
Text Summarization using Natural Language Processing

A Major Qualifying Project Report

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

Submitted by: Ankit Kumar

Zixin Luo

Ming Xu

Submitted to: Professor Mark Claypool

Worcester Polytechnic Institute

Sponsoring Organization: Juniper Networks

Sponsors: Steve Tufts

Aditya Sood

Santosh Aditham

Ram Kulathumani

Trung Nguyen

Date: March 2rd, 2018

This report represents the work of WPI undergraduate students submitted to the faculty as

evidence of completion of a degree requirement. WPI routinely publishes these reports on its

website without editorial or peer review. For more information about the projects program at

WPI, please see http://www.wpi.edu/academics/ugradstudies/project-learning.html

http://www.wpi.edu/academics/ugradstudies/project-learning.html

 i

Abstract

Juniper Networks develops and markets networking devices along with service

agreements. To provide a better customer experience, Juniper Networks maintains large datasets

of articles. Each of these articles can be long and verbose. By having a text summarization tool,

Juniper Networks can summarize their articles to save company’s time and resources. The goal

of this Major Qualifying Project was to create a text summarization tool which can help

summarize documents in Juniper’s datasets. Following the goal, we developed a deep learning

model for text summarization and trained it on Juniper’s datasets. Using the trained models, we

created an end to end web application which can take an article as input and generate a summary.

ii

Table of Contents

Abstract ... i

Table of Contents .. ii

1.0 Introduction ………………………………………………………………………… 1

2.0 Background ... 3

2.1 Natural Language Processing ... 3

2.2 Text Extraction.. 3

2.2.1 Textrank ... 3

2.2.2 TF-IDF ... 4

2.3 Text Abstraction.. 4

2.3.1 Artificial Neural Network .. 5

2.3.2 RNN and LSTM ... 5

2.3.3 Word Embedding ... 8

2.4 ROUGE-N and BLEU Metrics ... 8

2.5 Libraries .. 9

2.5.1 Keras .. 9

2.5.2 NLTK ... 9

2.5.3 Scikit-learn ... 9

2.5.4 Pandas .. 10

2.5.5 Gensim ... 10

2.5.6 Flask ... 10

2.5.7 Bootstrap .. 10

2.5.8 GloVe ... 10

2.5.9 LXML .. 11

3.0 Related Work .. 12

4.0 Methodology .. 15

4.1 Choose and clean datasets ... 15

iii

4.1.1 Datasets Information .. 15

4.1.2 Data Cleaning... 17

4.1.3 Data Categorization ... 19

4.2 Extractive Summarization ... 21

4.2.1 Algorithms ... 21

4.2.2 Control Experiment .. 22

4.2.3 Metrics ... 22

4.3 Abstractive Summarization ... 22

4.3.1 Preparing the dataset .. 24

4.3.2 Embedding layer .. 25

4.3.3 Model ... 26

4.4 Test and compare among different datasets .. 29

4.5 Tune the model ... 29

4.6 Build an end-to-end application .. 30

5.0 Results .. 31

5.1 Data Cleaning and Categorizing ... 31

5.2 Extractive Model Performance ... 33

5.3 Abstractive Model Performance ... 35

5.3.1 Stack Overflow Dataset: Question Body to Title .. 36

5.3.2 Juniper Knowledge Base Dataset: Solution to Title .. 39

5.3.3 Juniper Knowledge Base: Extracted Solution to Title 40

5.3.4 Juniper JIRA Dataset: Description to Summary .. 42

5.3.5 Juniper JTAC Dataset: Description to Synopsis .. 44

5.4 Performance Comparison Among Datasets .. 46

5.5 End-to-End Application .. 47

6.0 Conclusion ... 49

Reference ... 51

Appendix A: Extended Technical Terms .. 55

 1

1.0 Introduction

Text summarization is the process of generating short, fluent, and most importantly

accurate summary of a respectively longer text document (Brownlee, 2017a). The main idea

behind automatic text summarization is to be able to find a short subset of the most essential

information from the entire set and present it in a human-readable format. As online textual data

grows, automatic text summarization methods have potential to be very helpful because more

useful information can be read in a short time.

Juniper Networks is a networking company that manufactures and supports enterprise-

grade routing, switching and security products as well as service agreements (Juniper.net, 2018).

In order to satisfy the customer base, Juniper tries to resolve issues quickly and efficiently.

Juniper Networks maintains a Knowledge Base (KB) which is a dataset composed of questions

from customers with human written solutions. The KB contains over twenty thousand articles.

The company is currently developing a chatbot to provide 24x7 fast assistance on customer

questions. The chatbot can search queries asked by the users in the KB and fetch links to the

related articles. Juniper Networks is looking for ways to be able to automatically summarize

these articles so that chatbot can present the summaries to the customers. The customers can then

decide if they would like to read the entire article. The summarization tool could be further used

internally for summarizing tickets and issues created by Juniper’s employees.

The goals of this Major Qualifying Project are to research methods for text

summarization, create an end-to-end prototype tool for summarizing documents and identify if

Juniper Networks’ datasets can be summarized effectively and efficiently. In order to achieve

these goals, we developed the following objectives:

● Research current technologies and progress associated with text summarization.

2

● Filter and clean datasets to be used for summarization.

● Implement algorithms and models for different methods of text summarization.

● Evaluate the models and tune them if necessary.

● Build and host an end-to-end tool which takes texts as input and outputs a summary

 Following the above objectives, we investigated extractive summarization and

abstractive summarization, commonly used text summarization methods. We implemented

extractive summarization using Textrank (Mihalcea, Rada, and Paul Tarau, 2004) and TF-IDF

algorithms (Ramos and Juan, 2003). We implemented abstractive summarization using deep

learning models. To run and test our implementations, we chose and filtered five datasets (three

Juniper datasets and two public datasets). Using the cleaned datasets, we trained and evaluated

different versions of our model. Once we finalized the model, we built an end-to-end tool web

application that can summarize any given input text. The web application offers choices for

summarizing input text from each of the five datasets: the News dataset, the StackOverflow

dataset, Juniper’s KB dataset, Juniper’s JIRA dataset and Juniper’s JTAC dataset.

The rest of this report is organized as follows. Section 2 discusses the technical terms

related to text summarization. Next, Section 3 introduces some related works on text

summarization. Lastly, Section 4 and 5 present the methods used to achieve the project goal and

the results.

3

2.0 Background

This section explores the technologies which were used in this project (Section 2.1 - 2.3).

The section first discusses the key concepts for text summarization, followed by the metrics used

to evaluate them along with the environments (Section 2.4) and the libraries used to complete

this project (Section 2.5).

2.1 Natural Language Processing

Natural Language Processing (NLP) is a field in Computer Science that focuses on the

study of the interaction between human languages and computers (Chowdhury, 2003). Text

summarization is in this field because computers are required to understand what humans have

written and produce human-readable outputs. NLP can also be seen as a study of Artificial

Intelligence (AI). Therefore many existing AI algorithms and methods, including neural network

models, are also used for solving NLP related problems. With the existing research, researchers

generally rely on two types of approaches for text summarization: extractive summarization and

abstractive summarization (Dalal and Malik, 2013).

2.2 Text Extraction

Extractive summarization means extracting keywords or key sentences from the original

document without changing the sentences. Then, these extracted sentences can be used to form a

summary of the document.

2.2.1 Textrank

Textrank is an algorithm inspired by Google’s PageRank algorithm that helps identify

key sentences from a passage (Mihalcea, Rada, and Paul Tarau, 2004). The idea behind this

4

algorithm is that the sentence that is similar to most other sentences in the passage is probably

the most important sentence in the passage. Using this idea, one can create a graph of sentences

connected with all the similar sentences and run Google’s PageRank algorithm on it to find the

most important sentences. These sentences would then be used to create the summary.

2.2.2 TF-IDF

Term Frequency-Inverse Document Frequency (TF-IDF) is used to determine the

relevance of a word in the document (Ramos and Juan, 2003). The underlying algorithm

calculates the frequency of the word in the document (term frequency) and multiplies it by the

logarithmic function of the number of documents containing that word over the total number of

documents in the dataset (inverse document frequency). Using the relevance of each word, one

can compute the relevance of each sentence. Assuming that most relevant sentences are the most

important sentences, these sentences can then be used to form a summary of the document.

