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Abstract 

Juniper Networks develops and markets networking devices along with service 

agreements. To provide a better customer experience, Juniper Networks maintains large datasets 

of articles. Each of these articles can be long and verbose. By having a text summarization tool, 

Juniper Networks can summarize their articles to save company’s time and resources. The goal 

of this Major Qualifying Project was to create a text summarization tool which can help 

summarize documents in Juniper’s datasets. Following the goal, we developed a deep learning 

model for text summarization and trained it on Juniper’s datasets. Using the trained models, we 

created an end to end web application which can take an article as input and generate a summary. 
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1.0 Introduction 

Text summarization is the process of generating short, fluent, and most importantly 

accurate summary of a respectively longer text document (Brownlee, 2017a). The main idea 

behind automatic text summarization is to be able to find a short subset of the most essential 

information from the entire set and present it in a human-readable format. As online textual data 

grows, automatic text summarization methods have potential to be very helpful because more 

useful information can be read in a short time.  

Juniper Networks is a networking company that manufactures and supports enterprise-

grade routing, switching and security products as well as service agreements (Juniper.net, 2018). 

In order to satisfy the customer base, Juniper tries to resolve issues quickly and efficiently. 

Juniper Networks maintains a Knowledge Base (KB) which is a dataset composed of questions 

from customers with human written solutions. The KB contains over twenty thousand articles. 

The company is currently developing a chatbot to provide 24x7 fast assistance on customer 

questions. The chatbot can search queries asked by the users in the KB and fetch links to the 

related articles. Juniper Networks is looking for ways to be able to automatically summarize 

these articles so that chatbot can present the summaries to the customers. The customers can then 

decide if they would like to read the entire article. The summarization tool could be further used 

internally for summarizing tickets and issues created by Juniper’s employees.  

The goals of this Major Qualifying Project are to research methods for text 

summarization, create an end-to-end prototype tool for summarizing documents and identify if 

Juniper Networks’ datasets can be summarized effectively and efficiently. In order to achieve 

these goals, we developed the following objectives: 

● Research current technologies and progress associated with text summarization. 
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● Filter and clean datasets to be used for summarization. 

● Implement algorithms and models for different methods of text summarization. 

● Evaluate the models and tune them if necessary. 

● Build and host an end-to-end tool which takes texts as input and outputs a summary 

 Following the above objectives, we investigated extractive summarization and 

abstractive summarization, commonly used text summarization methods. We implemented 

extractive summarization using Textrank (Mihalcea, Rada, and Paul Tarau, 2004) and TF-IDF 

algorithms (Ramos and Juan, 2003). We implemented abstractive summarization using deep 

learning models.  To run and test our implementations, we chose and filtered five datasets (three 

Juniper datasets and two public datasets). Using the cleaned datasets, we trained and evaluated 

different versions of our model. Once we finalized the model, we built an end-to-end tool web 

application that can summarize any given input text. The web application offers choices for 

summarizing input text from each of the five datasets: the News dataset, the StackOverflow 

dataset, Juniper’s KB dataset, Juniper’s JIRA dataset and Juniper’s JTAC dataset.     

The rest of this report is organized as follows. Section 2 discusses the technical terms 

related to text summarization. Next, Section 3 introduces some related works on text 

summarization. Lastly, Section 4 and 5 present the methods used to achieve the project goal and 

the results. 
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2.0 Background 

This section explores the technologies which were used in this project (Section 2.1 - 2.3). 

The section first discusses the key concepts for text summarization, followed by the metrics used 

to evaluate them along with the environments (Section 2.4) and the libraries used to complete 

this project (Section 2.5). 

 

2.1 Natural Language Processing 

Natural Language Processing (NLP) is a field in Computer Science that focuses on the 

study of the interaction between human languages and computers (Chowdhury, 2003). Text 

summarization is in this field because computers are required to understand what humans have 

written and produce human-readable outputs. NLP can also be seen as a study of Artificial 

Intelligence (AI). Therefore many existing AI algorithms and methods, including neural network 

models, are also used for solving NLP related problems. With the existing research, researchers 

generally rely on two types of approaches for text summarization: extractive summarization and 

abstractive summarization (Dalal and Malik, 2013).   

 

2.2 Text Extraction 

Extractive summarization means extracting keywords or key sentences from the original 

document without changing the sentences. Then, these extracted sentences can be used to form a 

summary of the document. 

2.2.1 Textrank 

Textrank is an algorithm inspired by Google’s PageRank algorithm that helps identify 

key sentences from a passage (Mihalcea, Rada, and Paul Tarau, 2004). The idea behind this 



 

4 

algorithm is that the sentence that is similar to most other sentences in the passage is probably 

the most important sentence in the passage. Using this idea, one can create a graph of sentences 

connected with all the similar sentences and run Google’s PageRank algorithm on it to find the 

most important sentences. These sentences would then be used to create the summary. 

2.2.2 TF-IDF 

Term Frequency-Inverse Document Frequency (TF-IDF) is used to determine the 

relevance of a word in the document (Ramos and Juan, 2003). The underlying algorithm 

calculates the frequency of the word in the document (term frequency) and multiplies it by the 

logarithmic function of the number of documents containing that word over the total number of 

documents in the dataset (inverse document frequency). Using the relevance of each word, one 

can compute the relevance of each sentence. Assuming that most relevant sentences are the most 

important sentences, these sentences can then be used to form a summary of the document. 

 

2.3 Text Abstraction 

Compared to extractive summarization, abstractive summarization is closer to what 

humans usually expect from text summarization. The process is to understand the original 

document and rephrase the document to a shorter text while capturing the key points (Dalal and 

Malik, 2013). Text abstraction is primarily done using the concept of artificial neural networks. 

This section introduces the key concepts needed to understand the models developed for text 

abstraction. 
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2.3.1 Artificial Neural Network 

          Artificial neural networks are computing 

systems inspired by biological neural networks. Such 

systems learn tasks by considering examples and usually 

without any prior knowledge. For example, in an email spam 

detector, each email in the dataset is manually labeled as 

“spam” or “not spam”. By processing this dataset, the 

artificial neural networks evolve their own set of relevant 

characteristics between the emails and whether a new email 

is spam.  

To expand more, artificial neural networks are composed of artificial neurons called units 

usually arranged in a series of layers. Figure 1 is the most common architecture of a neural 

network model. It contains three types of layers: the input layer contains units which receive 

inputs normally in the format of numbers; the output layer contains units that “respond to the 

input information about how it is learned any task”; the hidden layer contains units between 

input layer and output layer, and its job is to transform the inputs to something that output layer 

can use (Schalkoff, 1997).   

2.3.2 RNN and LSTM 

 Traditional neural networks do not recall any previous work when building the 

understanding of the task from the given examples. However, for tasks like text summarization, 

the sequence of words in input documents is critical. In this case, we want the model to 

remember the previous words when it processes the next one. To be able to achieve that, we have 
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to use recurrent neural networks because they are networks with loops in them where 

information can persist in the model (Christopher, 2015).   

