

Software Improvements to Assist

Development of Tegra System Software

Silicon Valley Project Center

March 12, 2020

Submitted by:
Haozhe (Percy) Jiang, hjiang2@wpi.edu

Matthew Kaminski, mkaminski@wpi.edu
Matthew McMillan, mmcmillan@wpi.edu

Submitted to:
Project Advisor: Mark Claypool, claypool@cs.wpi.edu
NVIDIA Advisor: Allen Martin, AMartin@nvidia.com

Worcester Polytechnic Institute

This MQP report is submitted in partial fulfillment of the degree requirement

of Worcester Polytechnic Institute. The views and opinions expressed herein

are those of the authors and do not necessarily reflect the positions or

opinions of Worcester Polytechnic Institute.

1

mailto:hjiang2@wpi.edu
mailto:mkaminski@wpi.edu
mailto:mmcmillan@wpi.edu
mailto:claypool@cs.wpi.edu
mailto:AMartin@nvidia.com

Abstract

NVIDIA produces a system on a chip (SoC) series called Tegra for mobile devices. The

NVIDIA Tegra Systems Software Team is responsible for developing and maintaining software

on the Tegra chips including code tracing, code scanning, and latency measurement. Our project

assists the developers on the NVIDIA Tegra Software System Team by making tools that make

their work more efficient. This includes developing a parser tool to parse the output of Tegra

instruction tracing, improving and simplifying the code of a commonly used code analysis script,

measuring the latencies in CPU optimization code, and evaluating the performance of atomic

functions. We completed and submitted code to NVIDIA repositories for each project.

2

Acknowledgments

We would like to thank our sponsor, NVIDIA, for the opportunity to contribute to many

of their internal technologies. We would like to thank our entire team, the NVIDIA Tegra

Software System Team. Our mentors, Allen Martin, Richard Wiley, Vignesh Radhakrishnan,

Adeel Raza, and Mark Young have been incredibly helpful in guiding us throughout our project.

We are also helpful for all of the guidance provided to us by our MQP advisor, Mark Claypool.

3

Table of Contents

Abstract 2

Acknowledgments 2

1. Introduction 5

2. Background 7

3. The STP Parser Project 9
3.1 Background 9

3.1.1 CoreSight System Trace Macrocell (STM) 9
3.1.2 MIPI System Trace Protocol (STP) 10
3.1.3 The mem_parser Tool 12

3.2 Methodology 13
3.2.1 The stp_parser Tool 14
3.2.2 Ideal Output Format 14
3.2.3 Naming Conventions 14
3.2.4 Filters 15
3.2.5 Typo Handling 16

3.3 Implementation 16
3.3.1 Parsing Messages 16
3.3.2 Arguments 18
3.3.2 Input File 19
3.3.3 Mappings 19
3.3.4 Filters 21
3.3.5 Typo Handling 22
3.3.6 Unit Testing 23

3.4 Conclusion 23

4. The Coverity Scan Project 24
4.1 Background 24
4.2 Methodology 26
4.3 Implementation 27
4.4 Conclusion 28
4.5 Future Work 29

5. The Latency Measurement Project 31
5.1 Background 31

4

5.2 Methodology 33
5.3 Implementation 34
5.4 Conclusion 35

6. Atomics Performance Project 36
6.1 Background 36
6.2 Methodology 37
6.3 Implementation 38
6.4 Conclusion 40
6.5 Future Work 40

7. Conclusion 42

8. References 42

5

1. Introduction

NVIDIA has developed a series of System on a Chip (SoC) called Tegra, which target

low-power mobile devices that might not need a more powerful GPU. These systems have a

wide variety of applications, which include gaming devices such as the Nintendo Switch as well

as autonomous vehicles. The Tegra chips use an ARM architecture which is ideal for smaller

devices as it is more power efficient than x86 due to ARM’s reduced instruction set.

The Tegra Systems Software Team is responsible for developing much of the software

that powers the system as a whole, such as the kernel and various operating system components.

Both performance and robustness are critical in this software because all other software will run

on top of it. Our group worked with the Systems Software Team to improve development and

workflow. We created solutions designed to give the developers more insight about their code

and hardware, and to streamline the debugging process. We have completed four separate

projects related to Tegra internal tooling. Those projects are 1) The STP Parser Project, 2) The

Coverity Scan Project, 3) The Latency Measurement Project, and 4) The Atomics Performance

Project. Both the STP Parser Project and the Coverity Scan Project were completed and

submitted as a patch to NVIDIA’s relevant repositories after going through NVIDIA’s code

review process. The code for the Latency Measurement Project was implemented, but did not yet

go through the necessary code review processes in order to be merged into the master branch of

NVIDIA’s repository. The tool is available to any developer who wants to use it. The data for the

Atomics Project was collected and passed on to Richard Wiley, who was in charge of the project.

6

However, we did not have the time to collect more extensive data that could have given us more

insight.

This report describes the background information and an in-depth explanation of the

methodology, implementation, and results of each of our four projects. Chapter 2 presents the

background information relevant to our project. Chapter 3 discusses our first project, the STP

Parser. Chapter 4 details our work on the second project, the Coverity Scan project. Chapter 5

writes about the Latency Measurement Project, our third project. Chapter 6 details our last and

final project, the Atomics Performance Project. Chapter 7 presents the conclusion of our project

and Chapter 8 lists our references.

