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Abstract 

United States Postal Service offers several mail classes that vary in shipping time and 

price. First class is the most economical shipping method, but it does not guarantee a delivery 

date. Endicia, our sponsor, did not have a tool that could accurately predict when first class 

packages would deliver. This project produced a validated prototype that forecasts delivery time 

distributions using conditional probability. The results showed that shipping times highly depend 

on when a package was originally dropped off. Ultimately, this prototype can help Endicia’s 

business clients greatly optimize their shipping costs.  
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1 Introduction 

As society becomes increasingly interconnected, ecommerce continues to gain popularity 

and market share in the retail space.  Projected to reach more than 500 billion dollars by the turn 

of the decade, e-commerce currently represents a sizeable 373 billion dollars and growing 

(Vassallo, 2016).  While there are numerous attributes affecting e-commerce, shipping is one 

complex trait that shapes online shopping trends.  Delivery time estimations are one factor that 

contribute to a consumer’s decision on whether or not to make a purchase.  Recent studies show 

that 60 percent of those surveyed indicated that estimated or guaranteed delivery dates are 

important in their purchasing decisions (comScore, 2012).  Looking further into the statistics, 

online shoppers are willing to wait at most 6 days from the purchase date if they paid for 

shipping, and 8 days if they received shipping for free (comScore, 2015).  These statistics 

become crucial to drive or maintain sales relationships.  While larger businesses may have their 

own statistics and data to offer delivery time estimations, many businesses and consumers rely 

on estimations given by United States Postal Service (USPS).   

Endicia, a company focused on e-commerce shipping solutions, is interested in producing 

a validated, accurate system that forecasts delivery time statistics for its clients, namely shippers, 

to use in order to optimize their shipping costs.  Endicia had a proof-of-concept prototype and 

wanted to extend it to create a system that was reliable, extensible, and maintainable.  

The goal of our project was to produce a validated prototype that forecasts delivery time 

distributions to optimize shipping costs. We accomplished this goal by (1) building a new, 

extensible prototype that handled big data, (2) using optimization tools to elevate performance 

and capabilities of the prototype to meet Endicia production standards, and (3) validating the 

probabilistic approach used to predict shipping time distributions. 

 The results of the predicted shipping time distributions made by the prototype showed 

that drop-off time has a significant impact on the overall shipping time for a package. We were 

able to utilize Spark and Neo4j efficiently to process the data from a raw form into an intelligent 

form that our database understands. However, the predictions of the prototype were not confident 

enough to be used in production and can be improved by adding more data for more robust 

calculations and factoring in other variables that affect shipping time.   
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Chapter 2: Background will introduce the problem that led to the project and the relevant 

technologies used in development. Chapter 3: Requirements talks about both the technical and 

business requirements Endicia laid out at the beginning of the project. Chapter 4: Methodology 

describes the methodological approaches taken to accomplish the project objectives. Chapter 5: 

Design and Implementation lays out the finer-grain details on how each component of the 

prototype was implemented. These details include examples and relevant technical details such 

as important objects and methods. Chapter 6: Results shows the results of the performance of the 

prototype as well as predictions and accuracy testing.  Chapter 7: Discussion is where the 

discussions of the results are found. Finally, Chapter 8: Conclusions and Future Works 

summarizes the project and accomplishments made with the prototype, open issues, and 

recommended improvements.   
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2 Background 

 This chapter is divided into three distinct sections: (1) the structure of United States 

Postal Service (USPS) and Endicia’s use cases, (2) Endicia’s existing predictive shipping 

prototype, and (3) the technologies and tools used to build the new predictive shipping prototype. 

The purpose of this chapter is to provide a background needed to understand the predictive 

shipping system. 

2.1 Company Background 

 This section details the information about USPS and our company sponsor, Endicia. In 

addition, it explains how the two companies interact with each other.  

2.1.1 United States Postal Service 

 The United States Postal Service is an independent U.S. Government Agency that 

provides consumer and commercial postal services. USPS accounts for 47 percent of the world’s 

mail volume, delivering around 154.2 billion pieces of mail per year (USPS, 2016). Of that 

volume, 4.5 billion account for the total shipping and package volume. USPS states that their 

scheduled delivery dates are highly affected by origin location, destination location, and handling 

times during different segments of a package’s trip. However, in 2009, the U.S. Government 

Accountability Office (GAO) conducted an analysis on the delivery operations of USPS facilities 

and found that delivery efficiency also depended on other factors such as when mail was 

received from a distribution center and how recently routes were adjusted. Currently, USPS has a 

Last Mile Technologies experience that has dynamic routing and real-time delivery scans to 

make delivery more flexible. This solution includes advanced barcode scanning technology, 

known as Intelligent Mail Postage Barcodes (IMPB) (USPS, 2015), that increases readability of 

barcodes, as well as a robust tracking system that can rapidly read and track packages. Predictive 

delivery times are calculated by scanning mail and packages “throughout the network to 

accurately predict delivery times”.  
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2.1.2 Endicia Online Postage 

Founded over three decades ago as PSI Associates, Endicia operates in the e-commerce 

shipping solutions market (Endicia, 2016).  Located in Silicon Valley, California, Endicia 

provides customizable services to companies and customers across the world.  Since its 

founding, the company has worked with the USPS.  This relationship has been the foundation for 

many of Endicia’s the software solutions and technologies. Endica created shipping and postage 

products, such as Envelope Manager, a product that reduced costs associated with undeliverable 

mail, and Dial-A-ZIP, a product that verifies addresses in real-time. Besides software, Endicia 

also offers APIs and integration to marketplaces and warehouse management systems.  Endicia 

was acquired in late 2015 by Stamps.com (Stamps.com, 2015).  Endicia’s services and platforms 

have handled over $14 billion in postage (Endicia, 2017).    

 Organization of the extensive USPS features is one main selling point for Endicia.  For 

many companies, especially personal business ventures or smaller business lacking shipping 

resources, Endicia automates and navigates shipping needs.  Endicia’s relationship with USPS 

allows maneuverability of different types of shipping, such as expedited shipping methods.  

Using the aforementioned real-time address verification technology, Endicia helps businesses 

ship orders faster, which increases the daily order load they can handle.  Companies, such as 

Olympia Sports, gain the ability to use one shipping account across many branches giving them 

the ability to direct orders to a specific store and give company-wide assurance of an orders 

status (Fitzpatrick, 2017).    

Automating repetitive tasks and label printing allow business customers to handle larger 

volume of parcels.  The organizational measures mentioned previously are able to handle large 

volumes of parcels, encompassing a range of shipping characteristics.  Similar to the multiple 

branch scenario, companies are able to use Endicia to centralize inventory for both shipping and 

return capabilities at any location or online.  

 As businesses grow, international customers are a natural market for them to target.  Each 

different country requires a unique set of laws regarding import and export shipping.  Endicia 

allows businesses to use automated, streamlined customs forms and navigate international 

shipping requirements to handle businesses’ intercountry orders and returns.  Organizing 

international shipping potentially saves companies costs of labor and costs associated with 

incorrectly shipping. 
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2.2 Problem Background 

 This sections contains information about the project problem and significance as well as 

Endicia’s previous predictive shipping prototype. It also describes the mathematical theory 

behind the probabilistic model used to produce the shipping time distributions.  

2.2.1 Predicting Package Shipment Time 

 Predicting a package’s shipment time may seem like a straightforward problem at first. 

Amazon can guarantee Prime members will receive certain packages in two days. However, the 

question remains as to why predicting package shipping paths through the USPS not as simple as 

it seems (Amazon.com, 2017).  The truth is that there are many variables to consider when 

predicting the estimated delivery date of a package. 

One method of predicting shipping time is taking to the average estimated delivery date.  

A package estimated to take an average of two days to be delivered could be delivered 9/10 

times in one day and 1/10 of the times in 11 days.  The average is the same in either case, but 

1/10 of the time results in a very unsatisfied customer. This wide deviation from the two day 

estimate is considered to be unacceptable for Endicia’s clients if their use case for the prototype 

was to save money by shipping packages as first class mail hoping it would deliver in the 

estimated time predicted by with this averaging method.  

Two main problems are the volume of data and scarcity of data. There are approximately 

600 million packages mailed each year and assuming each package has 10 tracking scans would 

mean there could be six billion rows of data in one year. Such a large set of data is hard to 

manage. According to the USPS, there are over 31,000 Post Service Retail Offices, which means 

there are approximately 1 billion combinations of shipping pairs to consider. It would be difficult 

to predict package shipment time when using historic shipping time data between a pair of post 

offices because with such an extremely large set of combinations, Endicia does not have enough 

data to accurately model every possible post office to post office combination.  

A final issue with predicting package shipment time is the number of variables affecting 

it.  The time of day, day of the week, and season a package is dropped-off at can all affect 

estimated delivery date and time distributions (USPS.com, 2017).  Some USPS offices only pick 

up packages once per day.  If a package arrives after the daily pickup time, an additional day has 
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to be factored in to the expected delivery date.  Also, packages often take longer to deliver in the 

winter due to inclement weather and seasonal holidays.   

These flaws and issues show that predicting package shipment time is not a trivial task.  

Therefore, being able to accurately predict package shipment time based on historical data would 

be extremely valuable to shippers. 

