
NVIDIA Performance Testing for Emulation

of the Grace CPU

A Major Qualifying Project submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the degree of Bachelor of Science

By: Gong Fan, Muyun He, Shundong Li

Decemeber 31, 2021

Report Submitted to Professor Mark Claypool, Worcester Polytechnic Institute

Sponsored by NVIDIA Corporation

Table of Contents

Chapter 1: Introduction 1

Chapter 2: Background 3
GitLab 3
Amazon Web Service Graviton 4
Linux Perf 5
NUMA and Numactl 6
Control Groups 7
PostgreSQL Database 8
Tableau 9

Chapter 3: Methodology 11
Requirement Definition 12
Prototype 12
Receive Feedback 13
Finalize Software 13

Chapter 4: Implementation 14
Backend 14

Shell script 15
Utility Scripts 16

benchmarks.jsonc 16
benchmarkUtility.py 16
shellUtility.py 17
SpinCursor.py 17

Benchmark Scripts 17
Database 18
Visualization 22

Chapter 5: Expandability 32
Python Script 32

Case 1: Add a sub-task 32
Case 2: Add a new benchmark suite 33

Visualization with Tableau 33

Chapter 6: Conclusion 34

Chapter 7: Future Work 36

Python Script 36
Database 37
Tableau Visualization 37

Chapter 8: References 38

Appendix A: Tableau Guide 40
Get Permission on Tableau 40
Add a New Benchmark Feature 40
Application (Benchmark) doesn’t Appear. 41
General Notes for Editing Worksheets 42

Appendix B: Our GitLab project code 43

Abstract

NVIDIA is developing a new CPU and needs to test and compare the performance of

competitors’ chips against their simulated CPU. However, testing is cumbersome and

time-consuming with current test suites, especially on simulated hardware. Our project is to

create a new tool that consolidates other test suites for easier testing for their simulated CPU.

We developed a series of Python scripts, defined a database solution for data storage, and

created notebooks on Tableau for data visualization. The tester uses a Python script (shell) to

run all tests in one place and upload the results to a database, and the developer views and

compares the results in Tableau. For ease of use, testers can mount this software on any Linux

machine, which simplifies multiple running benchmarks at once and compares results.

1. Introduction

NVIDIA plans to design a new CPU and evaluate its performance against competitors before

making the silicon. Since it is time-consuming and expensive to manufacture a chip, NVIDIA

wants to compare their competitors’ chip’s performance and test their CPU design without

making the silicon. To do so, NVIDIA’s CPU needs to be simulated on other machines so

tests can be simulated.

Many test suites and benchmarks are available to stress-test the hardware to evaluate

performance, even on a simulated chip. However, current test suites need to be installed from

different places and run separately with different commands. Furthermore, all tests have to be

run on different machines to compare the results. Since the new CPU will be simulated and

much slower than a real chip, it is time-consuming and complicated to run tests with current

tools. The challenge is consolidating other tests and creating a pipeline by automating most

processes, such as installing and uploading data.

A simple solution is to create a bash script that installs and runs all the tests one by one, then

manually records the data into Excel. This solution might be sufficient, but it also has many

drawbacks. A bash script is hard to customize and automate based on NVIDIA’s workflow.

Also, NVIDIA might want to add new tests. Bash is designed to execute commands and is

much harder to implement logic, making it hard to understand and maintain bash script. For

instance, output formatting code could be incredibly time-consuming and confusing to write

or understand in a bash script compared to a high-level programming language. Furthermore,

it is hard to automate a process based on different situations with a bash script. On the other

1

hand, a high-level programming language, such as Python, is designed to be easier to read

and simpler to implement than a bash script. If NVIDIA wants to add new tests to the case, an

engineer can easily navigate to the correct position and make changes.

We created a new tool with the tech stack of Python shell, Postgres database, and Tableau

visualization to address this problem. The test suite follows a linear workflow (Figure 1),

intended to be customizable and easy to use. The user can run benchmarks with the Python

shell and store the data in local storage. The script automatically uploads the test results to

NVIDIA’s database. Then the user can visualize the results in Tableau. Most of the work has

been automated, such as running multiple tests and uploading results to the database; the user

only needs to specify which tests they want to run. Users can also quickly create new tests

with different specifications. The tool is concise, such that it can be incorporated into a Linux

image to be loaded and run on a simulated CPU from NVIDIA.

Figure 1. Workflow: Run tests, upload data, visualize data

This report provides details on the project and our process. Chapter 2 describes the

background and related technologies on software and concepts used. Chapter 3 provides our

approach to designing and building our new test suite. Chapter 4 gives a detailed explanation

of our implementation and decision processes. Chapter 5 provides expandability for

maintainers to develop new benchmarks. Chapter 6 summarizes our conclusions. Finally,

Chapter 7 lists possible future work.