7

2. Background

Tegra is a system on a chip (SoC) that incorporates a CPU and GPU onto one unit and

Tegra is being used for gaming, machine learning simulations, and self-driving cars.

The Tegra chip runs an operating system called Linux for Tegra (L4T). Currently, the

latest version is based on Ubuntu 18.04. However, the bootloader is custom-built for the Tegra

system and differs from the standard Ubuntu bootloader GRUB. The startup process of the OS

uses systemd, which is an initialization system and a service manager. It utilizes multithreading

and serves as the glue between the user space and the kernel. The Tegra boot process depends on

the systemd init process to load and configure the device, including starting system drivers.

The MIPI System Trace Protocol (STP) is a generic base protocol used by the CoreSight

STM. It is specifically designed to merge multiple different standards of system traces into a

uniform standard. It allows the merging of trace streams originating from anywhere in the Tegra

chip.

8

3. The STP Parser Project

The following section describes our first project, a parsing tool for Tegra. Whenever code

for a new Tegra chip version is modified, mistakes may be found after the new chip is

manufactured and given to the team. NVIDIA is exploring better utilizing a hardware debugging

module on the Tegra chip that may allow problems to be identified earlier in the development

cycle as it can be used in the simulator. Unfortunately, the current parser tool used for

hardware-based debugging provides output in a form that is difficult to read and which cannot be

easily used in other programs like Excel. Our project augments the existing parsing tool with

another tool that provides output in a format that can be quickly read and which can be passed

into other programs.

3.1 Background

The following section describes the tracing tool for Tegra whose output needs to be

parsed, the drawbacks of NVIDIA’s current parsing tool, and the motivation of developing our

project.

3.1.1 CoreSight System Trace Macrocell (STM)

The Jetson AGX Xavier Tegra chip has multiple processors that share the same bus.

However, these processors all run at different clock speeds. As a result, it is critical to be able to

understand where in execution each processor is at a given time. This allows the developers to

9

ensure not only that the processor is functioning correctly, but also to measure its performance

and find bottlenecks that must be addressed.

Since Tegra chips have multiple processors sharing the same bus, the tracing tools must

run efficiently to avoid slowing down the Tegra chip. The typical tracing tool to use in this case

would be the ftrace tool, which is used by the Linux kernel to trace code execution across

different parts of the kernel. However, the ftrace tool has an unacceptable amount of overhead.

Even a millisecond can be too long and interfere in the performance measurements.

NVIDIA currently uses the CoreSight STM to trace the behaviors of the various parts of

the Tegra chip. The Arm CoreSight System Trace Macrocell (STM) is a trace source that enables

real-time instrumentation of software with no impact on system behavior or performance. The

CoreSight System Trace Macrocell (STM) [2] has significantly less overhead than standard

tracing solutions such as the ftrace tool. CoreSight is the set of tools that are used to debug and

trace software that runs on Arm-based SoCs. Debugging features are used to observe or modify

the state of parts of the design, while trace features allow for continuous collection of system

information for later offline analysis. The System Trace Macrocell (STM) [3] is a component of

CoreSight Debug and Trace Tools.

3.1.2 MIPI System Trace Protocol (STP)

The CoreSight STM implements the MIPI System Trace Protocol (STP), a generic base

protocol specifically designed to merge multiple different standards of system traces into a

uniform standard. It allows the merging of trace streams originating from anywhere in the Tegra

10

chip to a trace stream of 4-bit frames [4]. It uses a channel/master topology, which means that

each trace source is assigned a pair of channel and master.

Figure 1: Topology of the System Trace Module

As shown in Figure 1, there could be multiple channels in a master and multiple masters

in the System Trace Module. In our specific case, there are 128 masters, each supporting 65,536

channels on Arm CoreSight STM [4]. Therefore, a pair of master and channel represents the

trace source of an output message. For each trace output message, the developers on the Tegra

Software System Team would like to see the source of the message, the timestamp of the

message, and the content of the message.

11

3.1.3 The mem_parser Tool

NVIDIA had been using the mem_parser tool to convert the raw CoreSight STM trace

files into an intermediate format in the MIPI STP v2.2 standard [4]. However, the output emitted

by this tool was considered primitive and difficult to analyze.

C8:

 CHANNEL ID = 3

FLAG_TS: TIMESTAMP: 584791825408

D32: 0x5348454c

 SHEL

D32: 0x4c545241

 LTRA

D32: 0x43450000

 CE<0x00><0x00>

FLAG_TS: TIMESTAMP: 584791876352

Figure 2: Output of the mem_parser Tool

As shown in Figure 2, the channel ID of the message is displayed at the top while the

master ID of the message is never displayed. The mem_parser tool only displays a master or

channel ID when they are changed, which means the master ID of a message would not be

displayed if this message belongs to the same master as the last message. Although it is possible

to locate the source of a message in the entire output, it is inconvenient for reading sources of

12

multiple messages at a glance. Additionally, the mem_parser tool is not able to display any

channel or master names, and names are significantly more descriptive than numbers.

The mem_parser tool displays a timestamp at the beginning of a message and sometimes

also at the end of the message. It normally displays the timestamp with a flag like shown in

Figure 2, but it also occasionally prints the timestamp along with the first line of message

content. Finding the corresponding timestamp for a message can be confusing because of their

inconsistent locations. Other than that, the mem_parser tool displays timestamps in either

decimals or hex without units. This could be confusing for the users because they would not be

able to see the time elapsed between each message without doing some calculations. It would be

significantly easier for the users of this tool to be able to see the timestamps in a uniformed

format.