2.2.2 Current Prototype  

 The first predictive shipping prototype was created about two years ago by a summer 

intern at Endicia The goal for this prototype was  to calculate a distribution of possible shipping 

times from a client’s business to their customer. To counter for the difficulties discussed in 

Section 2.2.1, the prototype used the structure of the USPS network to make up for the billions of 

possible post office combinations. When a package is shipped through the USPS, it starts at a 

local office and then makes its way to a regional distribution center (RDC).  From an RDC, a 

package is shipped to other RDCs, until it reaches a local RDC and is handed off to the local post 

office (USPS.com, 2017).  Because all USPS shipping routes follow this pattern, Endicia only 

needed data to predict shipping time between RDCs and from local offices to their respective 

RDC.  Instead of predicting 1 billion possible routes, segmenting a trip meant Endicia only needs 

to predict package arrival time for 3,000,000 sub trips between RDCs and local offices in the 

network.  

While the above strategy accounts for the data scarcity issue, it does not mitigate the 

number of variables involved in predicting shipping time.  To handle these, the prototype used a 

probabilistic model.  It used Bayes Theorem/total probability formula to look at transit time of a 

package between facilities as a set of probability distributions conditioned on arrival time. This 

made intuitive sense based on discrete pick up and delivery events of packages.  

𝑃(𝐴)  =  ∑ 𝑃(𝐴| 𝐵𝑖)𝑃(𝐵𝑖) 

 It then combined all these probabilities for each possible path a package would  take through the 

shipping network.  In turn, the problem of predicting a distribution of package shipment times 

simplified to a problem of mathematical convolution. Assuming each distribution of shipment 
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times from one node to the next is independent of the other, the solution is simply a sum of 

random variables.  

𝑃(𝑇 =  𝑡)  =  ∑ 𝐹1(ℎ)  ∗  𝐹2(𝑡 − ℎ)

∞

ℎ=0

  

This equation represents the probability distribution for a package to ship from Facility 1 to 

Facility 2, and Facility 2 to the next step.   Both 𝐹1(𝑥) and 𝐹2(𝑥) are probability density 

functions indicating how long it is likely to take to ship from one facility to another, where x is 

the number of transit hours.  In this case, x is the number of hours a package takes to ship 

between the two Facilities.  An example probability density function would be: 

 

𝐹1(𝑥)  =  {0.3 𝑖𝑓 𝑥 =  5,0.2 𝑖𝑓 𝑥 =  2, 0.5 𝑖𝑓 𝑥 = 10} 

 

In the example function, a package ships between these two facilities in 2 hours 20% of the time, 

in 5 hours 30% of the time, and in 10 hours 50% of the time. 

Predicting a packages shipment time distribution is not as straightforward as the previous 

examples, however, for two reasons.  First, a package can take several paths to ship through the 

US Postal Network.  Therefore, the time a package takes to ship from start to end can be 

modeled as the distribution of shipping times from start to end for each possible route, weighted 

by how likely that route is to be taken.   

 

𝑃(𝑇 = 𝑡)  = 𝑃(𝑅1)  + 𝑃(𝑅2) + . . . +𝑃(𝑅3) 

Where  𝑅1...𝑁 =  ∑ 𝐹1(ℎ)  ∗  𝐹2(𝑡 − ℎ)∞
ℎ=0   

 

This equation represents the probability distribution of a packages’ shipment time 

duration, given that there are N possible routes, each with its own unique probability distribution 

of shipment times from the start to end of the route.  Each route also has a probability percentage 

representing how likely that route is to be taken.  Consider an example visualized in Figure 1. 
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Figure 1: Visualization of example shipping route 

 

In this example, a package shipping from Worcester, Massachusetts (zip code 01609) to 

Mountain View, California (zip code 94040) takes one of two routes.  It will travel through 

Chicago, Illinois (zip code 60603) 90% of the time based on historical statistical calculation and 

through Denver, Colorado (zip code 80123) 10% of the time.  The time between each facility is 

modelled by the probability distribution FN(x).  In this case the shipping time distribution would 

be calculated by the equation: 

 

𝑃(𝑇 =  𝑡)  =  (0.9  ∗ (∑ 𝐹3(ℎ)  ∗  𝐹4(𝑡 − ℎ))

∞

ℎ=0

 )  + (0.1 ∗  (∑ 𝐹1(ℎ)  ∗  𝐹2(𝑡 − ℎ))

∞

ℎ=0

 ) 

 

It might seem like these calculations account for all possible paths a package will take to 

ship through the USPS network and provide a realistic distribution.  However, it neglects one 

critical variable. The hour of day a package arrives at a distribution center or post office can 

impact the arrival time significantly because some offices only ship at certain times of day.  For 

example, if an RDC has a ship-out time of 4PM but a package did not arrive at the facility until 

4:15PM, the package will probably have to wait up to 24 hours before it can continue along its 

delivery route.  Therefore, the equation must account for the shipping time between two facilities 

given a certain arrival hour.  To account for this, the prototype approximates a continuous 

distribution of arrival time with 24 discrete distributions shipping time distributions depending 

94040 

80123 

60603 

01609 

P(R1) = 0.9 

P(R2) = 0.1 
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on hour of arrival time.  When computing 𝑃(𝑇 =  𝑡), the shipping time distributions between 

two nodes, 𝐹𝑁(𝑥) , the time to ship between two facilities, is different depending on the expected 

arrival time at the start facility.  Each arrival hour distribution is then weighted by how likely a 

package is to arrive at that hour.  Consider one route from the earlier example, adjusted to 

account for the arrival hour variable, shown in Figure 2. 

 

 
Figure 2: Visualization of more detailed example shipping route 

 

If a package arrived in Worcester (01609) at 8:00AM, what’s the shipping time distribution for 

when it arrives in Mountain View (94040)? 

 

If 𝐹3−8(𝑥)  =  {0.5 𝑖𝑓 𝑥 =  5, 0.5 𝑖𝑓 𝑥 =  2} 

 

The answer would weigh the distributions for package arriving in Denver at 10AM (8AM + 2 

hours) and 1PM (8AM + 5 hours) equally and be represented as, 

 

𝑃(𝑇 =  𝑡)  =  (0.5  ∗ (∑ 𝐹4−13(𝑥))

∞

ℎ=0

 )  + (0.5 ∗  (∑ 𝐹4−10(𝑥))

∞

𝑥=0

 ) 

 

This calculation is then done for each possible route, and possible arrival hour at a facility, to get 

a shipping time distribution.  This accounts for both data scarcity and arrival time cutoffs by 

using delivery network routing.  Another benefit is that it accounts for outlier scenarios by 

weighting them with the same probability of them occurring as they have actually occurred, 

based on historical data. Thus, the predictions for total shipping time are more accurate. 

In implementation, the current prototype has a basic webpage projecting a map, the route 

input by the customer, and a shipping time distribution histogram on output.  This is less 

important for the working of the project but influential to present to stakeholders to show the 

non-technical overview of what is going on behind-the-scenes. 

94040 60603 01609 

[F30 (x)…F323(x)] [F40 (x)…F423(x)] 
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2.3 Technology Background 

 This sections describes the technology and tools used to develop the new prototype as 

shown in Figure 4 in Section 5.1.1. These include SQL Server, Apache Spark, Neo4j, REST API, 

and Apache CXF and Embedded Jetty. The prototype was tested using JUnit testing, load testing, 

Kolmogorov Smirnov Test, and cross validation testing and deployed using Apache Maven. 

2.3.1 Data Processing Tools 

 USPS events are stored in a separate SQL server database by Endicia. USPS parcel scans 

from USPS’s database are synchronized with Endicia’s database multiple times a day in a format 

that is not immediately usable by Neo4j. In order to convert tracking events into sensible 

aggregated information for Neo4j, the prototype uses Apache Spark.  

Apache Spark 

 Apache Spark is an open-sourced tool “built around speed, ease of use, and sophisticated 

analytics.” (Apache Spark, 2017). It is a data-processing engine that is compatible with big data 

platforms to prepare massive amounts of data in parallel for development and analysis by 

businesses and engineers. It has a Hadoop infrastructure, which gives it the ability to access data 

in a Hadoop Distributed File System (HDFS). It also has built-in libraries for database 

connectivity, machine learning, and graph computation. 

 Endicia’s previous predictive shipping prototype could only calculate roughly 300 

million rows of data in a 24 hour time period with an excessive amount of overhead. It was 

inefficient at communicating with the database with numerous unnecessary open and close 

connections and there was a memory problem that forced the prototype to store temporary tables 

in the SQL server. The advantage of using Spark to process the USPS data is that it can 

transform and reduce millions of rows of data in parallel by “exploiting in memory computing 

and other optimizations” (Apache Spark, 2017). It can run programs up to “100x faster than 

Hadoop MapReduce for large scale data processing” (Xin, 2014).  

 In addition, the core Spark API has an extension called Spark Streaming which enables 

“scalable, high-throughput, fault tolerant stream processing of live data streams”(Apache Spark, 
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2017). Spark Streaming will allow Endicia to implement live updates to the prototype as new 

data is uploaded into their USPS database.  

2.3.2 Datastore Tools 

 Neo4j was the database used for the prototype because of its ability to naturally model 

the USPS shipping network and meet performance requirements. Neo Fast Import Tool was used 

to import million rows of processed data by Spark.   

Neo4j 

 Neo4j is an open source graph database.  Instead of storing data as a tabular data structure 

in a relational database, a graph database stores nodes and relationships.  Both the nodes and the 

relationships can be built as custom objects with varying amounts of complexity.  Neo4j has built 

in drivers to connect and communicate with different languages and frameworks, including Java. 

