that enables users to register easily and track 

packages directly from emailed links, a shared backend API, and a database that supports our 

applications. The backend opens the door for Endicia to work with its shipping partners to collect 

more in depth data about each package, like item details or seller information. By exploring new 

development technologies, creating a prototype ready for demonstration, and defining a system 

architecture for the application, we have laid the groundwork for Endicia to expand into the e-

commerce buyer market.  

The rest of this report is organized as follows: Chapter 2 describes technologies our 

project utilized, Chapter 3 provides our project goal and requirements, Chapter 4 shows our 

iterative design process, Chapter 5 describes the implementation of our mobile and web 
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prototype, Chapter 6 covers our conclusions, and Chapter 7 suggests future steps that could be 

taken with this project. 
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2.  Background 

Prior to designing any application, the development team must conduct research on 

technologies and frameworks that may be useful, to determine the best stack with which to 

develop. This section covers the technologies explored for potential use throughout the project 

and gives an overview of the benefits and structure of each technology.  

2.1.  Angular / SPA 

 Angular is a structural JavaScript framework for dynamic web apps (Angular, n.d.). 

AngularJS was first released in October 2010 and soon became one of the most popular 

JavaScript front-end frameworks. In 2015, Google announced Angular 2 and made it available 

for developers to preview. Angular 2 is a complete rewrite of the framework and as such has 

different syntax as well as structure. This section will cover some of the core features of both 

AngularJS and Angular 2 and the differences between the two.  

 Both Angular JS and its successor Angular 2 make it easier to build Single Page 

Applications (SPA). SPA’s are web apps that load a single HTML page and dynamically update 

that page as the user interacts with the app. Figure 1 demonstrates the difference between calls 

made by a traditional website and calls made by a SPA. Note how a traditional web app pulls a 

new HTML page from the server every time a user navigates to a new section of the site. 

Conversely, SPAs use Asynchronous JavaScript and XML calls (AJAX) to obtain only the 
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needed information to respond to each user action, thus avoiding full page refreshes. Whenever 

the user navigates to a new section of the site, or requires additional information, the client sends 

a request to the server. The server then responds with data, typically in the form of JavaScript 

Object Notation (JSON) or XML. Overall, the responsiveness and the user experience offered in 

an Angular SPA make it a great choice for web applications and hybrid applications. 

 

 

Figure 1 - Traditional vs. SPA Lifecycle (Covert, n.d.) 
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2.1.1.  AngularJS  

Developers build AngularJS applications with items called modules (Google Angular 

Team, n.d.). An Angular module is a logical segment of code that is often grouped based on 

functionality or tight coupling. Angular modules serve as containers for controllers, services, 

directives and other parts of the app. In a module, a view is what the user sees such as a HTML 

template. The controller handles business logic and modifies data in the model to update the 

view. Services contain code used throughout the application such as login authentication or any 

useful helper method. Modules gain access to other modules through dependency injection. 

An AngularJS view defines components that the browser or web view presents to the 

user. A view is an HTML template composed of plain HTML and Angular directives. Angular 

directives are extended HTML elements such as *ngIf and *ngFor that offer additional flexibility 

for displaying information.  If no Angular directive exists, developers may create custom 

directives. Furthermore, Angular views are dynamic through the framework’s two-way binding 

in which Angular links data elements from the view with the data model. In a two-way binding, 

the user modifies data in the view which in turn changes the data in the model. Conversely, if the 

system alters data in the model, then two-way binding updates data in the view to reflect that 

change. Overall, the flexibility of Angular directives and dynamic two-way binding significantly 

reduce the time to make web pages in Angular. 

The second piece of an Angular module, the controllers, harbor the main logic of an 

angular application. Controllers are responsible for manipulating the model, which in turn 
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changes the view. Controllers include functions which modify the data model and are typically 

triggered by events from the user interface or view.  

Figure 2 shows a view, controller, and two-way binding. In this example, a user clicks the 

‘chili’ button or the ‘jalapeno’ button, which changes the value of $scope.spice. Once the value 

of $scope.spice changes, the two-way binding causes the expression {{spice}} in Figure 3 to 

reevaluate. This event changes the value displayed in the view as shown in Figure 4.  

 

 

Figure 2 - Example controller with a model ‘spice’ of type string and two functions which change the value of spice 

(Google Angular Team, n.d.) 
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Figure 3 - Example view using the defined controller and triggering the controller’s chiliSpicy and jalapenoSpicy 

functions with buttons (Google Angular Team, n.d.) 

 

 

Figure 4 - The displayed web page, after a user presses the Chili button. Pressing Jalapeno would modify the text to 

‘The food is Jalapeno spicy’ (Google Angular Team, n.d.) 

 

Angular’s structure encourages developers to limit the purpose of controllers to only the 

modification of the data model as shown in Figure 2. If a controller begins to do more than 

strictly model modification the developer begins to clutter their code. To avert this, an Angular 

service is typically a better solution.  

Angular services are reusable blocks of code that are generally removed from what a user 

may view. Controllers often inject such services to extend their functionality and reuse the logic 

already handled in the application. Services are singletons, so when multiple modules utilize a 

service only one copy of the service exists, created by the service factory. Services are ideal for 
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implementing features needed through the application. Communication with a back-end via http, 

creating pop-ups or maintaining application-wide data are all tasks well-suited to being services.  

2.1.2.  Angular 2 

Angular 2 is a significant departure from AngularJS, though it is still a JavaScript 

framework and is best suited for SPA design. Angular 2 is widely written in Typescript, a 

Microsoft developed language which is a superset of JavaScript. While there are other languages 

compatible with Angular 2, the Angular team recommends Typescript for its significant tooling 

which expedites development.  

Microsoft designed Typescript for ECMA Script 2015 (ES6), the standard specification 

for scripting languages which JavaScript follows. Most modern browsers only provide support 

for ES5 so in order for ES6 code to have reliable behavior the system transpile it down to ES5. 

Transpilation is the process of converting source code from one programming language into 

source code of another programming language. Tools like Babel transpile Typescript code into 

plain JavaScript, which meets ES5 standards. Typescript builds a number of features on top of 

vanilla JavaScript such as classes, strong typing, and generics (Savkin, 2016). This syntax is 

similar to object oriented languages like Java and reduces development time further. 

The core structure that persists from AngularJS to Angular 2 is the module. Angular 2 

modules are “a cohesive block of code dedicated to an application domain, a workflow, or a 

closely related set of capabilities” (Google Angular Team, n.d). These modules declare the set of 

classes they utilize, import, and export as well as a set of providers, which create services. Each 
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application must have a root module that includes a bootstrap property defining the main view. 

Additionally, the application uses the root module during startup, and is “bootstrapped” in a 

main.ts file to begin the application. The main view then hosts all other application views. 

 A major difference between Angular JS and Angular 2 is the use of components. In 

Angular 2, components, as shown in Figure 5, replace the AngularJS controller. Components 

hold application data that is relevant to what the view is currently displaying to the user in and 

include a link to an HTML template. Similar to a controller, components contain functions that 

manipulate data or methods user interaction trigger within the associated template. Angular 

creates components when pages request them and conversely destroys them as the user navigates 

to different pages. 
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Figure 5 - An example component, with @Component decorator, components can implement (Google Angular Team, 

n.d.) 

 

Angular 2 services are functionally equivalent to services in AngularJS, although the 

Angular team updated syntax to fit the object oriented nature of Angular 2. Developers inject 

services into components by creating a reference to the service in the component's constructor. 
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The Angular 2 framework includes many services. These services include those for sending and 

receiving HTTP requests or creating and displaying alerts. 

Angular 2 templates are HTML pages which define what the user will see. Templates 

belong to a component and use data binding to access and display data from their host 

component. Templates use directives to further manipulate the user’s view. Two common 

directives are *ngIf which displays a given HTML element if an expression evaluates to true, and 

*ngFor which iterates over a list to display HTML elements for each item in the collection. 

Views can nest templates, for example, an application which displays a list of products, and 

allows users to select a product to expand that product and see its details in the list. To 

accomplish this, the developer would nest the product detail template inside of the product list 

view. These features of templates and Angular 2, in general, increase code readability while 

aiding construction of complex and elegant user facing views. 