2.3 Text Abstraction

Compared to extractive summarization, abstractive summarization is closer to what

humans usually expect from text summarization. The process is to understand the original

document and rephrase the document to a shorter text while capturing the key points (Dalal and

Malik, 2013). Text abstraction is primarily done using the concept of artificial neural networks.

This section introduces the key concepts needed to understand the models developed for text

abstraction.

5

2.3.1 Artificial Neural Network

 Artificial neural networks are computing

systems inspired by biological neural networks. Such

systems learn tasks by considering examples and usually

without any prior knowledge. For example, in an email spam

detector, each email in the dataset is manually labeled as

“spam” or “not spam”. By processing this dataset, the

artificial neural networks evolve their own set of relevant

characteristics between the emails and whether a new email

is spam.

To expand more, artificial neural networks are composed of artificial neurons called units

usually arranged in a series of layers. Figure 1 is the most common architecture of a neural

network model. It contains three types of layers: the input layer contains units which receive

inputs normally in the format of numbers; the output layer contains units that “respond to the

input information about how it is learned any task”; the hidden layer contains units between

input layer and output layer, and its job is to transform the inputs to something that output layer

can use (Schalkoff, 1997).

2.3.2 RNN and LSTM

 Traditional neural networks do not recall any previous work when building the

understanding of the task from the given examples. However, for tasks like text summarization,

the sequence of words in input documents is critical. In this case, we want the model to

remember the previous words when it processes the next one. To be able to achieve that, we have

6

to use recurrent neural networks because they are networks with loops in them where

information can persist in the model (Christopher, 2015).

 Figure 2 shows how an

Recurrent neural network (RNN)

looks like if it is unrolled. For the

symbols in the figure, “ht”

represents the output units value

after each timestamp (if the input is

a list of strings, each timestamp can be the processing of one word), “x” represents the input

units for each timestamp, and A means a chunk of the neural network. Figure 2 shows that the

result from the previous timestamp is passed to the next step for part of the calculation that

happens in a chunk of the neural network. Therefore, the information gets captured from the

previous timestamp. However, in practice,

traditional RNNs often do not memorize

information efficiently with the increasing

distance between the connected

information. Since each activation function

is nonlinear, it is hard to trace back to

hundreds or thousands of operations to get

the information.

Fortunately, Long Short-Term Memory (LSTM) networks can convey information in the

long term. Different from the traditional RNN, inside each LSTM cell, there are several simple

linear operations which allow data to be conveyed without doing the complex computation. As

7

shown in Figure 3, the previous cell state containing all the information so far smoothly goes

through an LSTM cell by doing some linear operations.

Inside, each LTSM cell makes decisions about what information to keep, and when to

allow reads, writes and erasures of

information via three gates that open and

close.

As shown in Figure 4, the first gate is

called the “forget gate layer”, which takes the

previous output units value ht-1 and the

current input xt, and outputs a number

between 0 and 1 to indicate the ratio of

passing information. 0 means do not let any information pass, while 1 means let all information

pass.

To decide what information needs to be

updated, LSTM contains the “input gate layer”.

It also takes in the previous output units value

ht-1 and the current input xt and outputs a

number to indicate inside which cells the

information should be updated. Then, the

previous cell state Ct-1 is updated to the new

state Ct.

The last gate is “output gate layer”,

which decides what the output should be. Figure 6 shows that in the output layer, the cell state is

8

going through a tanh function, and then it is multiplied by the weighted output of the sigmoid

function. So, the output units value ht is passed to the next LSTM cell (Christopher, 2015).

Simple linear operators connect the

three gate layers. The vast LSTM neural

network consists of many LSTM cells, and all

information is passed through all the cells while

the critical information is kept to the end, no

matter how many cells the network has.

2.3.3 Word Embedding

Word embedding is a set of feature

learning techniques in NLP where words are

mapped to vectors of real numbers. It allows similar words to have similar representation, so it

builds a relationship between words and allows calculations among them (Mikolov, Sutskeve,

Chen, Corrado, and Dean, 2013). A typical example is that after representing words to vectors,

the function “king - men + women” would ideally give the vector representation for the word

“queen”. The benefit of using word embedding is that it captures more meaning of the word and

often improves the task performance, primarily when working with natural language processing.

2.4 ROUGE-N and BLEU Metrics

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation. It is a set of

metrics that is used to score a machine-generated summary using one or more reference

summaries created by humans. ROUGE-N is the evaluation of N-grams recall over all the

reference summaries. The recall is calculated by dividing the number of overlapping words over

9

the total number of words in the reference summary (Lin, Chin-Yew, 2004). The BLEU metric,

contrary to ROUGE, is based on N-grams precision. It refers to the percentage of the words in

the machine generated summary overlapping with the reference summaries (Papineni, Kishore,

et al., 2002). For instance, if the reference summary is “There is a cat and a tall dog” and the

generated summary is “There is a tall dog”, the ROUGE-1 score will be 5/8 and the BLEU score

will be 5/5. This is because the number of overlapping words are 5 and the number of words in

system summary and reference summary are 5 and 8 respectively. These two metrics are the

most commonly used metrics when working with text summarization.

2.5 Libraries

2.5.1 Keras

Keras is a Python library initially released in 2015, which is commonly used for machine

learning. Keras contains many implemented activation functions, optimizers, layers, etc. So, it

enables building neural networks conveniently and fast. Keras was developed and maintained by

François Chollet, and it is compatible with Python 2.7-3.6 (Keras.io, n.d.).

2.5.2 NLTK

Natural Language Toolkit (NLTK) is a text processing library that is widely used in

Natural Language Processing (NLP). It supports the high-performance functions of tokenization,

parsing, classification, etc. The NLTK team initially released it in 2001 (Nltk.org, 2018).

2.5.3 Scikit-learn

Scikit-learn is a machine learning library in Python. It performs easy-to-use dimensional

reduction methods such as Principal Component Analysis (PCA), clustering methods such as k-

10

means, regression algorithms such as logistic regression, and classification algorithms such as

random forests (Scikit-learn.org, 2018).

2.5.4 Pandas

Pandas provides a flexible platform for handling data in a data frame. It contains many

open-source data analysis tools written in Python, such as the methods to check missing data,

merge data frames, and reshape data structure, etc. (“Pandas”, n.d.).

2.5.5 Gensim

Gensim is a Python library that achieves the topic modeling. It can process a raw text

data and discover the semantic structure of input text data by using some efficient algorithms,

such as Tf-Idf and Latent Dirichlet Allocation (Rehurek, 2009).

2.5.6 Flask

Flask, issued in mid-2010 and developed by Armin Ronacher, is a robust web framework

for Python. Flask provides libraries and tools to build primarily simple and small web

applications with one or two functions (Das., 2017).

2.5.7 Bootstrap

Bootstrap is an open-source JavaScript and CSS framework that can be used as a basis to

develop web applications. Bootstrap has a collection of CSS classes that can be directly used to

create effects and actions for web elements. Twitter’s team developed it in 2011 (“Introduction”,

n.d.).

2.5.8 GloVe

Global Vectors for Word Representation (GloVe), which is initially developed by a group

of Stanford students in 2014, is a distributed word representations model that performs better

11

than other models on word similarity, word analogy, and named entity recognition. (Pennington,

Richard and Christopher, 2014).

2.5.9 LXML

The XML toolkit lXML, which is a Python API, is bound to the C libraries libXML2 and

libxslt. LXML can parse XML files faster than the ElementTree API, and it also derives the

completeness of XML features from libXML2 and libxslt libraries (LXML.de, 2017)

http://xmlsoft.org/
http://xmlsoft.org/XSLT/
http://effbot.org/zone/element-index.htm
http://xmlsoft.org/
http://xmlsoft.org/XSLT/

12

3.0 Related Work

In order to build the text summarization tool for Juniper Networks, we first researched

existing ways of doing text summarization. Text summarization, still at its early stage, is a field

in Natural Language Processing (NLP). Deep learning, an area in machine learning, has

performed with state-of-the-art results for common NLP tasks such as Named Entity Recognition

(NER), Part of Speech (POS) tagging or sentiment analysis (Socher, R., Bengio, Y., & Manning,

C., 2013). In case of text summarization, the two common approaches are extractive and

abstractive summarization.

