
MLC-WE05

A FIRST-PERSON PERSPECTIVE VIRTUAL TOUR

A Major Qualifying Project Report:

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Michael P. Lundy

Tim Walsh

Date: April 27, 2006

Approved:

1. Virtual Tour
2. Serious Games
3. WPI

Professor Mark Claypool

Abstract

This idea behind this project was to create an entertaining game that could help

prospective students to learn about the campus of WPI. We developed a first person

perspective virtual tour based on pictures of the WPI campus. To evaluate the useful-

ness of the game, a user study was conducted. The user study showed us that the tour

aspect of the game informed people of spatial relations of buildings on campus and the

paths that connect them.

CONTENTS

LIST OF FIGURES v

LIST OF TABLES vi

1 INTRODUCTION 1

2 RELATED WORK 3

2.0.1 Presence . 3

2.0.2 Usability . 5

3 METHODOLOGY 10

3.1 Engine Selection . 10

3.1.1 Requirements . 10

3.1.2 Possible Engine Choices . 11

3.2 Making Slides . 14

3.3 Building Game . 16

3.3.1 game.dtd . 16

3.3.2 xml2py.pl . 17

3.3.3 path-to-xml.pl . 17

3.3.4 path-to-graph.pl . 17

3.4 User Survey . 18

4 ANALYSIS 22

4.1 Demographics . 22

4.2 Results . 23

5 CONCLUSION 25

6 FUTURE WORK 26

iii

CONTENTS

BIBLIOGRAPHY 28

APPENDIX A: CODE 29

Sample XML data file describing a game . 29

Main engine code . 30

Main header . 38

Rules to build the engine for Windows or Linux 39

XML manipulation library . 41

XML manipulation header . 49

DTD describing a format to define a game . 53

Script to draw a directed graph of all paths . 54

Script to convert Excel-format graphs into XML 55

Script to convert XML to Pyzzle’s input format 57

LATEX Class For WPI Reports . 61

APPENDIX B: DEMOGRAPHIC QUESTIONS 71

APPENDIX C: SURVEY 72

iv

LIST OF FIGURES

2.1 Taxonomy of travel techniques for immersive virtual environments [3] . 4

2.2 Evaluation Approach [4] . 6

2.3 Sequential Evaluation Approach [4] . 8

3.1 Cursor Examples . 11

3.2 The region of WPI covered by our game 15

3.3 Example graph created with path-to-graph.pl 17

4.1 “Don’t Know” responses . 23

4.2 Post-survey answer breakdown . 24

v

LIST OF TABLES

2.1 Components of a travel technique . 4

3.1 Spatial relation questions and answer choices 19

3.2 Path selection questions and answer choices 20

3.3 General knowledge questions and answer choices 21

vi

1 INTRODUCTION

People want to remotely learn about a physical space to avoid the cost of travel or

because they cannot travel to the physical location. Virtual tours bring a physical

space to remote users and provide an interactive view. Hotels and universities such

as Worcester Polytechnic Institute (WPI) uses this tool to give patrons or prospective

students insight. Virtual tours can be made using virtual environments, videos with

limited interactivity or VRML views. Virtual environments bring the user into the tour

and give them a sense of presence.This sense of presence provides the opportunity to

teach while entertaining. This aspect would be essential to any teaching game.

The goal of this project is to create an interactive first-person virtual tour of the

campus of Worcester Polytechnic Institute (WPI). The development of this tour incor-

porates still images of the campus and a method of navigating the virtual environment

(VE). Utilizing images of the streets and walkways on the campus provides a natural

way to see the campus and the pathways students commonly use. Movement is ac-

complished by a simple point and click interface with directional arrows that allows

inexperienced users to easily navigate the tour.

Since the focus is teaching students about WPI, indications of how the campus

looks and the facilities that are available to students are important aspects of the tour.

Another aspect of the project is an easy method of delivery. One restriction is that the

whole application would need to fit on a CD or DVD to be mailed or hand to those who

are interested. Also providing a copy as part of New Student Orientation packages

allow students know how to locate their classrooms and labs, and find the quickest

way to get to the building they are in.

A user study to evaluate how well users learned about the spatial relations, path

selection and general knowledge was used. Demographical information was collected

for the purpose of eliminating people with a large degree of knowledge about WPI. The

study was distributed through e-mail to four high schools in Massachusetts and New

1

INTRODUCTION

York.

After the user study was complete we found that users showed improvement in

the relationship between the location of buildings. They also showed improvement in

choosing the correct path between the buildings. The study also found that the tour

did not help user to learn general knowledge about WPI such as the majors offered.

This tour has the added benefit of providing a better view of the institute then

campus brochures because the player can both interact with objects and focus on areas

of their interest, providing a more personal outlook.

Next, in Chapter 2, we will discuss work done in virtual environments to increase

the feeling of being part of the environment and the evaluation of environments. Chap-

ter 3 discusses how to create a virtual tour, problems we faced and the solutions we

used to solve them. After this we discuss, in Chapter 4, the results from the user sur-

vey and then, in Chapters 5 and 6, our finding and future work to improve the results

found.

2

2 RELATED WORK

Virtual environments (VE) are computer generated realities used in entertainment

and educational software. There are many variations of VE such as virtual tours,

game environments and virtual reality. Virtual tours are used by colleges and other

businesses, such as hotels, to provide a view of either the campus or rooms from re-

mote computers. This type of VE helps the user to understand the layout and look

of the environment prior to committing themselves to visiting the physical location.

Computer game and other designers create imagined worlds such as Ages of Myst in

Cyan’s game Myst. In these VEs, an idea or concept is used to make part or all of VE.

The primary purpose of these VE’s is to provide entertainment to the user.

Virtual tours, such as those offered by colleges and universities provide prospective

students with a wealth of information including facilities that are open to students

and an overview of what the campus looks like. An increasing number of high school

seniors are using these tours to gain an insight into perspective schools [1]. As the

goal of any tour application is to increase the presence, information gathering, and

spatial awareness the designers must create an immersive environment that realizes

this goal. This task can be broken into two parts: presence and usability.

2.0.1 Presence

Presence in a virtual environment is the feeling of being part of the environment. One

of the most common interactions in a VE is travel which, if handled correctly, can

help increase presence. There is no one method of travel that has been determined

to always provide the maximum level of presence in a given VE. A single method of

travel has not been mapped as the best method for a given type of VE. As choosing

the method of travel has not been made into a deterministic science, [3] produced a

taxonomy of travel techniques, which is displayed in Figure 2.1 on the following page.

This taxonomy breaks a technique into three components, described in Table 2.1.

3

RELATED WORK

Figure 2.1: Taxonomy of travel techniques for immersive virtual environments [3]

Component Description

Direction/Target Selection The method used to specify the direction or object
of travel

Velocity/Acceleration Selection Provides the user with a mechanism to vary the
rate travel occurs

Conditions of Input Input required to begin, continue, and end travel

Table 2.1: Components of a travel technique

4

RELATED WORK

Along with the taxonomy, they made a set of eight quality factors to measure the

performance of a technique. These factors are speed, accuracy, spatial awareness, ease

of learning, ease of use, information gathering, presence and user comfort. Relating

factors to travel techniques identifies which techniques meet the needs of the applica-

tion.

A designer can apply the taxonomy to these quality factors designing a technique

suitable for the requirements. Experiments done by other designers can not only be

useful in designing a technique but can sometimes provide a pre-designed technique

which can be adapted to a new application. As an example, [3] found that a technique

using “environmental target selection with gesture-based velocity selection, explicit

start inputs, and explicit or automatic stop input” would be a natural fit for an immer-

sive tour application.

The point-and-click interface used in the tour can be analyzed by the taxonomy.

This style of travel has start input, automatically stops and no continuous travel. It

also has constant velocity, no acceleration and uses 2 dimensional point to navigate.

Relating speed, accuracy and ease of learning and use to the point-and-click technique

would determine if this technique is appropriate.

2.0.2 Usability

The next part of the design challenge is usability which is defined as the combination of

ease of use and usefulness. Evaluating usability requires metrics such as learnability

and user task performance. However the evaluation of usability of VEs is unlike the

evaluation of usability of traditional graphical user interfaces (GUI) [4]. One reason for

the difference is that some VEs must account for physical limitations, such as the user

running into a wall or leaving the sensing area of the equipment used to run the VE.

These VEs are generally map movement within the environment to actual movements

of the user. Traditional GUIs do not require this as an evaluation criterion. VEs

also introduce the problem of the evaluator knowing what a user is doing. As not all

VEs present the environment on a traditional monitor but on other input/output (I/O)

5

RELATED WORK

devices, such as heads up displays, the evaluator cannot necessarily see what the user

is experiencing just by watching. These characteristics, and others, while missing in

the evaluation of GUIs, are important aspects in determining the usability of VEs [4].

There has been research done to study how physical limitations and evaluator

issues effect the evaluation of usability. [4] analyzed two previously developed ap-

proaches for evaluating VEs that incorporate these usability issues. The first method

is Testbed Evaluation which was developed by [2]. The second technique is Sequential

Evaluation is the second technique which was developed by [5].

Figure 2.2: Evaluation Approach [4]

The Testbed Evaluation approach can be applied to both GUIs and VEs but is best

suited for VEs due to Testbed Evaluation’s focus on the low-level interactions which

are inherent in VEs. Testbed Evaluation produces a set of models that characterize

6

RELATED WORK

a specific interaction task in terms of several metrics which relate to outside factors,

such as distance traveled, number of obstacles, and even the lighting model used. In

this manner, these outside factors can be treated as secondary independent variables.