2.2 Apache Cordova 

Apache Cordova, formerly known as Phonegap, is an open-source mobile development 

framework introduced in 2011 (Apache Cordova, n.d.). The framework allows developers to use 

standard web technologies, HTML5, CSS3, and JavaScript, to easily develop hybrid apps for 

nearly every phone or tablet on the market.  Cordova wraps an HTML, JavaScript app into a 

native container which uses the native platform’s API bindings to access device capabilities. 

Developers can build Cordova applications for all mobile platforms from one code base (Apache 
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Cordova, n.d.).  Apache Cordova is compatible with a diverse group of plugins, tools, JavaScript 

frameworks, and cloud services. 

Apache Cordova technology makes hybrid apps possible. Figure 6 shows how Cordova 

provides plugins and a rendering engine for a web app. Cordova wraps the Web app in an HTML 

Rendering Engine which handles displaying the application by interfacing with the operating 

system. The rendering engine then communicates with Cordova plugins which provide access to 

native functionality by accessing the phone operating system as well. Cordova’s architecture 

abstracts the work of interfacing with the device, allowing developers to make applications 

supported on multiple platforms with rich access to device capabilities. 
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Figure 6 - High-level view of the Cordova application architecture (Apache Cordova, n.d.) 

 

Cordova projects are typically created and updated through the Cordova Command Line 

Interface (CLI). The CLI allows developers to add a new target platform with a single command 

as shown in Figure 7. When the developer executes this command, Cordova automatically 

generates the needed files to port the web application into that platform. 
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Figure 7 - Example of how to add a platform in Cordova CLI (Apache Cordova, n.d.) 

 

Cordova plugins are important for developers trying to integrate native functionality into 

their hybrid apps. Plugins provide an interface for native features by wrapping phone operating 

system APIs with a callable JavaScript wrapper (Apache Cordova, n.d.). Developers can add 

plugins to a Cordova application through the Cordova CLI. To add the camera plugin, a 

developer simply executes one command as shown in Figure 8.  

 

 

Figure 8 - Example of how to add the camera plugin in Cordova CLI (Apache Cordova, n.d.) 
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2.3 Ionic 

When considering the user experience, Cordova does not provide assistance with building 

the UI.  Fortunately, mobile frameworks such as Ionic are available to assist developers. The use 

of one of these frameworks drastically reduces the amount of work required to style hybrid 

applications to have a native look and feel across platforms. Ionic is an open-source framework 

for hybrid mobile app development. Max Lynch, Ben Sperry, and Adam Bradley of Drifty Co. 

created Ionic in 2013 with the following intent: “Ionic’s ultimate goal is to make it easier to 

develop native mobile apps with HTML5, also known as Hybrid apps” (Lynch, 2013).  

The Ionic team built the framework upon AngularJS and Cordova. When Ionic was first 

released, its technology stack offered web developers familiar tools to build hybrid applications 

with reasonable performance, native look and feel, and responsiveness. Ionic’s command line 

interface, built on top of the Cordova CLI, provides additional commands such creating an 

application from a template and testing in browser.  

After three years, Ionic claimed the top spot as the leading open source framework for 

app development with over four million apps made and five million developers (Ionic, n.d.). The 

success of Ionic v1 led to the release of Ionic v2 on January 25th, 2017 (Ionic, n.d.). The Ionic 

team built Ionic 1 and Ionic 2 respectively with AngularJS and Angular 2. Both are currently 

available under a community MIT license which freely allows anyone to use the framework to 

develop and publish apps (Ionic, n.d.). The Ionic team has developed a number of additional 

services like a drag-and-drop app editor called Ionic Creator, and cloud services like push 

notifications and authentication. Ionic offers these additional services at a price that is scalable 
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based on app traffic and growth. This section will cover some of the core advantages and 

features of both Ionic 1 and Ionic 2. 

2.3.1.  Ionic 1 

The DriftyCo team designed Ionic 1 to make it easier to develop native mobile apps with 

HTML5 (Lynch, 2013). Ionic 1 focuses on enhancing the look and feel of UI interaction in 

mobile hybrid applications. The developers of the Ionic framework wanted to target devices of 

the present and future, realizing that today’s browsers and APIs would become exponentially 

more advanced with the increased performance of HTML5. Ionic 1 is not a replacement for 

Cordova, but rather an enhancement.  Ionic, similar to a traditional web front-end framework 

such as Twitter Bootstrap, gives developers a collection of UI elements and structure to use as a 

starting point to develop high quality products.  

Ionic comes prepackaged with a set of responsive, native-looking UI components. Ionic 

offers source code examples for each component and extensive documentation. The 

documentation provides a layout displaying information and source code for features in the 

middle, a phone display on the right, and a navigation bar to other features on the left. 

The Ionic team styled their components with CSS as shown in Figure 9. This figure 

shows how default lists, cards, and ranges appear native. These components are additionally 

easily customizable. To do this, a developer can add custom CSS styling or override the defaults. 

For even more power, styling in Ionic uses Sass which introduces additional features to CSS like 
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variables and element nesting. Sass allows developers to make large thematic changes with 

minimal effort.  

 

 

Figure 9 - Ionic 1 list, card, and range components (Ionic, n.d.) 

 

Application scripting is also supported with Ionic to make apps feel more native. This 

includes animations such as opening a side menu or tab navigation between pages. By freeing 

applications from the URL bar and adding JavaScript transitions, Ionic shrinks the difference in 
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user experience between native and hybrid application (Lynch, 2013).  The responsiveness of 

AngularJS makes it ideal for creating these animations while operating at high performance. 

The open source nature of the Ionic framework encourages a community of shared 

knowledge. The completeness of Ionic documentation and the constant growth of its community 

continually promotes best practices and design patterns. With 4 million apps built and 

community support on Stack Overflow, GitHub, and Ionic’s community forum, there is a wealth 

of information and support for developers facing bugs or design questions. The success of Ionic 

1 led to the Ionic team working with the Angular 2 team to create Ionic 2. 

2.3.2.  What’s new in Ionic 2  

Ionic 2, officially released on January 25th, 2017 offers considerable improvements over 

Ionic 1. Ionic 2 offers new and improved components, support for implementing native device 

capabilities with Ionic Native, and a new stack increased performance. The Ionic team improved 

components such as buttons to look cleaner in comparison to Ionic 1 as shown in Figure 10. 

Additionally, Ionic 2 components offer higher performance boosts over Ionic 1 and benefits such 

as styling that make components automatically adjust to each platform. An example of this is the 

button component for iOS, Android, and Windows platforms as shown in Figure 11. In this 

figure, there is a list of buttons on iOS, Android, and Windows side by side depicting the 

automatic native adjustments Ionic 2 does by default. The documentation for each component 

and examples are available on their website. 
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Figure 10 - Comparison of Ionic 1 button styling on left and Ionic 2 button styling on right. (Ionic, n.d.) 
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Figure 11 - Ionic 2 button styling for iOS, Android, and Windows (Ionic, n.d.) 

 

Ionic version 2 offers a fully integrated native plugin system called Ionic Native. This 

system includes over 70 native features ready for developers to use like other Web API’s in 

Angular 2, complete with support for observables and promises (Ionic, n.d.). Ionic Native wraps 

all native plugin callbacks in a Promise or an Observable, JavaScript structures made for 

handling asynchronous functions, providing a common interface for plugins to ensure that native 

events trigger change detection in Angular 2. This improves the developer’s ability to effectively 

add native features such as notifications, contacts, or camera to an application. Ionic 2’s 

thorough documentation and examples provide additional assistance in implementing these 
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native features. A developer, for example, can easily use Geolocation once they install it from 

the CLI and imported as a service as shown in Figure 12. 

 

 

Figure 12 - Example of importing Geolocation plugin with Ionic Native and getting a longitude and latitude (Ionic, 

n.d.) 

 

Ionic 2 revamped styling to make it easier to brand and style a whole app to fit a theme. 

The latest supports three modes: iOS, Material Design, and Windows (Ionic, n.d.). The Ionic 

team calls this Platform Continuity and this means that each platform has a matching look-and-

feel and behaves as a user would expect. An example of this is the back button for Android as 

compared to iOS as shown in Figure 13. Ionic 2 also provides more support than Ionic 1 for 
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creating custom themes that apply style throughout the application. The Ionic team built the 

framework core on top of Sass to encourage developers to change the defaults and create richer 

color palettes and themes. Most Ionic 2 components use the “primary” and “secondary” Sass 

color variables which a developer can modify in one file as shown in Figure 14. These changes 

then affect the entire project, changing headers, buttons, and other components to match one 

cohesive style. Ionic 2 additionally includes an extensive set of icons shown in Figure 15, giving 

developers a wide array of symbols with which to make clean and clear user interfaces. 