Figure 3 shows the representation of a Neo4j graph. Circles are nodes and arrows are 

relationships. Nodes and relationships both can contain additional information in a key-value 

structure. An example would be the ACTED_IN relationship between Tom Hanks and The Da 

Vinci Code nodes contains a property Role:Dr. Robert Langdon.  
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Figure 3: Example of Neo4j graph database representation 

 

 USPS packages travel in a path from facility to facility. Neo4j leverages this by being 

able to represent these paths as relationships between facilities. The databases’ ability to handle 

large amounts of data in both quantity and speed also makes it extremely advantageous.  In 2015, 

4.5 billion packages were shipped and tracked through USPS. With Neo4j, it is possible to 

efficiently and effectively import and query our requirements of 75,000 Post Office Facilities, 

and 2.5 million relationships.  

Neo4j Fast Import Tool 

Neo4j Fast Import Tool is a feature of Neo4j that allows a new database to be populated 

with data in CSV files (neo4j.com, 2017). The tool can import data in extremely fast amounts of 

time. For example, it can import 100 million Stack Overflow questions in under three minutes 

with nodes for posts and users and relationships for answers, tags, and users. A main reason why 

it can achieve such high upload speeds is because the tool imports into an empty database, which 

guarantees that it does not need to overwrite or combine any existing nodes or relationships, and 

can save all of the information in one commit (neo4j.com, 2017).  
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2.3.3 HTTP Server and Business Layer Tools 

 The HTTP server of the prototype was a RESTful API that could allow customers and 

other web services to access information about shipping predictions. The business layer of the 

prototype received the request, handled the computation, and returned the output to the server, 

which is then presented as a response to the user. This section describes the tools used to develop 

the HTTP server and business layer.  

Apache CXF and Embedded Jetty 

The HTTP server was developed using Apache CXF, a web service framework, and 

embedded Jetty, an HTTP server. Apache CXF is an open source services framework that allows 

developers to create services that communicate over the most common web protocols and 

transport protocols.  These protocols include Representational State Transfer (REST), Simple 

Object Access Protocol (SOAP), Extensible Markup Language (XML), and Hypertext Transfer 

Protocol (HTTP) (Apache, 2017). CFX directly integrates Java web services libraries and APIs 

and is licensed under Apache Software Foundation (Apache, 2017). 

With CXF handling the communication, Jetty provides the server framework for CXF 

and allows the web service to communicate with users or other services.  Like CXF, Jetty is Java 

under-the-hood and is easily associable with CXF.  Jetty creates and sustains the server instance 

used for the prototype Embedded Jetty also means that the prototype can be deployed as a 

standalone WAR file without an additional web server. It also integrates easily with common 

production web servers such as Apache or Nginx.  

REST and REST APIs 

 In order to create a system that would be easily accessible, the HTTP server of the 

prototype was developed as a RESTful API. REST “is an idealized model of the interactions 

within an overall web-application” (Jakl, 2008).  The REST protocol enables caching and reuse 

of interactions, components, and other useful information making it ideal for distributed systems 

(Jakl, 2008).  The key concept of a REST interaction is that each communication contains every 

piece of information necessary for the receiver of the message to provide a complete and correct 

response back to the person requesting resources REST relies on different methods of 
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communication such as GET, PUT, POST, and DELETE requests which allows developers to 

build API’s around (Jakl, 2008).  

 A RESTful API is a set of actions based on resource path and REST method that can 

provide any number of services.  REST APIs can be both internal or external from engineering 

teams within a company to developers hoping to take advantage of open source projects. This 

benefit will give Endicia’s employees access the prototype and receive shipping predictions 

without having to extensively understand the source code.  

2.3.4 Testing and Validation Tools 

JUnit 

 JUnit is a Java-based, simple framework for developing unit tests and testing suites for 

Java projects (JUnit, 2017). In the Maven architecture, any JUnit test files located at a specific 

file path in the project will be run every time the project is built.  The Maven build will fail if any 

of the JUnit tests included in the specific directory fail.  This feature allowed us to build 

regression tests directly into our project as we developed different systems and assure that each 

time we built the project with updates that it was still successfully passing the tests we had 

written for the last build. 

 JUnit provides many possible testing tools and outcomes.  Not only can it test for boolean 

values but it can include expected outcomes such as purposely throwing exceptions or breaking 

your code.   

Load Testing 

Load testing provides assurance that all of the components interacted dependably and the 

system could handle the amount of requests it could potentially see in production, which was 

also one of the technical requirements. Load testing is a black-box style of testing, meaning there 

is no need to access to the source code to effectively load test an application or platform (Beizer, 

1995).  The purpose of load testing, which parallels the purpose we used this type of testing, 

“involves applying ordinary stress to a software application or IT system to see if it can perform 

as intended under normal conditions” (SmartBear, 2017).   
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Kolmogorov Smirnov Test 

The Kolmogorov-Smirnov Test, K-S Test, is used to test for distributional accuracy 

between two distributions.  The K-S test can determine whether a sample “comes from a 

population with a specific distribution” (Nist.gov, 2012).  To test the accuracy of the prototype, it 

could be used to determine if the prediction from the system comes from a population with the 

tested distribution.  The K-S test does not depend on underlying cumulative distribution function 

being tested and can be used to find differences in both continuous and discrete distributions 

(Nist.gov, 2012).  For validating the prototype, both of these features are necessary because the 

testing distributions are made from the data, function is not known, and the prototype treats each 

shipment hour as a discrete possibility.   

K-Fold Cross Validation Testing 

 Cross Validation is a model evaluation method used to test predictions based on a set of 

data (Schneider, 1997).  Cross validation generally involves using a subset of the total data to 

train a model on and using the remaining set of data to validate the accuracy of the predictions 

made by the model.  K-fold is a type of cross validation that involves dividing the total data in k 

subsets.  The testing is then run k total times each time using the one of the k partitions as the 

subset that gets validated after training the model on the total set of data without the k partition 

used in that round of testing (Schneider, 1997).  This testing approach becomes increasingly 

more accurate with the size of the k partition. 

2.3.5 Deployment Tools  

 Apache Maven was the tool used to deploy each component of the prototype. This 

section describes basic information about Maven.    

Apache Maven 

Apache Maven is a software project management and comprehension tool for Java-based 

projects (Apache, 2017).  It is a project framework that allows the centralization of every part of 

the project.  A Maven project is centered around a project object model (POM) which specifies 
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build characteristics, project dependencies, and important project logistical information among 

other things.  Integrating in a new plugin or dependency can be done by adding the dependency 

to the POM file and it will be dynamically installed when the project is built.  A maven build 

encompasses the whole software development lifecycle.  It initially compiles the source code, 

runs the integration and unit tests specified by the developers, and packages the project for 

deployment.  

2.3.6 Apache JMeter  

 JMeter is an open source, fully java application used to load test and measure 

performance of web servers (Halili, 2008).  It gives a developer the ability to automate testing 

while being able to measure resources such as CPU load, memory usage, and response times 

(Halili, 2008).  The application is so widely used it developed a community around it and now 

has many plugins and extensible features for thorough testing.  With JMeter, the user can create 

and store “Test Plans” to recursively run the same testing conditions or access the cached results 

after running a Plan. With JMeter’s plugins, the results from the testing plans can be sent directly 

into graphs and visual representations of the testing. The prototype was tested after concluding 

implementation to measure response times for calculations as well as testing with variable 

amounts of requests per time interval. 
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3 Requirements 

Shipping delivery estimations are currently calculated using basic averages in accrued, 

historical statistics.  While USPS gives delivery date guarantees for some classes of parcels, it 

does not offer any for less expensive classes. Endicia currently provides delivery estimates taken 

directly from the date estimated by USPS using the historical averages.  Illuminating delivery 

times for first class parcels will provide greater value to Endicia’s customers. 

3.1 Business Requirements 

 For this project, there are various business goals which must be considered in design and 

implementation of the prototype to satisfy non-technical stakeholders.   

The first business requirement was to mathematically validate the shipping time 

distributions the prototype.  The ultimate goal of our prototype was to offer the results of the 

system’s calculations as a service to customers.  In order to offer this as a product, the delivery 

time distributions produced by the prototype had to be accurate and thoroughly tested and 

validated.  

The second business requirement was to show a visualization of the data being 

calculated, including a histogram of potential arrival times and an overlay of the paths a package 

might take on a map.  To satisfy this requirement an interactive webpage was built for the 

purpose of demonstration.  

3.2 Technical Requirements 

 Endicia ultimately wanted to offer shipping delivery date predictions as a web service to 

their business customers.  In light of this goal, there were technical requirements and restraints to 

meet this goal while using Endicia’s local machine Dell Latitude E6430 with 8.00 gigabytes of 

Random Access Memory (RAM) and an Intel Core i5 central processing unit (CPU) at 2.70 

Gigahertz (GHz) and an Intel Core i7 CPU at 2.90 GHz running a Windows 10 Operating 

System.   

 Firstly, Endicia wanted our prototype to surpass the performance of the previous 

prototype. The previous prototype processed 1.2 billion rows in 24 hours. However, Endicia 

wanted to process this quantity of data in under an hour.  
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Because Endicia wanted a prototype that met production standards, it was a critical 

design requirement to consider load capacity.  Not only would the prototype have to work 

quickly but it would have to withstand a high volume of requests. Endicia set the goal for each 

request taking around 50 milliseconds each.  With this performance goal, the server would be 

able to handle about 20 requests per second on average.  

A final technical requirement was to create a RESTful API to be able to interface the 

prototype with current Endicia platforms or to offer the API to customers who already interfaced 

their applications with Endicia’s other APIs.  
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4 Methodology  

 The goal of our project was to produce a validated prototype that forecasts delivery time 

distributions to optimize shipping costs. Our methodology was divided into three objectives, (1) 

building a new, extensible prototype that can handle big data, (2) optimizing the prototype in 

performance and capabilities in order to meet Endicia production standards, and (3) validating 

the probabilistic approach used to predict shipping time distributions. This chapter details to our 

methodology. 