The results of each interaction task can be added to a database. When all tasks have

completed, the database will contain all of the results from each. To evaluate a par-

ticular technique a database query can be done to find all of the tasks that make up

that technique. Through analysis the results of this query can be used to determine

the usability. The usability of two techniques can be easily compared using the results

of their analysis [4].

The second approach to evaluating usability, Sequential Evaluation, uses a simple

principal from software development and extends it to fit to VEs. Sequential evalua-

tion has four phases: User Task Analysis, Heuristic Evaluation, Formative Evaluation,

and Summative Evaluation. The first three stages are iterated over as many times

as needed. Iterating over these phases provides both qualitative and quantitative re-

sults about the usability. Individual stages can be removed if it is decided that they

are unnecessary. The final phase, Summative Evaluation, brings all the results of the

previous phases together. In the last phase the designers can examine these results

and find what parts of the VE could use improvements and even suggest ways of per-

forming a task better [4].

Both of these approaches focus on improving the usability of VEs. The goals of each

method are different, as is the underlying algorithmic approach. Testbed evaluation

generates generic performance characteristics which allow the results to be applied

to a wide range of techniques. The sequential evaluation improves the usability of a

particular VE by finding and fixing problems during each iteration of the evaluation.

It then uses the new version during the next iteration. Each of these methods is suc-

cessful at evaluating usability. Only the Sequential Evaluation leads to performance

enhancements as the Testbed Evaluation simply determines which technique is best

[4].

To evaluate the usability of the application a testbed evaluation would provide the

best information. This is because the tour is already built and the interest is in finding

7

RELATED WORK

Figure 2.3: Sequential Evaluation Approach [4]

8

RELATED WORK

the usability of the pieces already in place. Evaluating with the testbed method would

require an analysis of user performance and outside factors such as the tasks asked.

This analysis combined with a taxonomy would produce performance results to make

a tour more user-centered.

9

3 METHODOLOGY

In order to make a virtual tour we need to first select an engine for the tour while

taking digital pictures of the campus in order to layout how the tour will look and feel.

After this is done we build the game and perform a study on the learning performance

of the tour.

3.1 Engine Selection

To begin, we needed an engine to form the backbone of our game. We could not make

proper decisions about other aspects of the game without first selecting an engine.

3.1.1 Requirements

First, we needed to define a set of requirements for the engine. This task was fairly

simple, since we had already chosen to model our game on the Myst series of games

designed by Cyan Worlds, Inc.

The core game mechanic for Myst is simple. The player is shown a still image of

a world from a first-person perspective. The player can then use the mouse to move

a cursor around the screen. The cursor will change when it passes over an object the

player can interact with. The changed cursor provides the player with an indication

of what would happen upon clicking the mouse. Figure 3.1 on the next page shows

some examples of cursors used in Myst. Myst also provided a “zip” command, where

the player can click on a location in the distance and be instantly teleported there.

Myst also provides other sensory stimuli. When the player performs an action

on a switch, the reward is a clicking noise indicating if a puzzle is solved. Ambient

background music is also played to heighten the effect. Finally, video support is used

to judiciously provide interaction with other characters; these interactions, however,

are quite rare.

10

Engine Selection METHODOLOGY

(a) Left (b) Action (c) 180◦

right turn
(d) Zip

Figure 3.1: Cursor Examples

Our requirements, however, were somewhat more limited. We did not want to

broaden our scope beyond our time constraints, so we chose to limit ourselves to still

visuals only, and not include movie or sound support. We also debated over the afore-

mentioned zip support. We decided to forego zipping because we felt that it served to

remind the player of outside concerns, damaging the immersion. Our world was not

large enough to justify zipping.

We also had a few requirements for the engine that did not relate to in-game ac-

tivities. The engine needed to be packageable, that is, there was a way to combine all

the necessary game files into a single bundle that could be run on a player’s computer.

That meant no library dependences unless we provided them ourselves or could rely

on them to already be installed. We did not wish to lose potential players due to in-

stallation problems. We also wished to provide packages for Windows as well as for

Linux.

3.1.2 Possible Engine Choices

Once we decided on our requirements, we proceeded with choosing an engine.

3.1.2.1 Pyzzle

The first option we came upon was Pyzzle, a Python-based engine. “With Pyzzle [we

could] build platform independent slide show games that use the simplicity and power

of Python combined with the flexibility and coolness of free (as in freedom) software[7].”

The Pyzzle project’s aim was to support every feature that Riven (the sequel to Myst)

supported. This included the set of Myst features, as well as a few other features. It

also aimed to support Riven’s ability to change the color of the cursor due to game stim-

11

Engine Selection METHODOLOGY

uli, and the ability to change the method by which one slide transitioned to another. It

appeared to completely satisfy our requirements.

Although Pyzzle appeared on paper to meet the requirements, use of the engine

proved that there were a few problems with it. We first noticed that the input format

for describing a game was Python itself. This required that anyone designing the game

would also be required to know Python. A better design would involve using a simple

and concise custom language for designing a game. That way, a designer should be

able to easily and quickly learn how to describe a game, rather than having a whole

new programming language to learn. Please see Section 3.3 for more information on

the solution to this problem.

With this problem solved, however, we noticed much more critical errors. Pyzzle

supported defined navigation types that could be attached to slides, i.e., if a slide sup-

ported left, right, and forward navigation, it could be given the “standard” navigation

type. Using the defined navigation types resulted in a code size reduction of more than

half, so we tried to use them. However, we quickly found that once a navigation type

was attached to a slide, the slide could not have its actions modified further. Adding

a custom direction or action (a hotspot, in Pyzzle’s terminology) would be completely

and silently ignored. Therefore, for the sake of consistency, we chose to forgo the navi-

gation types and instead use custom hotspots. However, with this change, we noticed

that many slides were no longer behaving correctly. Slides with properly-defined right

turns would not allow these right turns once the game was running. We attempted to

track this problem down. In doing so, we discovered that the Python code was quite

poorly written and lacked comments. The code was littered with duplicate code and

unused functionality. We found it quite difficult to navigate through the code. We

finally narrowed the problem down to the custom types we had chosen to use. The rea-

son that right turns were universally the problem was that right turns were always

added to a slide last, after the left and straight-ahead navigations. Pyzzle refused to

add more than two custom hotspots to any given slide and without any indication of

error. Pyzzle’s maintainer had declared Pyzzle abandoned in November of 2004. We

knew that we could not expect aid from him when we had problems with Pyzzle. We

12

Engine Selection METHODOLOGY

began to look for alternate solutions, and found Il—– 1.

3.1.2.2 Il—–

We began searching the abandoned site for clues about what we could do next. We

found a small post on Pyzzle’s forum about a group creating a fork of Pyzzle to con-

tinue development. This group called their engine Il—–. They had released a demo of

their product, so we downloaded it and tried it out. It was clearly a fork of Pyzzle con-

taining about half of the files Pyzzle had, but what was there was the same. The demo,

however, was distributed as compiled Python bytecode. Python bytecode is directly tied

to the major and minor version numbers of the python executable it is compiled with.

We attempted to disassemble the bytecode, but only a few files could be decompiled.

We knew if we were going to have any chance of distributing a python-based engine in

a cross-platform manner, we were going to need the source. So we wrote an email to

them requesting a copy of the source. We assumed that, if they were assembling an

actual product with their engine, they would have fixed the bugs that plagued Pyzzle.

We were very polite, and offered to publicize them as much as we could in return. We

then spent the next few weeks waiting. One member of the team told us who to contact

to get the source, but that contact never responded. Finally, as we began running into

deadlines, we sent a final request. An hour after the final deadline we set, the silent

contact finally responded, providing a compiled-bytecode version of the engine instead

of the source we needed.

At this point, we decided to forego Il—– and resume using Pyzzle, bugs notwith-

standing. We began the packaging process, and discovered another bug that caused

us even more difficulty. Python distributes a script called “Freeze”, which compiles

a python script into a stand-alone executable suitable for distribution to any like-

architectured computer. We were counting on this script for our final release. However,

as we began to use it, we discovered that it did not work in all cases. Specifically, it

could not Freeze any python script that depended on a python library implemented in
1We have redacted the name of this engine. As described in Section 3.1.2.2, they were utterly unhelp-

ful. In addition, we believe them to be in violation of the GNU General Public License. As such, we do
not wish to provide them with any publicity, and have omitted their name.

13

Making Slides METHODOLOGY

a language other than python. Pyzzle depended on Pygame, a library implemented in

C. This limitation confused us since we had the source to Pygame; why should Freeze

have so much trouble with this? This was a show-stopping problem because we had

to be able to distribute our project. We decided that we could either continue fighting

with Freeze, or we could write our own engine in C, which we already knew how to

package in a cross-platform manner. We chose the latter.

3.1.2.3 Custom Engine

With the decision made, we knew we had to write it as quickly as possible. We still

needed it to be cross-platform, so we decided to use as few libraries as possible. We also

stuck to libraries we already knew were completely cross-platform. We decided that

we were going to keep all of the rest of our support code the same. Namely, we would

store the game in the XML format we had already decided precisely for this purpose.

Therefore, we needed an XML library. The GNOME project had a cross-platform XML

library, but it was quite complicated to pick up quickly. However, the Gaim Instant

Messenger client contained a quite small, very simple XML library xmlnode.c (List-

ing A.5 on page 41). Since this project was Open Source, we decided to use this library.

After a few hours of rapid coding, we came up with main.c (Listing A.2 on page 30),

the engine. It is a reimplementation of many of Pyzzle’s features, but does not share

code or design with Pyzzle.

3.2 Making Slides

To properly display information about the campus some form of image was needed.