The most inconvenient part of the mem_parser tool is that it displays the content of a

message in multiple lines, generally four lines with four bytes in each line. As shown above in

Figure 2, the message “SHELLTRACE” is divided into three lines with four bytes in each line.

Therefore, the user would have to visually concatenate the separate lines into one line in order to

read the content of the message. It would be much more convenient for the users if the content

was simply displayed in one line.

3.2 Methodology

The following section describes the planning process in completing this project. This

includes our motivations and approaches to the project requirements, the ideal output format, and

some suggested extra features.

13

3.2.1 The stp_parser Tool

Our goal was to develop another parsing tool, the stp_parser, to parse the output of the

mem_parser tool into a more human-readable format. Our stp_parser tool was designed to

resolve many of the drawbacks of the mem_parser tool on displaying the source, timestamp, and

content of each message. In order to achieve our goal, we consulted with numerous developers

on the Tegra Software System Team to understand their perspectives and determine what would

be a better output format.

3.2.2 Ideal Output Format

We spoke at length with the main developer who would be using our parser. He

mentioned that he frequently uses Excel to process debug output, so it would be convenient to

get output in an Excel-compatible format. We chose to support CSVs due to their widespread use

and ease of implementation. Based on the developer’s input, the output of our parser would

display the source, timestamp, and content of a message all in one line. The timestamp of a

message was required to be displayed in a uniform format with seconds as units. We wanted the

output of our stp_parser tool to be significantly shorter than the output of the mem_parser tool

so that the users would be able to see more information in each line and see more lines without

scrolling. This data would also be easy to manipulate in Excel.

3.2.3 Naming Conventions

Although the masters and channels have unique IDs, they also have names. A few

developers on the team suggested that we display the master and channel IDs along with their

14

names since names are significantly more descriptive and recognizable than numbers. For

example, the master ID 98 actually corresponds to the BPMP module, which stands for “Tegra

Boot and Power Management Processor”. It would be more descriptive and easy to skim if the

output displays a message from “the main channel of the Boot and Power Management

Processor” rather than “channel 0, master 98”. Therefore, we planned to map certain IDs to

certain names and display both of them.

Sometimes different Tegra chips have a different set of ID to name mappings and new

versions of Tegra chips may have new mappings. Because of this, users could disable the

mapping feature or customize the mapping feature by providing their own mappings.

3.2.4 Filters

The output of a trace file can be large since the Tegra chip has multiple processors that

share the same bus. However, the users are often only interested in the output messages from a

few certain masters or channels. Therefore, it would be convenient if our parser tool has a

filtering feature.

We provide both inclusive and exclusive filters in our tool. The inclusive filter would be

used when the user only wants to see the messages from a few certain channels from a certain

master. The exclusive filter would be used when the user wants to see all the output messages

other than those from a certain master. The filters are mutually exclusive because they do not

make sense when used together.

15

3.2.5 Typo Handling

Given the fact that not every developer is familiar with the output message source names

and people can sometimes make typos, a few developers on the team suggested we make a typo

handling feature on the filters. We planned to compare the master names in the input filter

against the master names in the mappings to decide if there is a typo. Then, we would apply the

filter on the intended master name and display a warning message to inform the user about how

we dealt with the potential typo.

3.3 Implementation

The following section describes the details of how we parsed the output of mem_parser

into the ideal format, how we implemented the extra features, and how we handled different

possible use cases.

3.3.1 Parsing Messages

We parsed the output of the mem_parser tool line by line using a for loop and stored the

information in a named tuple called Message. The fields of the named tuple are master_id,

master_name, channel_id, channel_name, time, and body. For each block of message content in

the mem_parser output, shown in Figure 2, we concatenate them into one string and store it into

the body field.

Since the master and channel IDs are only displayed when they are changed, we stored

the current IDs in local variables, updated them along the for loop, and appended them to the

16

master ID and channel ID of each message. If a master ID was changed but the channel ID is not

specified, we set the local channel ID variable to be 0 by default. We also converted the IDs to

names and appended them to the master name and channel name of each message. If an ID could

not be mapped to a known name, we displayed the ID with the name unknown by default. The

details of the implementation of naming conventions are described in Section 3.3.3 below.

We converted all forms of timestamps into seconds and stored them in the time field for

each message. After converting them into seconds, we noticed that some timestamps only show

the changed bits compared to the previous timestamp. This could be confusing and misleading

because there was almost no way to tell what a timestamp describes. Therefore, we stored the

timestamp of the previous message while looping through the mem_parser output and displayed

every timestamp to indicate the time passed since the beginning of the trace.

98,BPMP,3,secondary,73.98978176,"SHELLTRACE"

Figure 3: Output of the stp_parser Tool

As a result, we were able to display the source, the timestamp in seconds, and the content

of the message in one line. Figure 3 shows a sample output of our stp_parser tool on the same

message as the mem_parser tool parsed in Figure 2. The content of the message,

“SHELLTRACE”, is displayed in one line so it is more readable. The timestamp indicates that

this message was printed about 74 seconds after the beginning of the tracing process. The source

of the message shows that it came from master 98 “Boost and Power Management Processor”

and channel 3 “secondary”.