4.1 Design and Implement a Predictive Shipping Prototype 

 The first objective was to design and implement a prototype that could handle billions 

rows of data, process and load those rows into another database, and query the database for 

shipping information. Our prototype was a full-stack system that encompassed several 

components, which were divided into (1) Endicia’s Virtual Post Office (VPO) database, (2) 

Spark engine, (3) Neo4j database, (4) calculator and business layer, (5) HTTP server, and (6) 

front end user interface. 

The HTTP server, business layer, and Spark engine were written in Java and built with 

Apache Maven. The design goals of the system included modularity, extensibility, and 

simplicity. Designing and implementing the prototype with these goals allowed for easy 

optimization and integration for deployment.  

4.2 Update and Optimize the Prototype 

The second objective was to optimize the prototype to meet Endicia production 

standards. In order to do this, we used the computing power of Spark and uploading speed of 

Neo4j. These tools are specifically designed to handle millions of rows of data. To completely 

optimize the upload into Neo4j, we needed to ensure that each row of data was unique so Neo4j 

was not wasting time checking if a relationship existed, updating it if did, or creating it if it did 

not.  Optimizing the system also required some research into how a Neo4j query called the 

database, as well as appropriate (but not unnecessary) pruning of improbable events, such as 

outlier packages stopping at many facilities between two zip codes. 
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4.3 Validate the Predictive Shipping Mathematical Model 

The third objective was to validate the mathematical approach used to produce the 

shipping time distributions. There were many variables that can be taken into consideration when 

calculating the time distributions. Our prototype took into consideration five variables which are 

(1) parcel’s origin location, (2) parcel’s end delivery destination, (3) the parcel’s USPS Mail 

Class designation, (4) the day of the week which the package was inducted into the USPS 

system, and (5) the hour of the day which the package was shipped.  Other possible variables 

include seasonality, and weekend delivery, among others. 

After researching and designing the predictive mathematical approach we heavily tested 

and validated the algorithm by using a spectrum of testing methodologies in both calculated and 

real-world situations.  The most extensive testing philosophy we used was regression testing.  

Regression testing is effectively used to “test a modified program to gain confidence that recent 

changes have not adversely affected existing features” (Wong et al, 1997).  Regression testing 

provides not only validation but a baseline for future optimizations or changes to the system.  

This testing approach provided us with the most useful results towards the validation of our 

model because we had the ability to run our calculations against millions of parcels in the USPS 

database whose robust data contained the information we attempted to compute.  The real-world 

data provided a strong foundation to promote our prototype upon, depending on the testing 

results with this data. 
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5 Design and Implementation  

 This chapter contains implementation details that describe how the methodology was 

completed. These include specifics about the architecture, algorithm, and testing and validation 

of the new prototype.  

5.1 Architecture  

This section focuses on the complete architecture of the prototype, then proceeds into the 

details of each component of the prototype including the system, HTTP server, database, 

algorithm that calculated the time distributions of the shipping predictions, and Spark engine. 

5.1.1 System Design 

 

Figure 4: System architecture for prototype 



 

 

 

28 

 As shown in Figure 4, the new prototype is divided into several main components. There 

are a VPO database, Spark engine, Neo4j database, calculator and business layer, HTTP server, 

and front end UI. The frontend UI, HTTP server, and Neo4j communicate through HTTP. The 

VPO SQL server is populated with scan event data from USPS. The Spark engine uses JDBC 

connections to pull data from the VPO in the form of CSV files. Spark processes the scan event 

data and returns Neo4j relationships that can be directly imported into Neo4j with the Neo Fast 

Import Tool.  

5.1.2 VPO Query Design 

The rows of scan event data in VPO were queried by joining four tables to accumulate 

data about the package’s tracking id, date and time the package arrived at the facility, the 

facility’s five zip code, the facility’s three zip code, the package’s mail class, the package’s final 

destination five zip, and the scan event code. For our prototype, the data was only from packages 

shipped via First Class. Scan events with code 748, 745, and 1080 were not included because 

they were respectively “Electronic Shipping Info Received”, “Delivery Status Not Updated”, and 

“Shipping Label Created” and did not contribute to transit time of the package. Only tracking ids 

that contained the delivery event code, 760, were used. Facility zip codes that included APO, 

FPO, and DPO were not included. All scan events were ordered by tracking id and date time. 

Table 1 shows a sample row of data that the SQL query returns, which were then imported into a 

CSV file for Spark to read.  

 

Table 1: Example of one row of Scan Event data from VPO 

Tracking Id 2660000005 

Event Date and Time 2015-03-12 22:27:00 

Facility Zip Code (5 digit) 04742 

Facility Zip Code (3 digit) 047 

Mail Class First Class 

End Destination Area Code (3 digit) 04345 

Scan Event Code 750 
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5.1.3 Spark Engine Design 

 The Spark engine was divided into four parts: (1) Initial setup, (2) Round one, (3) Round 

two, and (3) Final rows.  

 
Table 2: A final row produced by the Spark engine 

Start Id 96820 

End Id 66106 

From Facility (5 digit) 96820 

To Facility (5 digit) 66106 

List of End Destinations [967, 645, 667, 648, 646, 653, 650] 

List of End Destination Occurrences [2, 7, 3, 5, 10, 3, 6] 

List of Time Distributions based on Arrival 

Hour 

{125=1}:{}:{77=1}:{49=2|48=2|75=1|77=2}:

{49=6|48=9|46=9|45=1|52=2}:{}:{}:{}:{}:{}:

{}:{}:{}:{}:{}:{}:{}:{}:{}:{}:{}:{}:{}:{}: 

Type of Neo4j Relationship ShipsTo 

  

Table 2 shows a row of a Neo4j relationship that Spark produces using the scan event 

data in Table 1. Each row contains the start node id, end node id, from-facility five zip code, to-

facility five zip code, list of final end destination three zip codes, the corresponding number of 

occurrences per three zip code, list of time distributions and their respective occurrences indexed 

by arrival time at the from facility, and ShipsTo relationship type specifically for Neo4j. For 

example, as seen in Table 2, {125=1} is the first group in the list, which means a package that 

arrived at the facility in 96820 at midnight (0th hour) took 125 hours to travel from 96820 to 

66106, and that occurred once from the data processed. These rows are unique per every from-

facility and to-facility pair and can be directly loaded into Neo4j using the Neo Fast Import Tool.  

The initial setup involved converting local arrival times of the tracking events into 

Coordinated Universal Time (UTC) so that it was possible to compute the transit time between 

consecutive facilities. Spark loaded in a CSV containing the zip code and its UTC offset, as seen 

in Table 3, and iteratively put them into a HashMap. Five digit zip codes 68701 and 68776 

belong in the same three digit zip code 687 general zone. Therefore, it was possible to assume 
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that 68701 and 68776 were in the same time zone. However, as shown in Table 3, some general 

zones, like 690, were split between two time zones and those were stored as five digit zip codes 

in order to distinguish the difference. As a result, the total number of key values needed to be 

stored was reduced to around 1000 values instead of approximately 43,000 five digit zip codes.  

 

 

Table 3: Example of zip codes and their UTC offset 

Zip Code UTC Offset 

687 -6 

688 -6 

689 -6 

69001 -6 

69020 -6 

69021 -7 

69022 -6 

69023 -7 

 

Spark requires that each row of data, or tuple, be independent of the others. Once 

zipcodes and offsets were accessible, it was necessary to group all events by their tracking id in 

order of when each of its scan event occurred. Together they hold information about the 

package’s path that would not be apparent if the scan events were viewed independently.  

The scan event data in Table 2 was converted into tuples with tracking id as the key value 

and an ordered list of ScanInfo objects that contained the event date time, facility 5-zip, facility 

3-zip, mail class, destination 3-zip, and event code per scan event. For example, if tracking id 

had six scan events, those six rows of data would be converted into (‘2660000005’, 

[ScanInfo1,...,ScanInfo6]).  

From there, each tuple’s list of ScanInfo objects created GoesTo and TimeRecord objects 

by iteratively by taking the current ScanInfo and succeeding ScanInfo. GoesTo contained a from-

facility 5-zip, to-facility 5-zip, and final end destination 3-zip. TimeRecord contained a from-
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facility 5-zip, to-facility 5-zip, arrival hour based off the event’s data time, and transit time in 

hours from the from-facility to the to-facility.  

Once the data was converted into these independent tuples, Round One and Round Two 

were the stages where VPO scan event data was transformed and reduced. The local machine 

could only handle around two million rows of VPO data before it ran into an out of memory heap 

space problem. To counter this problem, it was necessary to perform the transformations and 

reductions in two rounds.  

Table 4: Round One and Round Two output for GoesTo by Spark 

From Facility To Facility End Destination Occurrences 

33480 33054 374 1 

92025 92029 859 1 

99224 98903 989 56 

03063 15086 256 1 

92199 92121 953 1 

 
Table 5: Round One and Round Two output for TimeRecord by Spark 

From Facility To Facility Arrival Hour Transit Time Occurrence 

77315 67276 6 93 1 

07699 33605 2 45 4 

32824 33054 23 39 2 

89510 89701 9 3 2 

90052 02904 2 94 1 

 

In Round One, Spark would read in a CSV file with scan event data as shown in Table 1, 

that contained approximately two million rows. Then, Spark would map the GoesTo object to a 

key-pair tuple where the key was (fromFacility, toFacility, endDest) and the value was 1 for the 

initial occurrence. Once all GoesTo objects were mapped, Spark would reduce the tuples by key 

and write them to a CSV as shown in Table 4 (99224, 98903, 989, 56) indicates that the key 

(99224, 98903, 989) was seen 56 times in the data given by a CSV file. The same method was 
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used for TimeRecord objects but the key was (fromFacility, toFacility, arrivalHour, transitTime) 

as shown in Table 5. Each CSV file produced approximately 275,000 rows of GoesTo reductions 

and 380,000 rows of TimeRecord reductions. One group contained 31 CSV files, and this 

group’s results, as partially shown in Table 4 and Table 5 would later be used in Round Two for 

another reduction with other groups to further reduce the number of total rows.  