Modeling the environment in a program such as Autodesk’s 3D Studio Max would

provide a high quality image that the user could easily find information about their

surroundings. This however requires a large amount of time to model the exterior

of the buildings and the pathways that connects them. Another medium is digital

pictures which has the possibility of producing a lower quality image but does not

require modeling. The reduction in image quality is not significant enough that the

14

Making Slides METHODOLOGY

user would not be able to find information about the campus.

Figure 3.2: The region of WPI covered by our game

Choosing between these mediums was not difficult due to the limited time to com-

plete the project. The biggest challenge of using digital pictures was finding a suitable

distance between each picture. Another way of stating this problem is how many steps

should be taken between each shot. To find the number of steps needed several pilot

tests were done using step sizes of 14, 12, 10, 8 and 6. Flipping through each set of

images quickly produces a sense of traveling. By comparing how realistic this sense

is we found the proper distance. It was determined that a step size of 8 produced the

closest match to walking at a steady pace. Setting the step size to a constant number

had the effect of limiting the number of pictures required to cover all major outdoor

portions of campus outlined by Figure 3.2. After taking all the pictures the limit was

found to be between 450 and 500 pictures.

Another concern was the disk space needed for all the images. In order to ensure

an easy way to distribute the program, a maximum disk usage had to be decided upon.

15

Building Game METHODOLOGY

The easiest way of distributing would be to have user download a compressed version

from the internet. This means that the maximum size had to be under 50 MB so slow

download speeds would not be a deterrent to using the tour.

Using a 3.1 mega-pixel camera on landscape and highest quality produced a 2160px

by 1440px image that approximately requires 1.5 MB of disk space. At this size the

total space to hold the upper bound of 500 pictures would be 750 MB, clearly too large

to easily distribute. One method to decrease the space needed is to shrink the pictures

to a small size. Choosing a size that fits on an average monitor was easy since there

are only a few default screen sizes. The smallest screen size of 800px by 600px makes

a good choice for all monitors. This change decreased the size of one image to approxi-

mately 70 KB, making a total disk usage of 35 MB. This improvement clearly is much

better and can easily be downloaded in a reasonable time.

3.3 Building Game

To build a working game, we created an assembly-line of tools to take in a set of con-

nected slides and output the finished product. It was not necessary to change any of

these tools when we switched between different engines; we designed them to be use-

ful under any circumstance. The only exception was xml2py.pl (Section 3.3.2) which

became unnecessary when we wrote our custom engine; this engine’s input format

was the format described by game.dtd (Listing A.7 on page 53), and no additional

conversion was necessary.

3.3.1 game.dtd

We decided that our first task was to create a description language to describe the

game. The natural choice for this was XML, since there are a multitude of tools de-

signed to manipulate it. We first decided on our requirements and wrote a draft of

game.dtd (Listing A.7 on page 53). This first version suited our requirements for the

Pyzzle engine. When we decided to switch engines, we reused the same format. It

worked exactly as we had designed it— it could describe a game independent of the

16

Building Game METHODOLOGY

engine. Unfortunately, our custom engine does not fully support the DTD— a detail

that can hopefully be rectified by a later project.

3.3.2 xml2py.pl

Next, we needed to convert our XML format into Python using Pyzzle’s API. This

script, xml2py.pl (Listing A.10 on page 57), consumed a game in XML, checked it

for obvious errors, and output a game that Pyzzle could read. The first version out-

put custom hotspots for each direction. As detailed above, however, Pyzzle could not

handle more than two custom hotspots. To mitigate this problem, we added a sim-

ple heuristic to the script to pick a defined navigation type instead of using custom

hotspots. This solution would not work in the general case, but we did not have any

slides that triggered the failure case.

3.3.3 path-to-xml.pl

We also needed some way to enter the path data. The path data is a directed graph

that describes the interconnections between the slides. We decided to use an Excel

spreadsheet as a medium for this. We wrote a small script to consume a number

of Excel spreadsheets, do some basic error-checking, and output an XML file in the

game.dtd format.

3.3.4 path-to-graph.pl

S065

S086

Left

S066Right

Right

S087

Left

Left

Forward

RightRight
Left

Forward

Figure 3.3: Example graph created with path-to-graph.pl

17

User Survey METHODOLOGY

Finally, we needed as many ways to catch and debug errors as possible. This script,

modelled off of the previous script, created a directed graph of the slides. Some classes

of errors made themselves quite obvious in this format. For instance, by visual in-

spection of this graph it was quite easy to see a case where turning left and then

immediately right again would not result in the same view. It would appear on the

graph as a node with a path to second node that did not have a direct path back to the

original node.

3.4 User Survey

To determine if the tour would help people to learn about WPI a user study is required.

Keeping the goal of helping students to find and travel between places in mind, a

survey would be the appropriate method to study users. In order for the survey to be

effective there had to be two parts to it, one before playing the game and another after.

The questions, shown in Appendix C on page 72, for the two parts needed to be the

same in order to allow a straight-forward comparison of responses.

Collecting demographics is important to find and eliminate outliers such as current

or past students. By asking people if they are a student we can eliminate them from

the analysis of the responses. Another possible problem would be people who have pre-

vious knowledge of campus. This can be handled by asking the user if they have visited

the campus or have been part of a tour. To see the questions used see Appendix B on

page 71.

A guideline of survey design is to keep the number of questions to a small amount

in order to maximize response and accuracy. Using this guideline, ten questions were

decided on because it should take five minutes to complete this amount of questions.

By breaking these questions up further to three types of questions allows for the un-

derstanding of how the user interprets the spatial relations, path selection and general

knowledge. Spatial relation questions were used to test how the user perceived where

different buildings were located in respect to others. This type of testing would be use-

ful in a tour application as many people navigate by the use of landmarks instead of

18

User Survey METHODOLOGY

Question Choices

Salisbury Labs is directly
located between Boynton
Hall and Atwater Kent?

• True
• False
• Don’t Know

The Birch Tree is between
and .

• Atwater Kent, Goddard Labs
• Higgins Labs, Alden Memorial
• Morgan Hall, Daniels Hall
• Don’t Know

Alumni Gym is next to
Stratton Hall?

• True
• False
• Don’t Know

Daniels Hall is connected to
.

• Morgan Hall
• Riley Hall
• Olin Hall
• Don’t know

Table 3.1: Spatial relation questions and answer choices

path directions.

The second type of question was path selection that asked the user to find the path

that would get the player from one particular place to another. The difficulty with

these questions was denoting what the direction of travel was and how the user was

initially facing. Since there was no compass or key to north this eliminated using

compass points to show travel and facing. Using places that had only one initial facing

eased the problem of telling the user how they start. It also helped to determine how

to update the user if the direction of travel changed. By using words such as left, right

or straight to indicate how the user was traveling the tour could follow the natural

steering mechanism.

General knowledge questions were used to study if the user could learn about dif-

ferent the departments and facilities. This type of knowledge would be difficult for

the user to gain without having some form of interaction with the inside of buildings;

19

User Survey METHODOLOGY

Question Choices

From the start, how would
you get from Reunion Plaza
to the campus center?

• Turn right and follow the path to the end
and then turn right

• Go straight until the path ends, turn left
and go straight until the end of the path

• Turn left and enter the Campus center

• Don’t Know

How would you get from
Morgan Hall to Harrington
Auditorium?

• Turn left and follow the path until it goes
into Harrington

• Follow the path straight, after the turn in
the path turn left

• Turn right, follow the path and then turn
left

• Don’t Know

How would you get from
Olin Hall to Salisbury Labs?

• Go straight until you enter Salisbury

• Turn left, follow path to the end turn right
and follow path until the end

• Turn around and enter building

• Don’t Know

Table 3.2: Path selection questions and answer choices

20

User Survey METHODOLOGY

Question Choices

Inside of Fuller Labs you
can find the
Dept.

• Electrical and Computer Engineering
• Biology
• Computer Science
• Don’t Know

The Music Dept. is in
.

• Bartlet Center
• Riley Hall
• Alden Memorial
• Don’t Know

Boynton Hall currently
holds the administration?

• True
• False
• Don’t Know

Table 3.3: General knowledge questions and answer choices

however this type of knowledge would be useful for a student looking to know more

about WPI. Studying how the tour helps in this area gives an indication of where im-

provement could be made if additional information was to be imparted.

The study was distributed to five high school teachers using an e-mail. The e-mail

had information about the project and asked the teachers to give the attached flier to

their students. The flier had a better description of the project and included the web

address of the survey. A few teachers gave the e-mail and flier to their colleagues to

give to students. One setback with our approach was that one school the e-mail was

sent to gave each of its students an Apple and these students could not run the tour,

since we lacked an Apple build.

21

4 ANALYSIS

To determine if the tour helped those who completed the study a analysis of the results

had to be done. We first looked at the demographic data to see if there were any re-

sponses that could be eliminated and prevent corrupting the results. Next we analyzed

the results by looking at the difference in responses between the two surveys.

4.1 Demographics

Fifty one people started to take the survey but only thirty people completed the post

survey. To properly evaluate the response that was received it was necessary to remove

the responses from people who did not complete the survey. This avoids skewing the

data in a way that would give a false conclusion due to the greater number of responses

for the pre survey.

We broke down the thirty people into four age groups. The first age group of under

sixteen (underclassmen) had four people. The next age group of between sixteen and

eighteen (upperclassmen) had eight people. These groups combined make up one third

of the total responses and is the intended age of the audience for the tour since the tour

is meant to help them learn more the colleges they might apply to. The next two thirds

contain two people between nineteen and twenty two and sixteen people over the age

of twenty two. This age breakdown allows for refining the data to ensure that any

conclusions made from the data hold for the representatives of the sixteen to eighteen

target group.