     Figure 2 shows how an 

Recurrent neural network (RNN) 

looks like if it is unrolled. For the 

symbols in the figure, “ht” 

represents the output units value 

after each timestamp (if the input is 

a list of strings, each timestamp can be the processing of one word), “x” represents the input 

units for each timestamp, and A means a chunk of the neural network. Figure 2 shows that the 

result from the previous timestamp is passed to the next step for part of the calculation that 

happens in a chunk of the neural network. Therefore, the information gets captured from the 

previous timestamp. However, in practice, 

traditional RNNs often do not memorize 

information efficiently with the increasing 

distance between the connected 

information. Since each activation function 

is nonlinear, it is hard to trace back to 

hundreds or thousands of operations to get 

the information.  

Fortunately, Long Short-Term Memory (LSTM) networks can convey information in the 

long term. Different from the traditional RNN, inside each LSTM cell, there are several simple 

linear operations which allow data to be conveyed without doing the complex computation. As 
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shown in Figure 3, the previous cell state containing all the information so far smoothly goes 

through an LSTM cell by doing some linear operations. 

Inside, each LTSM cell makes decisions about what information to keep, and when to 

allow reads, writes and erasures of 

information via three gates that open and 

close.  

As shown in Figure 4, the first gate is 

called the “forget gate layer”, which takes the 

previous output units value ht-1 and the 

current input xt, and outputs a number 

between 0 and 1 to indicate the ratio of 

passing information. 0 means do not let any information pass, while 1 means let all information 

pass. 

To decide what information needs to be 

updated, LSTM contains the “input gate layer”. 

It also takes in the previous output units value 

ht-1 and the current input xt and outputs a 

number to indicate inside which cells the 

information should be updated. Then, the 

previous cell state Ct-1 is updated to the new 

state Ct. 

The last gate is “output gate layer”, 

which decides what the output should be. Figure 6 shows that in the output layer, the cell state is 
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going through a tanh function, and then it is multiplied by the weighted output of the sigmoid 

function. So, the output units value ht is passed to the next LSTM cell (Christopher, 2015). 

Simple linear operators connect the 

three gate layers. The vast LSTM neural 

network consists of many LSTM cells, and all 

information is passed through all the cells while 

the critical information is kept to the end, no 

matter how many cells the network has. 

2.3.3 Word Embedding 

Word embedding is a set of feature 

learning techniques in NLP where words are 

mapped to vectors of real numbers. It allows similar words to have similar representation, so it 

builds a relationship between words and allows calculations among them (Mikolov, Sutskeve, 

Chen, Corrado, and Dean, 2013). A typical example is that after representing words to vectors, 

the function “king - men + women” would ideally give the vector representation for the word 

“queen”. The benefit of using word embedding is that it captures more meaning of the word and 

often improves the task performance, primarily when working with natural language processing. 

 

2.4 ROUGE-N and BLEU Metrics 

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation. It is a set of 

metrics that is used to score a machine-generated summary using one or more reference 

summaries created by humans. ROUGE-N is the evaluation of N-grams recall over all the 

reference summaries. The recall is calculated by dividing the number of overlapping words over 
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the total number of words in the reference summary (Lin, Chin-Yew, 2004). The BLEU metric, 

contrary to ROUGE, is based on N-grams precision. It refers to the percentage of the words in 

the machine generated summary overlapping with the reference summaries (Papineni, Kishore, 

et al., 2002). For instance, if the reference summary is “There is a cat and a tall dog” and the 

generated summary is “There is a tall dog”, the ROUGE-1 score will be 5/8 and the BLEU score 

will be 5/5. This is because the number of overlapping words are 5 and the number of words in 

system summary and reference summary are 5 and 8 respectively. These two metrics are the 

most commonly used metrics when working with text summarization.  

 

2.5 Libraries 

2.5.1 Keras 

Keras is a Python library initially released in 2015, which is commonly used for machine 

learning. Keras contains many implemented activation functions, optimizers, layers, etc. So, it 

enables building neural networks conveniently and fast. Keras was developed and maintained by 

François Chollet, and it is compatible with Python 2.7-3.6 (Keras.io, n.d.). 

2.5.2 NLTK 

Natural Language Toolkit (NLTK) is a text processing library that is widely used in 

Natural Language Processing (NLP). It supports the high-performance functions of tokenization, 

parsing, classification, etc. The NLTK team initially released it in 2001 (Nltk.org, 2018). 

2.5.3 Scikit-learn 

Scikit-learn is a machine learning library in Python. It performs easy-to-use dimensional 

reduction methods such as Principal Component Analysis (PCA), clustering methods such as k-
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means, regression algorithms such as logistic regression, and classification algorithms such as 

random forests (Scikit-learn.org, 2018). 

2.5.4 Pandas 

Pandas provides a flexible platform for handling data in a data frame. It contains many 

open-source data analysis tools written in Python, such as the methods to check missing data, 

merge data frames, and reshape data structure, etc. (“Pandas”, n.d.). 

2.5.5 Gensim 

Gensim is a Python library that achieves the topic modeling. It can process a raw text 

data and discover the semantic structure of input text data by using some efficient algorithms, 

such as Tf-Idf and Latent Dirichlet Allocation (Rehurek, 2009). 

2.5.6 Flask 

Flask, issued in mid-2010 and developed by Armin Ronacher, is a robust web framework 

for Python. Flask provides libraries and tools to build primarily simple and small web 

applications with one or two functions (Das., 2017). 

2.5.7 Bootstrap 

Bootstrap is an open-source JavaScript and CSS framework that can be used as a basis to 

develop web applications. Bootstrap has a collection of CSS classes that can be directly used to 

create effects and actions for web elements. Twitter’s team developed it in 2011 (“Introduction”, 

n.d.). 

2.5.8 GloVe 

Global Vectors for Word Representation (GloVe), which is initially developed by a group 

of Stanford students in 2014, is a distributed word representations model that performs better 
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than other models on word similarity, word analogy, and named entity recognition. (Pennington, 

Richard and Christopher, 2014). 

2.5.9 LXML 

The XML toolkit lXML, which is a Python API, is bound to the C libraries libXML2 and 

libxslt. LXML can parse XML files faster than the ElementTree API, and it also derives the 

completeness of XML features from libXML2 and libxslt libraries (LXML.de, 2017)  

http://xmlsoft.org/
http://xmlsoft.org/XSLT/
http://effbot.org/zone/element-index.htm
http://xmlsoft.org/
http://xmlsoft.org/XSLT/
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3.0 Related Work 

In order to build the text summarization tool for Juniper Networks, we first researched 

existing ways of doing text summarization. Text summarization, still at its early stage, is a field 

in Natural Language Processing (NLP). Deep learning, an area in machine learning, has 

performed with state-of-the-art results for common NLP tasks such as Named Entity Recognition 

(NER), Part of Speech (POS) tagging or sentiment analysis (Socher, R., Bengio, Y., & Manning, 

C., 2013). In case of text summarization, the two common approaches are extractive and 

abstractive summarization.   