 

 

Figure 13 - An example of Ionic 2 navigation showing the Angular page (right) popped onto the root page (left) 

(Ionic, n.d.) 
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Figure 14 - Example of the $colors section of the variables.scss file (Ionic, n.d.) 

 

 

Figure 15 - An example of the icons offered with Ionic (Ionic, n.d.) 
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Ionic 2 also surpasses Ionic 1 in terms of performance. Features such as virtual scrolling 

lists improved scrolling speeds up to 60 FPS (Ionic, n.d.). This virtual scroll supports very large 

lists and even lists of images. The Ionic team also introduced an all new rendering pipeline that 

reduces layout thrashing and repaints by only redrawing portions of components that change 

(Ionic). Additionally, the use of Angular 2, which is considerably faster than Angular 1, allows 

Ionic 2 to inherit performance boosts out of the box. The Ionic team states their commitment to 

performance and continuously strives to improve everything from boot-time to animation 

sleekness (Ionic, n.d.). 

Ionic 2 offers a navigation stack as opposed to Ionic 1’s URL navigation. The navigation 

stack involves pushing views onto the navigation stack and popping them off. The stack initially 

starts with a root page and from this root page the system pushes and pops pages onto and off the 

stack (Morony, 2016). At anytime a developer can set a new root page. Pages not on the root of 

the stack are automatically updated to include a back button in the navigation bar. When a new 

page is set as the root it stands alone until the system pushes another page onto the stack. Note 

that the root component is typically the app.component.ts file and is different from the root page. 

2.4 Bootstrap 

Bootstrap is a free open source framework for creating well styled, highly responsive 

websites (Bootstrap, n.d.). While Bootstrap was initially released by and for Twitter employees 

in 2011, it has grown to be a prominent framework for front end web-development. The Twitter 

team designed Bootstrap to make creating web applications a fast and easy process with a current 
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focus on mobile first. Bootstrap consists of a well-structured set of CSS classes. Along with 

highly readable and customizable code, all Bootstrap components are thoroughly documented, 

which greatly facilitates understanding and utilizing new classes.  

The primary Bootstrap feature for designing layout and adding screen size responsiveness 

is its grid layout. The grid layout uses row and column CSS classes to organize HTML elements 

in the view. Row elements organize other HTML elements horizontally and column elements fill 

them, which HTML lays vertically. These column classes can be set to modify and dynamically 

arrange content based on the size of the screen, for example, on a wide screen 4 columns may 

span the width of the screen in a row, but on an extra small screen only one column would 

occupy each row. As shown in Figure 16, the end product is a Web application that adapts its 

appearance to best suit varying devices and display sizes. 

 

 

 

Figure 16 - Bootstrap resizing across multiple devices. (W3Schools, n.d.) 
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Bootstrap includes styling for common components such as toolbars, buttons, panels, and 

other displays found in web pages. Figure 17 displays a Bootstrap Jumbotron component, a 

common web showcase. The CSS classes included in Bootstrap make it easy to standardize the 

look and feel of a web application and supplementary JavaScript components offer animations 

for alerts, popovers, etc. Bootstrap has been around for over six years and there is a large 

community today and many websites built with Bootstrap. Additionally, resources such as 

Chrome dev tools, accessible from any web page with a F12 command, allow developers to 

investigate the HTML and CSS components of other web pages making it easy to implement 

similar styling. With many examples on the Web whether it be from a tutorial or website, 

Bootstrap is an attractive choice for rapidly styling or prototyping a website.  

 

 

Figure 17 - An example of a bootstrap Jumbotron component 
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Another advantage of using Bootstrap is the constantly growing pool of additional 

templates, plug-ins, and mix-ins (Bootstrap, n.d.). Templates for any traditional login or 

registration page are widespread and easy to implement. Plug-ins are additional Bootstrap-

compatible resources that developers can import easily into an existing project. Plug-ins can be 

of various sizes or complexity, some provide small features like social networking buttons, 

others can support more advanced functionality like presenting to the user a guided tour of the 

site.  

2.5 ASP.net Web API 

ASP.net is a server-side web application framework developed by Microsoft under the 

Apache 2.0 License (Wasson, 2015). ASP.Net Web API is specifically designed for creating 

Application Programing Interfaces (API’s) in C#. A common structure for an ASP.net Web API 

has four main components; controllers, services, repositories and models. Breaking the API into 

these sections promotes code reuse and helps ensure developers can tailor each segment for one 

purpose. Note that while controllers and services are both terms used for AngularJS applications, 

their purposes are different when used to describe ASP.Net. 

 Controllers are the classes responsible for initially handling incoming HTTP requests. 

Controllers contain methods which are the endpoints for the various requests that web APIs 

handle. For example, a class PackageController may have an endpoint for getting a package, for 

posting a new package, for updating a package or for deleting a package. While these classes are 

responsible for the receiving the request, in this structure, the system parses requests and then 



29 

 

invokes specific services to handle each request, leaving the main business logic outside of the 

controller. 

Repositories are the data access layer for the API, so these classes are responsible for 

retrieving and storing data from a database. A package repository may provide a method for 

retrieving a package by id, or another method for retrieving all packages belonging to a user, or 

possibly still yet another method responsible for retrieving all packages in the database. The 

actual integration with a database can be standard SQL queries, or a variety of libraries like 

NHibernate that facilitate database interaction. In such a system, the repositories execute all logic 

involved in getting specific data from the database. This allows services to access data without 

needing to implement the specifics of how the system will retrieve the data from the database. 

Services are responsible for executing the main business logic of the API. The controllers 

on the top level call these service methods which instantiate and use references to repositories to 

access data. An example UserService may have a method for taking in user details, creating a 

new user that satisfies a user model and then handing the new user to a repository which adds the 

user to the database. Services may employ multiple repositories in order to access all required 

data for some operation. A developer should design each service to support one set of operations, 

such as all operations for users, or all operations for packages. 

Models contain the definitions of the data structures and objects present in the 

application. Services, controllers and repositories all utilize the same models to ensure that the 

system represents data objects in the same form throughout the API (Kearn, 2015). Models 

generally map to tables in the database, which allows repositories to easily retrieve and store data 

in tables by working with objects that satisfy the corresponding model.  
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2.6 Firebase 

 Firebase is a Google maintained cloud backend as a service (Firebase 2017). Firebase 

provides data storage and authentication on cloud hosted servers. Firebase apps are a free service 

at low usage, but scale with pricing as data access becomes more frequent or user base grows. 

Firebase provides services beyond storage such as authentication, web hosting, and analytics.  

 Firebase provides user authentication in two main ways, email and password logins, and 

social login authentication. Developers can use many different social login providers for a given 

Firebase application, a few of which are Facebook, GitHub, and Twitter. When a user registers 

using a social login, the user’s credentials are not stored in Firebase; instead the social 

authentication provider verifies the user and informs Firebase. If a user registers using an email 

and a password, then the system stores those credentials in Firebase to validate future logins.  

 Additionally, Firebase offers Firebase Cloud Messaging (FCM), which was previously 

named Google Cloud Messaging (Aggarwal, 2016). This service provides support for sending 

push notifications and messages to devices. To use FCM the developer must configure the client 

side of an application to receive messages from the FCM server. This configuration involves 

registering the device with the FCM server as well as writing client side code to handle in 

coming messages. FCM can send messages by interaction with a REST API or by graphical 

interaction from the Firebase developer console (Firebase, 2017). 