It is also necessary to eliminate the possibility of corrupted data from those who

have extensive knowledge of the campus. This category would include current or past

students and those who have participated in tours. Answering yes to being a student

or answering yes to both having visited and taken a tour would indicate a possibility

of knowing too much. Out of the thirty users there were no students and seven people

22

Results ANALYSIS

to visit campus, three of which were part of a tour.

4.2 Results

300

200

100

0

Pre Post

Figure 4.1: “Don’t Know” responses

Grouping the questions into their three categories, spatial relation, path selection

and general knowledge, produces an image of how users performed in each area of in-

terest. Figure 4.1 shows the comparison of “Don’t Know” responses in the pre survey

to the post survey and shows there was a decrease of forty five percent. Because no

one answered differently then Don’t Know we compared the number of “Don’t Know”

answers before and after using the tour. It became evident that users felt more com-

fortable answering the questions after using the tour.

Examining how the responses were distributed amongst the three areas would pro-

vide an image of any improvement. Taking a closer look, eighty two percent of the

responses were correct. This indicates that the users were able to take something

23

Results ANALYSIS

0

20

40

60

Spatial Path General

Correct

Wrong

Figure 4.2: Post-survey answer breakdown

away from using the tour. Figure 4.2 shows the distribution between the three areas

showing that users could tell the spatial relationships between buildings.

A person who guessed at the answers would have a one in three chance to select the

correct answer. This means that on average a person who guessed would have three

correct responses. There was two division in the responses, one where people had no

correct answers and one where the average number of correct responses was six. The

first division had eleven people while there was nineteen people in the other. There

were a few people who scores threes and fours and possibly guessed but both divisions

showed that the majority of responses were not guesses.

The reason there was no improvement on the general knowledge questions is be-

cause the user did not have access to the inside of buildings. Without seeing the inside

of the buildings a user would not be able to answer questions about the contents of the

building. There was also no content to help the user learn about parts of campus just

looking at an image can teach.

24

5 CONCLUSION

People want to remotely learn about a physical space to avoid the cost of travel or be-

cause they can’t travel to the physical location. Virtual tours bring a physical space to

remote users and provide an interactive view. Hotels and universities such as Worces-

ter Polytechnic Institute (WPI) uses this tool to give patrons or prospective students

insight. Virtual tours can be made using virtual environments, videos with limited

interactivity or VRML views.

Building a virtual tour system requires displayable media and some method of

showing the media. By taking pictures of campus and displaying them using a custom

engine we produced a virtual tour of walking on the WPI campus. To evaluate the ef-

fectiveness of the tour’s teaching ability a user study had to be undertaken. Analyzing

the results of the study by comparing the change in responses before and after using

the application provides an idea of the user comfort answering questions. Also looking

at the distribution between correct and wrong answer gives insight to any improve-

ment the use may have made.

After completing the user survey we found that users had increased knowledge of

relationship between buildings and how to choose a path between them. The findings

also found that the tour did not help users to learn general information about the uni-

versity. This is due to the lack of content required to impart this type of information.

Our contributions include a set of pictures of the campus along with an engine to

move in the virtual environment. This set of pictures and the engine can be expanded

to provide a better look at WPI as laid out in Chapter 6, Future Work. We also created a

framework for completing a user study. Comparing the results of this study to another

would provide insight into the degree of improvement made by furthering the project.

25

6 FUTURE WORK

Testing showed that people who used the application would be able to walk from a

portion of campus to another and have a general idea of where they are. This gives

the impression that with future work the application would provide a true perspective

of campus and life at WPI. To attain this, the tour needs to include indoor pictures,

interaction content and entertainment content.

Allowing the user to go inside of the buildings to see labs and classrooms is a good

way to increase general knowledge and also generate a greater interest in the school.

People who have an interest in a particular major would be able to see the facilities

such as labs and equipment open to students of that major. To do this more slides

would need to be added to the tour. This encompasses taking the new pictures, running

them through the reduction process described in the methodology and adding the new

paths definitions. The difficulty of this would be finding an easy way to travel from

floor to floor in each building. Stairwells did not provide enough space for the standard

step size and required to be able to break the direction selection into two or more

pieces.

Interaction and entertainment content play a similar role in the fact that they both

add an interest level. This provides the user with something to do or teaches the

user about something. Interaction content would be activities or tasks a normal first

year student has to do on arriving at WPI such as picking up their ID and residence

hall keys. This would help to reduce the confusion and frustration felt by first years

because they know what is expected of them and how to do it.

The entertainment content has little or no teaching value but provides more fun to

the tour to make it closer to the game that was original intended. Examples could be

finding a missing key or catching the stray dog that stole the users lunch. This type of

content is meant to provide entertainment and to make the user want to keep playing.

It has the added benefit of reducing the redundancy of playing because content is based

26

FUTURE WORK

off of previous actions.

In order to implement interaction and entertainment content some sort of action

scripting must be added to the custom engine. Creating a simple language that defines

how to handle certain events such as picking an object up, tracking inventory and

quests, and using an item would produce an infinite amount of activities that a user

could be asked to do. There would also need to be some way to define a clickable part of

the slide that would perform the desired action. The semblance of this is already built

into the engine with the ability to turn left and right but a more sophisticated system

to determine what action to take would need to added to ensure that the user did not

trigger the wrong event.

27

BIBLIOGRAPHY

[1] Begun and Stroup. Campus tours 1.0. Newsweek, 136(18):97, 2000.

[2] Bowman and Hodges. Formalizing the design, evaluation, and application of in-

teraction techniques for immersive virtual environments. The Journal of Visual

Languages and Computing, 10(1):37–53, 1999.

[3] Bowman, Koller, and Hodges. A methodology for the evaluation of travel tech-

niques for immersive virtual environments. Virtual Reality, 3(2):120–131, 1998.

[4] Bowman, Gabbard, and Hix. A survey of usability evaluation in virtual environ-

ment: Classification and comparison of methods. Presence, 11(4):404–424, 2002.

[5] Gabbard, Hix, and Swan. User centered design and evaluation of virtual environ-

ments. IEEE Computer Graphics and Applications, 19(6):51–59, 1999.

[6] Il—– Team. The Ages of Il—– Web Site, 2006. More information available upon

request.

[7] Andrew Jones. P Y Z Z L E: The Cross Platform Open Source Myst/Riven Interface

Engine, 2004. URL: <http://pyzzle.sourceforge.net/>.

28

http://pyzzle.sourceforge.net/

APPENDIX A: CODE

Sample XML data file describing a game

Listing A.1: data.xml
0 <game>

<slide>
<file>S001</file>
<next>

<forward>S002</forward>
5 <left>S057</left>

<right>S094</right>
</next>

</slide>
<slide>

10 <file>S002</file>
<next>

<forward>S003</forward>
<left180>S029</left180>
<right180>S029</right180>

15 </next>
</slide>
<slide>

<file>S003</file>
<next>

20 <forward>S004</forward>
<left180>S028</left180>
<right180>S028</right180>

</next>
</slide>

25 <slide>
<file>S004</file>
<next>

<forward>S005</forward>
<left180>S027</left180>

30 <right180>S027</right180>
</next>

</slide>
<slide>

<file>S005</file>
35 <next>

<forward>S006</forward>
<left180>S026</left180>
<right180>S026</right180>

</next>
40 </slide>

</game>

29

Main engine code APPENDIX A: CODE

Main engine code

Listing A.2: main.c
0 #include <stdio.h>

#include <glib.h>
#include <SDL.h>
#include <SDL_image.h>

5 #include <string.h>

#include "xmlnode.h"
#include "main.h"

10 #define SWID 800
#define SHGT 533
#define WWID 912
#define WHGT 645
#define OFFX ((WWID-SWID)/2)

15 #define OFFY ((WHGT-SHGT)/2)
#define EDGE 120
#define ARRX 25
#define ARRY 25

20 static gboolean debug = FALSE;

typedef struct {
gchar* id;
gchar* left;

25 gchar* right;
gchar* forward;
gchar* left180;
gchar* right180;
gchar* up;

30 gchar* down;
gchar* fn;

} Slide;

typedef enum {
35 R_MIDDLE,

R_LEFT,
R_RIGHT,
R_TOP,
R_BOTTOM,

40 R_OFF,
R_INVALID

} Region;

typedef enum {
45 C_ARROW,

C_LEFT,
C_LEFTSPIN,
C_RIGHT,
C_RIGHTSPIN,

50 C_UP,
C_DOWN,
C_FWD,
C_COUNT

} Cursor;
55

SDL_Surface *curs[C_COUNT];
gchar *curfiles[C_COUNT] = {"arrow.png", "left.png", "left180.png", "right.png",

"right180.png", "up.png", "down.png", "fwd.png"};

60 SDL_Surface *arrows[C_COUNT];
gchar *arrowfiles[C_COUNT] = {NULL, "arrow-left.png", "arrow-left180.png", "arrow-right.

png",

30

Main engine code APPENDIX A: CODE

"arrow-right180.png", "arrow-up.png", "arrow-down.png", "
arrow-fwd.png"};

SDL_Rect arrowrect[C_COUNT] = {{0,0,0,0},
65 {(OFFX-ARRX)/2, (WHGT-ARRY)/2, 0, 0}, {(OFFX-ARRX)/2, (WHGT-

ARRY)/2, 0, 0},
{WWID-((OFFX+ARRX)/2), (WHGT-ARRY)/2, 0, 0}, {WWID-((OFFX+ARRX

)/2), (WHGT-ARRY)/2, 0, 0},
{WWID/2, EDGE/2, 0, 0}, {WWID/2, SHGT+(EDGE/2), 0, 0},
{(WWID-ARRX)/2,(OFFY-ARRY)/2,0,0}};

70 Region get_region(int x, int y)
{

x -= OFFX;
y -= OFFY;