For extractive summarization, dominant techniques including TF-IDF and Textrank 

(Hasan, Kazi Saidul, & Vincent Ng, 2010). Textrank was first introduced by Mihalcea, Rada, 

and Paul Tarau in their paper Textrank: Bringing order to text (2004). The paper proposed the 

idea of using a graph-based algorithm similar to Google’s Pagerank to find the most important 

sentences. Juan Ramos proposed TF-IDF (2003). He explored the idea of using a word’s 

uniqueness to perform keyword extraction. This kind of extraction can also be applied to an 

entire sentence by calculating the TF-IDF of each word in the sentence. We implemented both of 

these algorithms - Textrank and TF-IDF, and compared their performances in different datasets. 

Abstractive summarization is most commonly performed with deep learning models.  

One such model that has been gaining popularity is sequence to sequence model (Nallapati, 

Zhou, Santos, Gulçehre, & Xiang 2016). Sequence to sequence models have been successful in 

speech recognition and machine translation (Sutskever, I., Vinyals, O., & Le, Q. V., 2014). 

Recent studies on abstractive summarization have shown that sequence to sequence models using 

encoders and decoders beat other traditional ways of summarizing text. The encoder part encodes 
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the input document to a fixed-length vector. Then the decoder part takes the fixed-length vector 

and decodes it to the expected output (Bahdanau, Cho, & Bengio, 2014).   

We focused on three recent pieces of research on text summarization as inspirations for 

our model of abstractive summarization (Rush, Chopra, & Weston, 2015; Nallapati, Zhou, 

Santos, Gulçehre, & Xiang 2016; Lopyrev, 2015). All three journals have used encoder-decoder 

models to perform abstractive summarization on the dataset of news articles to predict the 

headlines. 

The model created by Rush et al., a group from Facebook AI Research, has used 

convolutional network model for encoder, and a feedforward neural network model for decoder 

(for details, please see Appendix A: Extended Technical Terms). In their model, only the first 

sentence of each article content is used to generate the headline (2015). 

The model generated by Nallapati et al., a team from IBM Watson, used Long Short-

Term Memory (LSTM) in both encoder and decoder. They used the same news article dataset as 

the one that the Facebook AI Research group used. In addition, the IBM Watson group used the 

first two to five sentences of the articles’ content to generate the headline (2016). Nallapati et al. 

were able to outperform Rush et al.’s models in particular datasets. 

The article from Konstantin Lopyrev talks about a model that uses four LSTM layers and 

attention mechanism, a mechanism that helps improve encoder-decoder model’s performance 

(2015). Loprev also used the dataset of news articles, and the model predicts the headlines of the 

articles from the first paragraph of each article.  

All three works show that encoder-decoder model is a potential solution for text 

summarization. Using LSTM layers in encoder-decoder also allow capturing more information 

from original article content than traditional RNNs. In this project, inspired by previous works, 
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we also used the encoder-decoder model with LSTM but in a slightly different structure. We 

used three LSTM layers in the encoder and another three LSTM layers in the decoder (details of 

the model are described in Section 3.0). However, the datasets used in this project were not as 

clean as news articles. Our datasets contain a lot of technical terms, coding languages as well as 

unreadable characters. Therefore, we tried to combine the extractive summarization and 

abstractive summarization to test if it provides better performance. We hoped that extractive 

summarization could help extract key sentences from the articles, which can be used as inputs to 

our abstractive deep learning models. This way, the input documents for the abstractive 

summarization would be neater than the original ones.  
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4.0 Methodology 

The goal of this project is to explore automatic text summarization and analyze its 

applications on Juniper’s datasets. To achieve the goal, we completed the following steps: 

Step 1: Choose and clean datasets 

Step 2: Build the extractive summarization model 

Step 3: Build the abstractive summarization model 

Step 4: Test and compare models on different datasets 

Step 5: Tune the abstractive summarization model 

Step 6: Build an end-to-end application 

 

4.1 Choose and clean datasets 

Section 4.1.1 introduces the basic information about each dataset we used, precisely the 

contents of the dataset, and the reason for using the dataset. Section 4.1.2 and 4.1.3 dive into the 

steps of data cleaning and categorizing. 

4.1.1 Datasets Information 

We worked on five datasets — the StackOverflow dataset (Stack Dataset), the news 

articles dataset (News Dataset), the Juniper Knowledge Base dataset (KB Dataset), the Juniper 

Technical Assistance Center Dataset (JTAC Dataset) and the JIRA Dataset. Each dataset consists 

of many cases, where each case consists of an article and a summary or a title. Since the raw 

News Dataset was already cleaned, we primarily focused on cleaning the rest four datasets. 

Figure 7 below shows the changes in dataset sizes before and after cleaning the data. As shown 

in the figure, after cleaning the datasets, we had two large datasets (the Stack Dataset and the KB 
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Dataset) with over 15,000 cases and two small datasets (the JTAC Dataset and the JIRA Dataset) 

with nearly 5,000 cases to work with.  

 

Figure 7: Dataset Information  

The Stack Dataset is a collection of questions and answers on the StackOverflow website 

(stackoverflow.com, 2018). We used a filtered version of the Stack Dataset dealing only with 

networking related issues. There are 39,320 cases in this data frame, which is the largest dataset 

we worked on. For each case, we filtered the dataset to only keep the unique question id, the 

question title, the question body, and the answer body. Then we cleaned the filtered dataset by 

removing chunks of code, non-English articles and short articles. Finally, we got 37,378 cases 

after cleaning. The reason we chose to work with the Stack Dataset is because it contains 

technical questions similar to that of the KB Dataset. However, the Stack Dataset is supposedly 

cleaner than the KB Dataset, and by running our models in a cleaner dataset, we could first focus 

on designing our model to set a benchmark.  
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Second, the News Dataset is a public dataset containing news articles from Indian news 

websites. We used this dataset because the dataset includes a human-generated summary for each 

article, which can be used to train our model. For our purposes, we only used the article body 

and the summary of each article. This dataset was used just for extractive summarization as the 

dataset was not relevant to the Juniper KB Dataset.  

Third, the KB Dataset, which is the one we put the most emphasis on, contains technical 

questions and answers about networking issues. The raw dataset is in a directory tree of 23,989 

XML files, and each XML file contains the information about one KB article. For our training 

and testing, we only kept a unique document id, a title, a list of categories that the article belongs 

to, and a solution body for each KB article in the data frame.  We filtered out the top 30 

categories which contained 15,233 cases. Our goal was to use the KB articles’ solutions as input 

and predict the KB articles’ titles. 

Fourth, the JTAC Dataset contains information about JTAC cases. It has 8,241 cases, and 

each case has a unique id, a synopsis, and a description. The raw dataset is in a noisy JSON file.  

At last, the JIRA Dataset is about JIRA bugs from various projects. JIRA is a public 

project management tool developed by Atlassian for issue tracking. The JIRA Dataset has 5,248 

cases, and each case has a unique id, a summary, and a description. Same as the JTAC Dataset, 

the raw JIRA Dataset is also in a JSON file. 

4.1.2 Data Cleaning 

  The five datasets we worked were very noisy containing snippets of code, invalid 

characters, and unreadable sentences. For an efficient training, our models needed datasets with 

no missing value and no noisy words. Based on this guideline, we followed these basic steps to 

clean our datasets: 
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● Read data file and make a data frame 

The Stack Data are in CSV files and can be easily transferred to a dataframe by using 

pandas library. However, the KB Dataset is stored in a directory tree of XML files, so we used 

Lmxl to read each XML file from the root to each element and store the information we need 

into a dataframe (LXML.de, 2017). 