2

2. Background

This chapter describes the background and related technologies on softwares and concepts we

used in our project. Each section is dedicated to a different technology; inside, we give an

introduction to each technology, and how we utilized it inside our project.

2.1. GitLab

GitLab is a fully integrated software development platform that enables users to collaborate

and produce software by using public or private web-based git repositories in a transparent,

effective, and cohesive way on the same platform [1].

Developers can install GitLab on multiple operating systems, including Linux, macOS,

Windows, and FreeBSD. Once GitLab is installed on Linux, developers could create a project

with a remote repository and a local copy. Standard command lines like git fork, git clone, git

pull, git push, and git checkout allow users to modify, update, and share the code. Git fork

creates a copy of the project in the user’s namespace on GitLab for modifying project files,

settings, and permissions. Git clone creates a copy of the project on the user’s local computer.

Git pull fetches the content from the remote repository and updates users’ local repository to

match the latest content. Git push uploads local repository content to a remote repository so

that other users can use git pull to update their code or repository. Git branch allows users to

copy files in the repository and work on an independent line of development. Users usually

use the git branch to work on new features or fix bugs and later merge the individual branch

3

with the main branch. Overall, GitLab’s command lines provide an efficient working function

for software development groups.

Our repository is located on NVIDIA’s private GitLab space. Throughout this project, git is

heavily utilized to synchronize code between teammates and our sponsors.

2.2. Amazon Web Service Graviton

Amazon Web Service (AWS) is a cloud service platform provided by Amazon.com, Inc. The

cloud-computing platform allows users to rent virtual computers to run their computer

applications [2]. AWS Graviton is an Elastic Compute Cloud (EC2) instance that uses ARM

architecture cores; Compared to x86 instances; Graviton has a significant advantage on price.

Also, AWS Graviton processes have extensive software support from other AWS services.

For example, Cloudwatch can collect logs and metrics from each instance when pairing with

Graviton; also Auto Scaling can use the metrics to create a new instance based on traffic and

utilization of current infrastructure. Service (ECS) can pull docker containers from container

registries to run on any EC2 instances.

In our project, Graviton simply serves as a benchmarking machine. We runned some

benchmarking scripts with the tool we built.

4

2.3. Linux Perf

Linux Perf is a performance analysis tool for Linux that instruments CPU performance

counter events [3]. It is used for statistical profiling of the entire system. Perf can run

benchmarks on both hardware and software for performance data.

Perf’s commands, including stat, record, report, top, and bench, are the most useful in our

projects. We use perf stat to gather performance counter statistics. Perf record runs the

requested command and records its profile into perf data. Pref report reads specific perf data

and displays the profile. Perf top is a system profiling tool that generates and shows a live

performance counter profile. Perf bench is a general framework for benchmark suites that run

different kernel microbenchmarks. We use perf bench to capture kernel microbenchmarks.

For example, perf bench cpu-clock and perf top first runs a CPU-clock benchmark and then

display a live performance counter profile. We can also capture CPU performance counter

events during external benchmark execution. For instance, perf stat Phoronix-test-suite

benchmark systemd-boot-total first runs a test that uses system-analyze to report the entire

boot time (the time it takes for a device to be ready to operate after the power has been turned

on) by Phoronix test suite in Figure 2. Then it captures CPUperformance counter events by

perf stat in Figure 3.

5

Figure 2. Systemd-boot-total Test Result

Figure 3. Perf Performance Counter Statistics for Systemd-boot-total Test

Linux perf allows users to capture CPU performance counter events for low-level

performance analysis or tuning.

2.4. NUMA and Numactl

The scalability of the Grace CPU, relies heavily on non-uniform memory access (NUMA)

[4]. Uniform memory access (UMA) systems usually have only one CPU and one memory

controller, limiting the total memory pool size; since NUMA nodes (one CPU package, one

6

memory controller, and the controller’s designated RAM pools) have interconnections

between each node, NUMA provides the potential to expand.

Although NUMA provides potential for increased server performance, it has some

drawbacks. Mixing the RAM pool among multiple NUMA nodes can increase RAM

accessing latency. This arises from the data taking more time to travel through the

interconnections when accessed across nodes. Therefore, restricting and planning the memory

access policy is crucial in NUMA platforms.

Numactl is a Linux package that controls NUMA policy for processes or shared memory [5].

We looked into several flags that were useful for our project such as ‘–physcpubind’, which

only escute processes on certain specified CPU cores.

NUMA and numactl, provide a more thorough understanding of the system that we run our

benchmarks on, and give us more control as to how we want to customize some test suites.