75 if (x < 0 || x > SWID)
return R_OFF;

if (y < 0 || y > SHGT)
return R_OFF;

80 if (x < EDGE)
return R_LEFT;

if (x > SWID-EDGE)
return R_RIGHT;

85 if (y < EDGE)
return R_TOP;

if (y > SHGT-EDGE)
return R_BOTTOM;

90 return R_MIDDLE;
}

void slide_free(Slide *s)
{

95 g_free(s->id);
g_free(s->left);
g_free(s->right);
g_free(s->forward);
g_free(s->left180);

100 g_free(s->right180);
g_free(s->up);
g_free(s->down);
g_free(s->fn);
g_free(s);

105 }

inline gchar *cdata(xmlnode *p, gchar *cname)
{

xmlnode *x = xmlnode_get_child(p, cname);
110 if (x)

return xmlnode_get_data(x);
else

return NULL;
}

115
void view(gchar *key, Slide *s, gpointer null)
{

if (debug)
{

120 printf("Slide (id=%s, fn=%s): ", s->id, s->fn);
#define printif(str) do {\

if (s->str){printf("(%s %s) ", #str, s->str);}\
} while (0)
printif(forward);

125 printif(left);
printif(right);

31

Main engine code APPENDIX A: CODE

printif(left180);
printif(right180);
printif(up);

130 printif(down);
printf("\n");

}
}

135 GHashTable* make_weak()
{

gchar *data;
gint len;
GError *err = NULL;

140 xmlnode *top,*s;
GHashTable *slides;
gchar *fn,*path;

if (!g_file_get_contents("data.xml", &data, &len, &err))
145 {

warn("Couldn’t open %s: %s\n", "data.xml", err->message);
g_error_free(err);
die("Failed.");

}
150

top = xmlnode_from_str(data, len);
g_free(data);

s = xmlnode_get_child(top, "slide");
155

slides = g_hash_table_new_full(g_str_hash, g_str_equal, g_free, (GDestroyNotify)
slide_free);

while (s)
{

160 gchar *id = cdata(s, "file");
if (g_hash_table_lookup(slides, id))
{

warn("Slide %s was already seen. Ignoring the new one.\n", id);
g_free(id);

165 }
else
{

Slide* tmp = g_new0(Slide, 1);
xmlnode *next = xmlnode_get_child(s, "next");

170 tmp->id = g_strdup(id);
if (next)
{

#define try_insert(slide, node, child) do {\
gchar *d = cdata(node, #child);\

175 if (d) {\
slide->child = d;\
fn = g_strconcat(tmp->id, ".jpg", NULL);\
path = g_build_filename(SLIDEDIR, fn);\
if (!g_file_test(path, G_FILE_TEST_EXISTS))\

180 warn("%s does not exist at %s\n", fn, path);\
g_free(fn);\
slide->fn = path;\

}\
} while (0)

185 try_insert(tmp, next, left);
try_insert(tmp, next, right);
try_insert(tmp, next, forward);
try_insert(tmp, next, left180);
try_insert(tmp, next, right180);

190 try_insert(tmp, next, up);
try_insert(tmp, next, down);

}
g_hash_table_insert(slides, id, tmp);

32

Main engine code APPENDIX A: CODE

}
195

s = xmlnode_get_next_twin(s);
}
xmlnode_free(top);
Slide* tmp = g_new0(Slide, 1);

200 tmp->id = g_strdup("map");
fn = g_strconcat(tmp->id, ".jpg", NULL);
path = g_build_filename(SLIDEDIR, fn);
if (!g_file_test(path, G_FILE_TEST_EXISTS))

warn("%s does not exist at %s\n", fn, path);
205 g_free(fn);

tmp->fn = path;
g_hash_table_insert(slides, g_strdup(tmp->id), tmp);

return slides;
210 }

void draw_slide(SDL_Surface *surface, gchar *fn)
{

static SDL_Surface *image = NULL;
215 static gchar *last = NULL;

if (last != fn)
{

if (image != NULL)
220 SDL_FreeSurface(image);

if (!(image = IMG_Load(fn)))
die("IMG_Load: %s\n", IMG_GetError());

last = fn;
}

225
SDL_Rect rcDest = { OFFX, OFFY, 0, 0 };
SDL_BlitSurface(image, NULL, surface, &rcDest);

}

230
SDL_Surface* load(const gchar *path)
{

SDL_Surface *image;
if (!(image = IMG_Load(path)))

235 die("IMG_Load: %s\n", IMG_GetError());
return image;

}

void init_cursors()
240 {

gchar *fn;
int i;
for (i = 0; i < C_COUNT; ++i)
{

245 fn = g_build_filename(CURSORDIR, curfiles[i], NULL);
curs[i] = load(fn);
g_free(fn);

if (arrowfiles[i])
250 {

fn = g_build_filename(CURSORDIR, arrowfiles[i], NULL);
arrows[i] = load(fn);
g_free(fn);

}
255 }

}

void update_cursor(SDL_Surface *s, Slide *current)
{

260 SDL_Surface *image;
Region next;

33

Main engine code APPENDIX A: CODE

int x,y;

SDL_GetMouseState(&x, &y);
265

next = get_region(x,y);

image = curs[C_ARROW];
switch (next)

270 {
case R_LEFT:

if (current->left180)
image = curs[C_LEFTSPIN];

else if (current->left)
275 image = curs[C_LEFT];

break;

case R_RIGHT:
if (current->right180)

280 image = curs[C_RIGHTSPIN];
else if (current->right)

image = curs[C_RIGHT];
break;

285 case R_TOP:
if (current->up)

image = curs[C_UP];
break;

290 case R_BOTTOM:
if (current->down)

image = curs[C_DOWN];
break;

295 case R_MIDDLE:
if (current->forward)

image = curs[C_FWD];
break;

300 default:
break;

}

SDL_Rect rcDest = {x, y, 0, 0};
305 SDL_BlitSurface(image, NULL, s, &rcDest);

}

void draw_arrow(SDL_Surface *s, Cursor id)
{

310 SDL_Rect *rcDest = &arrowrect[id];
if (arrows[id])

SDL_BlitSurface(arrows[id], NULL, s, rcDest);
else

SDL_BlitSurface(curs[id], NULL, s, rcDest);
315 }

void draw_exits(SDL_Surface *s, Slide *current)
{

if (current->left180)
320 draw_arrow(s, C_LEFTSPIN);

else if (current->left)
draw_arrow(s, C_LEFT);

if (current->right180)
325 draw_arrow(s, C_RIGHTSPIN);

else if (current->right)
draw_arrow(s, C_RIGHT);

if (current->up)

34

Main engine code APPENDIX A: CODE

330 draw_arrow(s, C_UP);

if (current->down)
draw_arrow(s, C_DOWN);

335 if (current->forward)
draw_arrow(s, C_FWD);

}

Slide *try_move(Slide* cur, Region r, GHashTable *h)
340 {

gchar *id = NULL;
switch(r)
{

case R_LEFT:
345 if (cur->left180) id = cur->left180;

else if (cur->left) id = cur->left;
break;

case R_RIGHT:
350 if (cur->right180) id = cur->right180;

else if (cur->right) id = cur->right;
break;

case R_TOP:
355 id = cur->up;

break;

case R_BOTTOM:
id = cur->down;

360 break;

case R_MIDDLE:
id = cur->forward;
break;

365
default:

break;
}
if (id)

370 {
if (debug)

warn("%s -> %s\n", cur->id, id);
cur = g_hash_table_lookup(h, id);
view(NULL, cur, NULL);

375 }
return cur;

}

int main(int argc, char **argv)
380 {

SDL_Surface *screen;
SDL_Event event;
Slide *cur, *last = NULL;
GHashTable *h = make_weak();

385 gboolean update = 1, draw_mouse = 1;

if (SDL_Init(SDL_INIT_VIDEO) < 0)
die("Unable to init SDL: %s", SDL_GetError());

390 if (!(screen = SDL_SetVideoMode(WWID, WHGT, 0, SDL_SWSURFACE)))
die("Could not get a surface: %s", SDL_GetError());

SDL_ShowCursor(SDL_DISABLE);
init_cursors();

395
cur = g_hash_table_lookup(h, "S001");
view(NULL, cur, NULL);

35

Main engine code APPENDIX A: CODE

while(1)
{

400 while(SDL_PollEvent(&event))
{

switch(event.type)
{

Region r;
405 case SDL_QUIT:

goto bail;
case SDL_KEYDOWN:

r = R_INVALID;
switch (event.key.keysym.sym)

410 {
case ’d’:

debug = debug ? FALSE : TRUE;
warn("Debug Mode %s\n", debug ? "enabled" : "disabled");
goto noadd;

415
case SDLK_TAB:

if (last)
{

if (debug)
420 warn("%s -> %s\n", cur->id, last->id);

cur = last;
last = NULL;
view(NULL, cur, NULL);

}
425 else

{
last = cur;
if (debug)

warn("%s -> %s\n", cur->id, "map");
430 cur = g_hash_table_lookup(h, "map");

view(NULL, cur, NULL);
}
goto noadd;

435 case ’q’:
case SDLK_ESCAPE:

goto bail;
case SDLK_LEFT:

r = R_LEFT;
440 break;

case SDLK_RIGHT:
r = R_RIGHT;
break;

case SDLK_UP:
445 r = R_MIDDLE;

break;
/* This one breaks the plane paradigm (up is forward,

* so down should be backward) so it’s getting commented.