● Check for missing values. 

Since fewer than 5% of the articles had missing values, the articles containing missing 

values were dropped from the data frames.   

● Detect and remove the code part in all texts. 

In the Stack Dataset and the KB Dataset, there are many chunks of code in the question 

and answer bodies. The code snippets would cause problems as the summarization models 

cannot capture the inference of the code. Therefore, we identified the chunks of code by locating 

the code tags in the input strings and deleting everything between “<code>” and “</code>” tags. 

Eventually, we found that nearly 33% of KB articles contain some type of code in them. 

● Detect and remove the unknown words with “&” symbol in all texts. 

In the KB Dataset, we found that there are 48.76% words which cannot be recognized by 

Juniper’s word embedding. Some of the unrecognized words are proper nouns, but some of them 

are garbled and meaningless words that start with “&” symbols such as the word “&npma”. The 

proper nouns might catch the unique information in the articles, so we did not remove them. 

However, we detected and removed all the unknown words started with “&” symbol. 

● Detect and remove the Spanish articles. 

In the KB Dataset, 164 articles are written in Spanish. Our project’s focus was only on 

English words, and having words outside of English language would cause problems while 
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training our models. We identified the Spanish articles by looking for some common Spanish 

words such as “de”, “la” and “los”. Any article containing a Spanish word was removed. 

● Detect and remove the articles less than 10 characters or 3 words. 

In the KB Dataset, some solution articles only contained a link or a period, so we 

removed any article less than 10 characters or 3 words. 

● Detect and remove the articles that have many digits. 

In the JTAC dataset, there are nearly 19% articles in which more than 20% of all 

characters are digits, and most of the digits are meaningless in the context such as “000x”. Digits 

are seldom used in training and may affect the prediction, so we removed such articles. 

● Check duplicate articles and write the cleaned data into a CSV file. 

We also checked whether there were duplicated data, and we found that all data are 

unique. Finally, we wrote the cleaned data into a comma-separated values file. 

 

 4.1.3 Data Categorization 

Data Categorization in our project involved categorizing KB articles by creating a 

hierarchy of the existing KB categories. Each KB article was associated with a list of categories 

like- “MX240”, “MX230”, “MX”, etc. In this case, the hierarchy of the categories should reflect 

category “MX240” to be a child node of category “MX”. “MX” is the name of a product series at 

Juniper, while “MX240” is the name of a product in the MX series. The goal of categorizing KB 

data is to have a more precise structure of the KB dataset which could be used by Juniper 

Networks for future data related projects as well. The detailed steps of categorizing KB articles 

are listed below: 

● Get the set of all categories. 



 

20 

We looped through the category lists in all cases and gathered all the unique categories in 

a set arrange alphabetically. 

● Remove digits and underscores in each category name. 

In order to efficiently categorize the data, we removed the digits and underscores at the 

beginning and the end of each category name. For example, “MX240_1” is shrunk as “MX”. 

This was helpful when we used the Longest Common Substrings to categorize the data because 

the longest common substring among “MX240_1” and “MX240_2” is “MX240_”, whereas 

ideally, we wanted the category to be just “MX”. 

● Find a list of Longest Common Substrings (LCS) among category names. 

Since similar category names are listed consecutively, we went through the entire set and 

found the LCS with minimum two characters among the neighbors. If a specific string did not 

have a common substring with its previous string and its successive string, this string was 

regarded as a parent node which had no child node.  

● Manually examine the LCS and pick 30 decent category names. 

After we listed all the common substrings, we manually took a look at the list and picked 

30 category names which were meaningful and contained many children nodes. For example, we 

picked some names of main product series at Juniper such as “MX” and “EX”, and we also chose 

some networking-related categories such as “SERVER” and “VPN”. 

● Write all KB articles that belonged to that 30 categories into a CSV file. Build the 

hierarchy map for KB categories. 

The last step was to extract the KB articles that contained any category name that 

belonged to the target 30 categories in the category list. We also generated the hierarchy map for 

all KB categories, so it is easier for future category-cased extractions. 
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4.2 Extractive Summarization 

We began the text summarization by exploring the extractive summarization. The goal 

was to try the extractive approach first, and use the output from extraction as an input of the 

abstractive summarization. After experimenting with the two approaches, we would then pick the 

best approach for Juniper Network’s Knowledge Base (KB) dataset. The text extraction 

algorithms and controls were implemented in Python. The code contained three important 

components - the two algorithms used, the two control methods, and the metrics used to compare 

all the results. 

4.2.1 Algorithms 

The algorithms used for text extraction were - Textrank (Mihalcea, Rada, and Paul Tarau, 

2004) and TF-IDF (Ramos and Juan, 2003). These two algorithms were run on three datasets - 

the News Dataset, the Stack Dataset and the KB Dataset. Each algorithm generates a list of 

sentences in the order of their importance. Out of that list, the top three sentences were joined 

together to form the summary. 

Textrank was implemented by creating a graph where each sentence formed the node, 

and the edges were the similarity score between the two node sentences. The similarity score was 

calculated using Google’s Word2Vec public model. The model provides a vector representation 

of each word which can be used to compute the cosine similarity between them. Once the graph 

was formed, Google’s PageRank algorithm was executed in the graph, and then top sentences 

were collected from the output. 

Scikit Learn’s TF-IDF module was used to compute the TF-IDF score of each word with 

respect to its dataset. Each sentence was scored by calculating the sum of the scores of each word 
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in the sentences. The idea behind this was that the most important sentence in the document is 

the sentence with the most uniqueness (most unique words). 

 4.2.2 Control Experiment 

To be able to verify the effectiveness of the two algorithms, two control experiments 

were used. A control experiment is usually a naive procedure that helps in testing the results of 

an experiment. The two control experiments used in text extraction were - forming a summary by 

combining the first three lines and forming a summary by combining three random lines in the 

article. By running the same metrics in these control experiments as the experiments with the 

algorithm being tested, a baseline can be created for the algorithms. In an ideal case, the 

performance of the algorithms should always be better than the performance of the control 

experiments. 

4.2.3 Metrics 

All the extracted results including the results from the control experiments were 

evaluated using the ROGUE-1 score and the BLEU score. The score for each of the generated 

summary was computed. Then, each dataset was scored by computing the mean of the summary 

scores in the dataset. These scores were then compared and the best algorithm for each dataset 

was picked.  

 

4.3 Abstractive Summarization 

The next step in our project was to work with abstractive summarization. This is one of 

the most critical components of our project. We used deep learning neural network models to 

create an application that could summarize a given text. The goal was to create and train a model 

which can take sentences as the input and produce a summary as the output.  
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The model would have pre-trained weights and a list of vocabulary that it would be able 

to output. Figure 8 shows the basic flow of our data we wanted our model to achieve. The first 

step was to convert each word to its index form. In the figure, the sentences “I have a dog. My 

dog is tall.” is converted to its index form by using a word to index map.  

