

1

User Web-Browser Event Visualizer

A Major Qualifying Project

Submitted to the Faculty of Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree in Bachelor of Science

in

Computer Science

By

Luke Ludington

Ruyue Wang

Da Xu

Date: March 28, 2020

Sponsoring Organization: Shape Security

Project Advisor: Mark Claypool

Shape Security Advisors: Michael Ficarra, Ying Chau Mak

2

Abstract

Shape Security is a cybersecurity company that provides solutions that reduce bots, fraud,

and unwanted automation. To assist its data scientists to better understand bots and fraud, Shape

has developed multiple data visualization tools such as VizMonkey. VizMonkey transforms

collected user input signal data in a transaction into a visualization; this enables its users to

provide quick manual analysis of a specific transaction. However, Vizmonkey lacked the ability

to visualize much of the data Shape has and lacks features that would be helpful for the expanded

scope of its use. Thus, our goal was to develop a new version of Vizmonkey which was more

user friendly, had better representations of the data for non-experts, and was able to display all

the data Shape collects about user events. After two months of design, development, and testing,

we showed the new tool to the team that will directly use it at Shape and iterated over received

feedback. The new Vizmonkey should help Shape perform manual analysis more quickly and

easily and produce better protection for customers’ websites.

3

Acknowledgments

The success of our Major Qualifying project (MQP) would not have been possible without

the help of many individuals. We would like to start off by thanking our sponsor, Shape Security,

for the chance to contribute to the internal tool and the resources required. Additionally, we would

like to thank our mentor, Michael Ficarra for constantly providing guidance throughout the

development process and for defining our project parameters before we started. Furthermore, we

would like to thank our MQP advisor Mark Claypool for his support during the project and

guidance in writing this paper. Lastly, we would like to express our gratitude towards our school,

Worcester Polytechnic Institute (WPI) for giving us this amazing opportunity.

4

Table of Contents

Abstract .. 2

Acknowledgments ... 3

Table of Contents .. 4

Table of Figures... 6

1 Introduction ... 9

2 Background ... 11

2.1 VizMonkey 1 .. 11

2.1.1 Capabilities ... 12

2.1.2 Problems ... 12

2.2 Requirements... 14

2.3 Technology Stack .. 15

2.3.1 React ... 16

2.3.2 Redux .. 16

2.3.3 AnimeJS .. 17

2.3.4 Scalable Vector Graphics (SVG) .. 18

3 Design Process ... 19

3.1 Design of Keyboard Representation ... 19

3.2 Design of Mouse Component .. 21

3.3 Design of Side Panel ... 23

3.4 Design of Menu Component.. 24

3.5 Design of Timeline Component ... 24

4 Development and Implementation .. 26

4.1 Data Parser Implementation... 26

4.1.1 Keyboard Event Data Parser ... 26

4.1.1.1 Keyboard Event Normalization ... 26

4.1.1.2 Keystroke Formation ... 28

4.1.1.3 Keystroke Grouping .. 30

4.1.2 Mouse Event Data Parser .. 31

4.1.2.1 Types of Mouse Event ... 32

4.1.2.2 Mouse Event Normalization .. 33

4.1.3 Screen Data Parser .. 34

4.1.4 Touch Event Data Parser .. 34

4.1.5 Visibility Event Parser .. 36

4.2 Components Implementation .. 36

4.2.1 Keyboard Component Implementation ... 37

4.2.1.1 Component Hierarchy .. 37

4.2.1.2 Component Data Flow ... 37

4.2.1.3 Keystroke Representation .. 38

4.2.2 Screen Component Implementation .. 39

4.2.2.1 Component Hierarchy .. 39

5

4.2.2.2 Screen Component ... 40

4.2.2.3 Window Component .. 41

4.2.2.4 Viewport Component .. 43

4.2.3 Timeline Component Implementation .. 45

4.2.3.1 AnimeJS Timeline ... 45

4.2.3.2 Data Flow .. 46

4.2.4 Side Panel Component Implementation.. 47

4.2.4.1 Component Hierarchy .. 48

4.2.4.2 Session Info Panel Component .. 49

4.2.4.3 Events List Panel Component .. 49

5 Evaluation .. 52

5.1 User Responses ... 52

5.2 Test Suite Development Process ... 52

6 Future Work .. 57

References .. 59

6

Table of Figures

Figure 2-1 VizMonkey 1 Screenshot .. 11

Figure 2-2 Shape VizMonkey 2 Mockup.. 15

Figure 3-1 Key Stroke Panel ... 19

Figure 3-2 Key up ... 20

Figure 3-3 Mouse Representation ... 21

Figure 3-4 Screen Representation ... 22

Figure 3-5 Side Panel with Event List (left) and Session Info (Right) 23

Figure 3-6 Timeline Component ... 24

Figure 3-7 Timeline component next to Keystroke Panel .. 24

Figure 4-1 Three Types of Keyboard Events .. 27

Figure 4-2 Normalized Keyboard Event ... 27

Figure 4-3 Normalized Keyboard Events Mapping .. 28

Figure 4-4 Simplified Keystroke Formation ... 28

Figure 4-5 Keystroke Formation for Key Downs and Key Ups 29

Figure 4-6 Keystroke Object ... 30

Figure 4-7 Keystrokes on the Same Layer .. 30

Figure 4-8 Keystrokes on Different Layers .. 31

Figure 4-9 Example Keystroke Group Formation .. 31

Figure 4-10 Three Types of Mouse Event .. 32

Figure 4-11 Normalized Mouse Button and Move Events ... 33

Figure 4-12 Parsed Mouse Button and Move Events ... 34

Figure 4-13 Three Types of Touch Events ... 35

https://d.docs.live.net/aa67b4b9a3ccb28c/School/MQP/MQP%20Final.docx#_Toc36323063
https://d.docs.live.net/aa67b4b9a3ccb28c/School/MQP/MQP%20Final.docx#_Toc36323064