450 case SDLK_DOWN:
r = R_BOTTOM;
break;*/

default:
break;

455 }
if (r != R_INVALID)

cur = try_move(cur,r,h);
noadd:
break;

460 case SDL_ACTIVEEVENT:
draw_mouse = (event.active.state&SDL_APPMOUSEFOCUS) ? event.active.

gain : 1;
update = (event.active.state&SDL_APPACTIVE) ? event.active.

gain : 1;
break;

36

Main engine code APPENDIX A: CODE

case SDL_MOUSEBUTTONDOWN:
465 if (event.button.state == SDL_PRESSED &&

event.button.button == SDL_BUTTON_LEFT)
{

Region r = get_region(event.button.x, event.button.y);
cur = try_move(cur, r, h);

470 }

break;
default:

break;
475 }

}
if (update)
{

SDL_FillRect(screen, NULL, 0);
480 draw_slide(screen, cur->fn);

draw_exits(screen, cur);
if (draw_mouse)

update_cursor(screen, cur);
SDL_UpdateRect(screen, 0, 0, 0, 0);

485 }
else

SDL_Delay(250);
}

490 bail:
SDL_Quit();
g_hash_table_destroy(h);
return 0;

}
495

/* $Revision: 1.11 $ */

37

Main header APPENDIX A: CODE

Main header

Listing A.3: main.h
0 #ifndef MAIN_H

#define MAIN_H

#include <stdlib.h>
#define SLIDEDIR "slides"

5 #define CURSORDIR "cursors"

#define warn(...) fprintf(stderr, __VA_ARGS__)
#define die(...) {warn(__VA_ARGS__); exit(-1);}

10 /* $Revision: 1.2 $ */
#endif

38

Rules to build the engine for Windows or Linux APPENDIX A: CODE

Rules to build the engine for Windows or Linux

Listing A.4: Makefile
0 CC=gcc

WINCC:=/opt/xmingw/bin/$(CC).exe
OBJS=main.o xmlnode.o

PKGS=glib-2.0
5 PKG_CONFIG=PKG_CONFIG_PATH=lin-libs/lib/pkgconfig pkg-config

CFLAGS=-Wall -W -Wno-unused-parameter\
‘$(PKG_CONFIG) --cflags $(PKGS)‘ -DG_DISABLE_DEPRECATED\
‘sdl-config --cflags‘

10 WINFLAGS=-I/opt/xmingw/i386-mingw32msvc/include -Dmain=SDL_main
WINLIBS=-L/opt/xmingw/i386-mingw32msvc/bin -lmingw32 -lSDLmain -lSDL\

-lglib-2.0-0 -lSDL_image -mwindows

LIBS=-Wl,-Bstatic -lSDL_image -lSDL -ltiff -ljpeg \
15 ‘libpng-config --static --libs‘ ‘${PKG_CONFIG} --libs $(PKGS)‘ \

-Wl,-Bdynamic -L/usr/lib -Wl,-rpath,/usr/lib -lpthread -lm -ldl -lX11 -lXext

PROG=wpi-tour

20 .PHONY: all clean tags split dist dist-linux dist-win32 dist-data \
dist-linux-nodata dist-win32-nodata

all: ${PROG} ${PROG}.exe

25 $(PROG).exe : ${OBJS:.o=-win.o}
$(WINCC) ${CFLAGS} $(WINFLAGS) $ˆ -o $@ ${WINLIBS}

$(PROG) : ${OBJS}
$(CC) ${CFLAGS} $ˆ -o $@ ${LIBS}

30
%-win.o : %.c

$(WINCC) ${CFLAGS} $(WINFLAGS) -c $ˆ -o $@

%.o : %.c
35 $(CC) ${CFLAGS} -c $ˆ -o $@

clean:
rm -f $(PROG) $(PROG).exe core core.* *.o

40 distclean: clean
rm -fr dist

tags: *.c *.h
exuberant-ctags *.c *.h

45
split: dist-linux-nodata dist-win32-nodata dist-data

dist: dist-linux dist-win32

50 dist-linux: wpi-tour
mkdir -p dist/wpi-tour
cd dist &&\

ln -s ../../cursors wpi-tour &&\
ln -s ../../data.xml wpi-tour &&\

55 ln -s ../../slides wpi-tour &&\
ln -s ../../wpi-tour wpi-tour &&\
zip -r wpi-tour-linux.zip wpi-tour -x *CVS* &&\
rm -rf wpi-tour

60 dist-win32: wpi-tour.exe
mkdir -p dist/wpi-tour
cd dist &&\

39

Rules to build the engine for Windows or Linux APPENDIX A: CODE

ln -s ../../cursors wpi-tour &&\
ln -s ../../data.xml wpi-tour &&\

65 ln -s ../../slides wpi-tour &&\
ln -s ../../wpi-tour.exe wpi-tour &&\
cp ../win-libs/*.dll wpi-tour &&\
zip -r wpi-tour-win32.zip wpi-tour -x *CVS* &&\
rm -rf wpi-tour

70
dist-data:

zip -ur wpi-tour-data.zip slides; ret=$$?; \
if [[$$ret = 12 || $$ret = 0]]; then true else false; fi
mv wpi-tour-data.zip dist

75
dist-linux-nodata: wpi-tour

mkdir -p dist/wpi-tour
cd dist &&\

ln -s ../../cursors wpi-tour &&\
80 ln -s ../../data.xml wpi-tour &&\

ln -s ../../wpi-tour wpi-tour &&\
zip -r wpi-tour-linux-nodata.zip wpi-tour -x *CVS* &&\
rm -rf wpi-tour

85 dist-win32-nodata: wpi-tour.exe
mkdir -p dist/wpi-tour
cd dist &&\

ln -s ../../cursors wpi-tour &&\
ln -s ../../data.xml wpi-tour &&\

90 ln -s ../../wpi-tour.exe wpi-tour &&\
cp ../win-libs/*.dll wpi-tour &&\
zip -r wpi-tour-win32-nodata.zip wpi-tour -x *CVS* &&\
rm -rf wpi-tour

95 # $Revision: 1.9 $

40

XML manipulation library APPENDIX A: CODE

XML manipulation library

Listing A.5: xmlnode.c
0 /**

* @file xmlnode.c XML DOM functions

*
* gaim

*
5 * Gaim is the legal property of its developers, whose names are too numerous

* to list here. Please refer to the COPYRIGHT file distributed with this

* source distribution.

*
* This program is free software; you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*
* This program is distributed in the hope that it will be useful,

15 * but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*
* You should have received a copy of the GNU General Public License

20 * along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

/* A lot of this code at least resembles the code in libxode, but since
25 * libxode uses memory pools that we simply have no need for, I decided to

* write my own stuff. Also, re-writing this lets me be as lightweight

* as I want to be. Thank you libxode for giving me a good starting point */

#include <string.h>
30 #include <glib.h>

#include "xmlnode.h"

#ifdef _WIN32
35 # define NEWLINE_S "\r\n"

#else
define NEWLINE_S "\n"
#endif

40 static xmlnode*
new_node(const char *name, XMLNodeType type)
{

xmlnode *node = g_new0(xmlnode, 1);

45 if(name)
node->name = g_strdup(name);

node->type = type;

return node;
50 }

xmlnode*
xmlnode_new(const char *name)
{

55 g_return_val_if_fail(name != NULL, NULL);

return new_node(name, XMLNODE_TYPE_TAG);
}

60 xmlnode *
xmlnode_new_child(xmlnode *parent, const char *name)
{

41

XML manipulation library APPENDIX A: CODE

xmlnode *node;

65 g_return_val_if_fail(parent != NULL, NULL);
g_return_val_if_fail(name != NULL, NULL);

node = new_node(name, XMLNODE_TYPE_TAG);

70 xmlnode_insert_child(parent, node);

return node;
}

75 void
xmlnode_insert_child(xmlnode *parent, xmlnode *child)
{

g_return_if_fail(parent != NULL);
g_return_if_fail(child != NULL);

80
child->parent = parent;

if(parent->lastchild) {
parent->lastchild->next = child;

85 } else {
parent->child = child;

}

parent->lastchild = child;
90 }

void
xmlnode_insert_data(xmlnode *node, const char *data, gssize size)
{

95 xmlnode *child;
gsize real_size;

g_return_if_fail(node != NULL);
g_return_if_fail(data != NULL);

100 g_return_if_fail(size != 0);

real_size = size == -1 ? strlen(data) : (gsize)size;

child = new_node(NULL, XMLNODE_TYPE_DATA);
105

child->data = g_memdup(data, real_size);
child->data_sz = real_size;

xmlnode_insert_child(node, child);
110 }

void
xmlnode_remove_attrib(xmlnode *node, const char *attr)
{

115 xmlnode *attr_node, *sibling = NULL;

g_return_if_fail(node != NULL);
g_return_if_fail(attr != NULL);

120 for(attr_node = node->child; attr_node; attr_node = attr_node->next)
{

if(attr_node->type == XMLNODE_TYPE_ATTRIB &&
!strcmp(attr_node->name, attr)) {

if(node->child == attr_node) {
125 node->child = attr_node->next;

} else if (node->lastchild == attr_node) {
node->lastchild = sibling;

} else {
sibling->next = attr_node->next;

130 }

42

XML manipulation library APPENDIX A: CODE

xmlnode_free(attr_node);
return;

}
sibling = attr_node;

135 }
}

void
xmlnode_set_attrib(xmlnode *node, const char *attr, const char *value)

140 {
xmlnode *attrib_node;

g_return_if_fail(node != NULL);
g_return_if_fail(attr != NULL);

145 g_return_if_fail(value != NULL);

xmlnode_remove_attrib(node, attr);

attrib_node = new_node(attr, XMLNODE_TYPE_ATTRIB);
150

attrib_node->data = g_strdup(value);

xmlnode_insert_child(node, attrib_node);
}

155
const char *
xmlnode_get_attrib(xmlnode *node, const char *attr)
{

xmlnode *x;
160

g_return_val_if_fail(node != NULL, NULL);

for(x = node->child; x; x = x->next) {
if(x->type == XMLNODE_TYPE_ATTRIB && !strcmp(attr, x->name)) {