31 

 

3.  Project Requirements 

The mission of this project is to establish a connection between Endicia and e-commerce 

Buyers. Endicia believes there is an opportunity to better support its customers, e-commerce 

sellers, by engaging with their customers, the e-commerce buyers (i.e. recipients of parcels). In 

this section we list the project goals, explain each goal, and list user stories describing the desired 

behavior and features to be in the application    

3.1.  Project Goals  

The first step in establishing the project specification was developing a set of project 

goals to best accomplish the project mission. The goals we laid out are: 

 

1. Establish a method for connection between Endicia and e-commerce Buyers 

2. Provide proof of concept for services Endicia can provide to users 

3. Develop a clean and responsive user interface 

4. Accomplish goals 1, 2, and 3, on multiple platforms (iOS, Android, and Web)  

   

In order for Endicia to connect to e-commerce buyers effectively, we considered the 

relationship from the side of the buyer. First there must be some initial contact from Endicia that 

attracts the buyer and provides a compelling reason to join this Endicia service. Next, the 
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registration process must be lightweight to avoid losing a user's interest. Additionally users must 

be able to trust the security of the system they are joining.      

For the connection with buyers to be meaningful, Endicia must offer services that provide 

value to users. A service is of value to a buyer if it saves the buyer time or money, or provides 

information that cannot be easily accessed elsewhere. This project focuses mostly on features 

that provide information about shipped packages, and services that allow users to act upon those 

packages.     

Whether users are forming an initial connection with Endicia or are using services, the 

user interface and navigation must be logical, clean, and responsive. The user interface should 

present important services and features in the forefront of the application. 

The last project goal is to determine the feasibility of developing an application across 

different mobile platforms and web browsers. With these goals and our time constraints in mind, 

we established that the scope for our project would be that of a prototype. In order for us to 

consider the project complete, the prototype must fulfill all project goals, include a proof of 

concept for a wide variety of features, and deploy on both web and mobile platforms.   

3.2.  Project Requirements    

Once broad requirements were set, we created a set of user stories to determine what features and 

services we would implement. Table 1 shows the complete list of user stories. These user stories 

each generally pertain to one of three main groups: user accounts, package tracking, and mobile 
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device features. Furthermore, during development each user story directly translates to a feature 

or features for implementation. 

 

Table 1 - User Stories 

Group User Story 

User Account As a new user I want to be able to register an account. 

User Account As a user I want to be able to login to an existing account. 

User Account As a user I want to be able to log out. 

User Account As a user I want to be able to modify account information like name and address. 

User Account As a user I want to be able to validate my address.  

Package Tracking As a user I want to be able to add packages to my account so I can track them. 

Package Tracking As a user I want to be able to view a list of packages I am tracking. 

Package Tracking As a user I want to be able to view the details of a package I am tracking, 

including transit details, carrier and status. 

Package Tracking As a user I want to be able to opt in to automatically track packages mailed to 

my address. 

Mobile Devices (Push Notifications) As a user I want to be able to receive notifications when 

new packages sent to my address enter the system. 

Mobile Devices (Geo Location) As a user I want to be able to view a map. 

Mobile Devices (Camera) As a user I want to be able to submit an image of a damaged package 

for insurance purposes.  
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The first group of user stories covers user account creation and modification. Many 

prototype applications may skip such user stories, since account creation and modification is 

fairly similar and trivial across applications. However, to establish a meaningful connection with 

the user, the user must be able to create an account. Thus, implementing an effective account 

system is within the scope of this project.  

The next group of user stories outlines the core services provided by the prototype 

application. These user stories enable a user desire to organize packages and track the status of 

inbound packages. A unique offering that we provide to users is an auto-tracking ability. This 

feature requires a user to first undergo a process of identity verification, after which the user can 

automatically track any package addressed to them that enters the application’s backend.   

The last group of user stories covers features which particularly well-suited for mobile 

devices. Each of these user stories utilizes a device specific functionality such as push 

notifications. We specify these feature names in the mobile device user stories.  
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4.  Design 

 The next phase of the project after requirements was application design. During design, 

decisions were about stack architecture, application appearance, database design, and user 

experience. Each step of the design process strives to ensure that we met our project 

requirements. 

4.1.  System Architecture  

 Creating a cross platform application requires careful design of overall stack architecture. 

In order to reduce development time and provide consistent user experience across platforms, it 

is important to share code and resources wherever possible. Figure 18 shows the overall structure 

of the application. In the figure, rectangles with blue coloring indicate aspects the project team 

implemented. As stated in the key, solid lines show HTTP connections and dotted lines show a 

NHibernate connection between a database and the backend. We split the application into three 

main sections, the frontend, the backend, and the data layer. 
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Figure 18 - An overview of the project architecture 

 

4.1.1.  Front End 

 The front end consists of two parts: the Web app portion and the Mobile app portion. 

Figure 19, illustrates the technologies used for each front end. Notably, we took advantage of 

increased performance and code modularity by writing the core of both in Angular 2/Typescript. 

Angular 2 allowed us to reuse common code such as Angular service and, HTTP calls. Building 

upon our core Angular applications we utilized different frameworks for UI styling and platform 

specific capabilities.  
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Figure 19 - Front end technology stack for Web Application and Mobile Application 

 

The use of device specific capabilities such as a camera or file system led to a key 

diversion between applications. On mobile, we access the Cordova camera, geolocation, and 

push notifications capabilities. These features all require plugins specific to the mobile platform 

accessed through Ionic Native. To do this for web, a number of API’s and plugins exist to carry 

out the same functionality, but the implementations are slightly different. 

Furthermore, a major difference between platforms resides in the design of the UI. On 

mobile, we used the Ionic framework to design the UI. This framework allowed us to place 

components such as buttons and tabs already styled for each mobile platform. Similarly, the 

Bootstrap framework provided us with components that look and feel like a web site and easily 

adjust to different screen sizes. Both frameworks greatly aided our UI design; however, we could 

not reuse the code between the two.  

In comparison, we developed the Ionic mobile app and web app with similar stacks and 

code structure, making it feasible to transfer features between the two. We implemented both 
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with the same core business logic, but UI components and device capability implementations 

differ making maintenance for some features require double the work. 

4.1.2.  Backend 

The backend contains two main sections, an ASP.net Web API, and two Firebase 

services, Authentication and Cloud Messaging, provided by Google. The Web API acts as the 

main backend and link between the data layer and front end and provides HTTP endpoints for 

both the Web app and Mobile app. Authentication and push notifications require significant 

infrastructure, the implementation of which was beyond the scope of this project. To provide 

authentication and push notifications we used Firebase Authentication and Cloud Messaging to 

supplement the Web API. The backend interfaces with the data layer by using the NHibernate 

framework to map C# classes to data in the data layer.  

The data layer for this project consists of two sections: Beast, a database structured and 

populated by the project team, and Endicia’s databases, VPO and VPO1Data. This prototype 

directly queries VPO, however in the future, Endicia’s data would be considered part of the 

shipping ecosystem, and would be imported into Beast through the backend like data form 

Endicia’s partners. 

 Endicia’s databases contain real shipping data and extensive information about each 

package, tracking information and shippers. Beast contains only the information needed for the 

mobile and web applications. In order to test the applications, we populated Beast with a mixture 

of fabricated test data and real data ported in from Beast through the Web API.    
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4.2.  Workflows             

Stack architecture considers the technological aspects of design, however in order to 

begin fulfilling requirements and user stories, we established workflows. Workflows are the 

patterns in which the user will interact with the application, and provide a high level idea of what 

paths a user may take when navigating between application components.   

Before jumping into workflows within the application, we first wanted to establish the 

method of capturing users. The initial exposure to users is particularly important since 

establishing a connection with the buyer is one of Endicia’s main goals for the project. We 

focused on streamlining the registration process by taking advantage of the tracking email that e-

commerce buyers already receive from Endicia when they order a package through one of 

Endicia’s partners. The tracking email Endicia currently sends to e-commerce buyers as shown 

in Figure 20 is our initial entry point for a new user. The email offers tracking for a specific 

package and a compelling reason for a user to register. 
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Figure 20 - The tracking email currently shipped to recepients of a package from one of Endicia’s partnered e-

commerce merchants. 