Reducing the rows allowed for two things: (1) aggregation of occurrences for a particular 

path, and (2) condensation of total rows of data per CSV file. As stated earlier, there was a 

memory limit to how much data the local machine could handle at a time so reducing the rows 

again meant overall Spark could process more VPO data. Round Two would take the 8,525,000 

rows of a Round One GoesTo group and reduce it to about 3,193,000 rows. 11,780,000 rows of a 

Round One TimeRecord group would be reduced to 4,712,000.  

 Once Round Two was complete, Spark would read in all Round Two groups, GoesTo and 

TimeRecord. These tuples were joined by a (fromFacility, toFacility) key and mapped to the 

final rows like Table 2, which were readily usable by Neo4j.  
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5.1.4 Database Design 

 

Figure 5: Neo4j Schema Model 

 

 Once the CSV files were processed by Spark, the rows of data were loaded into Neo4j 

using the Neo Fast Import Tool. As shown in Figure 5, in the Neo4j schema, nodes are Facilities, 

each representing a post office or distribution center.  A facility contains its five digit zip code, 

three digit zip code, and a boolean for whether or not it has been visited.  Five digit zip codes are 

unique for each facility in the USPS network and can be used as a primary key. The visited 

boolean is used in shipping probability calculation to remove graph cycles.  To increase query 

efficiency, an index on the facility’s five digit zip code was added to the database. Aside from 

the facility zip code information, all other information need for shipping time prediction was 

stored on the relationships connecting facilities.  Each relationship, called ShipsTo relationships, 

provided a direct connection between two Facility nodes. They each have a five digit string for 

its from-zip code, five digit string for its to-zip code, an array of three digit zip code strings that 

each represent the final end destination zip codes a package has traveled with that corresponding 

Facility 
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from-zip and to-zip facility zip codes, an array of integers of occurrences that directly correspond 

to the end destinations in the previous array, and a string of transit time occurrences indexed by 

arrival hour at the from-facility. The importance of having this data for each arrival hour was 

discussed in Section 2.2.2.  The data needed to be saved as a string because Neo4j did not 

support an array containing anything other than primitive data types.  Figure 6 and Figure 7 

respectively show the information stored in a Facility node and a ShipsTo relationship in Neo4j. 

As explained in Section 5.1.3, in Figure 7, the listOfProbs signifies that based on historical data, 

one package traveling from node 01609 to node 01605 with final end destination of 016 arrived 

at node 01609 at the 22nd hour of the day and took 65 hours to travel.  

 
Figure 6: Facility node in Neo4j 

 
Figure 7: A simple ShipsTo relationship in Neo4j 
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5.1.5 Business Layer 

 The business layer of the prototype had two purposes: (1) querying for path information 

regarding specific Facility nodes and ShipsTo relationships from Neo4j in a hashmap, and (2) 

calculating time distributions using data stored in the hashmap and the mathematical formulas 

described in Section 2.2.2. The business layer was packaged into a .jar dependency and  

imported by the HTTP Server to fetch time distributions based on user input. 

 The first purpose of the business layer was to be to connect with Neo4j and pull data 

based on the user input from the HTTP server. To do this, Neo OGM, an object graph mapping 

library, was used. In order to calculate the time distribution, all Facility nodes and ShipsTo 

relationships connecting the drop-off start zip code to the final end destination zip code were 

queried and stored them in a Graph object.  

The first version of the business layer pulled down routes, the relationship and node 

connections between zip codes, of any size in one Neo4j query.  However, with only a subset of  

about 70,000 Facility nodes and 300,000 ShipsTo relationships, this query ran out of memory on 

the heap to store the results. When the heap size was increased, the query took over a minute to 

finish, which was unacceptable based on the Technical Requirements defined in Section 3.2.  

The first step in optimizing the time and memory used to find routes in Neo4j was limiting the 

length of potential routes Neo4j would return. To find an appropriate maximum query length, we 

examined how many stops, or jumps, a each package made when traveling through the USPS 

network.  Figure 8 shows a histogram of the number of jumps a package made on four months of 

USPS data. Based on the data, 99% of packages are delivered within 7 stops or less. However, 

there were outlier packages that traveled to more than 7 facilities. A maximum of 0.005% of 

packages could be disregarded from the path search. This corresponded to paths of up to a length 

of 11 stops. Therefore, the Neo4j query only looked for paths with lengths no more than 11. 

Despite these optimizations, the query still took 12-15 seconds to return results, which was 

considered too slow.  In addition, running the updated query on the a fully populated database of 

70,000 Facility nodes and 3,500,000 ShipsTo relationships resulted in the same memory and 

speed problems discussed earlier. 
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Figure 8: A histogram of facilities a package stops at 

 

To resolve the issues, we used a profile tool to determine the bottlenecks in the Neo4j 

query.  Figure 9 shows the breakdown of the Neo4j query using the profile tool. 
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Figure 9: Profile of a Neo4j Path Query 

 

The profiler shows that the PatternMatcher, which gets the routes between the initial start 

Facility node and final end destination Facility node, hits the database the most. The query 

extracted 485 rows (nodes and relationships combined) but only returned 3 rows after filtering.  

This was because the query was designed to get all routes between start and end nodes before 

filtering these routes to return only those shipping to the specified end destination zip three 

region. If the query were to filter out routes as it searched during the PatternMatcher step, instead 

of after, it could eliminate a huge portion of the database hits, which in query shown in Figure 9 

was over 99% of them.  The final version of the Neo4j query filtered paths as it searched, 

improving the speed of the query to return in < 1 second on most queries.  



 

 

 

38 

Once the query returned the desired paths, it stored the ShipsTo relationships and Facility 

nodes in a Graph object, which was then used by the TripCalculator to perform the convolution 

math described in Section 2.2.2. TripCalculator’s most important methods were pathSearch() 

and timeSearch(), which performed the convolution for the next facility a package would jump to 

and the hour it would arrive, respectively.  Pseudocode for these functions was as follows:  

pathSearch Method 

pathSearch(Facility currentFacility, int arrivalHour, double probability,  
           int transitHours){ 

   ... 
    if (currentFacility is endFacility) 
        addTransitHoursAndProbabilityToAnswer(transitHours, probability); 
 
    else 
        for (Path nextPath in  currentFacility.getNextPaths()){ 
            probability_next_step = occurrences_of_nextPath / total_occurrences; 
            timeSearch(nextPath, arrivalHour,  
                      probability_next_step * probability, transitHours);  
        }    
} 

 

timeSearch Method 

timeSearch(Path nextPath, int arrivalHour, double probability,  
           int transitHours){ 
   ... 
    get_time_distribution_for_arrival_hour(); 
 
    for (int shipTime in time_distribution_fo_ arrival_hour){ 
        probability_arrival_hour = occurrences_of_shipTime / total_occurrences;  
        pathSearch(nextPath.toFacility(), (arrivalHour + shipTime) % 24), 
                   Probability * probability_arrival_hour,  
                   transitHours + shipTime); 
    }   
} 

 

These functions recursively called each other, accounting for every possible path at every 

possible arrival hour of a package and weighting the probability appropriately at each step.  Only 

when pathSearch() reached the endFacility of the Graph was the probability and transit hours 

added to the distribution that was sent to the HTTP server. While the pseudocode covered the 

essential logic in calculating shipping time probabilities, for simplicity's sake, it omitted the steps 

to determine whether a graph is in a cycle.  In that case, the probability of a cycle was added to 
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an “unknown time” field. The pseudocode also omitted cases where no time distribution exists 

for packages arriving at a particular arrival hour. In this case, the adjacent arrival hour 

distributions was combined and used instead.  These techniques were used to account for rare 

edge cases and data scarcity issues.  Once the time distributions were calculated by the business 

model, they were returned to the HTTP server.  

5.1.6 HTTP Server and API Design 

 The HTTP server of the predictive shipping prototype was built using the RESTful 

architectural style. The server instance was run through Embedded Jetty and overlaid with 

Apache CXF to handle RESTful web services.    

The server’s base Uniform Resource Locator (URL) was hosted at  

 

http://localhost:{port number}/predict/v1/ 

 

and users could access the prototype’s frontend, demo User Interface here as well.  

 

 

Figure 10: Diagram of a request to and a response from HTTP server 

 

The server allowed users to make requests to the prototype at a GET endpoint and a 

POST endpoint. As shown in Figure 10, the server parsed query parameters for GET requests 

and JSON objects for POST requests.  Once the request was processed in the business layer, the 
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server returned a JSON object with the delivery hours to probability percentage distributions. 

Users made requests at the following URL: 

 

http://localhost:{port number}/predict/v1/query  

 

1. POST request with parameters required by the API, formatted in a JSON object 

2. GET request with parameters required by the API, formatted as query parameters in the 

URL 

 Table 6 shows the parameter names, values, and descriptions for the GET and POST 

requests. Example requests and user documentation can be found in Appendix A. 