2.5. Control Groups

Control Group (cgroup) is a mechanism in the Linux kernel to organize processes

hierarchically and distribute system resources along the hierarchy [6]. It allows users to

determine how much system resources are allocated to a given process. The Control group

consists of a core, which establishes and maintains the hierarchy, and controllers, which

distribute specific types of resources along the hierarchy.

7

Command lines like:

● blkio allows users to limit per cgroup block IO performance.

● cpu is the percentage of CPU for a particular application.

● cpuacct provides per cgroup usage accounting.

● cpusets provides a Linux Kernel mechanism to constrain which CPUs and memory

nodes are used by a process or set of processes.

● Devices build a device access whitelist or blacklist with each cgroup.

● freezer freezes the tasks if they are not scheduled.

● memory tracks and limits userspace memory and kernel memory.

● net_cls tags packets to specific tasks, and traffic controllers can use those tags to

assign priorities.

Users can use cgroup to organize different GPU processes hierarchically and distribute

system resources along the hierarchy. Cgroups are used in many benchmarking tools to

control the resources used in a specific flag, mainly through passing in different flags.

Although it is not directly used in our project, we need to record the corresponding flags for

our sponsors to understand better and analyze the data gathered by our tool.

2.6. PostgreSQL Database

Databases are used to store and organize structured information or data. Databases have many

different paradigms such as key-value, wide column, and document. Those paradigms have

different benefits; for example, key-value paradigms can be extremely fast to access data and

8

the document paradigms are schema-less. In this project, we used a relational database for the

accessibility and consistency provided by a Structured Query Language (SQL).

Postgres is an open-source relational database management system and SQL compliant [7].

The system is ACID (atomicity, consistency, isolation, and durability) compliant, which

means all transactions in the database guarantee data validity even through network or

hardware failure. SQL allows the Python scripts to generate the insertion queries

automatically and uploads data to the database after each benchmark run. Visualization steps

with structured data can also be automated. Potential drawbacks for this database is that it

requires schemas and is difficult to scale

We used a PostgreSQL database to store our data generated by our benchmarking suite. The

data can be effortlessly accessed by Tableau, our visualization tool (introduced in section

2.7), to generate graphics for NVIDIA to analyze and compare results.

2.7. Tableau

Tableau helps to see and understand data [8]. It is also easy to create a dashboard on Tableau.

The dashboard is similar to the Excel Pivot table but much more powerful. Users can grab

data realtime from the database, and Tableau gives various options on how the data is

displayed.

9

We used Tableau in our workflow and served as the users’ front end. The user can run

benchmarks on multiple machines; the results are updated in Tableau for comparison and

analysis within seconds.

10

3. Methodology

This chapter describes our methodology. Our team switched from a simplistic development

approach to the Rapid Application Development approach. We will also break down how this

approach is performed and why it is more effective than our initial approach.

At the planning stage of our project, we were given a list of technologies to explore as

background. Starting from those backgrounds with a known development timeline, we began

the development serially by first creating a Python script backend, then the database, and

finally the visualization.

After discussing with Professor Claypool and our mentor roughly a week into the project, we

decided the three sections depend on each other and need input from developers and users to

make changes correspondingly. Therefore, we switched to Rapid Application Development

(RAD). RAD mainly breaks down into four parts: requirement definition, prototype, feedback

reception, and software finalization. We describe these four parts in the following paragraphs.

11

3.1. Requirement Definition

Our requirement was to provide a robust and expandable workflow that contains the

functionalities of the Python script backend, the database, and the visualization. Our project

does not only need to include the Python script backend, the database, and the visualization,

we also should provide a robust and expandable workflow that contains these three

functionalities. Robust means that the failure rate of the workflow should be low.

Furthermore, even if some part fails, it should be easy to find the error source and fix it

correspondingly. Expandable means that adding those benchmarks to the workflow should be

relatively easy and hassle-free.

3.2. Prototype

Figure 4. The workflow for our project.

As shown in the workflow above (Figure 4), our project comprises five relatively

independent parts, which can be developed, tested, and demonstrated in isolation. The five

parts include two storage systems: JSON files on local disk and final storage in PerfLab’s

PostgreSQL database. The remaining three parts consist of the Python shell to handle

benchmark execution and result parsing to JSON, the Python script to parse the JSON files

and upload them to the database, and the Tableau visualization. We can quickly develop

12

working prototypes that our mentors can review by breaking down the project into these five

portions.

3.3. Receive Feedback

With the help of our mentor, we have reached out to other teams who had experience with

similar projects but for different hardware or technology stacks. Therefore, whenever we had

a working demo, we got feedback from our mentor and specialists, which sped up the

development process aided by advice on implementing our tasks.

3.4. Finalize Software

After refining prototypes, adding/removing features, and debugging, our last step is

connecting the python script, the database, and the visualization to form a functional

workflow. We also had to document the maintenance and expansion of our project.