For extractive summarization, dominant techniques including TF-IDF and Textrank

(Hasan, Kazi Saidul, & Vincent Ng, 2010). Textrank was first introduced by Mihalcea, Rada,

and Paul Tarau in their paper Textrank: Bringing order to text (2004). The paper proposed the

idea of using a graph-based algorithm similar to Google’s Pagerank to find the most important

sentences. Juan Ramos proposed TF-IDF (2003). He explored the idea of using a word’s

uniqueness to perform keyword extraction. This kind of extraction can also be applied to an

entire sentence by calculating the TF-IDF of each word in the sentence. We implemented both of

these algorithms - Textrank and TF-IDF, and compared their performances in different datasets.

Abstractive summarization is most commonly performed with deep learning models.

One such model that has been gaining popularity is sequence to sequence model (Nallapati,

Zhou, Santos, Gulçehre, & Xiang 2016). Sequence to sequence models have been successful in

speech recognition and machine translation (Sutskever, I., Vinyals, O., & Le, Q. V., 2014).

Recent studies on abstractive summarization have shown that sequence to sequence models using

encoders and decoders beat other traditional ways of summarizing text. The encoder part encodes

13

the input document to a fixed-length vector. Then the decoder part takes the fixed-length vector

and decodes it to the expected output (Bahdanau, Cho, & Bengio, 2014).

We focused on three recent pieces of research on text summarization as inspirations for

our model of abstractive summarization (Rush, Chopra, & Weston, 2015; Nallapati, Zhou,

Santos, Gulçehre, & Xiang 2016; Lopyrev, 2015). All three journals have used encoder-decoder

models to perform abstractive summarization on the dataset of news articles to predict the

headlines.

The model created by Rush et al., a group from Facebook AI Research, has used

convolutional network model for encoder, and a feedforward neural network model for decoder

(for details, please see Appendix A: Extended Technical Terms). In their model, only the first

sentence of each article content is used to generate the headline (2015).

The model generated by Nallapati et al., a team from IBM Watson, used Long Short-

Term Memory (LSTM) in both encoder and decoder. They used the same news article dataset as

the one that the Facebook AI Research group used. In addition, the IBM Watson group used the

first two to five sentences of the articles’ content to generate the headline (2016). Nallapati et al.

were able to outperform Rush et al.’s models in particular datasets.

The article from Konstantin Lopyrev talks about a model that uses four LSTM layers and

attention mechanism, a mechanism that helps improve encoder-decoder model’s performance

(2015). Loprev also used the dataset of news articles, and the model predicts the headlines of the

articles from the first paragraph of each article.

All three works show that encoder-decoder model is a potential solution for text

summarization. Using LSTM layers in encoder-decoder also allow capturing more information

from original article content than traditional RNNs. In this project, inspired by previous works,

14

we also used the encoder-decoder model with LSTM but in a slightly different structure. We

used three LSTM layers in the encoder and another three LSTM layers in the decoder (details of

the model are described in Section 3.0). However, the datasets used in this project were not as

clean as news articles. Our datasets contain a lot of technical terms, coding languages as well as

unreadable characters. Therefore, we tried to combine the extractive summarization and

abstractive summarization to test if it provides better performance. We hoped that extractive

summarization could help extract key sentences from the articles, which can be used as inputs to

our abstractive deep learning models. This way, the input documents for the abstractive

summarization would be neater than the original ones.

15

4.0 Methodology

The goal of this project is to explore automatic text summarization and analyze its

applications on Juniper’s datasets. To achieve the goal, we completed the following steps:

Step 1: Choose and clean datasets

Step 2: Build the extractive summarization model

Step 3: Build the abstractive summarization model

Step 4: Test and compare models on different datasets

Step 5: Tune the abstractive summarization model

Step 6: Build an end-to-end application

4.1 Choose and clean datasets

Section 4.1.1 introduces the basic information about each dataset we used, precisely the

contents of the dataset, and the reason for using the dataset. Section 4.1.2 and 4.1.3 dive into the

steps of data cleaning and categorizing.

4.1.1 Datasets Information

We worked on five datasets — the StackOverflow dataset (Stack Dataset), the news

articles dataset (News Dataset), the Juniper Knowledge Base dataset (KB Dataset), the Juniper

Technical Assistance Center Dataset (JTAC Dataset) and the JIRA Dataset. Each dataset consists

of many cases, where each case consists of an article and a summary or a title. Since the raw

News Dataset was already cleaned, we primarily focused on cleaning the rest four datasets.

Figure 7 below shows the changes in dataset sizes before and after cleaning the data. As shown

in the figure, after cleaning the datasets, we had two large datasets (the Stack Dataset and the KB

16

Dataset) with over 15,000 cases and two small datasets (the JTAC Dataset and the JIRA Dataset)

with nearly 5,000 cases to work with.

Figure 7: Dataset Information

The Stack Dataset is a collection of questions and answers on the StackOverflow website

(stackoverflow.com, 2018). We used a filtered version of the Stack Dataset dealing only with

networking related issues. There are 39,320 cases in this data frame, which is the largest dataset

we worked on. For each case, we filtered the dataset to only keep the unique question id, the

question title, the question body, and the answer body. Then we cleaned the filtered dataset by

removing chunks of code, non-English articles and short articles. Finally, we got 37,378 cases

after cleaning. The reason we chose to work with the Stack Dataset is because it contains

technical questions similar to that of the KB Dataset. However, the Stack Dataset is supposedly

cleaner than the KB Dataset, and by running our models in a cleaner dataset, we could first focus

on designing our model to set a benchmark.

17

Second, the News Dataset is a public dataset containing news articles from Indian news

websites. We used this dataset because the dataset includes a human-generated summary for each

article, which can be used to train our model. For our purposes, we only used the article body

and the summary of each article. This dataset was used just for extractive summarization as the

dataset was not relevant to the Juniper KB Dataset.

Third, the KB Dataset, which is the one we put the most emphasis on, contains technical

questions and answers about networking issues. The raw dataset is in a directory tree of 23,989

XML files, and each XML file contains the information about one KB article. For our training

and testing, we only kept a unique document id, a title, a list of categories that the article belongs

to, and a solution body for each KB article in the data frame. We filtered out the top 30

categories which contained 15,233 cases. Our goal was to use the KB articles’ solutions as input

and predict the KB articles’ titles.

Fourth, the JTAC Dataset contains information about JTAC cases. It has 8,241 cases, and

each case has a unique id, a synopsis, and a description. The raw dataset is in a noisy JSON file.

At last, the JIRA Dataset is about JIRA bugs from various projects. JIRA is a public

project management tool developed by Atlassian for issue tracking. The JIRA Dataset has 5,248

cases, and each case has a unique id, a summary, and a description. Same as the JTAC Dataset,

the raw JIRA Dataset is also in a JSON file.

4.1.2 Data Cleaning

 The five datasets we worked were very noisy containing snippets of code, invalid

characters, and unreadable sentences. For an efficient training, our models needed datasets with

no missing value and no noisy words. Based on this guideline, we followed these basic steps to

clean our datasets:

18

● Read data file and make a data frame

The Stack Data are in CSV files and can be easily transferred to a dataframe by using

pandas library. However, the KB Dataset is stored in a directory tree of XML files, so we used

Lmxl to read each XML file from the root to each element and store the information we need

into a dataframe (LXML.de, 2017).

● Check for missing values.

Since fewer than 5% of the articles had missing values, the articles containing missing

values were dropped from the data frames.

● Detect and remove the code part in all texts.

In the Stack Dataset and the KB Dataset, there are many chunks of code in the question

and answer bodies. The code snippets would cause problems as the summarization models

cannot capture the inference of the code. Therefore, we identified the chunks of code by locating

the code tags in the input strings and deleting everything between “<code>” and “</code>” tags.

Eventually, we found that nearly 33% of KB articles contain some type of code in them.

● Detect and remove the unknown words with “&” symbol in all texts.

In the KB Dataset, we found that there are 48.76% words which cannot be recognized by

Juniper’s word embedding. Some of the unrecognized words are proper nouns, but some of them

are garbled and meaningless words that start with “&” symbols such as the word “&npma”. The

proper nouns might catch the unique information in the articles, so we did not remove them.

However, we detected and removed all the unknown words started with “&” symbol.

● Detect and remove the Spanish articles.