17

3.3.2 Arguments

In total, we support seven command line arguments implemented with Python’s argparse

module, a parser for command-line options and sub-commands. The only required argument of

the tool is the input argument. The user would have to specify the location of the binary input

file, which is the output generated by CoreSight STM. Without other optional arguments, our

tool simply calls the mem_parser tool to parse the binary input file, parses the output of the

mem_parser tool into CSV format, and displays the CSV format output. The command

python3 stp_parser.py sample_inputs/sample.bin would run both parsers and

display the output of the binary file specified in the location.

We also provided the user with an option to see output similan to syslog format instead of

the CSV format by the optional argument -p or --pretty.

We have provided the users with both inclusive and exclusive filtering features with

arguments -i or --include and -e or --exclude. The user would have to specify a filter range and

apply either the include or exclude flag to see the filtered output.

If the user chooses to use a different name mapping instead of the default one, they can

specify a mapping file location using the -m or --map flag. However, the mapping has to be in a

specific format that we support. The format and functionality are further described in Section

3.3.3 below.

If the user chooses to input an output file of the mem_parser tool instead of a raw binary

output file of the CoreSight STM tool, they can indicate that the input has been preprocessed by

the mem_parser tool using the -t or --processed flag. For example, the command python3

18

stp_parser.py sample_inputs/sample.out -t would only run the stp_parser on

the file specified in the location.

The user is also allowed to use the mem_parser tool in a different location using the

--mem_parser flag and passing in the location of the tool.

3.3.2 Input File

Before parsing, the script ensures our stp_parser runs on the output of the mem_parser

tool. The script first checks if the specified path exists and exit with an error message if not.

Then the script would look for the -t or --processed flag. If the flag was present, we would

simply run the stp_parser tool on the file. Otherwise, the script would look for the --mem_parser

flag and run the mem_parser tool before running the stp_parser tool. The script would display an

error message and exit if the user passed a preprocessed file without using the --processed flag or

vice versa.

3.3.3 Mappings

As mentioned earlier, each channel in a master has a unique ID and name and there are

multiple channels in a master. However, two channels may have the same ID but belong to

different masters, which results in them having different names. Therefore, our goal was to map

a master ID to a master name and numerous pairs of channel IDs and channel names.

mappings= {

 98: {

 'name': 'BPMP',

19

 'channels': {

 0: 'main',

 3: 'secondary',

 6: 'bootup'

 }

 },

 34: {

 'name': 'CCPLEX',

 'channels': {

 }

 }

}

Figure 4: Mapping Format

We developed a format of name mapping as shown in Figure 4. There are three kinds of

Python dictionaries in total, the mappings dictionary, the master_channel dictionary, and the

channel_dict dictionary. The mappings dictionary is the main dictionary that is used by our main

script. Inside the mappings dictionary, each master ID is mapped to a master_channel dictionary.

As shown in Figure 4, the master_channel dictionary consists of a name string and a

channel_dict dictionary. The name string represents the master name corresponding to the master

ID. The channel_dict dictionary contains the channels of that master and maps each channel ID

to a channel name.

20

In order to convert the master IDs to master names, the script looks for the ID in the

mappings dictionary and finds the name string mapped to that ID. In order to convert the channel

IDs to channel names, the script first goes into the master_channel dictionary corresponding to

the channel’s master ID. Then the script goes into its channel_dict dictionary to search for the

name string mapped to that channel ID. If the ID was not found, the script sets the name to

“unknown” by default.

Since we also allow users to use their own mappings, we also implemented a check on

the format of the input mappings. The input mapping has to have the exact same format specified

above. However, the channel_dict is allowed to be empty. Otherwise, the stp_parser displays an

error message and exits.

3.3.4 Filters

We implemented the filter to support both names and IDs. We developed the filter in a

format that master names or IDs are separated by commas and channel names or IDs are

surrounded by square brackets right next to the corresponding master. For example, --include

BPMP[main,3],34 means include every output message from channel main and channel 3 of

master BPMP and include every output message from master 34. If the same filter range is

applied with the --exclude flag, it shows every output message in the file except for the ones in

the filter range. We also support exclusive filters on channels. For example, 98-[0] means

include every message from master 98 except for the ones from channel 0. An error would be

caused if the input filter did not conform to this format.

21

Assuming the user passed a valid filter, the script parses the filter into a dictionary to

decide whether a message should be printed. The dictionary maps a master ID or master name to

a list of channel ID or channel names.

3.3.5 Typo Handling

We handled typos by comparing the input master names against the master names inside

the mappings dictionary. We have implemented a function to calculate the minimum editing

distance between two strings. We calculated the minimum editing distance between the input

master name and every master name in the mappings dictionary. If the user has entered a correct

master name in the filter, the function finds the matching master name, which would have a

minimum editing distance of zero. Otherwise, the script finds a master name in the dictionary

that has the least minimum editing distance with the input master name, which would most likely

be what the user intended to type but made a typo. When a typo was found, the script fixed the

master name in the filter dictionary to be the intended master name and applied the filter. For

example, if the user accidentally typed “BPML” but intended to type “BPMP”, our tool would

display a warning message “WARNING: Master name ‘BPML’ does not exist. We assume you

meant ‘BPMP’”. If the user-intended master name did not exist in the mappings dictionary, they

would have to either check if the master name was valid in CoreSight STM or use their own

mapping, which is supported by our tool.