7

Figure 4-14 Normalized Touch Event .. 36

Figure 4-15 Parsed Touch Event... 36

Figure 4-16 Hierarchy of Keyboard Components .. 37

Figure 4-17 KeystrokePanel Tag .. 38

Figure 4-18 KeystrokeGroup Tag ... 38

Figure 4-19 Keystroke Tag ... 38

Figure 4-20 Calculation of Margin Left and Width of Keystroke 38

Figure 4-21 Key_down_and_up representation .. 39

Figure 4-22 Key_down representation.. 39

Figure 4-23 Key_up representation .. 39

Figure 4-24 Structure of Screen Part .. 40

Figure 4-25 Example of Window with Opened Console .. 42

Figure 4-26 Example of Visibility Representation ... 42

Figure 4-27 Comparison of Normal Curve and Bezier Curve .. 44

Figure 4-28 Example of Pop Up Box ... 44

Figure 4-29 Example of Touch Event Representation .. 45

Figure 4-30 Declaration of Timeline Object ... 45

Figure 4-31 Declaration of Animation Object .. 46

Figure 4-32 Data Flow from App to Timeline Component .. 47

Figure 4-33 Timeline Object Construction ... 47

Figure 4-34 Component Hierarchy of Side Panel ... 48

Figure 4-35 CSS Transition of Side Panel .. 49

Figure 4-36 Session Info Example .. 49

8

Figure 4-37 Hierarchy of Event List Component ... 50

Figure 4-38 Relationship Between Events List Panel and Timeline 50

Figure 4-39 Auto-scroll Calculation ... 51

Figure 4-40 Auto-scroll Formula .. 51

Figure 5-1 Jest Example Code .. 53

9

1 Introduction

Shape Security, a cyber security company in Santa Clara, California, works with many

different data sets. It analyzes these data to help companies detect and extinguish interactions

with automated intruders (bots); these intruders use up valuable server resources for clients and

can lead to data breaches and account theft. Bots have become more and more sophisticated in

their attempts to mimic genuine human interaction. In order to explain the inner machinations of

Shape’s protection solutions to its clients, as well as to allow the engineers to see the data and

develop better algorithms around it, Shape has made many visualizers to help interpret its data.

Visualizers are a common and effective tool for data analysis. Different kinds of data are

collected within all industries collected, various data visualizers start to be designed. Those

visualizers aim to assist people to get a better understanding of complicated relations within data.

For example, a visualizer could be created to help scientists to understand patterns from

scientific data which are not visible in the real world like a gravitational field. Another visualizer

could be one which shows multiple video streams of the original data on top of each other to

represent that data as closely as possible to how it was initially captured. Visualizers can aim to

interpret abstract data or show as closely to its source as possible.

Given that visualizers can help discover trends and patterns for people, Shape Security

built a user event visualizer called VizMonkey 1. This visualizer transforms the collected user

input signal data to visualizations and enables Shape to perform manual analysis of user

interaction data more quickly than by looking at the raw data.

VizMonkey 1 renders a visualization of a user’s interactions with a given website by

reading selected user input signal data. Signal data is stored in a JSON file that contains various

types of user interaction data such as keyboard mouse events. Keyboard events represent a user's

10

interaction with the keyboard such as pressing or releasing a key. Mouse events record a mouse

movement path of the user’s input as well as any mouse clicks the user performs.

VizMonkey 1 lacked usability and feature issues with the current visualizer. Firstly, it

was very limited and required instruction to interpret its output. New hires and clients had to

spend more time getting used to this tool, resulting in inefficient onboarding process and

ineffectual use of the tool. Second, it did not have the ability to visualize much of the data the

company collects and lacked features that would be helpful for expanding scope of its use from a

purely internal tool to one that could be used by clients directly.

The goal of our project was to redesign VizMonkey 1. With the new tool built and

deployed, Shape Intelligence Center (SIC) team members will spend less time on understanding

user behaviors and will be faster in creating accurate determinations. Also, the new renderings

will be more professional looking and can be more easily shared with current and prospective

customers. The end result of the project was to provide a quick and easy manual analysis tool for

the employees in Shape Security and make sure that their customers can get much more

professional analysis reports, which was deployed and is currently in use.

11

2 Background

SIC’s main function is to show Shape’s current and prospective customers the value that

Shape’s provide. SIC does this demonstrating the automated traffic that Shape has blocked from

using their services and the way Shape was able to identify and block that traffic. SIC uses data

visualization tools to provide this service. I

2.1 VizMonkey 1

 VizMonkey 1 was designed to view data collected by Shape Client. Shape Client collects

data about user interactions with websites that Shape protects. Among the data it collects are

those representing a user’s mouse and keyboard inputs; screen, window, and viewport

dimensions; and system configurations including operating system and browser. These data are

used by VizMonkey to approximate what a user’s interaction with a website may have looked

like.

Figure 2-1 VizMonkey 1 Screenshot

12

2.1.1 Capabilities

VizMonkey 1 (depicted in Figure 2-1) shows mouse data and keyboard data as events on

the screen. The mouse data are shown by the red, blue, and green dots on the screen. The blue

dots are mouse click events with the blue circles around them representing mouse down. The

green dots are mouse move events. Lastly, the red dots are mouse up events.

The screen, window and viewport dimensions are depicted by displaying 3 differently

colored rectangles at their respective resolutions all anchored in the upper right-hand corner of

the playback area. The red rectangle represents the screen’s dimensions, the green rectangle

represents the viewport’s dimensions, and the blue rectangle represents the window’s

dimensions.

A keyboard event is any key being pressed. These events are represented in 3 parts; each

part is represented with a red line and the key being pressed (this is not always available as

printable keys are not recorded for privacy reasons). The first part of a keyboard evert is the key-

down event, followed by the key-press and key-up events. The location of the keystrokes on the

screen is loosely related to where the mouse cursor was at the time of input.

All of these data are replayed together to show an animated view of what the interaction

looked like. There is a timeline at the top of the playback which shows vertical lines for each

event. These lines are also colored, red for keyboard events and blue for mouse events.

2.1.2 Problems

VizMonkey 1 represents most of the data, but in a way that is largely unintuitive and

difficult to use. First, although the VizMonkey1 can play a user transaction, it lacks the ability to

scrub through that transaction after playback has started. This makes looking at longer

transactions laborious as a playback must get to the time of an event on its own before the event

13

can be viewed. It also lacks the ability to pause once that time has been reached, so a transaction

cannot be viewed a specific point in time.

Second, VizMonkey1 requires detailed instructions to interpret its output; for instance, it

reproduces the dimensions of the screen, window and viewport in the same place with colored

rectangles showing them at their reported resolution. Showing them in this way means that is

hard to notice when the viewport is larger than the screen for inexperienced users. It can be easy

to not notice that one colored square is larger than its “bounding” square and get them confused

for each other. This method of screen representation also does not show the location of the

browser on the screen.