13

4. Implementation

This chapter describes our implementation test tool: Python script backend, Perflab database,

and Tableau visualization frontend.

4.1. Backend

With the idea of comparing hardware performance in mind, during the development process,

we generated test results from different test suites, different hardware, and different kernel

patches. We store our initial benchmarking results into JSON files since some of the

benchmarking tools we use to yield results in a JSON file or provide functions to convert the

result into a JSON file. Figure 5 is an example of how Phoronix can convert its result into

JSON file format.

Figure 5. Two Phoronix Test Results Parse as Json Files

In our project, the Python script acts as the backend of the workflow: executing benchmarks,

formating results, saving them to local disk, and uploading them to the database. The Python

script can format those default JSON results into our designed schema. Furthermore, if the

benchmark does not provide any built-in function to parse results into a file, the Python script

can also directly capture the standard output in the Linux terminal and parse the results. We

14

designed our script to run the benchmark, capture and store the results locally before storing

them in the database.

Shell script

There are two important functions in the benchmark_shell.py file, which fully make up the

shell users invoke and interact with if they want to execute the benchmark using our

workflow.

● auto_shell(step_flag,argv)

Invoked by the main() function, this is the structure for the shell’s workflow to go step by

step (gather info, execute benchmark, upload, etc.). We previously had two nearly identical

shells, one auto and one interactive. We merged those two functions into one at the

finalization stage of our project to reduce repetitive code and make maintenance easier.

● configure_benchmark(argv)

This is the key function to match the user input benchmarks to the default values recorded in

the benchmarks.jsonc file.

15

Utility Scripts

A few utility scripts and files are essential to the backend. They act as helper functions for

either the shell or the benchmark scripts. They are located under the utilities folder.

benchmarks.jsonc

This file saves the defaults for each benchmark and sub-benchmarks. One example is shown

below in Figure 6:

Figure 6. An example of one benchmark preset with comment

Each JSON object should include benchmark, specification, and flags as the fields. The

benchmark is the application itself, the specification marks the keywords for the

sub-benchmarks, and the flags are the default arguments entered in the Linux terminal.

Benchmarks and specifications are used when matching the user input string with those

defaults, and specifications and flags could be left empty if not needed. Also, since this file

is JSONC, not JSON, the developer can add comments to document the defaults if needed.

benchmarkUtility.py

This file contains several helper functions the shell uses in the execution process.

● benchmark_call(benchmark)

This function takes a JSON object parsed from benchmarks.jsonc and adds additional

information like directory or timeout setting. At the end of the function, it invokes the

16

result_add_specification(path, benchmark) method to add the specification information to the

result JSON object and file

● script_call(...) and command_call(...)

These functions are invoked by the benchmark_call() functions above and take in the parsed

arguments and configurations, import the corresponding benchmark script, and invoke the

function to generate the result JSON files. The main difference between script_call and

command_call is that script_call should invoke those benchmarks in a particular directory,

preferably at the same level as this repository. In contrast, command_call is suitable for those

installed Linux packages and can be invoked regardless of the directory in which the

command is called.

shellUtility.py

This file contains the function exec_in_terminal. That takes in the argument and executes

them in the Linux terminal.

SpinCursor.py

This file contains the class that is used to create the execution animation.

Benchmark Scripts

The benchmark scripts are not executed directly per benchmark; instead, the shell matches

the user input with our supported benchmarks using configure_benchmark(argv) mentioned

above. Benchmark execution is only one portion of our workflow; one of the most important

goals is to gather the data from tests and save them to a uniform schema. The benchmark

scripts are dynamically imported into the shell to perform precisely this task.

17

Each benchmark script file must have a function toJSON(p_stdout,p_stderr,argv) with this

exact signature dynamically imported into the shell and the same name with the benchmark

field listed in the benchmarks.jsonc file. Our project documentation marked these

requirements to make adding new benchmarks and maintaining previous benchmarks easier.

4.2. Database

While a document-based database such as MongoDB seemed to be an obvious choice for our

use cases, it requires maintenance of accounts such as MongoDB or AWS outside NVIDIA’s

network.

Instead, our project utilizes the existing infrastructure that PerfLab owns. A new Postgres

database is created on Perflab's database systems. Their database undergoes daily backup to

protect the data space and enables the use of Tableau for visualization (Section 4.3).

After the database was online and the credentials sent to the team, we defined a schema to

represent the data. Two options for the database schema are given at first:

18

Figure 7. Right: Option one for database schema;

Left: Option twofor database schema

1. As shown in figure 7, one table stores general test information and another table is

initiated with all possible result titles as columns.

This approach results in two tables, but the second table has extraneous fields that

most tests will not use.