In the KB Dataset, 164 articles are written in Spanish. Our project’s focus was only on

English words, and having words outside of English language would cause problems while

19

training our models. We identified the Spanish articles by looking for some common Spanish

words such as “de”, “la” and “los”. Any article containing a Spanish word was removed.

● Detect and remove the articles less than 10 characters or 3 words.

In the KB Dataset, some solution articles only contained a link or a period, so we

removed any article less than 10 characters or 3 words.

● Detect and remove the articles that have many digits.

In the JTAC dataset, there are nearly 19% articles in which more than 20% of all

characters are digits, and most of the digits are meaningless in the context such as “000x”. Digits

are seldom used in training and may affect the prediction, so we removed such articles.

● Check duplicate articles and write the cleaned data into a CSV file.

We also checked whether there were duplicated data, and we found that all data are

unique. Finally, we wrote the cleaned data into a comma-separated values file.

 4.1.3 Data Categorization

Data Categorization in our project involved categorizing KB articles by creating a

hierarchy of the existing KB categories. Each KB article was associated with a list of categories

like- “MX240”, “MX230”, “MX”, etc. In this case, the hierarchy of the categories should reflect

category “MX240” to be a child node of category “MX”. “MX” is the name of a product series at

Juniper, while “MX240” is the name of a product in the MX series. The goal of categorizing KB

data is to have a more precise structure of the KB dataset which could be used by Juniper

Networks for future data related projects as well. The detailed steps of categorizing KB articles

are listed below:

● Get the set of all categories.

20

We looped through the category lists in all cases and gathered all the unique categories in

a set arrange alphabetically.

● Remove digits and underscores in each category name.

In order to efficiently categorize the data, we removed the digits and underscores at the

beginning and the end of each category name. For example, “MX240_1” is shrunk as “MX”.

This was helpful when we used the Longest Common Substrings to categorize the data because

the longest common substring among “MX240_1” and “MX240_2” is “MX240_”, whereas

ideally, we wanted the category to be just “MX”.

● Find a list of Longest Common Substrings (LCS) among category names.

Since similar category names are listed consecutively, we went through the entire set and

found the LCS with minimum two characters among the neighbors. If a specific string did not

have a common substring with its previous string and its successive string, this string was

regarded as a parent node which had no child node.

● Manually examine the LCS and pick 30 decent category names.

After we listed all the common substrings, we manually took a look at the list and picked

30 category names which were meaningful and contained many children nodes. For example, we

picked some names of main product series at Juniper such as “MX” and “EX”, and we also chose

some networking-related categories such as “SERVER” and “VPN”.

● Write all KB articles that belonged to that 30 categories into a CSV file. Build the

hierarchy map for KB categories.

The last step was to extract the KB articles that contained any category name that

belonged to the target 30 categories in the category list. We also generated the hierarchy map for

all KB categories, so it is easier for future category-cased extractions.

21

4.2 Extractive Summarization

We began the text summarization by exploring the extractive summarization. The goal

was to try the extractive approach first, and use the output from extraction as an input of the

abstractive summarization. After experimenting with the two approaches, we would then pick the

best approach for Juniper Network’s Knowledge Base (KB) dataset. The text extraction

algorithms and controls were implemented in Python. The code contained three important

components - the two algorithms used, the two control methods, and the metrics used to compare

all the results.

4.2.1 Algorithms

The algorithms used for text extraction were - Textrank (Mihalcea, Rada, and Paul Tarau,

2004) and TF-IDF (Ramos and Juan, 2003). These two algorithms were run on three datasets -

the News Dataset, the Stack Dataset and the KB Dataset. Each algorithm generates a list of

sentences in the order of their importance. Out of that list, the top three sentences were joined

together to form the summary.

Textrank was implemented by creating a graph where each sentence formed the node,

and the edges were the similarity score between the two node sentences. The similarity score was

calculated using Google’s Word2Vec public model. The model provides a vector representation

of each word which can be used to compute the cosine similarity between them. Once the graph

was formed, Google’s PageRank algorithm was executed in the graph, and then top sentences

were collected from the output.

Scikit Learn’s TF-IDF module was used to compute the TF-IDF score of each word with

respect to its dataset. Each sentence was scored by calculating the sum of the scores of each word

22

in the sentences. The idea behind this was that the most important sentence in the document is

the sentence with the most uniqueness (most unique words).

 4.2.2 Control Experiment

To be able to verify the effectiveness of the two algorithms, two control experiments

were used. A control experiment is usually a naive procedure that helps in testing the results of

an experiment. The two control experiments used in text extraction were - forming a summary by

combining the first three lines and forming a summary by combining three random lines in the

article. By running the same metrics in these control experiments as the experiments with the

algorithm being tested, a baseline can be created for the algorithms. In an ideal case, the

performance of the algorithms should always be better than the performance of the control

experiments.

4.2.3 Metrics

All the extracted results including the results from the control experiments were

evaluated using the ROGUE-1 score and the BLEU score. The score for each of the generated

summary was computed. Then, each dataset was scored by computing the mean of the summary

scores in the dataset. These scores were then compared and the best algorithm for each dataset

was picked.

4.3 Abstractive Summarization

The next step in our project was to work with abstractive summarization. This is one of

the most critical components of our project. We used deep learning neural network models to

create an application that could summarize a given text. The goal was to create and train a model

which can take sentences as the input and produce a summary as the output.

23

The model would have pre-trained weights and a list of vocabulary that it would be able

to output. Figure 8 shows the basic flow of our data we wanted our model to achieve. The first

step was to convert each word to its index form. In the figure, the sentences “I have a dog. My

dog is tall.” is converted to its index form by using a word to index map.

The index form was then passed through an embedding layer which in turn converted the

indexes to vectors. We used pre-trained word embedding matrixes to achieve this. The output

from the embedding layer was then sent as an input to the model. The model would then

compute and create a one-hot vectors matrix of the summary. A one-hot vector is a vector of

dimension equal to the size of the model’s vocabulary where each index represents the

probability of the output to be the word in that index of the vocabulary. For example, if the index

2 in the one-hot vector is 0.7, the probability of the result to be the word in the vocabulary index

2 is 0.7. This matrix would then be converted to words by using the index to word mapping that

was created using the word to index map. In the figure, the final one-hot encoding when

converted to words forms the expected summary “I have a tall dog.”. Section 4.3.1, 4.3.2 and

4.3.3 expand our architecture of the above model in detail.

24

Figure 8: Abstractive summarization basic flow diagram

4.3.1 Preparing the dataset

Before training the model on the dataset, certain features of the dataset were extracted.

These features were used later when feeding the input data to the model and comprehending the

output information from the model.

25

We first collected all the unique words from the input (the article) and the expected

output (the title) of the documents and created two Python dictionaries of vocabulary with index

mappings for both the input and the output of the documents.

In addition, we created an embedding matrix by converting all the words in the

vocabulary to its vector form using pre-trained word embeddings. For public datasets like Stack

Overflow, we used the publicly available pre-trained GloVe model containing word embeddings

of one hundred dimensions each. For Juniper’s datasets, we used the embedding matrix created

and trained by Juniper Networks on their internal datasets. The Juniper Network’s embedding

matrix had vectors of one hundred and fifty dimensions each. The dictionaries of the word with

index mappings, the embedding matrix, and the descriptive information about the dataset (such

as the number of input words and the maximum length of the input string) were stored in a

Python dictionary for later use in the model.

4.3.2 Embedding layer

The embedding layer was a precursor layer to our model. This layer utilizes the

embedding matrix, saved in the previous step of preparing the dataset, to transform each word to

its vector form. The layer takes input each sentence represented in the form of word indexes and

outputs a vector for each word in the sentence. The dimension of this vector is dependent on the

embedding matrix used by the layer. Representing each word in a vector space is important

because it gives each word a mathematical context and provides a way to calculate similarity

among them. By representing the words in the vector space, our model can run mathematical

functions on them and train itself.

26

 4.3.3 Model

Recent studies have shown that the sequence to sequence model with encoder-decoder

outperforms simple feedforward neural networks for text summarization (Nallapati, Zhou,

Santos, Gulçehre, & Xiang 2016). Sequence to sequence models have been commonly used in

machine translation in the past. Our model utilizes the sequence to sequence design. Figure 9

shows the training portion of our model.