22

3.3.6 Unit Testing

We have achieved 100% code coverage with unit testing. It includes error handlings and

warning messages. This helps ensure that every feature described above works exactly as

intended.

3.4 Conclusion

Our resulting code was submitted on GitLab and was reviewed and approved by the

developers on the Tegra Software System Team. We were able to include all desired features as

of now without necessary future work.

23

4. The Coverity Scan Project

The following sections will detail our work on the Coverity Scan project, which involved

the translation of a static code analysis script from Bash to Python. This script was initially

written in Bash when it consisted of a few commands but later grew to include configurations for

several codebases. We separated this configuration from the core logic so that updating

configurations could happen without changing the core logic. To achieve this, we rewrote the

script in Python for its clearer syntax and greater access to libraries over Bash.

4.1 Background

In addition to graphics card design, NVIDIA also works on autonomous vehicle systems.

Because of the speed with which vehicles must respond to events, these are real-time systems,

and are largely written in C. While C provides performance advantages over almost any other

language, it is not without its downsides. Manual memory management in particular provides a

vector for many serious errors to occur that are difficult to later detect. Additionally, the pattern

of passing structs to functions that can mutate them is also prone to errors. An incorrectly

implemented function could corrupt data unrelated to it without immediate detection.

To address these issues, the Motor Industry Software Reliability Association was created

by the government of the UK. This body put forth standards that code would have to comply

with in order to be allowed to run on vehicle systems. MISRA reduces the allowed complexity of

functions to make them easier to test and reduce the likelihood of bugs, and also mandates

immutability to be used when possible to prevent accidental mutation, among many other rules.

24

NVIDIA previously scanned codebases that must comply with the MISRA standard using

a Bash script. This is a highly configurable script which can take over a dozen flags to change

the location of the code being scanned, the type and mode of the scan, and what happens to the

output. This code can optionally be uploaded to a local server in order to perform additional

checks.

While this script worked well initially, there are a number of issues with Bash that make

it difficult to write large programs with it. Specifically, the data structures it supports are fairly

primitive and it has no standard library. Another issue with the initial script is the lack of

separation of concerns. Almost all variables were defined at the top of the file and then later

overridden when needed. Additionally, the configuration for different code bases was done as a

series of piecemeal if statements and variable overrides, so updating any configuration or the

script as a whole was error-prone.

We were given the task of converting this script from Bash into Python. Python has many

advantages as a scripting language for larger projects. For example, it includes a standard library

and is able to perform tasks such as reading and writing to and from files without relying on

calling external programs as is necessary in Bash. Additionally, its syntax is considered much

more legible as it does not rely on flags that need to be memorized for many of the parts of the

language.

25

4.2 Methodology

To begin our conversion of the program into Python, we met with one of the product

owners of the script, Adeel Raza. He requested that we rewrite the program in Python, and also

introduce a simpler configuration system that was separate from the program as a whole.

Our group converted most of the program line-by-line into Bash, making further

optimizations once the core logic was tested to work. We also planned to use the argparse

library in Python in order to parse parameters. Argparse is a library that makes it simple to

specify allowed options for parameters, create short and long flags for the parameters, and add

help text. The resulting object can then be used throughout the program, and error handling and

the display of help text is handled automatically by the program.

A large part of one file was dedicated solely to checking parameters and setting defaults,

so we hypothesized that the readability of the code could increase substantially while the chance

of error would go down.

To work on this project, our group created a separate repository on NVIDIA’s internal

GitLab instance. That allowed us to commit code frequently without polluting the repository in

which the original Bash code resided. We later copied the completed script to the original

repository and submitted a patch as requested.

For the development itself, we used Visual Studio Code’s LiveShare extension to allow

the entire group to work on the software. Because so much of the initial translation would be

line-by-line, we parallelized the process initially.

26

4.3 Implementation

The implementation went mostly as planned. We began, as we had anticipated, by going

through the Bash code line-by-line and performing a mostly direct translation. We did encounter

issues that we did not anticipate as the initial code was complicated.

In order to separate the configuration from the code itself, we devised a system where

standalone files would be stored in a special directory containing configuration information.

Each file creates an instance of the Configuration class we designed. Based on feedback from the

users, we updated this class to have default values so that the configuration files were much

shorter and showed only the ways in which they differ from the default. Because these

configuration files were still class instantiations, it would be easy to catch any misspelled or

missing configuration options and prevent bugs that would be hard to catch.

One issue with the configuration files is that sometimes they needed to use variables that

were not available until runtime. For example, many locations would be specified relative to the

working directory of the program, the installation location of a tool, or the location of a

repository. To resolve this problem, we added support for using Bash-like variables. These

variables were preceded with a dollar sign and surrounded by curly braces, and their names were

always capitalized (as is the convention in Bash). For example, the variable for the working

directory was ${WORKING_DIRECTORY}. These variables could be used in any of the strings

that were configuration files and would be replaced at runtime with their intended values.

The Bash variable solution was not without issues. Namely, typos in the variable names

were not caught, since they were treated as strings. However, a more complicated scheme would

27

involve passing variables between files at runtime and would result in non-idiomatic import

patterns. Because of the relatively small number of variables, we did not feel that it was worth

the additional code complexity in this case.

We did use the argparse library for parsing parameters as planned. This was

straightforward to implement and was done quickly. It also allowed us to easily add long flag

support to the program, something that had been desired by the team but was difficult to do

previously due to the limitations of Bash. However, the help text for each option became long, so

we moved all help text to a different file. This text was imported and passed to the argparse

library, but significantly reduced the amount of visual space taken up by the parameter parsing

which in turn made the code more readable.