 

Figure 21 shows our application’s proposed path taken by a user opening the tracking 

email on a desktop. Immediately after selecting the link, the system brings the user to the 

welcome page showcasing the BuyerLink product. From the welcome page, users can decide to 

login, register, or not proceed with BuyerLink. If a user decides to continue, we prompt them to 

login or register with their credentials. After a successful login or registration, the user enters the 

normal flow of application use. 
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Figure 21 - Login flow for a user on a desktop computer 

 

Figure 22 shows the flow of a user opening a tracking email from a mobile device. The 

link embedded in the email is a deeplink, meaning when selected on a mobile device, if an 

application is present, the system opens the mobile application. This allows us to direct users to 

the app from the tracking link if they already have the app installed, skipping any need to enter a 

mobile browser. Once the mobile application is open, if the app recognizes the user as logged in, 

the system brings the user directly to the package details page. If this is a first time the user 

opens the corresponding package, the package is automatically added to the users account. On 

the other hand, if the app does not recognize the user as logged in, the system brings the user to a 

modified package details screen with a button to redirect the user to the login page. If the 

application is not installed, the user’s phone opens the mobile friendly website in a default web 

browser. 
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Figure 22 - Flow of a user opening the tracking email on a mobile device. 

 

 With the registration workflows outline, we can focus on how users interact with the 

main body of the application. Before starting from scratch to design a plan for application 

navigation, it is helpful instead to examine established structural paradigms which are suitable 

for web and app development. One model of particular use for this project is the multi-



43 

 

dimensional hierarchy where the system gives the user many ways to browse the same content 

(Hunt, 2006). In Figure 23, boxes denote pages or views of the application, and shading shows 

the range of pages which users can navigate to from the page at the top of the shading. This 

structure is highly appropriate for an application like ours because multiple methods of 

navigation grant a user a fluid user experience and easy access to features and information. A 

good example of a web site that uses this structure is Amazon, which lets you browse your order 

history or to navigate to one page, such as a specific product’s detail page, in many different 

ways.  

 

 

Figure 23 - Multi-dimensional hierarchy (Hunt, 2006) 

 

Figure 24 illustrates the application structure for the mobile application. The login and 

registration pages are the initial gateway for the user, after which the system brings the user is to 

the application home. Home consists of three tabs, dashboard, package-list, and shipping. While 

in any of the tabs of Home, users can access the side menu, which contains access to account 

details, settings, help, and ‘Opt-In to AutoTrack’. AutoTrack allows users to automatically track 

all packages sent to their address after verifying their identity and address. This application is a 

multi-dimensional hierarchy, with pages generally accessible through a parent page, though the 
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user can access the print label page through both the package-details page and the dashboard 

page.  

 

Figure 24 - Pages of the mobile application. Dotted line items (Home and Account) denote pages composed of tabs. 

 

 Figure 25 shows the navigation and structure of the web application. The web application 

has significantly fewer features than the mobile application. It focuses only on users who 

received tracking emails from Endicia. The application brings these users to either login or 

registration and after to the package details page corresponding to the email. Notably, we ease 

the registration process by auto-populating data such as the name and address from the package. 

From the package details page a user can also navigate to the ‘My Packages’ page which 

displays a list of his or her packages.  
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Figure 25 - Pages and navigation for the web application 

  

4.3.  Wireframes 

Users desire a product that is usable, accessible, and responsive. To empower the user, 

we focused on encompassing these aspects of the user experience by creating intuitive pages 

with information and features located in logical places. To provide the basis for the user 

interface, we developed a series of wireframes. Wireframes specify the layout and design of a 

user interface with a focus on element placement and positioning. By designing effective 

wireframes we can ensure that pages include the proper UI elements to accommodate the user 
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stories outlined during requirements. We developed wireframes for both mobile and web to 

illustrate account registration, logins, and a user dashboard. 

4.3.1.  Account Registration Wireframes 

The first wireframes we created were for logins and account registration for the web 

application. The UI for Logins on the web as shown in Figure 26 is a simple form, asking for 

user credentials, and providing a login button. Additional UI elements are present for users to 

retrieve a forgotten password or create an account if they are not registered.   

 

Figure 26 - Initial web login 

 

Figure 27 is the wire frame for user registration on the web. This asks users to enter 

account details, email, password, first name and last name. The user is also asked for shipping 

information so that we could support future services requiring a user’s address. 
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Figure 27 - Initial web registration page 

 

4.3.2.  Dashboard and Package Tracking Wireframes 

 Designing the dashboard required multiple iterations, and had impacts on redesigning 

application work flow as well. We planned the for the dashboard to hold almost all information 

relevant to a user, including the list of packages, package details, the ability to add packages, and 

the option to Opt-In for AutoTrack. Figure 28 shows as these components as well as links to 

pages for My Account, Notification Preferences, and Support. 
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Figure 28 - Initial wireframe for web (left) and mobile dashboard (right) 

 

Review of the initial dashboard revealed that our application needed to showcase more 

services than just package tracking. Without additional features, our application would be poor 

competition for package tracking applications that already exist. To adjust for the second 

iteration of wireframes, we incorporated recent activity and a group of services into the 

dashboard. We moved much of the initial dashboard functionality into new package list and 

package detail pages. We also began exploring options for a dashboard that could present 

package information in interesting ways. One possible dashboard display, as shown in Figure 29, 

was a calendar where the system could mark dates with package arrivals and tracking events. 
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The services displayed on this dashboard iteration include opting into auto-track, adding a 

package to the account, printing a shipping label and returning a package. 

 

 

Figure 29 - Second iteration of dashboard design for web and mobile 

 

 Figure 30 shows the wireframes for the new package-list page, since the dashboard no 

longer included this information. The package list wireframes display all of a user’s packages. 

On this page the system offers the user the ability to add packages to their account by entering a 

tracking number. The page displays each package linked with the account including its status and 
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tracking number. The web version makes use of the additional space available to show the logos 

of the merchants who sold each package. 

 

Figure 30 - Initial wireframes for a package list on web and mobile 

 

 The page is quite basic, but including a logo of the merchant would strengthen the 

relationship between the e-commerce buyer and seller. If a user clicks a package, the system 

brings the user to the package detail page as shown in Figure 31. 
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Figure 31 - Package detail wireframes 

 

 The package detail page provides the user with an overview of a specific package, 

including its status and a detailed list of each of the tracking events for the package. 

Additionally, the page offers services to the user that include, buying insurance, rating the seller, 

printing a return label or paying any duties or fees for international shipments. We deemed the 

wireframes created for phase two sufficient for the minimal web application, but the mobile 

wireframes needed additional refinement. 
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4.3.3.  Mobile Wireframes 

In phase 3 we revisited the mobile wireframes with significantly greater attention to 

detail. We wanted to improve on the ideas from our phase 2 wireframes and establish a basis for 

application development. On a mobile device it was especially important that our wireframes 

looked native and made use of common mobile elements. By using common UI components 

such as menus, lists, and cards provided by the ionic framework we designed the wireframe 

shown in Figure 32. 
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Figure 32 - First mobile wireframe iteration 
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 The initial mobile wireframe shows the dashboard, package list, package detail page and 

an additional page for shipping as well as the navigation between these pages. On the mobile 

device the screen is narrow and there is limited space so it is important for navigation and 

content to be intuitive and accessible. To reflect this we adopted a consistent layout and offered 

many options for user routing. The menu in the top left provides navigation to a user’s account 

and settings. The tab bar at the bottom provides navigation between the dashboard, the package 

list, the dashboard, and the shipping page. Other navigation events would occur based on user 

events such as a tap on a specific package or service button in the dashboard. 

 Figure 33 shows the second iteration of the mobile specific wireframe, which was the 

basis for initial development of the mobile application. For the second iteration we mainly 

rearranged components and changed text. We renamed the menu items to more common topics 

such as ‘settings’ in place of ‘notifications’ and ‘help’ in place of ‘contact’. We also swapped the 

location of services and activity cards on the dashboard, to more eagerly present services to 

users.  
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Figure 33 - Second mobile wireframe iteration 



56 

 

4.4.  Database Schema  

 To store data that persists across devices and between user sessions the application 

requires a database. We created a database schema to ensure the database is well structured. 

Figure 34 shows the database schema, with each relation represented by a table.  

 

 

Figure 34 - Showing column names and data types. Lines connect Foreign keys (FK) and Primary keys (PK) across 

tables. 
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We chose names for each relation that match the type of data they contain. T_BUYER 

holds information about an e-commerce buyer. Since e-commerce buyers are the intended users 

of the application, the T_BUYER relation contains fields such as email address and password 

which identify users. The T_BUYER_DEVICE relation links users to device tokens which target 

push notifications. This relation must be separate from T_BUYER since a single user can have 

multiple devices on which they want to receive notifications. T_BUYER_PACKAGE records 

which users are tracking which packages. A single user may track many packages and multiple 

users may track a single package. T_PACKAGE contains destination and source information for 

a package as well as tracking number and carrier info. T_TRACKING_EVENT contains 

information for tracking events. Each tracking even contains a foreign key to the package it 

belongs to.  
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5.  Implementation 

 For development we used an adapted form of the Scrum software development approach. 