The model is provided with an input text “I have a dog. The dog is very tall.” and the

expected summary is “I have a tall dog”. In the first step the input gets converted to the index

form, using the word to index dictionary saved, and then the embedding layer translates it to a

vector. The output from the embedding layer is fed to the encoder which consists of three LSTM

layers. The green boxes in the figure form the encoder set of LSTMs. The LSTM layers in the

encoder take the input from the embedding layer and maintain an internal state. The internal state

gets updated as each word in the vector form is fed to the encoder. Each layer takes as input the

state processed by the previous LSTM layer.

Once the entire input is processed, the internal state is then transferred to the decoder to

process. The decoder consists of three LSTM layers as well as a softmax layer to compute the

final output. The decoder (shown as the red boxes in the Figure 9), initializes itself using the

states computed by the LSTM layers in the encoder. It works similar to the encoder by

maintaining a hidden state and passing it on for decoding the next input word.

During the training phase, the decoder takes as input the actual or the reference summary

as shown in the Figure 9 The decoder’s job is to use each input word to update its hidden state

and then predict the next word in the summary after passing it through the softmax layer. The

softmax layer computes the probability (whether the word is the output word) of each available

27

word in the stored output vocabulary list. The predicted value is then compared with expected

value which is the next word in the summary. Depending on the loss calculated by the model, the

weights of the LSTM cells are updated through the classic backpropagation algorithm.

Figure 9: Architecture of training model

After the model has been trained properly on the three datasets, the model is evaluated on

the portion of the dataset that was reserved for validation. For predicting the summary on the

given input, the model is not shown the actual summary. The first input to the decoder is a ‘start

token’ which is what the model was trained on. Once the model predicts a word, that word is

28

now used as the input to the decoder for the next word as shown in the Figure 10. Due to this,

there is a slight difference between the training and the predicting stage of the model.

To overcome any discrepancies, during the training stage, we picked a random word as

the input instead of the actual summary word one-tenth of the time as suggested in Generating

news headlines with recurrent neural networks by Konstantin Lopyrev (2015). The softmax layer

in the decoder outputs a one-hot encoding of each word. Using the mapping, the word is found

and then joined together with rest of the output to produce a summary.

Figure 10: Architecture of prediction model

29

4.4 Test and compare among different datasets

There were four different versions of the model created, each trained on one of the four

cleaned datasets: the Stack Dataset, the KB Dataset, the JIRA Dataset and the JTAC Dataset. The

abstractive summarization model was not trained on the News Dataset because the News Dataset

is not closely related to Juniper’s datasets, and training each model once can take up to 2 days.

The four models were then tested on the portion of the datasets reserved for validation. The

generated summaries were scored using ROGUE-1 and BLEU scores. Using these scores, the

datasets’ capabilities of being summarized effectively can be measured. The results would show

if the model works better on any particular dataset.

4.5 Tune the model

After running and testing the model in different datasets, the model’s parameters were

tuned - specifically the number of hidden units was increased, the learning rate was increased,

the number of epochs was changed and a dropout parameter (percentage of input words that will

be dropped to avoid overfitting) was added at each LSTM layer in the encoder. Different values

were tested for each of the parameters while keeping in mind the limited resources available to

test the model. The models were rerun on the datasets, and the results were compared with the

previous run. The summaries were also evaluated by human eyes and compared with the ones

produced earlier. The best models were picked out which formed the backend of our system.

30

4.6 Build an end-to-end application

Once the model was completed and tested, a web end-to-end application was built (for

details, please see Section 5.5). The application was built in Python’s flask library primarily

because the models were implemented in Python. A bootstrap front-end UI was used to

showcase the results. The UI consisted of a textbox for entering text, a dropdown for choosing

the desired models for each of the three datasets and an output box for showing the results. The

UI included a summarize button which would send the chosen options by making a POST AJAX

request to the backend. The backend server would run the text on the pre-trained model and send

the result back to the front-end. The front-end displayed the result sent by the backend. This

application was the final product of this project which was hosted on a web server and can be

viewed by any modern web browser.

31

5.0 Results

This section displays the results we got from the data cleaning (Section 5.1), extractive

models (Section 5.2), and abstractive models (Section 5.3 & Section 5.4). Then, Section 5.5

presents the end-to-end application built based on the abstractive model. With evaluation

functions ROUGE-1 and BLEU, as described in methodology Section 4.4, we evaluated and

compared our models’ performance, and measured the level of success our model had in meeting

our goals.

5.1 Data Cleaning and Categorizing

After cleaning our datasets by removing code snippets, unrecognized words, non-English

articles and extremely short articles, we got more human-readable and cleaner sentences as our

model’s input. Figure 11 shows one of the original solution text that contains code part after the

<code> tag, many HTML tags such as
, unrecognized words such as “ ” and

unwanted links.

Figure 11: Example of Raw Solution Text

32

Figure 12 shows the solution text in Figure 11 after cleaning. All the code parts,

unrecognized words, and tags are removed.

Figure 12: Example of Cleaned Solution Text

For data categorizing, as it is shown in Figure 13, we got a list of longest common

substrings among all KB Dataset categories. The circled categories are some examples of the

parent level category names. For example, the parent category “CUSTOMER_CARE” was

listed, while the child category “CUSTOMER_CARE_1” was not. By manually looking into the

list, we found that most of the category names were decent such as “HARDWARE”,

“FIREWALL” and “NETSCREEN”. Notice that some Juniper product series’ category names

were also captured by the algorithm such as “SSG”, “QFX” and “WXC”. After extracting the

categories, the top 30 parent categories were picked, and a hierarchy map was built.

Figure 13: The List of Longest Common Substrings among KB Categories

33

5.2 Extractive Model Performance

The extractive summarization algorithms were tested on three different datasets (the

News Dataset, the Stack Dataset, and the KB Dataset). Each dataset was scored on four different

experiments - the first two experiments were run with the two chosen algorithms, Textrank and

TF-IDF, while the last two experiments were the control experiments as described in Section

4.2.2.

Figure 14 shows the results of running the experiments in the News Dataset. As shown in

the result, the news seemed to perform best when using the first three lines as the summary. In a

news article, the first few lines, also called the leading paragraph, usually capture the content.

Figure 14: Extractive result from the News Dataset

Figure 15 shows the results of running the experiments on the Stack Dataset. As shown in

the figure, the performance of Textrank and TF-IDF on the Stack Dataset was similar. They both

performed better than the control experiments. However, summarizing the Stack Dataset by

34

extraction may often not make sense because some statements fall out of context. For example, if

an article is describing steps to fix a broken web server, it might not help to extract a couple of

sentences in the middle as a summary. An abstractive solution may be a better approach as

instead of getting essential sentences from the steps; it should be summarized like “this article

describes the steps to fix a broken web server”.

 Figure 15: Extractive result from the Stack Dataset

The best algorithm for summarizing the KB Dataset by extraction was TF-IDF (as shown

in Figure 16). We believe that this is because Juniper’s articles and their summaries often contain

keywords which are unique to the article describing a specific Juniper product. TF-IDF takes into

account how unique a word is to that document and then computes the importance of the

sentence. However, similar to the results from the Stackoverflow dataset, we believe that

summarizing Juniper’s articles, which often resembles a user guide or a manual, would be best

35

done by abstraction rather than by extraction. This is because the articles usually contain

procedural steps and gathering the most important steps would often not capture the summary of

the article. Later on, we decided to use TF-IDF to extract few sentences from each article in the

KB Dataset and use that as input instead of the entire article for the abstractive summarization.

The results of which will be discussed later.

Figure 16: Extractive result from the KB Dataset

5.3 Abstractive Model Performance

The abstractive summarization algorithm was tested on four different datasets (the Stack

Dataset, the KB Dataset, the JIRA Dataset, and the JTAC Dataset). The abstractive

summarization model was configured to use 512 hidden units in each layer while training all four

datasets. Also, the model was further configured such that any input data would be divided into

batches of 64 articles each. Using batches, instead of the entire input dataset, helps increase the

36

computing speed. Before training the model, 5 percent of each dataset was saved to be a

validation set in order to test our model’s performance on different datasets. The rest 95 percent

of the data was separated into the training set and the test set, and the two sets were used in the

training process. Each model took about 2 days to be trained on the dataset. Once trained, the

model can generate a summary within a fraction of a second. The rest of this section will present

the results in detail for each dataset.