Our main program scanned the configuration folder on startup and located the relevant

configuration file for the desired scan type (this was specified as a parameter). The file would

then be imported and the variable replacements would occur. This is a flexible pattern as the

external files can be added, removed, or modified without having to change the main logic.

Because the configuration files only contain values and not logic, in our experience any issues

could be easily traced back to an incorrect value.

4.4 Conclusion

Our resulting code was submitted as a patch to NVIDIA’s code review system, and

reviewed and approved by users. We were able to fully replicate the original functionality of the

Bash script with cleaner syntax. In particular, the argument parsing was improved in clarity and

code complexity.

28

We were also able to find a few minor bugs in the original script that likely went

unnoticed because of the unclear syntax in certain places. We refactored the code in order to

make it more readable, but in some places, Bash commands with pipes are still run as the

functionality would be difficult to replicate in Python.

Our code is also more portable than the Bash script since Python is standardized language

while the available features of Bash can vary by system. More importantly, this code is logically

split into modules, making it easy to extend when necessary. This was a key objective of the

project because of the difficulty encountered by teams when making modifications in the past.

4.5 Future Work

While we were able to achieve feature parity with the existing script, many new features

were proposed by the users that could not be implemented due to time constraints. Even though

we did not implement these features, many of them could be more easily implemented now that

the script is easier to modify.

One suggested feature was the automated retrieval of results from the Coverity server.

Scan results are committed to a server optionally upon the completion of the scan so that further

analysis can be done. However, the results of this analysis must be retrieved manually by visiting

a webpage and using a GUI to find them. It would be more simple for the developers for this

analysis to be retrieved automatically to make the whole process more automated. Because the

script is now written in Python, we anticipate that it will not be difficult to make a GET request

to the local server and parse the results. This would, however, take a significant amount of work

in Bash as there is no built-in way to make requests to an address.

29

Another requested feature was to include a command for the pre-scan environment

configuration. Some scans required certain commands to be run before the scan itself could be

run. This can include deleting certain files from old scans or setting certain environment

variables. While these are documented in the NVIDIA wiki, it would be faster to ask the script to

automatically run the necessary commands. We do not anticipate that this would be a

time-consuming task.

Lastly, another feature that would be good to include in the future is a feature to compute

the difference between the results between the last scan and the most recent scan. This would

allow developers to more easily track how much progress has been made in the process of

MISRA compliance. A developer on the team has already created a script to do this in Python, so

it can be integrated with our script.

30

5. The Latency Measurement Project

The following sections describe our latency measurement project, in which we developed

a Linux kernel module for Tegra. Many Tegra chips contain a module that optimizes hot spots in

code in real-time called Dynamic Code Optimization (DCO). Currently, a tool called cyclictest is

being used to analyze the latency that DCO introduces. A drawback to using cyclictest is that it

runs in user space, which means that it is prone to additional latency unrelated to DCO. This

project replaces the existing tool with one that can run in kernel space. This new module collects

more accurate data on DCO latency that can be used to diagnose anomalies so that they can be

fixed.

5.1 Background

Some Tegra chips contain a module called Dynamic Code Optimization (DCO). DCO is

able to analyze frequently used sections in the code of an application and performs various

optimizations. DCO takes time to optimize the ARM instructions, and at times certain events can

slow the DCO down. For example, if the code itself changes then all of the optimized code needs

to be invalidated. Because DCO is used in real-time scenarios, such as self-driving cars, it is

important to keep latency to a minimum.

Measuring DCO latency is more complicated than just measuring the runtime of a

function call; DCO triggers sporadically and at any point in program execution, and so

measuring its latency is non-trivial. However, there are certain events that invoke DCO to run,

31

such as bring an application back into context. The current approach for measuring DCO latency

is to run a tool called cyclictest. cyclictest is a standard tool used in Linux to measure the time

between when an event is called and when it is executed, and this scenario triggers the DCO to

run. All that cyclictest does is it gets a high-resolution timestamp, calls sleep for a specific

amount of time, and then measures the amount of time it takes for the thread to wake up

following the sleep time. For example, if a process sleeps for 1 second and it takes 1.2 seconds

for the thread to wake up, DCO ran for 0.2 seconds.

 The process for measuring latency on the board can be improved to better distinguish

between DCO interference and other sources of latency. A disadvantage of using cyclictest for

measuring DCO latency is that the test runs in userspace. Userspace applications are not well

suited for precise latency measurement as there is overhead and variability in how the kernel

decides to schedule processes and handle interrupts. Common sources of unrelated latency are

preemption and disabled critical sections in the kernel. Overall, this setup does not accurately

measure DCO latency, as additional overhead and occasional unrelated latency spikes cause the

results to be unreliable.

A better approach is to test it in kernel space, which allows more control over the

environment and less kernel overhead caused by managing user space applications. Additionally,

the user could isolate the test to a specific CPU core and remove the CPU core from task

scheduling, thus preventing other applications on the same core from causing context switches.

The kernel contains a module for scheduling periodic interrupts, which can also be disabled for

the code. Overall, moving the test into kernel space allows DCO to be measured more directly

and with higher accuracy.