2. The other option is a table to store general test information, and each test has its

specific table. The different tables for each test are created when running a new test

for the first time.

This approach creates more tables for each test, reducing the database storage used

but increasing software complexity. It also requires more maintenance and versioning

to ensure there are no conflicts.

The third option chosen based on feedback from the Perflabs team is for output files from the

test to follow a strict format:

19

Figure 8. Format the benchmark results need to follow

The format as shown in figure 8 consists of an object named results, and inside results, there

is an array of record objects.

20

The record object consists of three parts:

● Metadata

● Data from tests

● Hardware data

Figure 9 is a brief representation of how the data from JSON is stored in the database.

Figure 9. How data is represented in database

Each object in the results array is a row in the database.

The metadata is used to identify which test run the record is for and other information such as

when the user ran the test.

The actual data from the test suites are stored in the next section - data from tests.

The data is represented in two columns, namely: metric and score, as seen in the blue box.

The orange box represents a run of a test. Different metrics are stored in different columns

with their respective score.

21

There are also two databases: production and staging databases. The staging database is used

for testing newly added scripts such that if something goes wrong, undesired data does not

pollute the production database. The user can use the staging database bypassing the

‘--staging’ flag to the testing shell.

4.3. Visualization

The visualization aims to display benchmarks’ performance in a user-friendly format. For

implementation, we considered three options: a custom web app, Google Data Studio [9], and

Tableau [8].

A custom web app allows us to design unique functions based on our needs. However, it

would need extensive development and maintenance effort. On the other hand, Google Data

Studio has already developed functions for users to use. It supports an easy connection to data

sources, and it does not require much maintenance. Google Data Studio is a better choic than

a custom web app.

22

Figure 10. Google Data Studio Vs. Tableau [10]

Figure 10 shows the differences between Google Data Studio and Tableau. Tableau can have

a data refresh, whereas Google Data Studio requires twelve hours after the previous data

refresh. Tableau displays and loads dashboards faster than Google Data Studio. It also works

well with perf Lab’s Postgres database. Based on the comparison, we choose to use Tableau

for a visualization based on its primary data refresh function, fast loading and high displaying

performance, low maintenance effort, and compatibility with live perf Lab databases.

Users of the visualization tool would face three situations. First, users may want to view a

single benchmark performance. Second, users may want to check the same benchmark

performance on various machines to compare their CPU TH500. Third, users may want to

visualize the same benchmark performance that runs on the same machine over time to

23

analyze its development improvement. Three worksheets, Benchmark Performance, Data on

Benchmark Performance, and Machine Information Raw Data, are designed with Tableau to

support those use-cases. A design theory, Zero One Infinity Rule, avoiding arbitrary limits on

the number of instances of a particular type of data or structure [11], provides no limits for

users to select their preferred benchmark, CPU type, and time that a benchmark is running.

First, a worksheet Benchmark Performance with filters shows bar graphs for all benchmarks’

performance. The worksheet allows users to use filters to narrow down to a specific

benchmark with details including application, application version, CPU model name,

description, metric, and score:

● Application refers to a type of benchmark.

● CPU model name refers to the CPU model of a machine that runs a benchmark

● Description refers to different tests of the same benchmark. For example, the Glibc

benchmark has tested ffsll, ffs, pthread_once, tanh, and sqrt.

● Metric refers to specific test columns in each description. For example, ffs of Glibc

benchmarks have test columns like duration, iterations, min, max, and mean.

● Score refers to a specific value for each metric.

24

A general view of visualizations on all benchmark performances is shown in Figure 11. When

users decide to view a specific benchmark performance, they could use filters on the right

side to narrow down the application (benchmark type), CPU model name, uploader, score,

timestamp, flags, description, and metric. The column in this figure shows benchmarking

applications, the CPU that ran the benchmark, and the scores from each metric. A single row

represents the data from a single benchmark run. We can compare any two rows from the

same application to analyze the performance difference of the benchmark on different

hardware. Furthermore, the rows can also be filtered by flags (specifications when running

the benchmark that controls the application’s behavior, such as using a single core or all CPU

cores) to analyze the data more accurately.

Figure 11. Performance of All Benchmarks

25

For example, a user can filter data to visualize a Glibc benchmark performance for a sinh test

that runs on a machine with Intel Xeon Silver 4201R CPU@ 2.40 GHz at 09:13 AM on Dec

16, 2021, depicted in Figure 12. On this particular CPU, the Glibc benchmark ran with an

interaction score of about 84 million and a mean score of about 30.

Figure 12. A Glibc Benchmark Performance for sinh test with Intel Xeon Silver 4201R

CPU@ 2.40 GHz at 09:13 AM on Dec 16, 2021

26

Each metric has a unique y-axis. Moving the mouse to a bar graph displays detailed data.