This approach consisted of daily team check-ins to review progress, outline goals for the day, 

and resolve any major blocking issues. Each week we met with the project sponsor Amine to 

readjust the project direction to better suit company needs and vision. By operating this way the 

team was able to move quickly and build the application by implementing features one at a time. 

Due to time constraints, we developed some features as front-end mock-ups to show possible 

features and services without fully implementing backend support for the feature. Table 2 lists 

the set of implemented features in the mobile prototype and web prototype. 
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Table 2 - A full set of features implemented during development. 

Mobile Features 

Login 

Registration 

Dashboard 

Package List 

Package Details 

Package Map 

AutoTrack 

Push Notifications 

Account Details 

DeepLinking 

Mobile Frontend Features 

Insurance Claim 

Notification Settings 

Buy Insurance 

Find Nearby Locations 

Print Label (and Return Label) 

Report Issue 

Rate Seller 

Web Prototype 

Marketing Page 

Login 

Registration 

Package Detail 

Package List 
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5.1.  Mobile Application 

We developed our mobile application in Ionic 2, using Cordova plugins to access native 

device features. We built each page of the mobile application with a corresponding Angular 2 

component and HTML template comprised mainly of Ionic 2 UI components. Page components 

inject services which handle forming and receiving HTTP requests to the Web API, and to 

Firebase for authentication. The mobile application has both fully implemented features, and 

front end implemented features. Fully implemented features include calls to the backend or to an 

external API, whereas front-end features are exclusively designed as a UI to showcase possible 

services and features that could exist in a production application. 

5.1.1.  Full Stack Features 

 This section covers features that we implemented across the full stack, or features that 

only require front end implementation in order to be complete features. These full stack features 

represent the core functionalities that we aimed to implement. For each of these features we will 

discuss the client facing page and the code that enables it to function. We did not include all code 

written for the project in this section, instead, we have selected key segments of code that explain 

how a feature works.  



61 

 

Login (Mobile) 

 Figure 35 shows the login page of the application, produced by the template 

login.page.html, here we can see buttons for social logins through Facebook, Twitter and 

Google. In a test environment Facebook logins work, however, developers must acquire an 

application key for the login to work on an actual device. The Twitter and Google logins are in 

place as a concept and as a suggestion for future implementation. The login screen also includes 

email and password fields for a user to input credentials, as well as a login button to send those 

credentials. Lastly the page includes a button which can direct users to the registration page.   

 

 

Figure 35 – Mobile Login Page 
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 Figure 36 shows the code for the login method which the system calls when a user 

presses the login button. In this method, the system passes the user’s credentials through a 

FirebaseAuthentication object, which sends the credentials in a request to the firebase server. 

The signInWithEmail method returns a promise of an authState, which a developer can use to 

complete the login process on client side by calling onSignInSuccess. The onSignInSuccess 

method stores the user in the application and sets the home page as the root navigation page. 

After a successful login, the user credentials and account are additionally verified in our ASP.net 

API and database.  

 

 

Figure 36 - Login Code Snippet 
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Registration (Mobile) 

 The registration page asks for four pieces of user information in order to keep the process 

lightweight and encourage user signup. Figure 37 shows the registration page composed of four 

input fields and a button to complete registration.  

 

 

Figure 37 - Mobile Registration page 
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 Figure 38 shows the register method, which gets called when the user submits their 

registration information. This method is very similar to the login process, however the system 

calls the registerByEmail method of the FirebaseAuthentication object instead of the 

signInWithEmail method. The registration process gives users feedback by presenting a popup if 

registration encounters an error. 

  

  

Figure 38 - Registration Code Snippet 

 

Dashboard 

 The system presents the dashboard page to the user, as shown in Figure 39, immediately 

after logging in. This is the user’s home page, providing a broad overview of all the users’ 

packages in the set of cards near the top of the screen. These cards show the number of delivered, 

on route, and alert packages, packages which may have some issue with delivery. The fourth 

card, outbound, we reserved for packages the user ships. The dashboard also allows users to 
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enter a tracking number in the top to begin tracking a package. In the lower section of the screen, 

the display presents a list of services to the user which include printing a label, filing an 

insurance claim or viewing nearby USPS locations. The navigation bar at the bottom of the 

dashboard gives users tab options to the package list or to the shipping portal.   

 

 

Figure 39 - Mobile Dashboard page 
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 We developed the page with limited functionality, and instead it mostly serves as a 

navigation hub where users can access different services and pages. Figure 40 shows how the 

dashboard pushes other pages onto the navigation stack. These functions use the Ionic 

Frameworks NavigationController to push a component onto the stack. For a developer to push 

components, they must import the NavigationController into the dashboard component. 

 

Figure 40 - Code snippet from Dashboard.ts showing how the developer pushes pages onto the navigation stack 

 

Package List 

 The main page for viewing packages is the Package List page as shown in Figure 41. The 

left display shows each package with its status, carrier, logo of a seller and the timestamp of the 

most recent tracking event associated with the package. We can see each type of package which 

includes delivered packages, on route packages, and a canceled package. In the figure on the 
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right, the display shows the delivered segment selected at the top of the page, and the page only 

lists delivered packages. 

 

Figure 41 – Mobile Package List page: The unfiltered package page (left) and filtered package list (right) showing 

only delivered items 

 

To display packages, the client app must request the user’s packages from the server 

when the page loads. To do this, the app makes use of “Component lifecycle events”, which are 

functions that get called when certain events occur, like when the user enters or leaves a page. 
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Figure 42 shows the ionViewDidEnter function, which is automatically called when the user 

enters the view. Here, the ionViewDidEnter function uses a reference to the Buyer Api service to 

get the user packages. The Buyer Api Service includes functions that send HTTP requests to our 

backend Web API. This service returns a Promise of package data and when the Promise 

resolves, the packages property of the package-list component is set to the data retrieved from 

the API.  

 

 

Figure 42 - Lifecycle event ionViewDidEnter populating the package list by requesting data from the Web Api 

through the buyerApi service. 

 

 To display these packages, the HTML template uses the angular directive *ngFor to 

display items for each package as shown in Figure 43. This iteratively creates an ion item for 

each package of the packages array from the package-list component. Additionally, the system 

only creates items for the packages that match the current filter, which we expressed by the *ngIf 

statement. In the *ngIf, if the current filter is all packages, the system makes all packages items, 

but if statusToList changes, the display only shows those packages which match the new 

statusToList. 
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Figure 43 - HTML in package-list.page.html with some code omitted for readability. 

 

Package Details 

 The Package details page displays information about package tracking events and 

presents the user with services to enact on that specific package. In Figure 44, on the left, the 

Package details page presents tracking information in a list showing the most recent event at the 

top of the list. On the page to the right, it shows the list of services offered for a given package, 

including printing a return label, buying insurance, reporting an issue or rating the seller of the 

package. When a user enters the package detail page from the package list page, the system 

passes the package to the PackageDetail component as a navigation parameter. Navigation 

parameters allow developers to pass data between pages during navigation. Like the Dashboard 

page, the PackageDetail page acts mainly as a source of information for the user and as a 

navigation hub to additional service and features.  
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Figure 44 – Mobile Package Detail page: package status and tracking events (left) and package specific services 

offered (right) 

 

Package Map 

 The PackageMap page, as shown in Figure 45, shows the user a map to illustrate both the 

current and destination locations of the package. This page uses a combination of native features 

and external APIs to provide this feature. 
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Figure 45 – Mobile Map page: shows package current location and destination 
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Figure 46 shows how the native Geocoding feature first produces the markers latitudes 

and longitudes, then the system initializes the map using a Google maps API. Lastly, we added 

markers to the map at the latitudes and longitudes of the current and destination addresses. One 

limitation of this feature is the precision of the current location, since tracking events only 

include the city of the location, the marker is not placed directly on the facility where the 

package is. An improvement to this feature might include providing data in tracking events to 

accurately locate the package process facilities a package travels through. 