The index form was then passed through an embedding layer which in turn converted the 

indexes to vectors. We used pre-trained word embedding matrixes to achieve this. The output 

from the embedding layer was then sent as an input to the model. The model would then 

compute and create a one-hot vectors matrix of the summary. A one-hot vector is a vector of 

dimension equal to the size of the model’s vocabulary where each index represents the 

probability of the output to be the word in that index of the vocabulary. For example, if the index 

2 in the one-hot vector is 0.7, the probability of the result to be the word in the vocabulary index 

2 is 0.7. This matrix would then be converted to words by using the index to word mapping that 

was created using the word to index map. In the figure, the final one-hot encoding when 

converted to words forms the expected summary “I have a tall dog.”. Section 4.3.1, 4.3.2 and 

4.3.3 expand our architecture of the above model in detail. 
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Figure 8: Abstractive summarization basic flow diagram 

4.3.1 Preparing the dataset 

Before training the model on the dataset, certain features of the dataset were extracted. 

These features were used later when feeding the input data to the model and comprehending the 

output information from the model.   
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We first collected all the unique words from the input (the article) and the expected 

output (the title) of the documents and created two Python dictionaries of vocabulary with index 

mappings for both the input and the output of the documents.  

In addition, we created an embedding matrix by converting all the words in the 

vocabulary to its vector form using pre-trained word embeddings. For public datasets like Stack 

Overflow, we used the publicly available pre-trained GloVe model containing word embeddings 

of one hundred dimensions each. For Juniper’s datasets, we used the embedding matrix created 

and trained by Juniper Networks on their internal datasets. The Juniper Network’s embedding 

matrix had vectors of one hundred and fifty dimensions each. The dictionaries of the word with 

index mappings, the embedding matrix, and the descriptive information about the dataset (such 

as the number of input words and the maximum length of the input string) were stored in a 

Python dictionary for later use in the model. 

4.3.2 Embedding layer 

The embedding layer was a precursor layer to our model. This layer utilizes the 

embedding matrix, saved in the previous step of preparing the dataset, to transform each word to 

its vector form. The layer takes input each sentence represented in the form of word indexes and 

outputs a vector for each word in the sentence. The dimension of this vector is dependent on the 

embedding matrix used by the layer. Representing each word in a vector space is important 

because it gives each word a mathematical context and provides a way to calculate similarity 

among them. By representing the words in the vector space, our model can run mathematical 

functions on them and train itself. 
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 4.3.3 Model 

Recent studies have shown that the sequence to sequence model with encoder-decoder 

outperforms simple feedforward neural networks for text summarization (Nallapati, Zhou, 

Santos, Gulçehre, & Xiang 2016). Sequence to sequence models have been commonly used in 

machine translation in the past. Our model utilizes the sequence to sequence design.  Figure 9 

shows the training portion of our model.  

The model is provided with an input text “I have a dog. The dog is very tall.” and the 

expected summary is “I have a tall dog”. In the first step the input gets converted to the index 

form, using the word to index dictionary saved, and then the embedding layer translates it to a 

vector. The output from the embedding layer is fed to the encoder which consists of three LSTM 

layers. The green boxes in the figure form the encoder set of LSTMs. The LSTM layers in the 

encoder take the input from the embedding layer and maintain an internal state. The internal state 

gets updated as each word in the vector form is fed to the encoder. Each layer takes as input the 

state processed by the previous LSTM layer.  

Once the entire input is processed, the internal state is then transferred to the decoder to 

process. The decoder consists of three LSTM layers as well as a softmax layer to compute the 

final output. The decoder (shown as the red boxes in the Figure 9), initializes itself using the 

states computed by the LSTM layers in the encoder. It works similar to the encoder by 

maintaining a hidden state and passing it on for decoding the next input word.  

During the training phase, the decoder takes as input the actual or the reference summary 

as shown in the Figure 9 The decoder’s job is to use each input word to update its hidden state 

and then predict the next word in the summary after passing it through the softmax layer. The 

softmax layer computes the probability (whether the word is the output word) of each available 
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word in the stored output vocabulary list. The predicted value is then compared with expected 

value which is the next word in the summary. Depending on the loss calculated by the model, the 

weights of the LSTM cells are updated through the classic backpropagation algorithm. 

 

Figure 9: Architecture of training model 

After the model has been trained properly on the three datasets, the model is evaluated on 

the portion of the dataset that was reserved for validation. For predicting the summary on the 

given input, the model is not shown the actual summary. The first input to the decoder is a ‘start 

token’ which is what the model was trained on. Once the model predicts a word, that word is 
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now used as the input to the decoder for the next word as shown in the Figure 10. Due to this, 

there is a slight difference between the training and the predicting stage of the model.  

To overcome any discrepancies, during the training stage, we picked a random word as 

the input instead of the actual summary word one-tenth of the time as suggested in Generating 

news headlines with recurrent neural networks by Konstantin Lopyrev (2015). The softmax layer 

in the decoder outputs a one-hot encoding of each word. Using the mapping, the word is found 

and then joined together with rest of the output to produce a summary. 

 

Figure 10: Architecture of prediction model 
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4.4 Test and compare among different datasets 

There were four different versions of the model created, each trained on one of the four 

cleaned datasets: the Stack Dataset, the KB Dataset, the JIRA Dataset and the JTAC Dataset. The 

abstractive summarization model was not trained on the News Dataset because the News Dataset 

is not closely related to Juniper’s datasets, and training each model once can take up to 2 days. 

The four models were then tested on the portion of the datasets reserved for validation. The 

generated summaries were scored using ROGUE-1 and BLEU scores. Using these scores, the 

datasets’ capabilities of being summarized effectively can be measured. The results would show 

if the model works better on any particular dataset. 

 

4.5 Tune the model 

After running and testing the model in different datasets, the model’s parameters were 

tuned - specifically the number of hidden units was increased, the learning rate was increased, 

the number of epochs was changed and a dropout parameter (percentage of input words that will 

be dropped to avoid overfitting) was added at each LSTM layer in the encoder. Different values 

were tested for each of the parameters while keeping in mind the limited resources available to 

test the model. The models were rerun on the datasets, and the results were compared with the 

previous run. The summaries were also evaluated by human eyes and compared with the ones 

produced earlier. The best models were picked out which formed the backend of our system. 
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4.6 Build an end-to-end application 

Once the model was completed and tested, a web end-to-end application was built (for 

details, please see Section 5.5). The application was built in Python’s flask library primarily 

because the models were implemented in Python. A bootstrap front-end UI was used to 

showcase the results. The UI consisted of a textbox for entering text, a dropdown for choosing 

the desired models for each of the three datasets and an output box for showing the results. The 

UI included a summarize button which would send the chosen options by making a POST AJAX 

request to the backend. The backend server would run the text on the pre-trained model and send 

the result back to the front-end. The front-end displayed the result sent by the backend. This 

application was the final product of this project which was hosted on a web server and can be 

viewed by any modern web browser.  
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5.0 Results 

This section displays the results we got from the data cleaning (Section 5.1), extractive 

models (Section 5.2), and abstractive models (Section 5.3 & Section 5.4). Then, Section 5.5 

presents the end-to-end application built based on the abstractive model. With evaluation 

functions ROUGE-1 and BLEU, as described in methodology Section 4.4, we evaluated and 

compared our models’ performance, and measured the level of success our model had in meeting 

our goals. 