Users can switch to the Data on Benchmark Performance worksheet shown in Figure 13. This

worksheet shows numeric data values for benchmark performance, including application,

CPU model name, description, metric, and score.

Figure 13. Data of a Glibc Benchmark Performance for sinh test with Intel Xeon Silver

4201R CPU@ 2.40 GHz at 09:13 AM on Dec 16, 2021

27

If users want to see the machine information that runs this Glibc benchmark, they could

switch to Machine Information Raw Data shown in Figure 14. This worksheet Machine

Information Raw Data shows machine information of a specific machine that runs the

benchmarks. If users choose not to capture machine information or there is no machine

information to be captured, the display of the column is null.

Figure 14. 1. Machine Information of a Glibc Benchmark Performance for sinh test with Intel

Xeon Silver 4201R CPU@ 2.40 GHz at 09:13 AM on Dec 16, 2021

28

Figure 14. 2. Machine Information of a Glibc Benchmark Performance for sinh test with Intel

Xeon Silver 4201R CPU@ 2.40 GHz at 09:13 AM on Dec 16, 2021

29

Similarly, users could use filters to visualize the same benchmark performance on multiple

machines and dates, as shown in Figure 15. Each row represents a benchmarking run with the

specific application, a specific flag, and a specific CPU. The user can compare the

performance difference of this particular configured benchmark on different CPUs. For

instance, we can see that AMD EPYC 7413 CPU is outperformed by Intel Xeon Silver 4210R

CPU from Figure 15; it takes the AMD CPU much longer than a custom web app at around

400 seconds in system time to run the benchmark compared to around 300 seconds from Intel

CPU.

Figure 15. stress-ng Benchmark Performance with flag -sem1. Comparison between Intel

Xeon Silver 4201R CPU@ 2.40 GHz and AMD EPYC 7413 24-Core Processor

30

For future analysis and data modification, Tableau supports the interface allows users to

download worksheets as an image, an excel file, a CSV file, a text file with raw data, a pdf, a

PowerPoint, and a Tableau workbook.

31

5. Expandability

The following chapter describes the expandability of the project. It demonstrates how a

developer can maintain the Python script and visualization on Tableau if a new benchmark is

added.

5.1. Python Script

There are two cases when adding a benchmark to the workflow: adding subtasks or adding a

complete benchmark. Adding a sub-benchmark does not need to be configured within the

workflow; for most cases, adding a sub-benchmark requires editing the jsonc file and

changing the formatting function. Adding a new benchmark needs more effort in result

parsing and minor additions in the framework.

Case 1: Add a sub-task

Adding a sub-task means that the benchmark is already in the workflow; the developer just

needs to add a sub-benchmark (the benchmark folder has the corresponding file). This is

relatively easy to implement; the developer can just:

1. Add the new sub-benchmark and required information into the benchmarks.jsonc file.

2. Initialize the shell and select the sub-benchmark to see if everything works.

3. There may likely need slight alternations in capturing the results, so small changes are

also needed for the file under the benchmark folder.

32

Case 2: Add a new benchmark suite

In this case, the developer needs to make a more significant effort:

1. Document the new defaults into the benchmarks.jsonc file.

2. Add the corresponding directory and placeholder file in the Output folder

3. If the dependency auto checking feature is done, update the initialization script

4. Update the benchmark_call(benchmark) function with the arguments and paths for the

benchmark execution.

5. Capture the standard output for the benchmark and decide which part of the result

goes to the JSON File on Internal Storage

6. Create the corresponding file in the benchmark folder with the conventions listed in

Benchmark Scripts.

7. Do test runs by starting the shell and seeing if there are remaining bugs.

5.2. Visualization with Tableau

The visualization interface built with Tableau is designed to be user-friendly. In general, the

visualization with Tableau has three worksheets: Benchmark Performance, Data on

Benchmark Performance, and Machine Information Raw Data. Appendix A includes a

detailed guide on how users can add a new benchmark feature.

33

6. Conclusion

NVIDIA plans to design a new CPU and evaluate its performance against competitors before

making the silicon. NVIDIA also wants to test their competitors’ chip’s performance without

making the silicon. Fortunately, many test suites and benchmarks are available to stress-test

the hardware to evaluate performance, even on a simulated chip.

However, installing, running, and collecting data manually from all test suites on multiple

machines is cumbersome and time-consuming. Furthermore, it takes about ten seconds for the

simulated chip from NVIDIA to run one second of system time. Running commands one by

one to install and run all test suites is impractical; it can easily take days to do so. Thus an

automated workflow is needed to simplify testing and data collection on different machines

and emulated CPUs.