5.3.1 Stack Overflow Dataset: Question Body to Title

For the Stack Overflow dataset, the model assumes that the titles are the summaries of the

question bodies. The model was trained on 50 epochs, where each epoch means training the

model through the entire dataset once. Running more epochs allow the model to improve its

accuracy. Figure 17 shows the changes in categorical accuracy and categorical loss by each

epoch. Categorical accuracy and categorical loss are evaluation methods provided by Keras (for

details, see Appendix A: Expand Technical Terms).

For the model, the expected results for the training set are increasing accuracy and

decreasing loss. However, after around 40 epochs, the accuracy and loss do not change much

since the model has already become familiar with the input dataset. The graph tells us that the

model is properly trained since the accuracy of the training set is increasing as expected.

37

 Figure 17: Stack Dataset: Categorical Accuracy vs. Epoch & Categorical Loss vs. Epoch

After training, we record the predictions produced from the validation set. Table 1

presents some manually picked good predictions. The ‘END’ is the symbol for the end of

prediction. It is not a part of the generated summary.

38

Table 1: Good Predictions from the Stack Dataset - Question body to Title

Input Article (Question body) Original Summary

(Title)

Generated

Summary (Title)

I'm using jQuery for the first time and so I've

added the jQuery 2.1 library to my ASP.NET

project and referenced it from the Master Page

like so:

With all of the files on the web server, the

pages work fine in Chrome - all of the jQuery

stuff functions as expected. However, if I load

the same pages in IE11 (I haven't had a chance

to test other browsers yet), none of the jQuery

functionality works.

Interestingly, if I launch IE11 from Visual

Studio 2013's development environment, so

that it runs the website in IIS express on my

dev machine for testing purposes, everything

works fine. So it's clearly not a browser

compatibility issue, and it seems that I'm doing

things right since it works in Chrome on the

web server.

Any ideas what I could try? Are there any

quirks for getting jQuery working in IE? I've

tried referencing the jQuery script file from the

individual Web Forms as well as the Master

Page, but that didn't make any difference.

jQuery Not Working

in IE11 On Live

Server

jquery ajax callback

with ie issue END

I want to create a simple java web service.

What tools I need to get started?

What do I need to know to get started

deploying this in Tomcat?

How can I get started

creating a Java web

service?

how to create a

webservice service

in java END

I've an error with JQuery on the first line of :

I got an other error with /jquery-1.5.1.js on line

3539 :

Everything i working on FF, Chrome and

Safari but i got errors on IE.

The errors are : "Object doesnÃ¢Â�Â™t

support this property or method"

Error with Jquery on

line 3539 with IE

jquery ui modal

doesn t work in ie

END

39

5.3.2 Juniper Knowledge Base Dataset: Solution to Title

For the Juniper KB Dataset, the model assumes that the titles are the summaries of the

solutions. In some cases, the title may represent the question that is being answered by the article

instead of the actual summary of the solution. However, our model requires summaries to be

trained on and because the titles captured the essence of the solution, they were considered as

summaries for our purposes. Figure 18 shows the accuracy and loss changes over epochs.

Figure 18: KB Dataset - Solution to Title: Categorical Accuracy vs. Epoch & Categorical Loss vs. Epoch

In Figure 18, the validation set did not show a consistent increase in accuracy and a

consistent decrease in the loss. This is because although our model generates some good results,

it is not perfect yet. So, unlike the training set, the validation set was not as consistent with its

improvements (some suggestions for making the model perform better is included in Section

6.0). Table 2 shows some manually picked out good predictions. Due to the nature of the KB

Dataset, it might be difficult for non-Juniper employees to understand some of the input articles.

40

Table 2: Good Predictions from the KB Dataset - Solution to Title

Input Article (Solution) Original Summary

(Title)

Generated

Summary (Title)

M160 FRUs: Hot swappable: Routing

Engine Switching and Forwarding Module

(SFMs) Flexible PIC Concentrator (FPCs)

Type 1 and Type 2 Physical Interface Card

(PICs) Miscellaneous Control Subsystem

(MCSs) PFE Clock Generator (PCGs)

Power Supplies Air Filter Rear Bottom

Impeller Rear Top Impeller Front Impeller

(Craft Interface is part of this FRU) Fan

Tray (Cable Management System is part of

this FRU) Requires Power Down: Circuit

Breaker Box Connector Interface Panel

(CIP) M160 Chassis (includes backplane)

Please refer to the M160 hardware guide

for more detail.

[Archive] What are the

specific Field Replacable

Units (FRU) on the M160?

archive what are the

specific field

replacable units fru

on the m e

RSVP Interface Highwater Mark

'Highwater mark' indicates the highest

bandwidth that has ever been reserved on

this interface, in bps.

[Archive] What is an

RSVP interface Highwater

Mark?

archive how to

configure rsvp over

an forward routes

Q: Why does the debug show packet

dropped, denied by policy? A: In a route-

based VPN, if the tunnel interface is

created in a different zone than that of the

user traffic, a policy is required. Recall,

when crossing zones, a policy needs to be

configured. See KB6551 for additional

details on tunnel zones and policies

What does the Debug

Message "packet dropped,

denied by policy" mean?

screenos

understanding the

policy id in debug

mode

5.3.3 Juniper Knowledge Base: Extracted Solution to Title

We trained another model on the KB Dataset using the extracted solution as the input for

the model instead of the entire solution of each article. The extracted solution was gathered by

applying our text extraction algorithms on the KB Dataset. As explained in Section 3.0, the KB

Dataset is not as clean as public datasets like the news articles dataset. Since the extractive

summarization tool, described in Section 4.2, is capable of capturing the key points in the

41

solution and generating a neater text input, the model was fed the extracted solution to predict

the title of the article. Figure 19 shows the accuracy and loss changes over epochs for the training

of this model.

Figure 19: KB Dataset - Solution (Extracted) to Title: Categorical Accuracy vs. Epoch & Categorical Loss vs. Epoch

Table 3 shows some manually picked out good predictions. From the table, we can see

that the generated summaries in some examples, like the first row in Table 3, capture important

keywords presented in the original summary, but fails to correctly summarize the article

properly. One explanation for this is the limited data we were used. Usually, for tasks like text

summarization, millions of cases are required in order to generate decent results (Lopyrev,

2015).

42

Table 3: Good Predictions from the KB Dataset - Solution (Extracted) to Title

Input Article (Solution) Original Summary

(Title)

Generated

Summary (Title)

So the HC Policy has to be

defined as Check the process

is running Check the file with

MD5 checksum Hence IVE

administrator would have to define

both the Host Checker policies and

implement at the role or realm level.

One work around is to combine

Process Checking and File MD5

Checksum. This issue applies until

IVE version 6.

Host Checker fails

with " Can't Generate

Checksum" error

[Applicable until IVE

version 6.1rx]

host checker fails

error connect due to user

side and user login

 M160 FRUs Hot

swappable Routing Engine

Switching and Forward… Requires

Power Down Circuit Breaker Box

Connector Interface Panel CIP

M160 Chassis includes backplane

Please refer to the M160 hardware

guide for more detail.

[Archive] What are

the specific Field

Replacable Units (FRU) on

the M160?

archive what are

the different field

replacable units fru on the

m e

5.3.4 Juniper JIRA Dataset: Description to Summary

To see the performance of the model on datasets from Juniper Networks other than the

KB Dataset, the model was also trained on the JIRA Dataset. For the JIRA Dataset, the input for

the model was the description of the article and the expected output was the given summary in

the article. Figure 20 shows the accuracy and loss change over epochs for the training of this

model. The graph in Figure 20 shows results with trends similar to the results of the KB Dataset.

Therefore, it means the model had a similar performance when training on both datasets.

43

Figure 20: JIRA Dataset: Categorical Accuracy vs. Epoch & Categorical Loss vs. Epoch

Table 4 are some manually picked out good predictions. Similar to what we explained

before, although the summary generated by the model contains some of the important keywords,

it does not align very well with the actual summary of the article.