Thirdly. the keyboard data are represented in their raw form which requires the user to try

and interpret which key ups, downs and presses go together. This also does not convey

information about how long a key was pressed for. The current data representation is not only

hard for non-experts, such as shape current and potential customers to understand but also

difficult for internal employees to analyze. When talking to a SIC employee about a specific

transaction it took us several minutes to realize we had been misinterpreting which resolution

was which despite the fact that the employee works with VizMonkey every day.

Lastly, VizMonkey 1 showed older events on the left and newer events on the right, with

the Y-axis having no meaning (there were height changes, but they didn’t represent anything) the

distance between events also had no meaning. This required people to make the connection

between the timeline and individual events which could only really happen during playback,

meaning that no information was displayed statically. It was also an underutilization of screen

real-estate.

14

Some of the data representations are inaccurate in VizMonkey 1. For example, the

current Shape Client data does not record the positions of keyboard events but VizMonkey1

attempts to put the keyboard events within the screen area, where it thinks the input was. This

lead to nearly everyone on the SIC thinking that the Shape Client could record this information

and requesting that we include it in VizMonkey2.

2.2 Requirements

Shape, upon assessment and use of VizMonkey 1, created a set of features which

VizMonkey 1 already had and features they wanted to add.

Main goals:

• Display the dimensions and position of screen, window, and viewport

• The ability to switch between physical size and scaled-to-fit

• Speed-control and a scrubber with the end time of the event and indications of events

• Attachment of OS-appropriate mouse cursor on the mouse movement path

• Visualization of mouse clicks and touch events

• Visualization of record of keyboard activity (which keys were pressed)

• Visualization of mouse wheel events

• Visualization of visibility of the window

• Google Cloud deployment visible to Shape Security employees

• Documentation of development and release process, with a clear user manual

Stretch goals:

• A log-style chronological textual rendering of the events in one big list or table statistics

for key-down intervals, key down/up timing, etc.

• The ability to export the renderings in video format

15

• The ability to play multiple transactions at once

• Heat map representation of positional activity in multiple transactions

We were also given a mockup of VizMonkey 2 might look like by Shape:

This mockup shows a more realistic browser window and mouse interaction with a section

dedicated to non-positional, events like keyboard events.

2.3 Technology Stack

To create a web application to replace VizMonkey 1, the three main technologies we

used were React for the general architecture of the application and the user interface

components; Redux to allow for the components of the application to talk to each other and

allow for the application to save its data locally; and AnimeJS to allow for the creation of

animations and to link those animations together on a unified timeline.

Figure 2-2 Shape VizMonkey 2 Mockup

16

2.3.1 React

React is an open-source JavaScript library that is used for building user interfaces

specifically for single-page applications [1]. It’s used for handling the front end of web and

mobile apps. There are multiple advantages to using the React framework instead of other

modern front-end frameworks. React is easier to use than AngularJS and ViewJS because of its

component-based development approach and well-defined lifecycle, and therefore can be used to

build a professional web application within a relatively short time. React uses a one-way data-

flow which makes maintenance much easier for future developers as it allows developers to see

why a specific component is in a certain state by looking only at its parents not it siblings.

VizMonkey 2 is integrated into a larger internal application with SIC called SIC tools.

SIC tools was made in React—this was another motivation behind using React as this made the

integration process with SIC tools much easier. Due to the hierarchical nature of React

VizMonkey can be encapsulated into a single component that can then be loaded within the SIC

tools application.

2.3.2 Redux

Redux is a “predictable state container for JavaScript apps” [2]. In other words, Redux

makes it easier to manage the state of the web application. Due to the complexity of VizMonkey

2, multiple components need to interact with one another to fulfill one functionality. Also given

the fact that React only supports one-way data flow, the optimal solution is to use a state

management tool that stores all the states in the program, with easy accessibility through all the

components in the application. Redux serves this purpose and thus we choose it to manage the

states in our application.

17

Redux has individual components dispatch events to the store. When the store is updated

the components which are based on those data are updated. After a component dispatches an

event it goes through the appropriate reducers and then changes the state of the store. When the

store’s state is changed any component listening to that data updates.

2.3.3 AnimeJS

Anime.js is described as a “lightweight JavaScript animation library with a simple, yet

powerful API”. AnimeJS works with CSS properties, SVG, DOM attributes and JavaScript

Objects [3]. There are lots of features packed into Anime.js such as keyframes, timelines, and SVG

animation.

Anime.js has all of the features necessary for basic keyframe animation in Javascript.

First, Anime.js provides the timeline. It is easy to maintain relationships between different

animations by using the timeline. To use the timeline and event is create, such as moving a DOM

element or drawing an SVG line and that event is given a start time and a duration then place on

the timeline. Second, Anime.js provides built-in callback and control functions; there are play,

pause, control, reverse, seek and trigger events, which can be used to easily manage and control

the state of animations [3]. Moreover, Anime.js supports the majority of modern browsers

including Chrome, IE/Edge, Safari, and Firefox. In addition, Anime.js has well-organized

documentation that demonstrates HTML, JS codes and great examples, which help speed up the

progress of learning Anime.js. In short, Anime.js is versatile, powerful, and relatively easy to

learn and use.

18

2.3.4 Scalable Vector Graphics (SVG)

SVG is a markup language for describing two-dimensional graphics applications and

images [4]. The current prototype uses SVG to help draw the mouse movement path.

There are several advantages for using SVG. First, SVG has good scalability, therefore it

can be printed with high quality at any resolution. Second, because SVGs are rendered in XML

(Extensible Markup Language), the file size is relatively small, which provides a boost in load

time and performance. Moreover, SVG is supported by most modern browsers [4].

However, there are several disadvantages of using SVG. The major disadvantage is the

learning curve of SVG is a little bit steep. Because SVG is structured XML, it is not easy to

understand the code behind it. Furthermore, the codes of SVG can be extremely complex and

lengthy, which is difficult to debug.

19

3 Design Process

When analyzing VizMonkey 1 we noticed that the principal problems with it were all due

to its user experience, this is why we started designing VizMonkey 2 from a user experience

perspective. Instead of looking at the data and defining a representation that was most closely

related to the it, we thought about what the data meant and designed a representation that was

most closely related to the way people understand those things.

3.1 Design of Keyboard Representation

When using VizMonkey 1, the most confusing data representation was the representation

for keyboard input so that is the first place we decided to improve. We thought that most people

would think of keyboard event as a single key going down then that same key going back; this

combination of events is called a keystroke. This is different from how Shape Client records

keyboard data. Shape Client records as a series of instantaneous events representing key ups,

press and downs—this is an artifact of the way JavaScript records key events. These events are

then stored as an objects which contain the time of the event relative to the start of the recording,

the input area of the event, and the key that generated the event except for printable keys which

are masked to protect privacy. VizMonkey 1 represented keyboard data as the raw key ups,

presses, and downs for VizMonkey 2 we represented them as keystrokes with their width

representing the duration of the event.