 

5.1 Data Cleaning and Categorizing 

After cleaning our datasets by removing code snippets, unrecognized words, non-English 

articles and extremely short articles, we got more human-readable and cleaner sentences as our 

model’s input. Figure 11 shows one of the original solution text that contains code part after the 

<code> tag, many HTML tags such as <br />, unrecognized words such as “&nbsp” and 

unwanted links. 

Figure 11: Example of Raw Solution Text 
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Figure 12 shows the solution text in Figure 11 after cleaning. All the code parts, 

unrecognized words, and tags are removed. 

Figure 12: Example of Cleaned Solution Text 

For data categorizing, as it is shown in Figure 13, we got a list of longest common 

substrings among all KB Dataset categories. The circled categories are some examples of the 

parent level category names. For example, the parent category “CUSTOMER_CARE” was 

listed, while the child category “CUSTOMER_CARE_1” was not. By manually looking into the 

list, we found that most of the category names were decent such as “HARDWARE”, 

“FIREWALL” and “NETSCREEN”. Notice that some Juniper product series’ category names 

were also captured by the algorithm such as “SSG”, “QFX” and “WXC”. After extracting the 

categories, the top 30 parent categories were picked, and a hierarchy map was built. 

 

Figure 13: The List of Longest Common Substrings among KB Categories 
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5.2 Extractive Model Performance 

The extractive summarization algorithms were tested on three different datasets (the 

News Dataset, the Stack Dataset, and the KB Dataset). Each dataset was scored on four different 

experiments - the first two experiments were run with the two chosen algorithms, Textrank and 

TF-IDF, while the last two experiments were the control experiments as described in Section 

4.2.2.  

Figure 14 shows the results of running the experiments in the News Dataset. As shown in 

the result, the news seemed to perform best when using the first three lines as the summary. In a 

news article, the first few lines, also called the leading paragraph, usually capture the content.    

                    

Figure 14: Extractive result from the News Dataset 

Figure 15 shows the results of running the experiments on the Stack Dataset. As shown in 

the figure, the performance of Textrank and TF-IDF on the Stack Dataset was similar. They both 

performed better than the control experiments. However, summarizing the Stack Dataset by 
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extraction may often not make sense because some statements fall out of context. For example, if 

an article is describing steps to fix a broken web server, it might not help to extract a couple of 

sentences in the middle as a summary. An abstractive solution may be a better approach as 

instead of getting essential sentences from the steps; it should be summarized like “this article 

describes the steps to fix a broken web server”.  

 

   Figure 15: Extractive result from the Stack Dataset 

 

The best algorithm for summarizing the KB Dataset by extraction was TF-IDF (as shown 

in Figure 16). We believe that this is because Juniper’s articles and their summaries often contain 

keywords which are unique to the article describing a specific Juniper product. TF-IDF takes into 

account how unique a word is to that document and then computes the importance of the 

sentence. However, similar to the results from the Stackoverflow dataset, we believe that 

summarizing Juniper’s articles, which often resembles a user guide or a manual, would be best 
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done by abstraction rather than by extraction. This is because the articles usually contain 

procedural steps and gathering the most important steps would often not capture the summary of 

the article. Later on, we decided to use TF-IDF to extract few sentences from each article in the 

KB Dataset and use that as input instead of the entire article for the abstractive summarization. 

The results of which will be discussed later. 

 

Figure 16: Extractive result from the KB Dataset 

 

5.3 Abstractive Model Performance 

The abstractive summarization algorithm was tested on four different datasets (the Stack 

Dataset, the KB Dataset, the JIRA Dataset, and the JTAC Dataset). The abstractive 

summarization model was configured to use 512 hidden units in each layer while training all four 

datasets. Also, the model was further configured such that any input data would be divided into 

batches of 64 articles each. Using batches, instead of the entire input dataset, helps increase the 
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computing speed. Before training the model, 5 percent of each dataset was saved to be a 

validation set in order to test our model’s performance on different datasets. The rest 95 percent 

of the data was separated into the training set and the test set, and the two sets were used in the 

training process. Each model took about 2 days to be trained on the dataset. Once trained, the 

model can generate a summary within a fraction of a second. The rest of this section will present 

the results in detail for each dataset. 

5.3.1 Stack Overflow Dataset: Question Body to Title   

For the Stack Overflow dataset, the model assumes that the titles are the summaries of the 

question bodies. The model was trained on 50 epochs, where each epoch means training the 

model through the entire dataset once.  Running more epochs allow the model to improve its 

accuracy. Figure 17 shows the changes in categorical accuracy and categorical loss by each 

epoch. Categorical accuracy and categorical loss are evaluation methods provided by Keras (for 

details, see Appendix A: Expand Technical Terms).  

For the model, the expected results for the training set are increasing accuracy and 

decreasing loss. However, after around 40 epochs, the accuracy and loss do not change much 

since the model has already become familiar with the input dataset. The graph tells us that the 

model is properly trained since the accuracy of the training set is increasing as expected. 
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      Figure 17: Stack Dataset: Categorical Accuracy vs. Epoch & Categorical Loss vs. Epoch 

  

After training, we record the predictions produced from the validation set. Table 1 

presents some manually picked good predictions.  The ‘END’ is the symbol for the end of 

prediction. It is not a part of the generated summary. 
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Table 1: Good Predictions from the Stack Dataset -  Question body to Title 

Input Article (Question body) Original Summary 

(Title) 

Generated 

Summary (Title) 

I'm using jQuery for the first time and so I've 

added the jQuery 2.1 library to my ASP.NET 

project and referenced it from the Master Page 

like so: 

With all of the files on the web server, the 

pages work fine in Chrome - all of the jQuery 

stuff functions as expected.  However, if I load 

the same pages in IE11 (I haven't had a chance 

to test other browsers yet), none of the jQuery 

functionality works. 

Interestingly, if I launch IE11 from Visual 

Studio 2013's development environment, so 

that it runs the website in IIS express on my 

dev machine for testing purposes, everything 

works fine.  So it's clearly not a browser 

compatibility issue, and it seems that I'm doing 

things right since it works in Chrome on the 

web server. 

Any ideas what I could try?  Are there any 

quirks for getting jQuery working in IE?  I've 

tried referencing the jQuery script file from the 

individual Web Forms as well as the Master 

Page, but that didn't make any difference. 

jQuery Not Working 

in IE11 On Live 

Server 

 

 

jquery ajax callback 

with ie issue END 

I want to create a simple  java web service. 

What tools I need to get started? 

What do I need to know to get started 

deploying this in Tomcat? 

How can I get started 

creating a Java web 

service?  

how to create a 

webservice service 

in java END 

I've an error with JQuery on the first line of :  

I got an other error with /jquery-1.5.1.js on line 

3539 : 

 

Everything i working on FF, Chrome and 

Safari but i got errors on IE. 