Table 4: Good Predictions from the JIRA Dataset

Input Article (Description) Original

Summary (Summary)

Generated

Summary (Summary)

File names are appearing in

attachment details page twice also

blank file names observed. PFA

screenshot

File names are

appearing in attachment

details page twice also

blank file names

observed

file name is not

displaying

In RMA Task details page, the

notes API is not being called on

clicking "Refresh" button.

rma details need to

refresh the rma number

of table view

[RMA Details] In Task

details page, the notes

API is not being called on

clicking "Refresh" button

Tried testing the API (POST)

/api/download-

manager/downloadAttachments

URI:http://.../api/download-

manager/downloadAttachments

/api/download-

manager/downloadAttac

hments API returning

"Failed to

decode:Unrecognized

field

error in querying

case api

44

5.3.5 Juniper JTAC Dataset: Description to Synopsis

JTAC is another dataset from Juniper that has a human-generated synopsis. The model

was trained with synopsis as the output and the description as input. Figure 21 shows the

accuracy and loss change over epochs.

Figure 21: JTAC Dataset: Categorical Accuracy vs. Epoch & Categorical Loss vs. Epoch

Table 5 shows some manually picked out good predictions. Some descriptions have been

hidden because it is too long for the table. The model shows some good predictions like the

generated summary in the first row matches very well with the original summary. In some cases,

even though the summary generated by the model has words different from the actual summary,

the correct idea is still preserved by the generated summary.

45

Table 5: Good Predictions from the JTAC Dataset

Input Article (Description) Original

Summary (Synopsis)

Generated

Summary (Synopsis)

hi support please see alarm root

mgojunre show chassis alarms

noforwarding alarms currently active

alarm time class description pht major

fpc major errors error code attached rsi

…

remained clean closing techn

ical case per support needed customer

contact agreed close marione jgramirez

FPC 5 Major

Error - Error code

65537

fpc major errors

high cpu utilization observed one

routers cpu utilization user percent

eopqqtu hrstwi show system processes

extensive … hyperlink idkb customer

contact pushkar sanchit tarun

rma details need

to refresh the rma

number of table view

[RMA Details] In

Task details page, the

notes API is not being

called on clicking

"Refresh" button

switch chassis member issue integrating

switches issue description exc

continuously creates … current network

status resolved resolution detail pr

customer contact elad

they have 3

switch 2 chassis is not

member have issue

integrating the switches

switch not

functioning

hello one power supplies failed mx

router beginning saw bunch warnings

like pemaltiusgettemp … archive case

issue description issue description pem

faulty current network status stable

resolution detail processed rma rma

delivered customer contact sergey

yemelyanovich

Power Supply

failed

ex power supply

down

routing engines visible

forwarding table issue description

routes seen forwarding table

routinginstance current network status

issue resolved configuration changes

resolution detail instance type specified

routinginstance caused forwarding table

show routes customer contact jacek

routing engines

are not visible in the

forwarding table

routing engine

issue

46

5.4 Performance Comparison Among Datasets

Figure 22 shows the comparison among the model’s performances on different datasets in

terms of ROUGE-1 and BLEU scores. Figure 22 shows that our model has the best performance

on the JIRA Dataset. The two metrics ROUGE-1 and BLEU scores are computed by comparing

the generated summary with the actual summary word by word. However, abstractive

summarization is not about creating the same summary as the actual summary, because two

summaries can be different when compared word by word while still summarizing the article

properly. So, while the two metrics give some context about the generated summary, it is

important to manually look at some of the generated summaries and not base our evaluation of

the model completely on the scores of the two metrics.

Figure 22: Abstractive Summarization performance over different datasets

Due to our limited resources, the small size and noisy datasets, our scores do not reflect

great performance. On an average, with our resources, a model training on 15,000 articles over

47

50 epochs with a vocabulary of 50,000 words and 512 hidden units took about 2 days to

complete training. Ideally, we should be training on at least a million articles with a much larger

vocabulary to get a decent performance. That being said, as shown above, we were able to

generate a few good results and with our findings, we believe while it may be difficult to

implement text summarization in Juniper Networks’ datasets directly, text summarization shows

promising results and can be a huge advancement for Juniper Networks and the tech industry in

general.

5.5 End-to-End Application

Finally, we developed an end-to-end web application to demonstrate the concept of text

summarization (Figure 23). The web application was hosted on a Microsoft Azure web server.

Once logged into the web app, one could enter an input text, select the appropriate model they

want the text to run on and get back the summary. The once the user clicks the summarize

button, the HTML page makes a POST request to the backend server which has preloaded all the

appropriate models. After the request is received, the server runs the input against the model,

fetches the result and sends it as the response to the web client. The web page is then updated to

reflect the output. Developing an end-to-end application helped demonstrate the results and the

capabilities of text summarization efficiently. The backend server of the tool could be used by

the chatbot to fetch real-time summaries once the model is accurate enough.

48

Figure 23: Screenshot of end-to-end text summarization web application

49

6.0 Conclusion

With the ever-growing text data, text summarization seems to have the potential for

reducing the reading time by showing summaries of the text documents that capture the key

points in the original documents. Juniper Networks also has many large datasets that are still

growing in size. Applying text summarization on each article can potentially improve customer

experience and employees’ productivity.

We worked on building text summarization tool on the public datasets and the datasets

provided by Juniper Networks. By taking inspiration from previous works, we built two tools for

text summarization. The first text summarization tool performs extractive summarization on the

input articles using TF-IDF and Textrank. The extractive summarization tool allows extraction of

any number of key sentences from the original articles. Another tool we implemented is

abstractive summarization tool with neural networks. We built an encoder-decoder model using

six LSTM layers: three layers in the encoder, and the other three in the decoder. The compiled

models were trained on four similar datasets, and an end-to-end web application was built using

the trained models. The end-to-end summarizer can perform text summarization for any input

sentences, however, for best results, an input closely related to chosen dataset model is required.

In a nutshell, the tools we made explored the possibility of implementing text

summarization on Juniper’s dataset. While some datasets had decent summaries generated by our

model, there are several ways the model can be improved further.

First, we think the datasets can be further cleaned. In our data cleaning process, we

removed the articles containing Spanish words, however, there may be other articles containing

non-English words. Any such words that cannot be recognized by the model should be removed

in order to improve the model’s performance. The code snippets denoted with <code> tags were

50

removed from the articles, but there may be other chunks of code in the text portion of the

articles outside the <code> tags. Having such chunks in the input dataset will affect the model’s

performance in a negative way. We recommend looking into ways of detecting code written in

various programming languages in an input text.

The model we built for abstractive summarization did a good job on generating human-

readable sentences from given inputs. However, it did not always generate summaries capturing

all the important information in the input documents. To solve this problem, based on our

research, we propose adding a custom layer to the model that performs attention mechanism

(Lopyrev, 2015). The attention mechanism has been proved to be useful in tasks like abstractive

summarization.

Lastly, we suggest using larger datasets to train the models. Researchers in the past have

trained their text summarization models on millions of documents to achieve good results

(Nallapati, Zhou, Santos, Gulçehre, & Xiang 2016). Whereas, due to limited resources, the

largest dataset we used only had about twenty thousand articles. If these changes can be applied,

we think that the performance of the model may improve.

51

Reference

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to

Align and Translate. arXiv preprint arXiv:1409.0473. Retrieved February 28, 2018.

Brill, E. (2000). Part-of-speech Tagging. Handbook of Natural Language Processing, 403-414.

Retrieved March 01, 2018.

Brownlee, J. (2017a, November 29). A Gentle Introduction to Text Summarization. Retrieved

March 02, 2018, from

https://machinelearningmastery.com/gentle-introduction-text-summarization/

Brownlee, J. (2017b, August 09). How to Use Metrics for Deep Learning with Keras in Python.

Retrieved February 28, 2018, from

https://machinelearningmastery.com/custom-metrics-deep-learning-keras-python/

Brownlee, J. (2017c, October 11). What Are Word Embeddings for Text? Retrieved February 28,

2018, from machinelearningmastery.com/what-are-word-embeddings/

Chowdhury, G. (2003). Natural Language Processing. Annual Review of Information Science

and Technology, 37(1), 51-89. doi:10.1002/aris.1440370103. Retrieved March 02, 2018

Christopher, C. (2015, August 27). Understanding LSTM Networks. Retrieved March 02, 2018,

from colah.github.io/posts/2015-08-Understanding-LSTMs/

Dalal, V., & Malik, L. G. (2013, December). A Survey of Extractive and Abstractive Text

Summarization Techniques. In Emerging Trends in Engineering and Technology

(ICETET), 2013 6th International Conference on (pp. 109-110). IEEE. Retrieved March

01, 2018.