Figure 3-1 Key Stroke Panel

Once a keystroke is defined it still must be shown on the screen. In order to encode

meaning in the placement of the keystrokes on the screen keystrokes are organized temporally

20

with their location representing the time they occurred; this was a natural extension of the

keystroke’s width representing the duration of a keystroke. These keystrokes were put together in

an area called the keystroke panel.

Keystrokes have a duration therefore it is possible that multiple keystrokes will occur at

the same time. In order to represent multiple keystrokes occurring in overlapping times a

keystroke which starts during another will be place lower than it and the keystroke panel will be

as tall as the highest number of simultaneous keystrokes.

The type of key each keystroke represented was the most important feature of the

keystroke and in order to display this information the color of each key was changed in to be one

of several representing shift, tab, ctrl, and alt.

Figure 3-2 Key up

There were some key events that could not be paired with others, this was due to masking

of data as well as some events simply lacking a pair in the data. When a key event could not be

paired it was represented as a simultaneous event as a up arrow for up, a down arrow for down or

a circle for press.

21

3.2 Design of Mouse Component

Figure 3-3 Mouse Representation

The Mouse component was represented as a combination of trails and lines. The lines

were between the reported locations of the mouse and the cursor followed the lines. Click events

were represented as circles, with the largest being down, then up and the center dot being click,

these were separated into separate representations because they could occur at separate locations,

they most commonly appear together so they needed to be able to overlap in location while still

being clearly visible and distinct.

22

Figure 3-4 Screen Representation

The mouse input was collected with respect to the viewport and only collected within the

viewport. The position and size of the window and screen were also recorded, this was enough

information to recreate the users screen with some degree of accuracy, so rather than

reinterpreting those data we elected to show them as closely to the user’s screen as possible with

a generic browser representation and a viewport within it. The viewport would be placed at the

top of the screen with excessive padding placed at the bottom because normally padding that

large would be indicative of a console being open so that was the interpretation we used. The use

of a screen like representation made it much easier to understand as it was exactly what the user

would be used to seeing.

23

3.3 Design of Side Panel

Figure 3-5 Side Panel with Event List (left) and Session Info (Right)

The Side Panel is comprised of the event list and Session Info these were both accessible

as tabs within the Side Panel. The Event List was conceived to be able to show more information

about a specific event, such as the input are of a click or keystroke, without having to hover over

the event in its representation area. This needed to be displayed in a different area from the

keystroke and screen areas because the dimensions of those areas and the representations within

them were derived from the data and not guaranteed to be large enough to comfortably display

long strings of text. In order to create an easy visual link between the event list and the

information and the rest of the playback, every event becomes highlighted as it occurs, this also

allows for a user to pause and not have to search for the extended information about the event

they just saw. The Session Info section of the Side Panel shows the static information about an

event such as the browser. This information needed to be accessible to the user, but it is not

necessary to have it always visible,

24

3.4 Design of Menu Component

The menu was designed to be as similar to common office applications as the drop-down

paradigm is familiar to almost anyone who has used a computer and was effective at organizing

our application’s features. Most menus also have quick access areas for commonly used features.

our application also has a number of features we expected users to interact with more often than

others. These features were specifically about interactions with the screen such as changing the

focus of the screen area between the screen, window, and viewport or hiding and showing the

side panel. The menu was is mostly static only changing state to highlight the currently active

preferences of the application.

3.5 Design of Timeline Component

Figure 3-6 Timeline Component

In order to show any section of a playback we wanted to be able to have a way to

interacted with a playback and to allow for jumping to a specific point in time. A common

application for all of these features is in video playback, so to create out timeline we looked at

common video players like YouTube and looked at all of the features they have and how they

represented them. We noted that playback speed, play/pause, skip forward, scrubbing, and restart

were among the features they shared, as well our users requested a feature to jump to the next

event.

Figure 3-7 Timeline component next to Keystroke Panel

25

When making the Timeline we placed the scrubber the controls themselves as it was

linked to a cursor in the keystroke panel above it. In order to make that link visually obvious

those elements were placed next to each other. Beneath the scrubber the timelines controls were

placed in two groups. The group on the left, containing the play/pause button, the jump to next

event button, the skip forward 5 seconds button, and a display to show the current time of the

playback next to the total time of the playback. The group on the right contained the speed

selection and the restart button.

26

4 Development and Implementation

This section dives into the implementation of the parsers and components, which are the

two main parts of the application. The parsers and components are written in JavaScript using the

React framework.

4.1 Data Parser Implementation

The data source of our application is provided by Shape Client. Shape Client is an

application embedded into Shape’s customers’ webpages that collects signal data to better

protect Shape’s customers. There are five types of signal data that are used within VizMonkey 2

provided by Shape Client: mouse event data, keyboard event data, screen data, touch event data,

and visibility event data. The following sections describe the data parsing process for the signal

data.

4.1.1 Keyboard Event Data Parser

Keyboard event data parser is the most important part in keyboard visualization since the

way Vizmonkey 2 parses the data determines the way data is displayed. The keyboard parser is

mainly contained by three parts: normalization, keystroke formation and keystroke grouping.

The following sections explain these three parts one by one.

4.1.1.1 Keyboard Event Normalization

Shape Client collects 3 types of keyboard events. As shown in the Figure 4-1, every type

of keyboard data is slightly different from one another.

27

Figure 4-1 Three Types of Keyboard Events

In order to make sure the data input into the keyboard parser is consistent, a

normalization function was made to unify these incongruent data into one shape. Figure 4-2

shows the fields contained in the normalized keyboard event.

Figure 4-2 Normalized Keyboard Event

The eventType is an integer indicating the keyboard event: 1 indicates key down, 2

indicates key up and 3 indicates key press. timestamp is an integer (in milliseconds) indicating

the start time of the event. sequenceNumber is an integer used to associate the key down, key

up and key press events. modifierKeys represents whether the "ctrl", "meta", "alt", or "shift"

modifier key (respectively) was active. target is the name of the HTML tag where keyboard

events took place. For instance, target can be loginEmail or password.