The errors are : "Object doesnÃ¢Â�Â™t 

support this property or method" 

Error with Jquery on 

line 3539 with IE  

jquery ui modal 

doesn t work in ie 

END 
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5.3.2 Juniper Knowledge Base Dataset: Solution to Title  

For the Juniper KB Dataset, the model assumes that the titles are the summaries of the 

solutions. In some cases, the title may represent the question that is being answered by the article 

instead of the actual summary of the solution. However, our model requires summaries to be 

trained on and because the titles captured the essence of the solution, they were considered as 

summaries for our purposes. Figure 18 shows the accuracy and loss changes over epochs. 

           

Figure 18:  KB Dataset - Solution to Title: Categorical Accuracy vs. Epoch & Categorical Loss vs. Epoch 

 

In Figure 18, the validation set did not show a consistent increase in accuracy and a 

consistent decrease in the loss. This is because although our model generates some good results, 

it is not perfect yet. So, unlike the training set, the validation set was not as consistent with its 

improvements (some suggestions for making the model perform better is included in Section 

6.0). Table 2 shows some manually picked out good predictions. Due to the nature of the KB 

Dataset, it might be difficult for non-Juniper employees to understand some of the input articles.  
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Table 2: Good Predictions from the KB Dataset -  Solution to Title 

Input Article (Solution) Original Summary 

(Title) 

Generated 

Summary (Title) 

M160 FRUs: Hot swappable: Routing 

Engine Switching and Forwarding Module 

(SFMs) Flexible PIC Concentrator (FPCs) 

Type 1 and Type 2 Physical Interface Card 

(PICs) Miscellaneous Control Subsystem 

(MCSs) PFE Clock Generator (PCGs) 

Power Supplies Air Filter Rear Bottom 

Impeller Rear Top Impeller Front Impeller 

(Craft Interface is part of this FRU) Fan 

Tray (Cable Management System is part of 

this FRU) Requires Power Down: Circuit 

Breaker Box Connector Interface Panel 

(CIP) M160 Chassis (includes backplane) 

Please refer to the M160 hardware guide 

for more detail. 

[Archive] What are the 

specific Field Replacable 

Units (FRU) on the M160? 

 

 

archive what are the 

specific field 

replacable units fru 

on the m e 

RSVP Interface Highwater Mark 

'Highwater mark' indicates the highest 

bandwidth that has ever been reserved on 

this interface, in bps. 

[Archive] What is an 

RSVP interface Highwater 

Mark? 

archive how to 

configure rsvp over 

an forward routes 

Q: Why does the debug show packet 

dropped, denied by policy? A: In a route-

based VPN, if the tunnel interface is 

created in a different zone than that of the 

user traffic, a policy is required. Recall, 

when crossing zones, a policy needs to be 

configured. See KB6551 for additional 

details on tunnel zones and policies 

What does the Debug 

Message "packet dropped, 

denied by policy" mean? 

screenos 

understanding the 

policy id in debug 

mode 

 

5.3.3 Juniper Knowledge Base: Extracted Solution to Title 

We trained another model on the KB Dataset using the extracted solution as the input for 

the model instead of the entire solution of each article. The extracted solution was gathered by 

applying our text extraction algorithms on the KB Dataset. As explained in Section 3.0, the KB 

Dataset is not as clean as public datasets like the news articles dataset. Since the extractive 

summarization tool, described in Section 4.2, is capable of capturing the key points in the 
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solution and generating a neater text input, the model was fed the extracted solution to predict 

the title of the article. Figure 19 shows the accuracy and loss changes over epochs for the training 

of this model. 

   

Figure 19: KB Dataset - Solution (Extracted) to Title: Categorical Accuracy vs. Epoch & Categorical Loss vs. Epoch 

 

Table 3 shows some manually picked out good predictions. From the table, we can see 

that the generated summaries in some examples, like the first row in Table 3, capture important 

keywords presented in the original summary, but fails to correctly summarize the article 

properly. One explanation for this is the limited data we were used. Usually, for tasks like text 

summarization, millions of cases are required in order to generate decent results (Lopyrev, 

2015).  

 

 

 

 

 



 

42 

Table 3: Good Predictions from the KB Dataset -  Solution (Extracted) to Title 

Input Article (Solution) Original Summary 

(Title) 

Generated 

Summary (Title) 

So the HC Policy has to be 

defined as           Check the process 

is running       Check the file with 

MD5 checksum   Hence IVE 

administrator would have to define 

both the Host Checker policies and 

implement at the role or realm level. 

One work around is to combine 

Process Checking and File MD5 

Checksum. This issue applies until 

IVE version 6. 

Host Checker fails 

with " Can't Generate 

Checksum" error 

[Applicable until IVE 

version 6.1rx]  

 

 

host checker fails 

error connect due to user 

side and user login 

 M160 FRUs   Hot 

swappable  Routing Engine 

Switching and Forward… Requires 

Power Down   Circuit Breaker Box 

Connector Interface Panel  CIP  

M160 Chassis  includes backplane   

Please refer to the M160 hardware 

guide for more detail. 

[Archive] What are 

the specific Field 

Replacable Units (FRU) on 

the M160? 

archive what are 

the different field 

replacable units fru on the 

m e 

 

 

 

5.3.4 Juniper JIRA Dataset: Description to Summary 

To see the performance of the model on datasets from Juniper Networks other than the 

KB Dataset, the model was also trained on the JIRA Dataset. For the JIRA Dataset, the input for 

the model was the description of the article and the expected output was the given summary in 

the article. Figure 20 shows the accuracy and loss change over epochs for the training of this 

model. The graph in Figure 20 shows results with trends similar to the results of the KB Dataset. 

Therefore, it means the model had a similar performance when training on both datasets. 
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Figure 20: JIRA Dataset: Categorical Accuracy vs. Epoch & Categorical Loss vs. Epoch 

Table 4 are some manually picked out good predictions. Similar to what we explained 

before, although the summary generated by the model contains some of the important keywords, 

it does not align very well with the actual summary of the article.  

Table 4: Good Predictions from the JIRA Dataset 

Input Article (Description) Original 

Summary (Summary) 

Generated 

Summary (Summary) 

File names are appearing in 

attachment details page twice also 

blank file names observed. PFA 

screenshot 

 

File names are 

appearing in attachment 

details page twice also 

blank file names 

observed  

file name is not 

displaying 

In RMA Task details page, the 

notes API is not being called on 

clicking "Refresh" button. 

rma details need to 

refresh the rma number 

of table view 

[RMA Details] In Task 

details page, the notes 

API is not being called on 

clicking "Refresh" button 

Tried testing the API (POST) 

/api/download-

manager/downloadAttachments 

URI:http://.../api/download-

manager/downloadAttachments 

/api/download-

manager/downloadAttac

hments API returning  

"Failed to 

decode:Unrecognized 

field 

error in querying 

case api 
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5.3.5 Juniper JTAC Dataset: Description to Synopsis  

JTAC is another dataset from Juniper that has a human-generated synopsis. The model 

was trained with synopsis as the output and the description as input. Figure 21 shows the 

accuracy and loss change over epochs.  