 

 

Figure 46 - The load map method preparing the map for display 
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Auto Track 

 AutoTrack is one of the most significant features we implemented. This feature was 

mostly implemented in the backend, but required a front end page to enable it for a given user. 

With AutoTrack enabled, a user automatically tracks a package that enters the backend of our 

system if the package address and name matches the user’s information. If a developer 

implemented this feature without thought to security, a malicious user could take advantage of 

this feature to receive information about another person’s packages. To avoid this, we included a 

mock up of an identity verification system. There is an industry standard for identity verification, 

and there are API’s which can provide questions about an individual to which only the individual 

would know the answers. These questions, known as “Out of wallet” questions, often ask about 

topics such as the user’s social security number, recent places the user has lived, names of family 

members or recent phone numbers. Figure 47 shows an example of this question.     
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Figure 47 – Mobile Opt-In for AutoTrack page with sample identity verification questions 

 

 Once a system verifies the user’s identity, we consider them opted-in for Auto Track. In 

the Beast database, the system additionally confirms them as a verified user. When new packages 

enter the backend API and into Beast, they are then AutoTracked as shown in Figure 48. When 

the system AutoTracks a package, it compares the package to all users that are currently opted in 

for auto track.  The system then adds the package to any user’s account with a matching address. 
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Currently, the system only adds packages to a user’s account if the name, zip code, and address 

are an exact match, ignoring the case of the text. In a future implementation, this algorithm could 

be more tolerant of variations like nicknames or mistyped addresses. Once the system links the 

buyer and a package, the system sends a notification to the user. 

 

 

Figure 48 - The importPackageToBeast() and AutoTrackPackage() functions in backend Web API 
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Push Notifications 

Push notifications are a valuable feature for informing users about new packages and 

tracking events that may interest them. For this project we explore push notifications as a proof 

of concept, and only implemented notification for new packages added to a user's account via 

AutoTrack. Figure 49 shows what the user sees when a new push notification arrives. While the 

client facing component of this feature is fairly simple, the backend to support this feature is in 

no way trivial. In order for this notification to appear, a user takes a number of steps. 

 

Figure 49 - Push notification on new package tracked via AutoTrack. 
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First the user’s application sends an HTTP post containing a device registration token to 

the Web API, which stores that token in the database. When the system adds a new package to a 

user via AutoTrack, the system must additionally send a push notification to the user. A function 

in the notification service of the web API prepares a request and sends it to the Firebase Cloud 

Messaging (FCM) server. Figure 50 shows the function which prepares a push notification with a 

title, message and user’s device registration token, and sends that notification to FCM. The FCM 

server acts as an intermediary for notifications between our API and users’ devices. FCM 

implements complex logic for sending push notifications to registered devices, ensuring that the 

notification eventually arrives on the user’s device, regardless of whether the user has their 

device turned off or not connected to the internet for a period of time.  
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Figure 50 – SendNotification() function consuming a device registration token, title and message to send a push 

notification to FCM. FCM response handling code omitted for readability 

    

Account Details 

 While establishing a link between the buyer and Endicia, one important area was creating 

an account system. To do this we included a profile page in our application. Currently the profile 
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page includes the user’s name, email, and address information, as well as a mocked up page for 

payment information. Future profile pages could support more customization to further solidify 

the link between the buyer and the application. Figure 51 illustrates the Account page.     

 

 

Figure 51 – Mobile Account page on profile segment (left) and Account page on address segment (right) 
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 All of these features are editable, allowing users to select edit, and then modify fields. 

This page takes advantage of Angular 2’s two way binding, so that when a user makes changes 

in the input, the system simultaneously makes them in the model of the user. When the user 

finishes editing and hits save (not pictured), the system sends updates to the backend so that the 

database can reflect these changes. To send this information, the ProfilePage uses our BuyerAPI 

service to send an HTTP Put request with the updated user information to the Web API. Once the 

API receives the Put request, the system processes the request, then hands it to the Buyer 

repository to adjust the value of the buyer in the database. Figure 52 shows an example of the 

function that changes the City for a buyer with a given email. 

 

 

Figure 52 - The updateBuyerFunction() in the Buyer Repository getting the user by email, updating the city value, 

and saving the changes 
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5.1.2.  Front End Features 

 The front-end features include pages that we did not fully implement yet. The purpose of 

making these was to provide a complete user experience for demonstrations. By utilizing native 

device features such as the camera and geolocation in addition to auto-populating data we found 

that we could successfully provide an idea of what these services might look like.  

Insurance Claim 

 The insurance-claim page, as shown below in Figure 53, allows users to file an insurance 

claim.  

 

 

Figure 53 – Mobile Insurance Claim page, choosing a package for claim submission (left) and an image taken and 

comment box (right) 
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In this feature we access the Camera through Ionic Native. The code to add the camera 

does not require developers to write native code and instead developers can create in TypeScript 

as shown in Figure 54. 

 

 

Figure 54 - Code snippet of Ionic Native Camera plugin 

 

To take a picture, the developer calls the Camera plugin’s getPicture({}) member. The 

getPicture({}) method allows developers to customize the quality, set the encoding, and returns a 

promise a developer can act on. The development of this feature is proof that developers can add 

native device features that easily enhance the user experience without sacrificing much time or 

effort. 
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Notification Settings 

The notifications page, as shown if Figure 55, is navigable from the side menu settings. 

This provides an idea of what it might look like for a user to change their notifications. 

 

 

Figure 55 – Mobile Notification Settings page 

 

In the figure we imagined that users would like to set preferences for notifications they 

receive. To implement this view we used a list containing items with ion-toggles as shown in 

Figure 56.  
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Figure 56 - Example of implementing a toggle button in HTML 

 

Buy Insurance 

The insurance page, as shown in Figure 57, is available only from the package detail 

page. This shows an idea of the process involved for a user to buy insurance. 

 

Figure 57 – Mobile Insurance page 
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On this page a user selects the amount of insurance they would like to purchase and the 

insurance provider they would like to use. This feature is important for user’s that would like to 

make sure that an insurance provider can cover damage to important packages. 

Find Nearby Locations 

The Find Nearby Locations, as shown in Figure 58, is a mock-up of what the future might 

look like. 

 

 

Figure 58 - Mobile Find Nearby Locations page 
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In the feature a static image of a map and a list of the closest locations appears at the 

bottom of the screen. This is an important feature to offer for users printing labels. 

Print Label (and Return Label) 

The print-label page, as shown in Figure 59, includes all the information needed to print a 

shipping label or a print a return label. 

 

 

Figure 59 – Mobile Print Label (and Print Return Label) page 
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In our prototype, this page auto-populates the From Address with the address associated 

with the current user. Furthermore, if a user wants to return a package we auto-fill the To 

Address of the seller as well. We accomplish this by using the current user’s address and the 

package data respectively as shown in Figure 60. 

 

 

Figure 60 - Example of BuyerAuthentication retrieving the user 

  

Report Issue 

The report issue feature as shown in Figure 61, allows users to report any issues with 

packages. 
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Figure 61 – Mobile Report Issue page 

 

This page involves a simple card that a user can fill out and send to Endicia or the Seller 

so that they may receive feedback on their business. This is important because customer 

feedback is useful when entering a new market. 
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Rate Seller 

Lastly, the rate-seller feature, as shown in Figure 62, is available to users who would like 

to rank sellers. 

 

 

Figure 62 – Mobile Rate Seller page 
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This page could be an important part in helping establish a stronger relationship between 

sellers and buyers. Over time, consumers will rate more sellers. Once there is an accumulation of 

ratings the buyers may feel more confident with sellers of higher ratings. The addition of adding 

seller company logos may complement this relationship too. A complete production version for 

mobile should consider implementing many of these features. 

5.2.  Web Prototype 

The web prototype contains the registration workflow. We designed the web prototype to 

capture new buyers receiving Endicia’s tracking email. To implement the web prototype we used 

similar technologies to the mobile prototype with an addition of Bootstrap in place of Cordova 

and Ionic. In addition to an Angular 2 and Bootstrap front-end, we utilized the existing ASP.net 

backend to communicate with our database system. Overall, the web prototype consists of five 

pages: marketing, login, registration, package detail, and package list which we will cover in this 

section. 