28

4.1.1.2 Keystroke Formation

A map is created to group the events according to the sequence number. The key of the

map is sequence number and the value is the list of events that have the same sequence number.

As shown in Figure 4-3, after the mapping, the key down event and the key up event for a Ctrl

key event are grouped together, and the key down event and the key up event for a V key event

are grouped together.

Figure 4-3 Normalized Keyboard Events Mapping

The next step is squashing the keyboard events with the same sequence number into a

“keystroke”. Figure 4-4 shows the simplified procedure of keystroke formation.

Figure 4-4 Simplified Keystroke Formation

29

In a normal case, events within a specific sequence number have key down at the

beginning and key up at the end, therefore the keystroke is marked as “key_down_and_up”.

However, sometimes there are cases where this pairing cannot be made. When this happens, the

keystroke is marked as “key_down” or “key_up” depending on which type of event is left

unpaired. Figure 4-5 shows the keystroke formation for a single key down or key up event.

Figure 4-5 Keystroke Formation for Key Downs and Key Ups

Besides the key type and key code, the keystroke object also has some other fields. As

shown in Figure 4-6, keystroke has start timestamp, end timestamp and target. The start

timestamp represents the start time of the keystroke. End timestamp represents the end time of

the keystroke. The keystroke has a key down event at the beginning and a key up event at the

end, the start timestamp is the timestamp of the key down event and the end timestamp is the

timestamp of the final key up event. For keystrokes which only have a key down or key up, the

start time and end time are the same, which is the timestamp of the key down event or key up

event. The target of the keystroke is the same as the target of the key down event and/or key up

event which formed it.

30

Figure 4-6 Keystroke Object

4.1.1.3 Keystroke Grouping

The final step is grouping the keystrokes according to the start timestamp and end

timestamp. It is desired to show all the keystrokes on the screen without having them overlap

with one another. In other words, if the start timestamp of a keystroke is larger than the end

timestamp of another keystroke, then the two keystrokes should be on the same layer. But if the

start timestamp of a keystroke is larger than the start timestamp of another keystroke but smaller

than the end timestamp of that same keystroke, the two keystrokes should be put on different

layers. Figure 4-7 and Figure 4-8 illustrate the two situations. As shown in Figure 4-7, the start

timestamp of keystroke 2 is larger than keystroke 1 and thus they are aligned on the same layer.

In Figure 4-8 the start timestamp of keystroke 2 locates within the time range of keystroke 1 and

therefore keystroke 2 is put on a second layer.

Figure 4-7 Keystrokes on the Same Layer

31

Figure 4-8 Keystrokes on Different Layers

After all the keystrokes are processed by the algorithm above, a list of keystroke groups

is generated. An example of this procedure is shown in Figure 4-9. Assuming that all of the

keystrokes are sorted by the start timestamp before running the grouping algorithm, and

assuming that the start time of keystroke 2 lays between the start time and end time of keystroke

1, the start time of keystroke 4 lays between the start time and end time of keystroke 3, the start

time of keystroke 5 lays between the start time and end time of keystroke 4, the final parsed

keystroke data is formed as the keystroke group list shown in Figure 4-9.

Figure 4-9 Example Keystroke Group Formation

4.1.2 Mouse Event Data Parser

Mouse event includes the mouse button event and the mouse move event. Mouse event

data parser contains two parsers, one for mouse button and one for mouse move. The following

section discusses types of mouse event and how the mouse data is normalized and parsed.

32

4.1.2.1 Types of Mouse Event

 Similar to the keyboard events, Shape Client also collects three types of mouse events:

mouseEvents, mouseEvent2 and mousEvent3. Each type of event is slightly different.

Specifically, mouseEvents contains four parts: mouseDown, mouseUp, mouseClick and

mouseMove. mouseDown, mouseUp and mouseClick are events related to mouse button

and mouseMove is related to mouse movement. mouseEvents2 and mouseEvent3 are

similar, but having three parts for mouse button events, they have a single array called

mouseButtonEvents and use eventType to distinguish mouse down, up, and click. Beside

mouseButtonEvents, they also have mouseMoveEvents that contains all the mouse

movement data. Figure 4-10 shows the different types of mouse events.

Figure 4-10 Three Types of Mouse Event

33

4.1.2.2 Mouse Event Normalization

Normalization functions for mouse movement and mouse buttons are created separately.

Figure 4-11 shows the normalized mouse move and button events. Normalized Mouse move and

button events have some common fields. For example, eventType is an integer indicating the

type of event: 1 is mouse down, 2 is mouse up, 3 is mouse click and 4 is mouse move.

timestamp is an integer (in milliseconds) indicating the start time of the event.

Figure 4-11 Normalized Mouse Button and Move Events

Once the normalized events are generated, a parser for each event is called to extract

useful fields from the event. Figure 4-12 indicates the parsed mouse button and move events. It

is noteworthy that mouseEvents and mouseEvent2 only have x and y fields, therefore x

and y are used directly as the positions of the event. However, mouseEvent3 does not have

absolute x and y but rather it has document relative and target relative x and y. The current data

is insufficient to determine the accurate absolute position of events in mouseEvent3, therefore

document relative x and y are used.

34

Figure 4-12 Parsed Mouse Button and Move Events

4.1.3 Screen Data Parser

Screen data consists of four parts: screen dimensions, outer(window) dimensions,

inner(viewport) dimensions, and window position. In most normal cases, those data are directly

applied to each corresponding component. However, there are cases when the inner dimension is

larger than the outer dimension, this is potentially due to the zoom of the web page or browser.

Currently the database does not include adequate information to determine the zoom level.

Therefore, when any inner dimension is larger than the outer dimension, the inner dimension is

applied to the outer, and the position of the window is set to zero in order to avoid a confusing

screen representation.

4.1.4 Touch Event Data Parser

Touch events also have three types. Figure 4-13 shows the different types of touch

events. touchEvents includes touch start, move and end which the other two events do not

have. Each event has a field called touches which points out how many touches are present at

the same timestamp. For example, three elements inside the touches indicates there are three

35

points of contact with the screen at the same time.

Figure 4-13 Three Types of Touch Events

Figure 4-14 shows the normalized touch event. eventType is an integer with 1 for

touch start, 2 for touch move and 3 for touch end. timestamp is an integer (in milliseconds)

indicating the time that event happens. Figure 4-15 indicates the parsed touch event. A parsed

touch event is created for each element inside the touches list. Three elements inside the

touches results in creating three parsed touch events. This way of parsing touch events helps

remove unnecessary fields and makes it easier to reproduce touch events.