165 return x->data;
}

}

return NULL;
170 }

void
xmlnode_free(xmlnode *node)
{

175 xmlnode *x, *y;

g_return_if_fail(node != NULL);

x = node->child;
180 while(x) {

y = x->next;
xmlnode_free(x);
x = y;

}
185

if(node->name)
g_free(node->name);

if(node->data)
g_free(node->data);

190 g_free(node);
}

xmlnode*
xmlnode_get_child(const xmlnode *parent, const char *name)

195 {
return xmlnode_get_child_with_namespace(parent, name, NULL);

}

43

XML manipulation library APPENDIX A: CODE

xmlnode *
200 xmlnode_get_child_with_namespace(const xmlnode *parent, const char *name, const char *ns)

{
xmlnode *x, *ret = NULL;
char **names;
char *parent_name, *child_name;

205
g_return_val_if_fail(parent != NULL, NULL);
g_return_val_if_fail(name != NULL, NULL);

names = g_strsplit(name, "/", 2);
210 parent_name = names[0];

child_name = names[1];

for(x = parent->child; x; x = x->next) {
const char *xmlns = NULL;

215 if(ns)
xmlns = xmlnode_get_attrib(x, "xmlns");

if(x->type == XMLNODE_TYPE_TAG && name && !strcmp(parent_name, x->name)
&& (!ns || (xmlns && !strcmp(ns, xmlns)))) {

220 ret = x;
break;

}
}

225 if(child_name && ret)
ret = xmlnode_get_child(ret, child_name);

g_strfreev(names);
return ret;

230 }

char *
xmlnode_get_data(xmlnode *node)
{

235 GString *str = NULL;
xmlnode *c;

g_return_val_if_fail(node != NULL, NULL);

240 for(c = node->child; c; c = c->next) {
if(c->type == XMLNODE_TYPE_DATA) {

if(!str)
str = g_string_new("");

str = g_string_append_len(str, c->data, c->data_sz);
245 }

}

if (str == NULL)
return NULL;

250
return g_string_free(str, FALSE);

}

static char *
255 xmlnode_to_str_helper(xmlnode *node, int *len, gboolean formatting, int depth)

{
GString *text = g_string_new("");
xmlnode *c;
char *node_name, *esc, *esc2, *tab = NULL;

260 gboolean need_end = FALSE, pretty = formatting;

g_return_val_if_fail(node != NULL, NULL);

if(pretty && depth) {
265 tab = g_strnfill(depth, ’\t’);

text = g_string_append(text, tab);

44

XML manipulation library APPENDIX A: CODE

}

node_name = g_markup_escape_text(node->name, -1);
270 g_string_append_printf(text, "<%s", node_name);

for(c = node->child; c; c = c->next)
{

if(c->type == XMLNODE_TYPE_ATTRIB) {
275 esc = g_markup_escape_text(c->name, -1);

esc2 = g_markup_escape_text(c->data, -1);
g_string_append_printf(text, " %s=’%s’", esc, esc2);
g_free(esc);
g_free(esc2);

280 } else if(c->type == XMLNODE_TYPE_TAG || c->type == XMLNODE_TYPE_DATA) {
if(c->type == XMLNODE_TYPE_DATA)

pretty = FALSE;
need_end = TRUE;

}
285 }

if(need_end) {
g_string_append_printf(text, ">%s", pretty ? NEWLINE_S : "");

290 for(c = node->child; c; c = c->next)
{

if(c->type == XMLNODE_TYPE_TAG) {
int esc_len;
esc = xmlnode_to_str_helper(c, &esc_len, pretty, depth+1);

295 text = g_string_append_len(text, esc, esc_len);
g_free(esc);

} else if(c->type == XMLNODE_TYPE_DATA && c->data_sz > 0) {
esc = g_markup_escape_text(c->data, c->data_sz);
text = g_string_append(text, esc);

300 g_free(esc);
}

}

if(tab && pretty)
305 text = g_string_append(text, tab);

g_string_append_printf(text, "</%s>%s", node_name, formatting ? NEWLINE_S : "");
} else {

g_string_append_printf(text, "/>%s", formatting ? NEWLINE_S : "");
}

310
g_free(node_name);

if(tab)
g_free(tab);

315
if(len)

*len = text->len;

return g_string_free(text, FALSE);
320 }

char *
xmlnode_to_str(xmlnode *node, int *len)
{

325 return xmlnode_to_str_helper(node, len, FALSE, 0);
}

char *
xmlnode_to_formatted_str(xmlnode *node, int *len)

330 {
char *xml, *xml_with_declaration;

g_return_val_if_fail(node != NULL, NULL);

45

XML manipulation library APPENDIX A: CODE

335 xml = xmlnode_to_str_helper(node, len, TRUE, 0);
xml_with_declaration =

g_strdup_printf("<?xml version=’1.0’ encoding=’UTF-8’ ?>" NEWLINE_S NEWLINE_S "%s
", xml);

g_free(xml);

340 return xml_with_declaration;
}

struct _xmlnode_parser_data {
xmlnode *current;

345 };

static void
xmlnode_parser_element_start(GMarkupParseContext *context,

const char *element_name, const char **attrib_names,
350 const char **attrib_values, gpointer user_data, GError **error)

{
struct _xmlnode_parser_data *xpd = user_data;
xmlnode *node;
int i;

355
if(!element_name) {

return;
} else {

if(xpd->current)
360 node = xmlnode_new_child(xpd->current, element_name);

else
node = xmlnode_new(element_name);

for(i=0; attrib_names[i]; i++)
365 xmlnode_set_attrib(node, attrib_names[i], attrib_values[i]);

xpd->current = node;
}

}
370

static void
xmlnode_parser_element_end(GMarkupParseContext *context,

const char *element_name, gpointer user_data, GError **error)
{

375 struct _xmlnode_parser_data *xpd = user_data;

if(!element_name || !xpd->current)
return;

380 if(xpd->current->parent) {
if(!strcmp(xpd->current->name, element_name))

xpd->current = xpd->current->parent;
}

}
385

static void
xmlnode_parser_element_text(GMarkupParseContext *context, const char *text,

gsize text_len, gpointer user_data, GError **error)
{

390 struct _xmlnode_parser_data *xpd = user_data;

if(!xpd->current)
return;

395 if(!text || !text_len)
return;

xmlnode_insert_data(xpd->current, text, text_len);
}

400
static GMarkupParser xmlnode_parser = {

46

XML manipulation library APPENDIX A: CODE

xmlnode_parser_element_start,
xmlnode_parser_element_end,
xmlnode_parser_element_text,

405 NULL,
NULL

};

410 xmlnode *
xmlnode_from_str(const char *str, gssize size)
{

struct _xmlnode_parser_data *xpd;
xmlnode *ret;

415 GMarkupParseContext *context;
gsize real_size;

g_return_val_if_fail(str != NULL, NULL);

420 real_size = size < 0 ? strlen(str) : (gsize)size;
xpd = g_new0(struct _xmlnode_parser_data, 1);
context = g_markup_parse_context_new(&xmlnode_parser, 0, xpd, NULL);

if(!g_markup_parse_context_parse(context, str, real_size, NULL)) {
425 while(xpd->current && xpd->current->parent)

xpd->current = xpd->current->parent;
if(xpd->current)

xmlnode_free(xpd->current);
xpd->current = NULL;

430 }
g_markup_parse_context_free(context);

ret = xpd->current;
g_free(xpd);

435 return ret;
}

xmlnode *
xmlnode_copy(xmlnode *src)

440 {
xmlnode *ret;
xmlnode *child;
xmlnode *sibling = NULL;

445 g_return_val_if_fail(src != NULL, NULL);

ret = new_node(src->name, src->type);
if(src->data) {

if(src->data_sz) {
450 ret->data = g_memdup(src->data, src->data_sz);

ret->data_sz = src->data_sz;
} else {

ret->data = g_strdup(src->data);
}

455 }

for(child = src->child; child; child = child->next) {
if(sibling) {

sibling->next = xmlnode_copy(child);
460 sibling = sibling->next;

} else {
ret->child = xmlnode_copy(child);
sibling = ret->child;

}
465 sibling->parent = ret;

}

ret->lastchild = sibling;

47

XML manipulation library APPENDIX A: CODE

470 return ret;
}

xmlnode *
xmlnode_get_next_twin(xmlnode *node)

475 {
xmlnode *sibling;
const char *ns = xmlnode_get_attrib(node, "xmlns");

g_return_val_if_fail(node != NULL, NULL);
480 g_return_val_if_fail(node->type == XMLNODE_TYPE_TAG, NULL);

for(sibling = node->next; sibling; sibling = sibling->next) {
const char *xmlns = NULL;
if(ns)

485 xmlns = xmlnode_get_attrib(sibling, "xmlns");

if(sibling->type == XMLNODE_TYPE_TAG && !strcmp(node->name, sibling->name) &&
(!ns || (xmlns && !strcmp(ns, xmlns))))

return sibling;
490 }

return NULL;
}

495 /* $Revision: 1.2 $ */

48

XML manipulation header APPENDIX A: CODE

XML manipulation header

Listing A.6: xmlnode.h
0 /**

* @file xmlnode.h XML DOM functions

* @ingroup core

*
* gaim

5 *
* Gaim is the legal property of its developers, whose names are too numerous

* to list here. Please refer to the COPYRIGHT file distributed with this

* source distribution.