 

Table 6: Parameters of JSON object for POST 

Parameter Name Parameter Type Restrictions/ 

Requirements 

Description 

originZipFive String Five numerical digits   Five digit zip code of 

origin facility 

destZipFive String Five numerical digits Five digit zip code of 

end destination 

dropOffDay String Full name of day, 

case insensitive 

Day of week (also 

accepts weekend days) 

dropOffHour String Two digits for parsing Military format 

between 00-23 

mailClass String FCPS (First Class 

Parcel Service) - 

currently only has 

FCPS data in 

database 

The mail class of the 

parcel 

 

  

 When a request was made to the HTTP Server, there were two main classes which were 

vital to the handling of the input.  Upon starting the server, ServerStart, which contained the 

main class to instantiate the server, loaded into memory a hashmap named zipOffsetMap. This 

Map contained a mapping of every valid, five-digit USPS zip code and its associated 
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Coordinated Universal Time (UTC) offset.  This was extremely important for the handling of the 

input because the time distributions stored in the system’s database were stored in UTC time.  

UTC time is considered “the world’s standard time” and was the basis that the 24 hour time zone 

was centered around (UTC, 2017).  

 The second integral class in the server was MainPostQuery.  Main post query contained 

all of the REST API calls supported by the server.  Each separate RESTful function was denoted 

with the “Path” parameter with associated path from the top level of the server.  The function 

following the Path parameter contained the tasks executed when a correct request was made to 

that path in the server.  Also inside the MainPostQuery class were helper functions which 

convert the hours from the aforementioned zipOffsetMap. 

 Upon receiving the results back from the server, MainPostQuery also contained two 

helper functions, convertMapToJson() and convertToFrontEndJson().  These functions 

converted the return results to JSON objects that were passed back to the user and were 

translated for various business objectives.  The latter of the two functions is solely used to 

convert the results to a JSON object that is interpreted by the demo user interface. 

 

38: “0.2” 

39: “0.2” 

42: “0.1” 

55: “0.4” 

57: “0.1” 

-1: “0.0” 

Figure 11: Sample time distribution JSON Object output by the server 

 

Once the request is made to the server and the prototype has completed the probabilistic 

computation, the server outputs a JSON Object containing the time distributions with their 

associated probability.  Figure 11 above shows an example of an output JSON sent back after a 

request from the server.  The package has a 20 percent chance, 0.2 probability out of 1, that the 

parcel will get from its origin to destination location in 38 hours.  The -1 hour is the margin of 

error.  To be as accurate as possible, instead of ignoring outliers or pumping up other 

probabilities when there is a data scarcity, we send those percentages to the error variable -1 to 
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not skew the results. There was enough data for that path where the error variable was 

unnecessary and therefore has a value of 0. 

5.2 Testing Design 

 This section focuses on the testing procedures performed to ensure the quality and 

correctness of the implementation. These included JUnit testing, load balancing, and accuracy 

validation.  

5.2.1 JUnit Testing 

 The Spark engine, business layer, and HTTP server were each unit tested thoroughly to 

ensure that each component was implemented correctly and producing the results that were 

expected.   

Spark Engine  

 Since the final results produced by Spark highly depended on the original full paths of 

packages, it was necessary to ensure that events were ordered by date time and belonged to their 

respective tracking id. If the engine did not pass this test, then there could be tuples that had 

incorrect information of from-facility and to-facility as well as total transit time. Scan events 

were tracked in local time of the facility’s time zone. Tests were run to check that date times 

were being properly matched with their correct time zone and converted accordingly. Also, there 

were tests to see that a time was correctly converted to its hour. For example, 12:01 would return 

12 and 11:59 would return 11. If these tests failed, then again, transit times would be inaccurate. 

Finally, unit tests were written to ensure that total occurrences per (fromFacility, toFacility, 

endDest) and (fromFacility, toFacility, arrivalHour, transitTime) were being aggregated and 

counted correctly.   

Business Layer and Calculator 

Unit testing of the business layer was split into two testing classes, TestTripCalculator 

and TestNeoConnector. TestTripCalculator ran a variety of tests that generated a fake graph of 
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paths between start and end Facility nodes and calculated the time distributions to ensure the 

math returned the expected values. It also tested cases that had sparse time data and cycles in the 

graph to validate that those are handled correctly as well. 

 The second testing class, TestNeoConnector, populated the Neo4j database with test 

ShipsTo relationships and Facility nodes and pulled queried paths between them.  It also 

performed a distribution calculation to ensure that storing data and pulling it out of Neo4j does 

not have any unexpected results. 

HTTP Server  

 Unit testing for the HTTP server was focused on utilities as the server’s capabilities were 

thoroughly tested during load testing. The bulk of the server’s unit testing surrounded the testing 

of input to the server to make sure that bad input could not make it to the model and, by 

extension, divert resources that could be dedicated to other requests.  There were also unit tests 

that checked the sanitation of the drop off hour with its associated UTC offset based on the drop 

off zip code. These were to make sure correct data was passed to the business layer, which were 

directly used in the computation of shipping time distributions. The REST capabilities were 

tested during the load testing  

5.2.2 Load Testing 

 The results of a load test were response times from server requests based on the amount 

of requests being submitted over a period of time.  Continuing to increase the amount of requests 

could also be used to determine breaking points for a system or application.  Our purpose for 

load testing was to determine average response rates under different amounts of stress and 

compare those results to the goal from the technical requirements of around 50 milliseconds.   

5.2.3 Accuracy Validation 

 Once the prototype was completely implemented and unit tested, it was necessary to test 

the accuracy of the probabilities returned by the trip calculator in the business layer. Because the 

prototype gave probabilities of different shipping times instead of an overall average time, the 

accuracy validation of the model needed to be more complex  than a linear regression test with 

expected ship time and average actual ship time.  There were  two main demands of the accuracy 
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validation of the system: (1) determine whether a distribution calculation was  accurate, and (2) 

assure the system could give accurate answers for queries from actual users, not just historical 

test data.  These were accounted for using Kolmogorov Smirnov Test and Cross Validation 

Testing.  

Kolmogorov Smirnov Test 

As stated in the Background chapter, the K-S Test does not depend on the underlying 

function of the distributions it is comparing, and can be used to find differences in discrete 

distributions as well. The K-S Test was used to test the prototype and determine how “correct” 

the distributions produced by the prototype were versus distributions of actual package 

shipments. Python’s Scipy package has built in functionality for running this test, so all accuracy 

testing scripts was written in Python. To produce distributions and compare against those of the 

prototype, the test used popular zip-to-zip pairs with multiple arrival hour and transit time 

combinations, by querying Endicia’s Virtual Post Office Database. One shortcoming of this 

method it could not test every possible pair of zip codes entered. However, with enough zip-to-

zip combinations to model packages shipping over most of the country, correctly predicting 

those gave confidence that the methodology as a whole was correct as well. 

Cross Validation Testing 

While the K-S Test can check the differences between distributions, it does not give 

confidence that the prototype will predict real scenarios well.  To account for this, the system 

was cross validated on an independent data sets from the one it was built with.  The particular 

cross validation technique used on the system was K-Fold validation, where a the USPS scan 

event data was split into K sets and the model was trained on K-1 sets and tested against the 

remaining set, K different times. Figure 12 shows a representation of K-Fold testing, where the 

gray box is the test data set and the green boxes are the train set. 
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Figure 12: K-Fold Test Representation 
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6 Results 

In this chapter, we present the data and graphs generated by performance tests of each 

component of the system and also the accuracy tests described in Section 5.2. This includes 

memory and processing time results from each round of Spark processing, speed testing from 

various iterations of the Neo4j query, the results of load testing the HTTP server. Finally, the 

chapter shows the predictions and accuracy results for the mathematical approach used to 

calculate the shipping prediction time distributions. 

6.1 Spark Engine 

 Endicia’s VPO database contains billions of rows of USPS scan event data. Spark was 

able to process 15.5 million tracking ids, which is about 62 million rows of scan events, in 

memory at a time on our local machine. A local machine for this project is a Dell Latitude E6430 

with 8.00 gigabytes (GB) of Random Access Memory (RAM) and an Intel Core i5 central 

processing unit (CPU) at 2.70 Gigahertz (GHz) and an Intel Core i7 CPU at 2.90 GHz running a 

Windows 10 Operating System.  The total average time it took Spark to process this amount of 

data into Neo4j relationships was on average 37 minutes. Figure 13 shows the amount of time 

Spark took to process various amounts of scan event data. The relationship is linearly dependent 

on the number of VPO data rows with an R2 with 0.993. 

Figure 13: Processing time versus the number of VPO data 
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In Round One, Spark reduced the 62 million rows to approximately 21.3 million tuples. 

In Round Two, Spark reduced the 21.3 million tuples by 61.9%, or about 13.2 million tuples.  

For this subset of 62 million VPO rows, in the end, Spark produced approximately 

582,800 Neo4j relationships. Every relationship is unique by from-facility and to-facility. Figure 

14 shows that the number of VPO rows versus the unique Neo4j relationships grows linearly 

with an R2 of 0.993.  

 

Figure 14: Number of unique relationships versus number of VPO data rows 

6.2 Neo4j  

 As discussed in Section 5.1.5, there were several iterations of querying Neo4j before a 

fully populated database returned results quickly enough for the demands of the system.  This 

section shows the results querying a path between two zip codes in Neo4j for each optimization 

step of the data base, for test data, a partially populated database, and fully populated database.   

6.2.1 Test Data 

Table 7 shows the time (in milliseconds) that a NeoPath query takes on unit test data.  