To address this problem, we create a new tool consisting of a Python shell, database, and

Tableau to address this problem. Based on background information and technology, we used

the rapid application development approach to design and implement our solution; We

carefully made each decision after evaluating the pros and cons of multiple options;

communicating with NVIDIA frequently to ensure the tool fits their desired workflow and

use-cases.

The tester can use the tool to download all needed test suites. After downloading is complete,

the entire tool can be incorporated into a Linux image to be loaded on the simulated CPU

from NVIDIA, significantly reducing the time needed to start running benchmarks. The

34

utilities provided by the new tool save time for NVIDIA to install and run the test suites and

simplify the work to compare the collected data. Data collected from different machines are

brought to a centralized database. Tableau, our visualization tool, can grab the data in

real-time to feed to the predefined dashboards.

There are also many low-level details in this new tool. The user can customize data flow

behaviors in the python shell. For instance, the user can upload data to a staging database

instead of the production database. This function can be helpful when testing out new test

suites. The user can also save the results to JSON files instead of uploading them to the

database to reduce emulation time on simulated CPUs. Users can also define new test

specifications, add additional tests, and have the configuration saved to be used later.

The tool has error-catching code to handle most failures by either restarting or prompting the

user at which step the error has occurred. The tool is automated in that the user can run

multiple benchmarks and upload results with just one command. Our project addresses

NVIDIA’s problem with significantly reduced time and effort for testing their new CPU

development process.

35

7. Future Work

This chapter lists some potential future work that a project immediately following this one

could undertake. It includes three topics based on the three main parts of this project: Python

script backend, Perflab database, and Tableau visualization frontend.

7.1. Python Script

This project’s most immediate future work is adding new benchmarks to the workflow. We

have covered over forty different benchmarks during our project’s timespan, but NVIDIA has

more on their list for their benchmarking needs. Based on our instructions, other users have

already successfully added some benchmarks just after the end of our project.

Future work also includes polishing the profiling feature in the shell script. Currently, the

profiling provides information about the CPU times of each part of the benchmark execution.

Profiling should also include restricting which hardware (CPU core or RAM) to participate in

the benchmark execution. We can use some Linux packages we explored to add those

modifiers at the execution stage of the shell script.

Last but not least, the future teams working after this project could upgrade the initialization

script of the entire Python script backend. Merging the script into the Python shell script can

also grant the user the ability to install the benchmark test suites while using the shell. This

would include adding the utility script to check the machine’s Internet connection and

installation status and creating another jsonc file to store the automated scripts to install each

supported benchmark.

36

7.2. Database

Future database expansion could consider adding versioning to grant the database manager

the ability to change the schema without losing previous data. This should include scripts to

migrate the database with the help of applications like Flyway [12].

7.3. Tableau Visualization

Our Tableau currently only reflects the production database, not the staging database. Adding

the ability to visualize the staging database would speed up the development processes on the

staging database before deploying them. The future team can follow the Get Permission on

Tableau steps in Appendix A to create another Tableau folder to connect with the staging

database.

The three tables in Tableau already provide plenty of information to the user, but they could

use more visualization types other than bar charts. Providing a variety of visualization

graphics can make the user spot performance differences more efficiently. Future work could

explore more on the use of Tableau and consult with other teams to add more visualization

types.

37

8. References

[1] Gitlab Docs. GitLab. (n.d.). Retrieved December 30, 2021, from

https://docs.gitlab.com/ee/

[2] Newspaper PM. (1945). AWS Graviton Processor. Amazon. Retrieved December 30,

2021, from https://aws.amazon.com/pm/ec2-graviton/

[3] Gregg, B. (n.d.). Perf examples. Linux perf Examples. Retrieved December 30, 2021,

from https://www.brendangregg.com/perf.html

[4] TechTarget, T. T. (2011, March 24). What is Numa (non-uniform Memory access)?

WhatIs.com. Retrieved December 30, 2021, from

https://whatis.techtarget.com/definition/NUMA-non-uniform-memory-access

[5] NUMACTL: Control numa policy for processes or shared memory. numactl: Linux Man

Pages (8). (n.d.). Retrieved December 30, 2021, from

https://www.systutorials.com/docs/linux/man/8-numactl/

[6] Introduction to control groups (cgroups) red hat enterprise linux 6. Red Hat Customer

Portal. (n.d.). Retrieved December 30, 2021, from

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resourc

e_management_guide/ch01

[7] About PostgreSQL. PostgreSQL. (n.d.). Retrieved December 30, 2021, from

https://www.postgresql.org/about/

38

[8] What is Tableau? Tableau. (n.d.). Retrieved December 30, 2021, from

https://www.tableau.com/why-tableau/what-is-tableau

[9] Google. (n.d.). Google data studio help. Google. Retrieved December 30, 2021, from

https://support.google.com/datastudio/answer/6283323?hl=en

[10] Google Data-Studio vs Tableau: A comparative analysis of visualization tools. Digital