     

Figure 21: JTAC Dataset: Categorical Accuracy vs. Epoch & Categorical Loss vs. Epoch 

 

Table 5 shows some manually picked out good predictions. Some descriptions have been 

hidden because it is too long for the table. The model shows some good predictions like the 

generated summary in the first row matches very well with the original summary.  In some cases, 

even though the summary generated by the model has words different from the actual summary, 

the correct idea is still preserved by the generated summary.  
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Table 5: Good Predictions from the JTAC Dataset 

Input Article (Description) Original 

Summary (Synopsis) 

Generated 

Summary (Synopsis) 

hi support please see alarm root 

mgojunre show chassis alarms 

noforwarding  alarms currently active 

alarm time class description   pht major 

fpc  major errors error code  attached rsi  

… 

remained clean closing techn 

ical case per support needed customer 

contact agreed close marione jgramirez 

FPC 5 Major 

Error - Error code 

65537 

fpc major errors 

high cpu utilization observed one 

routers cpu utilization user  percent 

eopqqtu hrstwi show system processes 

extensive … hyperlink idkb customer 

contact pushkar sanchit tarun 

rma details need 

to refresh the rma 
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5.4 Performance Comparison Among Datasets 

Figure 22 shows the comparison among the model’s performances on different datasets in 

terms of ROUGE-1 and BLEU scores. Figure 22 shows that our model has the best performance 

on the JIRA Dataset. The two metrics ROUGE-1 and BLEU scores are computed by comparing 

the generated summary with the actual summary word by word. However, abstractive 

summarization is not about creating the same summary as the actual summary, because two 

summaries can be different when compared word by word while still summarizing the article 

properly. So, while the two metrics give some context about the generated summary, it is 

important to manually look at some of the generated summaries and not base our evaluation of 

the model completely on the scores of the two metrics. 

 

                              

Figure 22: Abstractive Summarization performance over different datasets  

Due to our limited resources, the small size and noisy datasets, our scores do not reflect 

great performance. On an average, with our resources, a model training on 15,000 articles over 
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50 epochs with a vocabulary of 50,000 words and 512 hidden units took about 2 days to 

complete training. Ideally, we should be training on at least a million articles with a much larger 

vocabulary to get a decent performance. That being said, as shown above, we were able to 

generate a few good results and with our findings, we believe while it may be difficult to 

implement text summarization in Juniper Networks’ datasets directly, text summarization shows 

promising results and can be a huge advancement for Juniper Networks and the tech industry in 

general.  

 

5.5 End-to-End Application 

Finally, we developed an end-to-end web application to demonstrate the concept of text 

summarization (Figure 23). The web application was hosted on a Microsoft Azure web server. 

Once logged into the web app, one could enter an input text, select the appropriate model they 

want the text to run on and get back the summary. The once the user clicks the summarize 

button, the HTML page makes a POST request to the backend server which has preloaded all the 

appropriate models. After the request is received, the server runs the input against the model, 

fetches the result and sends it as the response to the web client. The web page is then updated to 

reflect the output. Developing an end-to-end application helped demonstrate the results and the 

capabilities of text summarization efficiently. The backend server of the tool could be used by 

the chatbot to fetch real-time summaries once the model is accurate enough. 



 

48 

 

Figure 23: Screenshot of end-to-end text summarization web application 
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6.0 Conclusion 

With the ever-growing text data, text summarization seems to have the potential for 

reducing the reading time by showing summaries of the text documents that capture the key 

points in the original documents. Juniper Networks also has many large datasets that are still 

growing in size. Applying text summarization on each article can potentially improve customer 

experience and employees’ productivity.  

We worked on building text summarization tool on the public datasets and the datasets 

provided by Juniper Networks. By taking inspiration from previous works, we built two tools for 

text summarization. The first text summarization tool performs extractive summarization on the 

input articles using TF-IDF and Textrank. The extractive summarization tool allows extraction of 

any number of key sentences from the original articles. Another tool we implemented is 

abstractive summarization tool with neural networks. We built an encoder-decoder model using 

six LSTM layers: three layers in the encoder, and the other three in the decoder. The compiled 

models were trained on four similar datasets, and an end-to-end web application was built using 

the trained models. The end-to-end summarizer can perform text summarization for any input 

sentences, however, for best results, an input closely related to chosen dataset model is required. 

In a nutshell, the tools we made explored the possibility of implementing text 

summarization on Juniper’s dataset. While some datasets had decent summaries generated by our 

model, there are several ways the model can be improved further.  

First, we think the datasets can be further cleaned. In our data cleaning process, we 

removed the articles containing Spanish words, however, there may be other articles containing 

non-English words. Any such words that cannot be recognized by the model should be removed 

in order to improve the model’s performance.  The code snippets denoted with <code> tags were 
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removed from the articles, but there may be other chunks of code in the text portion of the 

articles outside the <code> tags. Having such chunks in the input dataset will affect the model’s 

performance in a negative way. We recommend looking into ways of detecting code written in 

various programming languages in an input text.  

The model we built for abstractive summarization did a good job on generating human-

readable sentences from given inputs. However, it did not always generate summaries capturing 

all the important information in the input documents. To solve this problem, based on our 

research, we propose adding a custom layer to the model that performs attention mechanism 

(Lopyrev, 2015).  The attention mechanism has been proved to be useful in tasks like abstractive 

summarization.  

Lastly, we suggest using larger datasets to train the models. Researchers in the past have 

trained their text summarization models on millions of documents to achieve good results 

(Nallapati, Zhou, Santos, Gulçehre, & Xiang 2016). Whereas, due to limited resources, the 

largest dataset we used only had about twenty thousand articles. If these changes can be applied, 

we think that the performance of the model may improve. 
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Appendix A: Extended Technical Terms 

In this appendix, we briefly explain some technical terms that are mentioned in this report 

but are not necessarily related to the core concept of our project. 

1. Named Entity Recognition (NER) 

Named Entity Recognition (NER) is a way of finding and classifying names, which are 

nouns in text, into predefined categories (Mohit, 2014). 

2. Part of Speech (POS) Tagging 

 Part of Speech (POS) Tagging is a way of tagging word in text, which is corresponding to 

a specific part of speech (Brill, 2000). 

3. Convolutional Network Model  

 Convolutional Network Model, which is also known as Convolutional Neural Network 

(CNN) is a kind of neural network with a structure of going deep and then feeding forward 

(Glorot & Bengio, 2010) 

4. Feedforward Neural Network Model 

 Feedforward Neural Network Model is a kind of neural network where data are feeding 

forward through all hidden layers (Glorot & Bengio, 2010). 

5. Attention Mechanism 

 Attention Mechanism a way of helping decoder focus on the important part of source text 

when generating outputs in the encoder-decoder model (Radhakrishnan, 2017). 

6. Keras Categorical Accuracy 

 Keras Categorical Accuracy is a metric that can be used on classification problem in 

Keras (Brownlee, 2017b). 

7. Keras Categorical Loss 
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 Keras Categorical Loss is a loss function used in classification problem in Keras to 

measure the cost of inaccurate predictions (Ketkar, 2017). 
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