More complicated paths take longer to load, so for this example the query loaded a path 

containing 4 nodes and 6 relationships. The unit test dataset contained 15 nodes and 30 

relationships.   Figure 15 shows an area graph of these results, showing the differences in query 
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time when an index was added to a Facility’s five digit zip code. With no optimization, queries 

were averaging 37.6 milliseconds. With an index on a primary key, queries were averaging 13.8 

milliseconds, which is 63.3% faster than the initial non-indexed query. 

 

Table 7: Time in milliseconds for Neo Path queries on Test Data 

 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average 

No Optimization 43 40 29 38 38 37.6 

Index Added 18 13 15 9 14 13.8 

 
Figure 15: Neo path query time with test data 

6.2.2 Subset of USPS Data 

Table 8 shows the time (in milliseconds) that a NeoPath query takes on a subset of the 

full US Postal Network, 70,000 facilities and 300,000 relationships.  For the next two 

experiments, the query is loading a path that returns 15 nodes and 23 relationships.  In this 

experiment, running a Neo4j Path query without a maximum length, index or non-indexed, both 

ran out memory. With a maximum path length of 11, the query was averaging at 13, 310.2 

milliseconds. To further reduce the amount of time for a query to complete, a filter was used on 

the paths, which resulted in an average of 339.4 milliseconds. Figure 16 shows an area graph of 

these results, showing the difference filtering paths during a query causes. 
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Table 8: Time in milliseconds for Neo Path queries on a subset of USPS Data 

 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg 

No Optimization 

Out of 

Memory 

Out of 

Memory 

Out of 

Memory 

Out of 

Memory 

Out of 

Memory  

Index Added 

Out of 

Memory 

Out of 

Memory 

Out of 

Memory 

Out of 

Memory 

Out of 

Memory  

Max Path Length 
13046 14135 12886 13550 12934 13304.2 

Paths Filtered 
231 435 412 287 332 339 

 

 
Figure 16: Neo query time with a subset of USPS data 

6.2.3 Four Months of USPS Data 

Table 9 shows the time (in milliseconds) that a NeoPath query takes on 2.1 million 

relationships, which was accrued from 500 million scan events from US Postal Network.  In this 

experiment, running a Neo4j Path query without a maximum length, index or not, both ran out 

memory. However, when paths were filtered, the query completed with an average of 866 

milliseconds. Figure 17 shows an area graph of these results, showing the difference filtering 

paths during a query causes. 
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Table 9: Time in milliseconds for Neo Path query on 2.1 million relationships 

 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Avg 

No Optimization Out of Memory Out of Memory Out of Memory Out of Memory Out of Memory  

Index Added Out of Memory Out of Memory Out of Memory Out of Memory Out of Memory  

Max Path Length Out of Memory Out of Memory Out of Memory Out of Memory Out of Memory  

Paths Filtered 833 821 859 915 902 866 

 

 
Figure 17: Neo query time with a subset of USPS data 

6.3 HTTP Server Load Testing 

The HTTP Server was load tested in 3 trials with requests of varying complexity.  The 

request’s complexity was based on the number of nodes incorporated in the network between the 

origin and destination zip codes.  After testing of the Neo4j server, the average number of nodes 

in a network was 4.  Using this statistic, we developed an extremely complex query with 28 

nodes in the network, a medium complexity request with just over the average at 6 nodes, and a 

simple request with 3 nodes in the network.  Each trial, no matter the complexity or amount of 



 

 

 

51 

requests, was run with a clean start of the server.  This means that after every trial the server was 

stopped and restarted.  Further discussion about the results of the load testing can be found in 

section 7.3. 

 

 
Figure 18: Server response times for a very complex query 

 

Starting out with the most complex requests in the system, a complex query was run in 

load testing capacity at variable number of requests sent consecutively over a period of 1 minute.  

Figure 18 shows the results of a complex request to the system over a variable number of 

requests. This complex-level request went through 28 nodes with 56 relationships which is much 

higher than the average nodes a package passes through of 4 nodes.  This request averaged well 

over our goal of 50 milliseconds but interestingly peaked at around 800 requests.  A request with 

these many nodes is highly unlikely to be requested but was useful to see how our system would 

hold up under extreme loads.  On the last trial of 1000 requests, 106 of them were dropped by the 

server when the load reached capacity but were then rerun to make the last trial 1106 total 

requests.  Only the response times for the successfully handled requests were taken into account. 
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Figure 19: Server response times for an average complexity query 

  

 Figure 19 shows the results of load testing the server on a medium complexity request.  

This request calculated distributions from 6 nodes with 9 total relationships.  This was still over 

the average of 4 but was not an uncommon amount of nodes.  This request performed multitudes 

better than the complex query with the average time for 1000 requests matching up to about 300 

requests from the complex query.  The averages for the medium complexity query were all over 

the project goal of 50 milliseconds with even the fewer number trials running around 10 times 

that figure.   
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Figure 20: Server response times for a simple query 

 

 Figure 20 shows the results of load testing the server on a request of simple complexity.  

This request contained a path with 3 nodes with 2 relationships which is just under the average of 

4 nodes.  This request performed much closer to our project goal of 50 milliseconds than the 

complex or medium complexity requests.  Every request in the simple query trials took under 

200 milliseconds with the lower numbers even reaching under 100 milliseconds. 



 

 

 

54 

 
Figure 21: Average Server response times for an average complexity query 

 

 Digging deeper into the medium complexity query, which was considered close to 

average on nodes and relationships in the processed network, Figure 21 shows the results of 

running multiple trials of a variable number of requests.  For each number of requests data point, 

three trials were run of the respective value using the medium complexity query the server.  This 

was the same request used to run the analysis in Figure 21 described above.  None of the trials 

produced results close to the project goal of 50 milliseconds but the trials with 100, 200, and 400 

produced averages of around 400 milliseconds per request which was the closest to 50 but still 8 

times larger.  

6.4 Predictions and Accuracy Testing 

Figure 22 shows two predicted shipping time distributions the prototype produced for a 

package shipping from 55121 (St. Paul, MN) to 11747 (Melville, NY) based on the hour the 

package was dropped off. A package that was dropped off at 8AM has essentially a 99% chance 

that it will arrive to Melville in 31 hours or less. A package that was dropped off at 1PM in St. 

Paul has about a 25% chance it will arrive in 49-52 hours instead of 31 hours or less.  
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Figure 22: Predicted shipping time distributions for a package shipping from 55121 (St Paul, MN) to 

11747 (Melville, NY) 

 

As discussed in Section 5.2.3, we used the K-S test to evaluate the accuracy of the 

system. To do this, we identified 10 of the most common from-zip, to-zip, and drop off hour 

tuples from our available data in Neo4j and chose those whose paths covered most of the 

country. For a tuple to be considered, it had to have happened at least occurred 300 times in the 

data.  Table 10 shows the results for these 10 pairs, as well as their D value from the K-S test.  

The D value is the max between the cumulative distribution functions of the actual distribution 

and tested distribution.   
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Table 10: Results from accuracy testing 

From Zip From Location To Zip  To Location Hour of Day D Value  

33065 Pomona Beach, Fl 89135 Las Vegas, NV 22 0.32 

55902 Rochester, MN 75001 Dallas, TX 16 0.36 

93721 Fresno, CA 80203 Denver, CO 17 0.27 

55902 Rochester, MN 85014 Phoenix, AZ 16 0.31 

91311 Chatsworth, CA 97204 Portland, OR 19 0.21 

19134 Philadelphia, PN 20018 

Washington, 

DC 16 0.26 

91311 Chatsworth, CA 98103 Seattle, WA 18 0.18 

55902 Rochester, MN 46208 Indianapolis, IN 16 0.21 

99219 Spokane, WA 55408 

Minneapolis, 

MN 20 0.26 

64030 Kansas City, KS 10010 Manhattan, NY 19 0.13 
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7 Discussion   

 This chapter focuses on the analysis and extrapolation of the results shown in the 

previous chapter. These include discussions for Spark, Neo4j, HTTP server, and predictions and 

accuracy tests.    

7.1 Spark 

As mentioned in Section 6.1, Spark was able to process 62 million rows of scan event 

data to Neo4j relationships in approximately 37 minutes. Seven months of scan event data is an 

equivalent of 1.2 billion rows. This means that Spark is estimated to process 1.2 billion scan 

events to Neo4j relationships in 11.8 hours, which is over 50% faster than the previous 

benchmark of 24 hours. The processing time can be further reduced if the Spark engine can run 

on multiple cores and have more resources for memory and computing power. This will 

essentially divide the work among the cores and reduce the time with many cores working.  

As shown in Figure 14, the number of VPO scan events versus the number of unique 

Neo4j relationships appears to be a linear relationship. However, because there is a finite number 

of Facility nodes in the USPS network, eventually with enough scan events, all relationships can 

be accounted for. In Figure 23, the X and Y variables signify the total amount of scan event data 

and the number of unique relationships when it begins to be more constant than linear. After this 

point, the only memory coming into the database will essentially be additions of the end 

destination occurrences and time distribution occurrences as the actual information about the end 

destination and time distribution themselves will most likely already exist in the database. The 

benefit is that if Endicia can find the memory for the Y relationships, then it will know that they 

will not face significant memory problems.  
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Figure 23: Graph showing the projection of unique Neo4j relationships 

7.2 Neo4j 

 Based on the results presented in Section 6.2, the steps taken to optimize a Neo4j path 

query to run on a full USPS database.  While the first version of the path query was first run on 

unit test data, its response time was improved by adding an index to each facility.  When Neo4j 

was partially populated with data, the query had to be given a maximum length, which addressed 

the database running out of memory before completing the query.  The last step of optimization 

of Neo4j path query was filtering unused paths during the query, which greatly improved 

response time on a sparsely populated database, and was the only version of the query that did 

provided results in a completely populated database. 