Analytics, Conversion Rate Optimization and Business Intelligence. (2019, December

6). Retrieved December 30, 2021, from

https://insightwhale.com/google-data-studio-vs-tableau-a-comparative-analysis-of-visu

alization-tools/

[11] Zero-one-infinity rule. (n.d.). Retrieved December 30, 2021, from

http://www.catb.org/jargon/html/Z/Zero-One-Infinity-Rule.html

[12] Flyway db. Flyway. (2020, December 16). Retrieved December 30, 2021, from

https://flywaydb.org/

39

Appendix A: Tableau Guide

Visualization with Tableau is designed to be user-friendly. In general, visualization with

Tableau has three worksheets: Benchmark Performance, Data on Benchmark Performance,

and Machine Information Raw Data. If users want to add a new benchmark feature, here is a

step by step guide:

Get Permission on Tableau

1. Alexey is helping us to create a site on Tableau. Once it’s created, ask Sean for

permission to join the site.

2. Submit a Tableau Access Request here or search a Tableau Access Request on its

portal.

3. After the request is approved, you will have access to the site as an explorer (default),

allowing you to view worksheets. Click on your Tableau profile and then click My

Account Settings. Check your site's role.

4. If you are an explorer (can publish), you can create a worksheet.

5. If you want to edit others’ worksheets, you need to ask a site administrator to permit

you. You could change permission by selecting a specific worksheet and clicking on

more actions (figure: …) → permissions.

Add a New Benchmark Feature

1. Click Edit and go to the worksheet that you want to edit

2. Click Refresh to load live data from the database. It takes some time for Tableau to

update to live data. If you want to see new data immediately, use Refresh.

40

http://asorokin@nvidia.com
http://skelley@nvidia.com
https://nvidiaprod.service-now.com/com.glideapp.servicecatalog_cat_item_view.do?v=1&sysparm_id=b35267c41b323f00b4ac99ffbd4bcb5b
https://nvidiaprod.service-now.com/sp/
https://nvidiaprod.service-now.com/sp/

3. Drag new benchmark feature from Tables to Rows or Columns. If you want to display

this feature as printouts rather than graphs, right-click on this feature and choose

Convert to discrete.

4. Modify features under Rows or Columns. We are using bar graphs in the Benchmark

Performance worksheet. If you want to apply other graphs, click on Show me and

select other types of graphs.

5. If you want to add a filter for this new feature, drag this feature from Tables to Filters.

Select From List and Only Relevant Values under General in most cases. Only

Relevant Values show suitable selectable choices of other filter selections. Be careful

at choosing all filters as Only Relevant Values as users may not get to some data

simply because they don't know what exact combination of filter choices would allow

them to see that data. To prevent this, All Values in Database is used for Applications

to ensure users have full access to all benchmarks.

6. Adjust types of filter display. In most cases, multiple values (dropdown) are used.

7. If you want to link this filter with other worksheets and change visualization on other

worksheets when this filter is selected, click on the triangle on the right side of this

filter. Select Apply to worksheets → All using this data source or All using

corresponding data source.

8. Save the change.

Application (Benchmark) doesn’t Appear.

If you are running a new benchmark and it doesn’t appear under the Application filter, you

need to edit the Application filter:

1. Click Edit and go to the worksheet that you want to edit

41

2. Click Refresh to load live data from the database. It takes some time for Tableau to

update to live data. If you want to see new data immediately, use Refresh.

3. Click Revert to clean filter status to default.

4. Go to Filter in the second area beside Tables, right-click on Application. Click on Edit

Filter. Choose Select From List and All Values in Database under General. Make sure

the All choice box is selected and click Apply or OK.

5. If the previous step doesn’t work, choose Use All under General as a filter setting.

6. Save the change.

Application filter is the majority filter, and it is selected as showing all values. The rest of the

filters are selected as only showing relevant values. This means that once the application is

selected, the selections in the filters are only related to the selected application. When a new

filter is applied, please consider only displaying relevant values.

General Notes for Editing Worksheets

7. Ensure all filters on each worksheet select the All choice box when you save your

change on worksheets.

8. Consider the relationship between worksheets. If you want to have the exact

visualization content, make sure to Apply it to worksheets → All using this data source

is selected on each filter.

9. Be careful about using Only Relevant Values under filters.

10. If you are looking forward to learning more about Tableau, go and check their tutorial

videos.

42

https://www.tableau.com/learn/training/20214
https://www.tableau.com/learn/training/20214

Appendix B: Our GitLab project code

gitlab-master.nvidia.com/wpi-project/th500-software-performance

43

http://gitlab-master.nvidia.com/wpi-project/th500-software-performance