32

5.2 Methodology

To improve the latency measuring process, we created a Linux kernel driver to perform

latency measurement. We first did preliminary research on how to interact with a Linux kernel

module and learned that using the sysfs virtual file system is the idiomatic approach. However,

we quickly encountered a few peculiarities working in kernel space. For one, malloc and free

were not accessible to allocate memory in kernel space, so instead vmalloc and vfree were used.

Additionally, the process of spawning and managing the lifetime of a kernel thread was much

different than the user space equivalent pthread, and involved manually waking up the kthread

process. Finally, only a subset of high granularity time functions were accessible in kernel space,

and so we used the getnstimeofday function.

The approach for measuring DCO latency in kernel space is different than in user space.

In the kernel module, latency is measured by rapidly gathering timestamps in a while loop, so

that whenever DCO periodically runs, the latency is higher than the baseline. DCO latency

timings are stored in buckets that cover different ranges of timestamps, due to the limited

memory space available in kernel modules. For example, if the tool is configured with 10

buckets a maximum range of 100 nanoseconds, then each bucket will cover a range of 10

nanoseconds. If the tool measured the latency of 55 nanoseconds, the sixth bucket count would

be incremented, which covers the range of 50-60 nanoseconds.

33

5.3 Implementation

The first step to ensure the latency measurement kernel module was as accurate as

possible was to first isolate the kernel thread from any background tasks that can cause

additional latency. The environment for the test was isolated to a CPU core using the kernel

variable isolcpus, which only allows processes to run on isolated CPU cores if their thread

affinity is set to run on it. Additionally, using the Linux procfs interface, the default smp_affinity

mask was modified so that no interrupts would be received on the test CPU core.

The test parameters are configured using the sysfs interface. The user can set the

maximum latency measured using the ‘max_range’ file and the number of buckets to store

latency ranges in using the ‘num_buckets’ file. To run the test a specific number of times, the

user writes the number of test iterations to a sysfs file called ‘run_test’. The user can see if a test

is currently in progress by reading from a sysfs file called ‘status’, and if need be, a test can be

cut short by writing to the file called ‘stop_test’. Once the test is done running, the timing output

can be read from a file called ‘timings’.

A companion Bash script was made to set up the environment before running the test,

including turning off thermal throttling. The Bash script included a segment where the user can

set test parameters, including the file where results are stored. An additional Python script was

made that takes the data from the test and plots a histogram. The Python script takes in the

timing data as a file, removes and all trailing zeros in the timing data, and generates a plot using

the matplotlib library. The histogram allows developers to better visualize the DCO latency, any

anomalies, and measure changes between different DCO code versions. An example histogram

34

generated is shown in Figure 5. It was generated by calling collect_timings.sh &&

python3 histogram.py .

Before running the Bash script, the user has to insert the DCO latency kernel module into

the kernel using insmod and configure the test parameters in the Bash script. The Bash script

runs the tests and displays a message once the test has completed. Then, the Bash script writes

the timings to the specified file. The last step is to run the Python script with the timings file as

an argument, which will create an interactive histogram containing the timing data.

Figure 5: DCO Latency results

5.4 Conclusion

Overall, we developed a Linux kernel module that allows developers to more accurately

measure DCO latency, test latency, compare latency, and see anomalies in DCO latency

behavior. We added all of the required features for the project. However, due to time constraints,

35

this project was not fully code reviewed by a developer on the Tegra Software Systems team.

Future improvements may include cleaning up the code and tighter integration between the

Python script, Bash script and kernel module, such that the test can be run seamlessly.

36

6. Atomics Performance Project

The following section describes the Atomics Performance Project, in which we measured

the relative performance differences between a version of libc with atomic instructions and one

without. Many teams at NVIDIA do not use binaries compiled with atomic instructions, and may

be unaware of the potential benefits of changing how the binaries are compiled. The goal of our

research was to examine the benefits of compilation with atomic instructions and find situations

where they perform better. This way, teams can decide whether any possible benefits are worth

the effort of changing the compilation process.

6.1 Background

The CPU architecture used by NVIDIA’s Tegra SoCs is called ARM. As new versions of

the architecture are released, new instructions are sometimes added. In order to take full

advantage of these newly added instructions, the compiler must be specifically targeting the new

architecture as it must not include these instructions for older chips that do not support them.

As of ARMv8.2, a group of instructions was added. These instructions allow atomic

operations to happen in a single instruction. This includes common tasks such as

compare-and-swap where a value needs to be examined and then set without any context

switches between the two steps. Before the introduction of these new instructions, structures

such as locks and mutexes had to be utilized. These structures could result in particularly slow

code if there was a long critical section that was interrupted and had to be rolled back and

restarted. With a single instruction, this cannot happen.

37

In order to take advantage of these new instructions, libc has to be recompiled. In order to

do this on a large scale throughout the many teams that use libc, this effort would need to be

justified. While it logically follows that the single instruction is faster, there is no concrete data

that can be presented to teams to convince them to perform this recompilation.

Our task was to run benchmarks that would showcase the purported performance benefits

of the new instruction set by running them both with a libc that had the new instructions and

another libc binary that was not. We could then format the data in a presentable way and use it to

encourage teams to prioritize the recompilation of libc targeted towards the new instruction set.

6.2 Methodology

We investigated a benchmark called GFXBench on NVIDIA’s internal wiki to learn more

about how it must be run. We wrote a Python script that would automatically run the benchmark

a number of times both with atomic-support libc and the older version. We could then compare

the results to see if one performed better than the other and if so, whether this difference was

statistically significant based on the variance between them.