5.2.1.  Marketing Page 

 The marketing page, as shown in Figure 63, is the first impression new buyer’s will make 

of BuyerLink, making it an important contributor to the success of the project. 
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Figure 63 - Web Marketing page 
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This page is merely a prototype, but is extremely important as it needs to capture the 

user’s attention and sell them on BuyerLink. In the future, marketing inputs could make this page 

more compelling to users. The end goal is to make new users want to register an account with 

Endicia for BuyerLink. On this page, we explain why we developed the application, why users 

should sign up, and how user’s can get started with the product. We constructed this page with 

HTML components and CSS styling that specifically utilized Bootstrap style classes and custom 

style classes.  

The blue gradient section in the center of the marketing page is a good example of how 

we used the combination of Bootstrap and custom styling to design the user interface of the web 

prototype. We begin by specifying the components such as <main>, <div>, <section> with the 

desired text in HTML as shown in Figure 64. 
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Figure 64 - Code snippet of HTML defining blue gradient section 

 

In the HTML section above we use bootstrap classes such as class=”row”, or class=”text-

center”, or class=”btn btn-primary” to style and organize components on the screen. The classes 

offered by Bootstrap help developers drastically reduce the amount of time spent designing web 

pages, however, this styling doesn’t cover branding. In order to successfully craft a professional 

web page, we required custom styling. Figure 65 gives an example of our custom styling in our 

main class=”bs-docs-masthead”. The Bootstrap website inspired this styling. 
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Figure 65 - CSS styling for bs-docs-masthead class 

 

 This section of CSS styling shows that we give the main component of the marketing 

page a ‘relative’ position, 30px of padding, centered text, and fill the background from top to 

bottom to make a clean gradient background. This styling cascades on top of any existing styling 

for these components and therefore enhances the view to our style preferences. Throughout the 

web site development process we used similar custom style classes to establish our BuyerLink 

brand. 
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5.2.2.  Login (Web) 

 The Login page as shown in Figure 66, is the point of entry for users that are already 

registered. On this page the user can login with their email and password credentials or, in the 

future, any of the social login buttons. We strived to make this process lightweight for users by 

offering several options for login. 
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Figure 66 - Web Login page 

 

At this point, we have not implemented social login buttons, and the regular login does 

not provide proper authorization. To make a complete system we would need to replace our 

existing web login() method as shown in Figure 67 with the methods used for logins and 

authentication on mobile. 
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Figure 67 - Web login() method 

 

For now, if the user exists on our fake backend, we log them in. And if not, we alert the 

user to try again. If a user does not exist they need to register an account in the system. 

5.2.3.  Registration (Web) 

The Registration page as shown in Figure 68, provides a styled form interface to allow 

users to enter our system.  
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Figure 68 - Web Registration page 
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For new buyers who received tracking emails, we offer the convenience of auto-

populating the name and address fields. This is important because we want the registration 

process to be as easy as possible. By helping new users register we can make the process feel 

light-weight. 

We auto-populate this data by getting the package associated with the tracking number 

passed from the email. This process takes two steps. The first step, as shown in Figure 69, is 

having our registration-page component retrieves the associated package with a call to our 

buyerApi Angular service through ngOnInit(). This example shows in ngOnInit() we retrieve the 

trackingNumber from the url with the first statement. Later, we then retrieve the package in the 

bottom statement from our backend with the trackingNumber in our buyerApi Angular service.  

 

 

Figure 69 - ngOnInit() retrieving package by tracking number from buyerApi 
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The second step is once we have the package, we prepare the system to display the 

package information. We do this with our prepuser(data: any) function as shown in Figure 70.  

 

 

Figure 70 - The prepuser() method 

 

The function prepuser(data: any) first sets a package object. It then parses the TO_NAME 

field of a package into a first and last name. After setting the first and last name, it continues to 

set the remaining fields of the user object. When the method completes prepping a user object, 

the two-way binding through Angular allows us to automatically update the display of user fields 
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defined in HTML. Through this, the registration process is almost complete. A user only needs to 

enter their email, a password, and ‘Register’ to sign up with BuyerLink. 

5.2.4.  Package Detail  

 As shown in Figure 71, a user entering the system from a tracking email lands on the 

package detail page. This screen is the initial reason the user navigated in the email from 

Endicia. In order to capture the user, the screen must off an initial benefit. This screen is 

important for these reasons because it will be the first impression of the BuyerLink application. 
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Figure 71 - Web Package Detail page 

 

On the screen, the user sees that their package information in addition that they logged 

into the system and can navigate to several other screens such as “Home”, “My Packages”, and 

“Services”. At this point, the page contains no custom styling so developers could enhance the 

look and they could be update it to offer services to buyers. 
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Currently, the package-detail page component populates once the user navigates to the 

page. This component retrieves the package in the same way the register page component does in 

ngOnInit() from the server. Once the package is set, the package status and the system displays 

tracking events through the use of the *NgFor directive as shown in Figure 72. 

 

 

Figure 72 - HTML to display a package and its events 

 

In this code example we iterate through tracking events with *ngFor and filter the date 

into “MM/dd/yyyy h:mma” format. We additionally utilize Bootstrap styling for the list with 

class=”list-group” and list items with class=”list-group-item”. The list is presentable but there is 

clearly room for improvement for the page overall.  
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From the package-detail page the user can move to the package-list page from the My 

Packages tab, shown in the navigation bar at the top of the screen, and the link ‘Back to My 

Packages’, shown at the bottom of the screen. 

5.2.5.  Package List  

 The package-list page, as shown in Figure 73, is our last page for the web prototype and 

it displays a list of the user’s package.  
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Figure 73 - Web Package List page 

 

For this page, we used similar styling and techniques to the package-detail page 

component. The system retrieves the user’s packages in the same manner and the system 

displays each package in a list with default Bootstrap styling.  
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As mentioned before, implementing a complete web prototype was beyond the scope for 

this project. We focused mainly on providing an interface that users could register with 

BuyerLink, with an emphasis on registration from the Endicia tracking email. Overall, the web 

prototype depicts that buyers can registration easily from a tracking email and once registered the 

system links their package from the tracking email to their account. 



107 

 

6.  Conclusions 

 To establish a link between Endicia and e-commerce buyers we developed a mobile 

prototype and web prototype. Our prototypes focus on capturing the user experience and 

satisfying the initial goals set out for the project. By leveraging Endicia’s existing data, our 

mobile prototype shows we can offer desirable services to users. By adapting the current tracking 

email to direct users to our web prototype, we created a streamlined registration process that 

establishes user accounts and gets users viewing package details quickly. By automatically 

attaching packages to user accounts through our new AutoTrack feature and by utilizing mobile 

device features like the camera to submit insurance claims, we can grant users greater control of 

the package recipient experience. Overall, by using traditional web development languages and 

technologies, we have shown Ionic and Cordova are effective frameworks to develop quality 

hybrid native applications. 
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7.  Future Steps 

This project marks the very first steps in creating a buyer oriented application. As such, 

there is a great deal of work that developers can complete to take this application and concept 

forward. We have assembled a set of steps that may move this project forward.  

The most direct development that would progress the project would be fully 

implementing mobile features that we built solely as front-end features or mockups. By actually 

implementing features like finding nearby USPS locations and printing a return label, the project 

would be much closer to a production ready application. In addition to continuing feature 

development on the mobile application, developers might improve the web site to support a 

similar set of features as the mobile application. Providing users with a consistent experience 

across the mobile application and the website will build user trust and comfort with both 

applications.  

Another major area for improvement is in security and authentication. As a proof of 

concept this project had the liberty of labeling many security concerns as out of the project 

scope. To address this, developers should add security to the API endpoints by requiring 

authentication tokens from users in order for the system to securely answer requests. 

Additionally, the seller-facing aspect of the API could require an API key, thus limiting who can 

add data to the system to just shippers and partners that carry an Endicia approved key. 

Continuing the security improvements, the identity verification component of Auto Track could 
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be fully implemented by integrating with an API that will generate verification questions. This 

step is necessary before developers release a production app with an AutoTrack feature.  

Lastly, the development team can build our backend web API into a more robust engine.  

The engine must handle user requests and importing package information efficiently and 

reliably. This engine could be a multithreaded system, equipped to spawn and dispatch processes 

to handle individual tasks like sending a push notification, managing database connections, or 

processing imported data.  By building a solid system for this backend, Endicia could increase 

partner confidence in the viability of the application.  
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