36

Figure 4-14 Normalized Touch Event

Figure 4-15 Parsed Touch Event

4.1.5 Visibility Event Parser

Visibility events are used to indicate if the user is focusing on the window or not. There

are only two fields inside each visibility event: timestamp and visible. timestamp is an

integer indicating the start time and visible is a boolean with true for focusing on the window

and false for not focusing the window. Because visibility events only have one type, there is no

need to have normalization function and the data is directly parsed.

4.2 Components Implementation

After the signal data are parsed through multiple parsers, components are created to

display these parsed data. There are four main components in the application: keyboard, screen,

37

timeline and side panel. The following sections explain how these components are realized using

ReactJS.

4.2.1 Keyboard Component Implementation

This section describes the implementation of keyboard component, the structure of the

component as it appears on the screen and the manner in which it was designed to best fit into

the React framework.

4.2.1.1 Component Hierarchy

Keyboard event representation consists of three components: keystroke panel, keystroke

group and keystroke. This hierarchy is shown in Figure 4-16.

Figure 4-16 Hierarchy of Keyboard Components

4.2.1.2 Component Data Flow

The data attached to the keystroke panel component is parsed keystroke data, which is a

list of keystroke groups. In React a “prop” is used to transfer the data from one parent component

to its child components. When a keystroke panel component is declared inside the entry

component (App.js), as shown in Figure 4-17, keystroke data is passed as a prop to the keystroke

panel component.

38

Figure 4-17 KeystrokePanel Tag

In the keystroke panel component, as shown in Figure 4-18, each keystroke groups’ data

are separated and passed to a new keystroke group component.

Figure 4-18 KeystrokeGroup Tag

In the keystroke group component, as shown in Figure 4-19, each keystrokes’ data are

separated and passed to a new keystroke component.

Figure 4-19 Keystroke Tag

4.2.1.3 Keystroke Representation

Once the keystroke data passed from the upper level is received by the keystroke

component. It first calculates the start position and length of the keystroke. As shown in Figure

4-20, the start position of the keystroke is percentage of start time of keystroke divided by the

total time of the whole transaction; the length of the keystroke is the percentage of the duration

of the keystroke divided by the total time of the whole transaction. Start position is passed as

“margin left” to keystroke style properties and length is passed as “width” to keystroke style

properties.

Figure 4-20 Calculation of Margin Left and Width of Keystroke

39

Figure 4-21 Key_down_and_up representation

Figure 4-22 Key_down representation

Figure 4-23 Key_up representation

Different key types of keystroke are represented differently. As shown in the Figure 4-

21, if the keystroke is a “key_down_and_up” keystroke, it will be represented as a block. If the

keystroke is a “key_down”, it will be represented as an inverted triangle as shown in Figure 4-

22. If the keystroke is a “key_up” keystroke, it will be represented as a normal triangle as shown

in Figure 4-23.

4.2.2 Screen Component Implementation

Screen component in VizMonkey 2 is used to reproduce the screen, window, viewport

and user interaction events of a transaction. This section discusses the hierarchy and

implementation of each component inside screen part.

4.2.2.1 Component Hierarchy

The screen component contains three major components: the screen component, window

component and viewport component. The hierarchy of the above components is shown in Figure

40

4-24. Each component is rendered by using its own width and height.

Figure 4-24 Structure of Screen Part

4.2.2.2 Screen Component

Screen is the user’s actual monitor or desktop size. HTML basic tag <div> is used to

reproduce the screen. Once the data is loaded from BigQuery, the root component, App.js,

dispatches an action which sends screen related data to the screen reducer. When the screen

reducer receives the data, the width and height of screen dimensions from database are divided

by the width and height of browser from the VizMonkey 2 user’s screen. This results in two

different ratios: width ratio and height ratio. To achieve the maximum filling of the display area

without changing the height and width ratio of the screen. The ratio used is the one which is the

most constrained by the user’s browser. This ratio is also be used to scale all the subcomponents

of the screen. The screen component is connected to the screen reducer and is automatically re-

rendered when the data in the screen reducer change. For example, when the VizMonkey 2 users

41

change their browser’s dimensions, the screen scaling ratio is dynamically recalculated, resulting

in re-rendering the screen component.

4.2.2.3 Window Component

Window refers to the user’s browser window, including the UI, the menu bar and the

viewport inside it. Within the screen, the accurate dimension and position of the window is

reproduced by using HTML tag <div>. Then, the dimension and position are both scaled

together by the screen scaling ratio to maintain an accurate representation of the window relative

to screen. A URL bar is reproduced on top of this window. Due to the limited data collected, it is

unknown if the console is open. A console window opened on the side results in a difference in

width between window and viewport, showing a blank area on the side to be considered as a

console. However, since the height of the header is unknown, the difference in height between

window and viewport contains the header and any opened console on the bottom. Currently, the

VizMonky 2 limits the maximum header height at 35 pixels, and the remaining difference

appears as a blank area on the bottom to be interpreted as an opened console. Figure 4-25 shows

a situation in which the header of the browser window is larger than 35 pixels.

42

Figure 4-25 Example of Window with Opened Console

Visibility events are rendered inside the window component by putting a grey transparent

overlay above the window as shown in Figure 4-26. When the visibility event is true, CSS

property visibility is sent to visible to show the overlay and when false, visibility is set to none to

hide the overlay.

Figure 4-26 Example of Visibility Representation

43

4.2.2.4 Viewport Component

The viewport refers to the user’s visual area of a web page. The background of the

viewport is filled with grid lines which indicate the resolution of the web page. A denser grid

indicates a higher resolution. Inside the viewport, all user interaction events that have locations

are reproduced using SVG elements. The most common event is the mouse movement. For each

of the mouse movements, a <path> element is created. The <path> element has an attribute

called d which is used to specify the shape of the path element. The start and end points of a

single path are passed to the “d” attribute to link the two points. However, the sample rate of the

original mouse data is not high enough. The low fidelity results in straight lines and sharp

corners which look unnatural. In order to better mimic the mouse movement of the user, the

Bezier curve algorithm is used to smooth the paths and produce lines in a more reasonable

curved shape. Figure 4-27 shows comparison of non-interpreted curve and Bezier curve.

44

Figure 4-27 Comparison of Normal Curve and Bezier Curve

Mouse clicks are drawn by using the <circle> element. Different sizes of circles are

used to represent different types of button events. The largest hollow circle represents mouse

down, the middle hollow circle is mouse up and smallest solid circle is mouse click. In addition,

different types of clicks have different colors. When the user hovers over each button event, the

event is highlighted in red and a text box pops up to show the target ID and the click type of the

current event. Figure 4-28 shows an example of this type of pop up text box.