6.3 Implementation

We examined the libraries that were linked to the benchmark at runtime in order to

determine the exact version of libc in use. Once we determined this, we downloaded the source

code from GNU and recompiled libc. In order to compile libc with support for the atomic

instructions, we had to pass a special flag to gcc as we built libc. Several times we did not enter

the syntax correctly and we accidentally compiled libc without the support for instructions that

38

we needed. To ensure that the instructions were present, we examined the assembly of the

compiled library using objdump and ensured that these new instructions were present.

We also researched how to use different versions of libc in the same system without a

complete reinstall every time. We learned about an environment variable called

LD_LIBRARY_PATH which forces the running program to look in a specified directory for its

shared objects rather than checking the default location. Once we set the environment variable to

point to our newly built libc, we examined the benchmark at runtime again to ensure that it was

loading the correct libraries.

We wrote a simple script in Python which simply set the LD_LIBRARY_PATH

environment variable accordingly and then ran the benchmarks. Rudimentary parsing was then

performed on the benchmark results by the Python script, and these results were stored in a file.

Specifically, we called the grep utility on the output to find the number of frames per second

(FPS), which is the metric that mattered to us. We then used echo to append the FPS information

to the end of the results file.

We initially found that the FPS count was extremely low both with and without atomic

instructions. Upon further investigation, we discovered that our board was flashed with a debug

version of the kernel and we were advised to reflash it with a release version of the kernel. After

the reflash, our FPS rates were similar to those documented in the internal NVIDIA wiki.

Many of the benchmarks included in GFXBench were GPU-limited tasks, so we

narrowed down the benchmarks to four specific tests: gl_driver, gl_driver_off, gl_driver2, and

gl_driver2_off. We proceeded to run these benchmarks 50 times. Once the data was collected,

39

we used Python’s matplotlib library in order to graph the averages as well as the standard

deviations.

Figure 6: GFXBench results with and without atomics in libc, averaged over 50 runs

Figure 6 depicts the average number of frames per second for the version of libc with

atomics compared to the version without. The only notable difference in frames per second is in

the gl_driver_off test, which shows modest increase in performance with a roughly 5% increase.

All of the other tests show the performance being roughly the same, with the atomic and

non-atomic libraries performing within 1% of each other.

40

6.4 Conclusion

The atomics helped performance in the gl_driver_off test. We performed a t-test to verify

this, and found that this difference was over 99.8% statistically significant. While this is certainly

better than no improvement, the change in FPS was only about 5%. The teams will need to

determine whether they believe that the performance increase gained from this change is worth

the effort of a recompilation of libc and potentially maintaining multiple branches of the code

(one branch for earlier processors and one for processors that support the atomic instructions).

6.5 Future Work

One potential test that could be run is testing the variation of performance between boots.

The libc binary is optimized by the processor and then typically cached for the entirety of the

boot because it is used so often. As a result, the quality of the optimization may affect the

performance of the benchmark regardless of the atomic instruction set being present. To better

understand the results we obtained, it would be helpful to see how much they vary across boots.

We were able to write a Python script that we believe will execute these tests, but due to limited

time, we have not been able to verify that the program works, nor have we been able to collect

any data for this.

An additional task would be to help other teams use a newly compiled version of libc in

their codebases. Teams may be more willing to adopt the newer instruction set as a compilation

target if they are given help with the initial work rather than having to divert resources.

41

42

7. Conclusion

Our tools have made numerous internal processes easier for the developers on the

NVIDIA Tegra System Software Team. We were able to work on both high-level and low-level

languages while directly interacting with the members on who would be using our tools in the

future. Our stp_parser tool was able to improve their debugging by providing them with more

readable and more descriptive debug output. The Coverity Scan project has simplified the code

used to run the scans and separated the configuration from the core logic. The DCO Latency

project provides tools for developers to more accurately measure the latency of the DCO module

of the Tegra chip and create a histogram to find outliers with ease. The atomics project provides

NVIDIA developers with data detailing the implications of updating user space libraries with the

new ARMv8.2 atomic instructions. Overall, our contributions to the toolset at NVIDIA have

added functionality that was previously unavailable, and automated tasks that previously had to

be done manually.

43

8. References

[1] “The AI Computing Company.” NVIDIA,

https://www.nvidia.com/en-us/about-nvidia/ai-computing/

[2] Arm Ltd. “CoreSight Debug and Trace.” ARM Developer,

https://developer.arm.com/ip-products/system-ip/coresight-debug-and-trace

[3] Arm Ltd. “System Trace Macrocell.” ARM Developer,

https://developer.arm.com/ip-products/system-ip/coresight-debug-and-trace/coresight-component

s/system-trace-macrocell

[4] Zhang, Chunyan. “System Trace Module (STM) and its usage.” Linaro,

https://www.linaro.org/blog/stm-and-its-usage/

44

https://www.nvidia.com/en-us/about-nvidia/ai-computing/
https://developer.arm.com/ip-products/system-ip/coresight-debug-and-trace
https://developer.arm.com/ip-products/system-ip/coresight-debug-and-trace/coresight-components/system-trace-macrocell
https://developer.arm.com/ip-products/system-ip/coresight-debug-and-trace/coresight-components/system-trace-macrocell
https://www.linaro.org/blog/stm-and-its-usage/