7.3 HTTP Server 

 

 The load testing of the HTTP Server produced results that were consistently over the 

project goal of 50 milliseconds.  There were some interesting trends in the results as well as 

some observations and ideas which are relevant when considering why the results did not meet 

the goal.   
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 The first interesting trend was that the trials with 100 requests were usually similar or 

greater than the next trial with double the number at 200 requests.  This was against the trend of 

the other data points on the graphs which typically followed a linear increase as the number of 

requests increased.  The second data point that bucked the linearly increasing trend was the final 

round of testing on the most complex query with 1000 requests.  When running this specific trial, 

a chunk of each trial were dropped due to oversaturation of the server.  These response times 

were not taken into account in the graphs and data [presented in the results section but it is 

important to note that each time the trial was run it occurred.  Subsequently after noticing this 

trend, it could not be definitively concluded whether the portion of time when the server was 

dropping requests had an effect on the remaining requests that were rerun to reach the 1000 

mark. 

 A second interesting factor when considering the results is the number of nodes and 

relationships in the requests used for testing.  The average number of nodes and relationships 

contained a high degree of standard deviation and become statistically unimportant when 

considering the average number of nodes was 4 but there are paths with as many as 30 nodes.  

While we could compute the average nodes and relationships, we were unable to effectively test 

whether there was a relationship between the number of nodes or the number of relationships 

affecting response time.  Further, we were not able to thoroughly test whether increasing one or 

both of these variables was the driver behind response time.  We were also unable to definitively 

determine whether those two variables were affecting response time over other variables such as 

less relationships but with more dense time distributions along those connections.  For these 

reasons it was difficult to choose zip codes and times to use in the load testing because we 

wanted to try requests of varying complexities to make sure our testing was thorough.  The zip 

codes we ended up testing were for saturation of relationships which accounts for the big 

differences in number of nodes and relationships over the three requests.  

 

7.4 Predictions and Accuracy Testing 

 Figure 22 was a good example that shows how drop off time for package can affect the 

probability that it will arrive at its destination in a specific time. If packages ship from St. Paul to 

Melville are dropped early at around 8AM, then it will almost always arrive in 31 hours or less 
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as opposed to sometimes arriving in 49-52 hours. If a business wants its packages to arrive to its 

customers in under 48 hours, based on these predictions, they can use first class and be confident 

that 99% of the time the package will arrive on time if they drop packages off at 8AM instead of 

1PM.  

 Based on the results in Table 10, the D values given by the K-S test for the 10 

distributions tested ranged from 0.13 to 0.36.  For context, two distributions that are entirely 

different would have a D value of 1.0 and distributions that have a 50% chance they came from 

the same sample have a D value of 0.5. Results like Minnesota to Dallas example with a D value 

of 0.32 signify that there’s a 68% confidence that the predicted time distribution matches the 

actual time distribution. However, the Manhattan to Kansas City example, with a D value of 

0.13, shows that in some cases the prototype gives accurate predictions with a 87% confidence.  

Figure 24 is a histogram of the time distributions predicted and generated between these two 

facilities. 

 

 

Figure 24: Graph showing of predicted vs actual time shipping from Kansas City to Manhattan 

Ultimately, the accuracy testing that was performed gives close, but not perfect 

predictions.  Further research needs to be done to isolate poor results and determine if any are 

shortcomings results of testing techniques. Due to time constraints, the K Fold testing discussed 

in methodology was not performed, and the system was only tested with a set of training data 



 

 

 

61 

from 2015, and a set of test data from 2014.  This data is not random, and the time difference 

between the data the distributions were being built on could contribute to higher D values. 

 A second factor to take into consideration about whether the prototype produced accurate 

enough results is determining the definition of accurate.  While the K-S test can compare discrete 

distributions, and can determine which predictions are better than other predictions, there is no 

threshold for what is good enough to show customers.  Also, K-S test examines whether two 

distributions came from the same larger distribution.  The prototype is producing a distribution 

that should mirror the actual one, but they do not come from the same dataset, so the 

expectations are not the same.  For this reason, a higher D value might be deemed appropriate. 
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8 Conclusions and Future Work   

 The goal of this project was to was to produce a validated prototype that forecasts 

delivery time distributions to optimize shipping costs. We needed to be able to process million 

rows of scan event data, load millions of relationships into the Neo4j database, and query the 

database. We achieved this accomplishing our three objectives: (1) designed and implemented a 

predictive shipping prototype, (2) optimized the prototype to production standards, and (3) 

validated the mathematical approach used to calculate the shipping time distributions.  

At the conclusion of our project, we had a full working prototype, used Spark to 

efficiently process the data, modeled the USPS network in Neo4j, and produced somewhat 

accurate predictions with query speeds averaging under two seconds. Based on our prototype’s 

predictions, drop off time has a significant impact on the overall shipping time for a package.  

  

A summary of the notable performances by Spark, Neo4j, and HTTP server as well as 

accuracy testing on our prototype is as follows, 

● Spark was able to process VPO scan event data efficiently. With about 558 million rows, 

our prototype was able to process them into 2.32 million Neo4j relationships in 1462427 

ms, or about 24.4 minutes, on a single local machine. With multiple machines, it would 

be possible to reduce the processing time because of Spark’s ability to parallelize. 

Regardless, Endicia would essentially only need to perform processing of this magnitude 

once because it is the initial loading of the database. 

● The prototype’s Neo4j query was able to return results for facilities for even some of the 

most complex paths in the database by filtering the paths to return only those shipping to 

the specified end destination zip three region. For instance, paths that had around 30 

facility hops still on average returned under 2 seconds.  

● The HTTP Server was able to successfully communicate with all of the components in 

the system and effectively pass information back and forth between itself and the 

calculator and business layer.  It was able to handle average complexity requests in a 
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reasonable amount of time and, even flooded with very complex requests, was able to 

return correct and accurate shipping time distributions. 

● Based on the D values of the K-S test, the distributions produced by the prototype do not 

give enough confidence to show the results to customers of Endicia.  The results can 

likely be improved with more data and adding other factors to the model, such as 

seasonality. More research also needs to be done to determine what maximum D value is 

appropriate to show customers. 

 

Our prototype is very adaptable and maintainable because of the way the system 

architecture was designed. However, there are a lot of potential areas for extension and 

improvements.  

● To further validate the accuracy of the shipping predictions, the prototype can undergo 

cross validation testing.  

● All the results came from running the prototype on a local machine. The prototype 

deployed into the cloud using Microsoft Azure, Amazon Web Services, or Google Cloud 

may improve performance. These services provide a greater number of resources in both 

memory storage and processing power, which can increase the performance of both 

Spark and Neo4j. Spark can utilize the multiple cores in parallel to drastically improve 

the time it takes to process the VPO scan events into Neo4j relationships. The local 

machine could not handle querying Neo4j when there were two million relationships so 

another advantage of the cloud is to be able to handle the amount of memory needed to 

handle the greater number of relationships.  

● Another improvement is live updating the Neo4j database. Endicia’s VPO database gets 

updated with new USPS scan event data every 15 minutes. Spark has a tool called Spark 

Streaming, which allows an input data stream to get batched and sent to the Spark engine 

to be processed. The benefit of streaming new data into Neo4j would mean the model is 

always up to date.  

● A final improvement is extending the prototype to account for other variables that affect 

shipping time, such as seasonality, day of week the package was dropped off, and mail 

class. The prototype’s system architecture and design allows for minimum refactoring of 
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the source code to factor in these variables. For instance, a Priority mail class can be 

easily modeled by simply giving Spark scan event data mailed via Priority.  
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Appendix A - Server Documentation, Version 1 

Input 

 The Server currently operates on localhost HTTP ports.  It is hardcoded to port 9090 but 

allows for the user to pass in a port number when executing the jar.  The base path of the server 

after building and running the server is:  

 

       http://localhost:{port number}/predictive/v1/ 

  

The Predictive HTTP Server currently supports two different REST calls to query the 

model.  The path to query the model, relevant to the base path is “/query”.  Written out in its 

entirety, the path for a model query request is: 

 

       http://localhost:{port number}/predictive/v1/query 

 

The two relevant REST calls which will query the model are:  

 

1) POST request which takes in a JSON object 

2) GET request which takes in query parameters 

 

 Both of the requests to query the model take in the same parameters and will return the 

same JSON Object.  

 

 

Parameter Name Parameter Type Restrictions/ 

Requirements 

Description 

originZipFive String Five numerical digits   Five digit zip code of 

origin facility 

destZipFive String Five numerical digits Five digit zip code of 

end destination 
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dropOffDay String Full name of day, 

case insensitive 

Day of week (also 

accepts weekend days) 

dropOffHour String Two digits for parsing Military format 

between 00-23 

mailClass String hard coded to FCPS The USPS mail class of 

the parcel 

 

Output 

 Upon sending a request to the server with the input parameters in the preceding table, the 

server will query the model and return back to the requesting entity a JSON object.  The JSON 

object contains a distribution of hours to deliver the package with a corresponding probability.  

An example of the output JSON is below and can be read as the number of hours on the left side 

of the colon and the probability (out of 1.0) on the right. 

 

38: “0.2” 

39: “0.2” 

42: “0.1” 

55: “0.4” 

57: “0.1” 

-1: “0.0” 