Figure 4-28 Example of Pop Up Box

A touch event is also represented by a <circle> element. touchstart and

touchend are displayed with larger circle to highlight their difference from the rest of the data

points. One touch event usually consists of many touchmove events in-between

touchstart and touchend. In the case of multiple touches, the data was collected in one

45

group; this makes it impossible to differentiate different fingers. On the other hand, the touch

events data are collected in high frequency and density which allows VizMonkey 2 users to

differentiate each cluster of touch data during visual inspection. Figure 4-29 shows an example

of touch events.

Figure 4-29 Example of Touch Event Representation

4.2.3 Timeline Component Implementation

Timeline in Vizmonkey 2 is an object created by AnimeJS. This section describes some

fundamental concepts about timeline in AnimeJS and the data flow within the timeline

component.

4.2.3.1 AnimeJS Timeline

In order to control the animations by simply scrubbing the slider, a timeline object is

created to interact with the slider. Figure 4-30 shows the procedure to declare a timeline object

in AnimeJS.

Figure 4-30 Declaration of Timeline Object

46

“Loop” decides whether or not the timeline object should loop the animations inside it.

“Autoplay” decides whether the animations should be automatically played without pressing the

play/pause button. “Duration” represents the total time duration of all the animations in the

timeline.

After the timeline object is created, animations can then be putted onto the timeline.

Figure 4-31 shows the way to declare an animation object in AnimeJS.

Figure 4-31 Declaration of Animation Object

Target, specific animation transition, and animation duration are needed to create the

animation object. The target represents the HTML DOM object to be manipulated. Class name, id,

HTML tag name can be put here as the specifier. For animation transition, there are multiple fields

that can be animated by AnimeJS. For instance, the size property, the position property, or

background color property. The duration represents how long this animation should last.

4.2.3.2 Data Flow

Since the timeline object should be accessed globally, the best place to declare this object

is within the entry point of the application, which is App.js. After the timeline object is created, it

is passed to the Timeline component (with all the parsed data) to initialize all the animations that

the timeline object needed.

47

Figure 4-32 Data Flow from App to Timeline Component

As shown in Figure 4-33, in App.js, mouse movement, mouse click, visibility, and touch

data are all sent to timeline component along with the timeline object after they are parsed.

Figure 4-33 Timeline Object Construction

Once the timeline component receives all the parsed data along with the timeline object,

as shown in Figure 4-33, parsed data are converted to their corresponding animations and then

the timeline object puts the animations into itself.

4.2.4 Side Panel Component Implementation

The side panel in Vizmonkey 2 is used to display basic information of the transaction

being played along with the transaction log. This section discusses the component hierarchy of

48

the side panel component, and then describes the two child components within the side panel

component.

4.2.4.1 Component Hierarchy

The side panel component consists of two components: the session info panel component

and the events list panel component. The session info displays some basic information about the

current transaction including, but not limited to, the transaction id, transaction date, and user

agent. The events list panel contains all the events in the transaction. Figure 4-34 shows the

component hierarchy of the side panel.

Figure 4-34 Component Hierarchy of Side Panel

At the start of the application, the session info is rendered above the events list. The only

difference is that in the style sheet, the session info component is visible, but the events list

component is not visible. The button in the side panel is used to switch the CSS style of the two

components as shown in Figure 4-35. The CSS style in the session info and events list

component is changed when the button is clicked.

49

Figure 4-35 CSS Transition of Side Panel

4.2.4.2 Session Info Panel Component

As shown in Figure 4-36, the session info panel displays various types of basic

transaction information such as transaction ID, transaction date, IP address, browser type,

operating system, and website. These data are from “propertyValues” in the signal data.

Conditional rendering is used here to display the icon corresponding to the operating system and

browser type.

Figure 4-36 Session Info Example

4.2.4.3 Events List Panel Component

The hierarchy of the events list panel component is shown in Figure 4-37. The events tab

shows detailed information of the events from the transaction. For instance, the mouse

movement event shows the start and end positions of the movement, the mouse click event

50

shows the type of click (mouse down, mouse press or mouse up) along with the target of the

mouse click, and the keyboard event shows which key is pressed and where the user types the

key.

Figure 4-37 Hierarchy of Event List Component

The events list panel also has the ability to interact with the timeline. If the transaction is

currently playing, all past events in the panel are highlighted. Figure 4-35 shows the life cycle of

the events list component and timeline component.

Figure 4-38 Relationship Between Events List Panel and Timeline

51

As shown in the Figure 4-38, after all the events in the events list panel are rendered, the

timeline component searches for all the events bullets and makes background-change animations.

After the animations are generated, they are put into the timeline.

The events list panel also has a feature that auto-scrolls to the latest event. In order to

auto-scroll, certain event data must be available. Figure 4-39 shows the data necessary for the

calculations.

Figure 4-39 Auto-scroll Calculation

The data available via the built-in JavaScript are the distance from the top of the event

list, the length of the hidden area (the area hidden when the scroll bar is scrolled) and the

physical length of the event list panel. After all these data are acquired, the calculation is:

Figure 4-40 Auto-scroll Formula

If the numbers from the above calculation are larger than the length of the event list

panel, then the scroll bar needs to be scrolled by the height of the current event bullet.

52

5 Evaluation

During the creation of Vizmonkey 2 as well as after it was completed, we tested its

technical robustness through automated testing and its effectiveness by showing it to its end

users and asking for their feedback. The user feedback was mostly positive, and the automated

testing reveal no bugs which were left unfixed.

5.1 User Responses

In order to gauge user responses to VizMonkey 2 we showed it to a crowd of about 10

possible users and asked them to comment on certain interactions. They were very positive

towards the keystroke abstractions; they appreciated the added ability to look at a transaction

statically. They were also very pleased with the overall cleanness of the UI. Their favorite

feature was the ability to scrub through transactions and go to specific points. They had two main

criticisms about the version of VizMonkey 2 we showed them. Firstly, they did not like how you

had to hover over an event in order to see its contents. Secondly, they were worried that the

realistic screen representation would not be able to display odd resolutions. They were otherwise

satisfied.

We addressed these concerns by warning the user if there was a resolution which was

inaccurate and by adding in the event list into the final version of the application. When the users

saw this final version, they had no concerns and only had requests for new features.