Das., K. (2017). Introduction to Flask. Retrieved February 27, 2018, from

pymbook.readthedocs.io/en/latest/flask.html

https://machinelearningmastery.com/gentle-introduction-text-summarization/

52

Glorot, X., & Bengio, Y. (2010, March). Understanding the difficulty of training deep

feedforward neural networks. In Proceedings of the Thirteenth International Conference

on Artificial Intelligence and Statistics (pp. 249-256). Retrieved March 2, 2018, from

http://proceedings.mlr.press/v9/glorot10a.html

Hasan, K. S., & Ng, V. (2010, August). Conundrums in Unsupervised Keyphrase Extraction:

Making Sense of the State-of-the-art. In Proceedings of the 23rd International Conference

on Computational Linguistics: Posters (pp. 365-373). Association for Computational

Linguistics. Retrieved February 28, 2018.

Getbootstrap.com. (2018). Retrieved March 02, 2018, from

http://getbootstrap.com/docs/4.0/getting-started/introduction/

Juniper Networks. (2018). Retrieved March 02, 2018, from https://www.juniper.net/us/en/

Keras: The Python Deep Learning library. (n.d.). Retrieved February 27, 2018, from

https://keras.io/

Ketkar, N. (2017). Introduction to Keras. In Deep Learning with Python (pp. 97-111). Apress,

Berkeley, CA. Retrieved February 26, 2018, from

https://link.springer.com/chapter/10.1007/978-1-4842-2766-4_7.

Lin, C. Y. (2004). Rouge: A Package for Automatic Evaluation of Summaries. Text

Summarization Branches Out. Retrieved February 25, 2018.

Lopyrev, K. (2015). Generating News Headlines with Recurrent Neural Networks. arXiv

preprint arXiv:1512.01712. Retrieved February 28, 2018.

LXML - Processing XML and HTML with Python. (2017, November 4). Retrieved February 25,

2018, from lXML.de/index.html

53

Mihalcea, R., & Tarau, P. (2004). Textrank: Bringing Order into Text. In Proceedings of the

2004 Conference on Empirical Methods in Natural Language Processing. Retrieved

February 27, 2018.

Mohit, B. (2014). Named Entity Recognition. In Natural Language Processing of Semitic

Languages (pp. 221-245). Springer, Berlin, Heidelberg. Retrieved February 27, 2018.

Nallapati, R., Zhou, B., Gulcehre, C., & Xiang, B. (2016). Abstractive Text Summarization

Using Sequence-to-sequence RNNs and beyond. arXiv preprint arXiv:1602.06023.

Retrieved February 23, 2018.

Natural Language Toolkit. (2017, September 24). Retrieved February 23, from

http://www.nltk.org/

Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). BLEU: a Method for Automatic

Evaluation of Machine Translation. In Proceedings of the 40th Annual Meeting on

Association for Computational Linguistics (pp. 311-318). Association for Computational

Linguistics. Retrieved March 01, 2018.

Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global Vectors for Word

Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP) (pp. 1532-1543). Retrieved March 01, 2018.

Python Data Analysis Library. (n.d.). Retrieved March 02, 2018, from https://pandas.pydata.org/

Radhakrishnan, P. (2017, October 16). Attention Mechanism in Neural Network – Hacker Noon.

Retrieved March 02, 2018, from

https://hackernoon.com/attention-mechanism-in-neural-network-30aaf5e39512

Rahm, E., & Do, H. H. (2000). Data Cleaning: Problems and Current Approaches. IEEE Data

Eng. Bull., 23(4), 3-13. Retrieved March 01, 2018.

54

Ramos, J. (2003, December). Using TF-IDF to Determine Word Relevance in Document

Queries. In Proceedings of the First Instructional Conference on Machine Learning (Vol.

242, pp.133-142). Retrieved March 01, 2018.

Rehurek, R. (2009). Gensim: Topic Modelling for Humans. Retrieved March 02, 2018, from

radimrehurek.com/gensim/intro.html

Rush, A. M., Chopra, S., & Weston, J. (2015). A Neural Attention Model for Abstractive

Sentence Summarization. arXiv preprint arXiv:1509.00685. Retrieved February 25, 2018.

Scikit-Learn: Machine Learning in Python. (n.d.). Retrieved February 23, 2018, from

http://scikit-learn.org/stable/index.html

Schalkoff, R. J. (1997, June). Artificial Neural Networks (Vol. 1). New York: McGraw-Hill.

Retrieved March 02, 2018.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning with Neural

Networks. In Advances in Neural Information Processing Systems (pp. 3104-3112).

Retrieved March 02, 2018.

Socher, R., Bengio, Y., & Manning, C. (2013). Deep Learning for NLP. Tutorial at Association

of Computational Logistics (ACL), 2012, and North American Chapter of the

Association of Computational Linguistics (NAACL). Retrieved March 01, 2018.

Stackoverflow.com. (2018). Retrieved March 02, 2018, from https://stackoverflow.com/tour

http://scikit-learn.org/stable/index.html

55

Appendix A: Extended Technical Terms

In this appendix, we briefly explain some technical terms that are mentioned in this report

but are not necessarily related to the core concept of our project.

1. Named Entity Recognition (NER)

Named Entity Recognition (NER) is a way of finding and classifying names, which are

nouns in text, into predefined categories (Mohit, 2014).

2. Part of Speech (POS) Tagging

 Part of Speech (POS) Tagging is a way of tagging word in text, which is corresponding to

a specific part of speech (Brill, 2000).

3. Convolutional Network Model

 Convolutional Network Model, which is also known as Convolutional Neural Network

(CNN) is a kind of neural network with a structure of going deep and then feeding forward

(Glorot & Bengio, 2010)

4. Feedforward Neural Network Model

 Feedforward Neural Network Model is a kind of neural network where data are feeding

forward through all hidden layers (Glorot & Bengio, 2010).

5. Attention Mechanism

 Attention Mechanism a way of helping decoder focus on the important part of source text

when generating outputs in the encoder-decoder model (Radhakrishnan, 2017).

6. Keras Categorical Accuracy

 Keras Categorical Accuracy is a metric that can be used on classification problem in

Keras (Brownlee, 2017b).

7. Keras Categorical Loss

56

 Keras Categorical Loss is a loss function used in classification problem in Keras to

measure the cost of inaccurate predictions (Ketkar, 2017).

	Abstract
	Table of Contents
	1.0 Introduction
	2.0 Background
	2.1 Natural Language Processing
	2.2 Text Extraction
	2.2.1 Textrank
	2.2.2 TF-IDF

	2.3 Text Abstraction
	2.3.1 Artificial Neural Network
	2.3.2 RNN and LSTM
	2.3.3 Word Embedding

	2.4 ROUGE-N and BLEU Metrics
	2.5 Libraries
	2.5.1 Keras
	2.5.2 NLTK
	2.5.3 Scikit-learn
	2.5.4 Pandas
	2.5.5 Gensim
	2.5.6 Flask
	2.5.7 Bootstrap
	2.5.8 GloVe
	2.5.9 LXML

	3.0 Related Work
	4.0 Methodology
	4.1 Choose and clean datasets
	4.1.1 Datasets Information
	4.1.2 Data Cleaning
	4.1.3 Data Categorization

	4.2 Extractive Summarization
	4.2.1 Algorithms
	4.2.2 Control Experiment
	4.2.3 Metrics

	4.3 Abstractive Summarization
	4.3.1 Preparing the dataset
	4.3.2 Embedding layer
	4.3.3 Model

	4.4 Test and compare among different datasets
	4.5 Tune the model
	4.6 Build an end-to-end application

	5.0 Results
	5.1 Data Cleaning and Categorizing
	5.2 Extractive Model Performance
	5.3 Abstractive Model Performance
	5.3.1 Stack Overflow Dataset: Question Body to Title
	5.3.2 Juniper Knowledge Base Dataset: Solution to Title
	5.3.3 Juniper Knowledge Base: Extracted Solution to Title
	5.3.4 Juniper JIRA Dataset: Description to Summary
	5.3.5 Juniper JTAC Dataset: Description to Synopsis

	5.4 Performance Comparison Among Datasets
	5.5 End-to-End Application

	6.0 Conclusion
	Reference
	Appendix A: Extended Technical Terms