5.2 Test Suite Development Process

Our automated tests were created in both Jest and Enzyme. Jest is a JavaScript unit

testing framework especially well suited to testing React components. Enzyme is a testing

53

framework that has additional functionalities to test React components, specifically their

dynamic properties and animations. For VizMonkey 2, Jest was used as the test runner, mocking

library, and assertion library and Enzyme was used to provide utilities to render components,

find components, and interact with elements.

Jest has a method called describe which takes two arguments: a string for explaining

the test and a callback function. describe will group related tests together into one block.

Another method is called it which takes two arguments: a string for test name and a function

that contains test expectations. Actual tests usually exist in the second argument of it.

Figure 5-1 shows an example of using describe and it.

Figure 5-1 Jest Example Code

To find the components we want to test, the custom attribute data-test is used. There

are other attributes that can be used to find the target components such as className or id.

However, those attributes are easily changed by programmers while making normal changes to

the application. To avoid rewriting tests when className or id changes, a custom attribute

data-test is created for testing.

Tests for ViMonkey 2 include three major parts: tests for rendering the components, tests

for functionality, and tests for reducers and actions. The Enzyme methods shallow and mount

are used to render components. shallow is used to render single component and it does not

54

render its child components. mount is used to render whole component including child

components, but it has a higher cost than shallow. To test whether components are

successfully rendered, shallow method is used more often in our testing process to increase

testing speed.

In order to test functionalities of components, mock function will be created by calling

jest.fn(). For example, to test whether onClick event on a button is correctly handled.

Clicking the button triggers a function and this function can be triggered by using jest.fn().

Then we can to see if the callback function is successfully called by that trigger. Most of the

functions within VizMonkey 2 are tested using mock functions as they would normally be

triggered by user interaction. Some of these functions need parameters. Parameters are also

supported by Jest’s trigger functions.

VizMonkey 2 used redux to help manage data flow. Therefore, we needed to test the reducers

and action creators. To do this a fake store is setup then we create different situations of states.

Once these simulated states are created, we pass the states to target reducer to see if the output

state is the same as expected.

55

6 Conclusion

VizMonkey 1 was a data visualization tool which Shape had already implemented.

VizMonkey 1 utilized Shape Client data to create representations of user interactions so that

shape employees could look at individual interactions and see why a certain one was labeled as

automated or not and give this explanation to customers. The data visualizations included mouse

and keyboard events.

As VizMonkey 1 became more utilized within the company its limitations became an

increasing hinderance. Its representations, especially of keyboard events, were difficult to

understand without prior explanation. It showed keyboard events as completely separate

regardless of the key of origin; this made it impossible to see the duration of keystrokes. Mouse

events were also hard to follow as mouse locations were not connected; the locations where

shown as static dots. Intermediate locations were not displayed.

Shape identified many problems with VizMonkey 1 and asked that we address them by

making a new version. It gave us this list of VizMonkey 1 Shortcomings:

• Keyboard and mouse information is hard to understand

• Not all data is represented

• The animation requires explanation and training

• There are no playback controls for interaction with the application

Our goal was to design and implement VizMonkey 2.

We designed the user experience (UX) rather than starting from the data we were using.

Starting from an abstracted point of view required more manipulation of the data and created

unique problems, such as what to do with impossible screen dimensions. Once our rough design

was finalized, we created the application in React. In order to allow for data flow and

56

responsiveness we also used Redux. Lastly, we used the AnimeJS animation framework to allow

for a unified timeline.

We created representations of events which were more easily understood by non-experts

and more quickly understood by experts. The use of the keystroke abstraction, in particular, was

well-received by the Shape Intelligence Center’s (SIC) team. A UX centric design for data

visualization in this context was very successful and better than the previous data centric

visualization. VizMonkey 2 is currently deployed and accessible to the SIC team and meets or

exceeds the usability and functionality of VizMonkey 1.

57

7 Future Work

VizMonkey 2 could be improved with several features desired by Shape, such as a deeper

integration with current Shape Intelligence Center’s tools, the ability to show multiple

transactions at once as a heat map, added ability to show phone events such as orientation in

space, and using feedback from VizMonkey to improve the data Shape Client collects.

Deeper integration with SIC tools would allow faster access to a specific transaction.

Rather than a user finding the database and transaction ID of the transaction they were trying to

input, the user could simply click a button within another tool where they were viewing a

transaction and it would allow them to see that transaction within VizMonkey. This feature

would be easy to implement and save users’ time.

Showing multiple transactions at once would allow for users to make comparative

assessments about transactions. These comparisons would be useful in determining whether a

transaction looks like it came from a bot; a bot’s actions may look like those of a human, but if it

is identical to many other transactions then that bot is likely a recording—there are also other bot

behaviors which look less suspicious in a single transaction. In order to show multiple

transactions together, a unified list of transactions between the events would need to be created

and then played back at once as if it were a single transaction; this would require a reworking of

the keyboard events as they are not designed to be overlaid on top of each other. Making

keystrokes translucent could fix this problem. Mouse strokes would work without modification

under this system by simply placing them on top of each other as their backgrounds are

transparent. Once this feature is implemented comparisons between transactions, especially

groups of transactions, will be much faster.

58

To add orientation within space, a CSS transform could be performed on the finished

screen representation. The CSS transformation could be made using accelerometer data collected

by Shape Client. The menu and representation of the screen should change when looking at a

smartphone event. They should not include a window as smartphones do not use a windowed

environment. This should also be reflected in the available menu options when viewing a

smartphone transaction.

Improving Shape Client with the knowledge gained from making VizMonkey 2 would

allow many more features in future versions of VizMonkey. One of the most evident features

would be the ability to overlay the website as the user was seeing it. This feature only requires a

few more data points, specifically the location of the document relative to the viewport. The

addition of this feature was requested by several employees but is simply not possible with the

current data provided by Shape Client.

59

References

1. “ReactJS.org” [Online]. Available: https://reactjs.org/. [Accessed: 12-March-2019]

2. “Redux.js.org” [Online]. Available: https://redux.js.org/. [Accessed: 12-March-2019]

3. “anime.js.” [Online]. Available: https://animejs.com/. [Accessed: 10-Dec-2019].

4. “W3C,” W3C SVG Working Group. [Online]. Available:

 https://www.w3.org/Graphics/SVG/. [Accessed: 11-Dec-2019].

https://reactjs.org/
https://redux.js.org/
https://animejs.com/
https://www.w3.org/Graphics/SVG/