*
10 * This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

*
15 * This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*
20 * You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/
#ifndef _GAIM_XMLNODE_H_

25 #define _GAIM_XMLNODE_H_

/**
* The valid types for an xmlnode

*/
30 typedef enum _XMLNodeType

{
XMLNODE_TYPE_TAG, /**< Just a tag */
XMLNODE_TYPE_ATTRIB, /**< Has attributes */
XMLNODE_TYPE_DATA /**< Has data */

35 } XMLNodeType;

/**
* An xmlnode.

*/
40 typedef struct _xmlnode

{
char *name; /**< The name of the node. */
XMLNodeType type; /**< The type of the node. */
char *data; /**< The data for the node. */

45 size_t data_sz; /**< The size of the data. */
struct _xmlnode *parent; /**< The parent node or @c NULL.*/
struct _xmlnode *child; /**< The child node or @c NULL.*/
struct _xmlnode *lastchild; /**< The last child node or @c NULL.*/
struct _xmlnode *next; /**< The next node or @c NULL. */

50 } xmlnode;

/**
* Creates a new xmlnode.

*
55 * @param name The name of the node.

*
* @return The new node.

*/
xmlnode *xmlnode_new(const char *name);

60
/**
* Creates a new xmlnode child.

49

XML manipulation header APPENDIX A: CODE

*
* @param parent The parent node.

65 * @param name The name of the child node.

*
* @return The new child node.

*/
xmlnode *xmlnode_new_child(xmlnode *parent, const char *name);

70
/**
* Inserts a node into a node as a child.

*
* @param parent The parent node to insert child into.

75 * @param child The child node to insert into parent.

*/
void xmlnode_insert_child(xmlnode *parent, xmlnode *child);

/**
80 * Gets a child node named name.

*
* @param parent The parent node.

* @param name The child’s name.

*
85 * @return The child or NULL.

*/
xmlnode *xmlnode_get_child(const xmlnode *parent, const char *name);

/**
90 * Gets a child node named name in a namespace.

*
* @param parent The parent node.

* @param name The child’s name.

* @param xmlns The namespace.
95 *

* @return The child or NULL.

*/
xmlnode *xmlnode_get_child_with_namespace(const xmlnode *parent, const char *name, const

char *xmlns);

100 /**
* Gets the next node with the same name as node.

*
* @param node The node of a twin to find.

*
105 * @return The twin of node or NULL.

*/
xmlnode *xmlnode_get_next_twin(xmlnode *node);

/**
110 * Inserts data into a node.

*
* @param node The node to insert data into.

* @param data The data to insert.

* @param size The size of the data to insert. If data is
115 * null-terminated you can pass in -1.

*/
void xmlnode_insert_data(xmlnode *node, const char *data, gssize size);

/**
120 * Gets data from a node.

*
* @param node The node to get data from.

*
* @return The data from the node.

125 */
char *xmlnode_get_data(xmlnode *node);

/**
* Sets an attribute for a node.

50

XML manipulation header APPENDIX A: CODE

130 *
* @param node The node to set an attribute for.

* @param attr The name of the attribute.

* @param value The value of the attribute.

*/
135 void xmlnode_set_attrib(xmlnode *node, const char *attr, const char *value);

/**
* Gets an attribute from a node.

*
140 * @param node The node to get an attribute from.

* @param attr The attribute to get.

*
* @return The value of the attribute.

*/
145 const char *xmlnode_get_attrib(xmlnode *node, const char *attr);

/**
* Removes an attribute from a node.

*
150 * @param node The node to remove an attribute from.

* @param attr The attribute to remove.

*/
void xmlnode_remove_attrib(xmlnode *node, const char *attr);

155 /**
* Returns the node in a string of xml.

*
* @param node The starting node to output.

* @param len Address for the size of the string.
160 *

* @return The node represented as a string. You must

* g_free this string when finished using it.

*/
char *xmlnode_to_str(xmlnode *node, int *len);

165
/**
* Returns the node in a string of human readable xml.

*
* @param node The starting node to output.

170 * @param len Address for the size of the string.

*
* @return The node as human readable string including

* tab and new line characters. You must

* g_free this string when finished using it.
175 */

char *xmlnode_to_formatted_str(xmlnode *node, int *len);

/**
* Creates a node from a string of XML. Calling this on the

180 * root node of an XML document will parse the entire document

* into a tree of nodes, and return the xmlnode of the root.

*
* @param str The string of xml.

* @param size The size of the string, or -1 if @a str is
185 * NUL-terminated.

*
* @return The new node.

*/
xmlnode *xmlnode_from_str(const char *str, gssize size);

190
/**
* Creates a new node from the source node.

*
* @param src The node to copy.

195 *
* @return A new copy of the src node.

*/

51

XML manipulation header APPENDIX A: CODE

xmlnode *xmlnode_copy(xmlnode *src);

200 /**
* Frees a node and all of it’s children.

*
* @param node The node to free.

*/
205 void xmlnode_free(xmlnode *node);

/* $Revision: 1.2 $ */

#endif /* _GAIM_XMLNODE_H_ */

52

DTD describing a format to define a game APPENDIX A: CODE

DTD describing a format to define a game

Listing A.7: game.dtd
0 <?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT game (slide+)>

<!ELEMENT slide (file, action?, next?)>
5 <!ELEMENT file (#PCDATA)>

<!ELEMENT action (state+)>
<!ELEMENT next (left|right|up|down|forward|left180|right180)+>

10 <!ELEMENT left (#PCDATA)>
<!ELEMENT left180 (#PCDATA)>
<!ELEMENT right (#PCDATA)>
<!ELEMENT right180 (#PCDATA)>
<!ELEMENT up (#PCDATA)>

15 <!ELEMENT down (#PCDATA)>
<!ELEMENT forward (#PCDATA)>

<!ELEMENT state (#PCDATA)>

20 <!ATTLIST action
left CDATA #REQUIRED
right CDATA #REQUIRED
top CDATA #REQUIRED
bottom CDATA #REQUIRED

25 type (moore) #REQUIRED>

53

Script to draw a directed graph of all paths APPENDIX A: CODE

Script to draw a directed graph of all paths

Listing A.8: path-to-graph.pl
0 #!/usr/bin/perl -w

use strict;
use Spreadsheet::ParseExcel;
use GraphViz;

5 my $cluster = 0;

my $g = GraphViz->new(rankdir=>1,
node=>{shape=>’box’},
edge=>{fontsize=>8},

10 epsilon=>’.0000000001’,
no_overlap=>’true’,
layout=>’dot’,
splines=>’true’,
concentrate=>$cluster,

15 graph=>{remincross=>1},
nodesep=>1,

);

foreach my $doc (@ARGV) {
20 my $exl = new Spreadsheet::ParseExcel::Workbook->Parse($doc);

foreach my $sheet (@{$exl->{Worksheet}}) {
for(my $iR = $sheet->{MinRow}; defined $sheet->{MaxRow} && $iR <= $sheet->{MaxRow}

; $iR++) {
my ($pic, $forward, $left, $right, $spin) = map {defined $_ ? $_->Value :

undef} @{$sheet->{Cells}[$iR]};
25 if (not defined $pic or $pic eq ’picture’ or $pic eq ’pic’) {

next;
}

if ($cluster) {
30 $g->add_node($pic, cluster=>{name=>$doc, style=>’filled’, fillcolor=>’

lightgray’});
} else {

$g->add_node($pic);
}

35 warn "$doc: $pic: left, right, and turn defined.\n" if defined $left and
defined $right and defined $spin;

warn "$doc: $pic: Endpoint slide.\n" if not defined $left and not defined
$right and not defined $spin and not defined $forward;

$g->add_edge($pic, $forward, label=>’Forward’) if defined $forward;

40 if (defined $left) {
$g->add_edge($pic, $left, label=>’Left’);

} elsif (defined $spin) {
$g->add_edge($pic, $spin, label=>’Left180’);

}
45 if (defined $right) {

$g->add_edge($pic, $right, label=>’Right’);
} elsif (defined $spin) {

$g->add_edge($pic, $spin, label=>’Right180’);
}

50 }
}

}

binmode(STDOUT);
55 print $g->as_fig;

warn $g->as_canon;

54

Script to convert Excel-format graphs into XML APPENDIX A: CODE

Script to convert Excel-format graphs into XML

Listing A.9: path-to-xml.pl
0 #!/usr/bin/perl -w

use strict;
use Spreadsheet::ParseExcel;

print <<HERE;
5 <game>

<config>
<screensize width=’1024’ height=’768’/>
<slidesize width=’800’ height=’600’/>
<color is=’24’/>

10 <fullscreen is=’0’/>
<testmode is=’1’/>
<bgcolor is=’#000000’/>
<transition is=’best’/>
<zip allowed=’0’ start=’0’/>

15 <paths>
<text>data/text</text>
<objects>data/objects</objects>
<slides>data/slides</slides>
<sounds>data/sounds</sounds>

20 <images>data/images</images>
<movies>data/movies</movies>

</paths>
</config>

HERE
25

foreach my $doc (@ARGV) {
my $exl = new Spreadsheet::ParseExcel::Workbook->Parse($doc);

foreach my $sheet (@{$exl->{Worksheet}}) {
30 for(my $iR = $sheet->{MinRow}; defined $sheet->{MaxRow} && $iR <= $sheet->{MaxRow}

; $iR++) {
my ($pic, $forward, $left, $right, $spin) = map {defined $_ ? $_->Value :

undef} @{$sheet->{Cells}[$iR]};
if (not defined $pic or $pic eq ’picture’ or $pic eq ’pic’) {

#if (defined $pic) {
no warnings;

35 # warn "Header?: (",
join(’,’, qw/pic forward left right spin/), ") (",
join(’,’, ($pic,$forward,$left,$right,$spin)), ")\n";
use warnings;
#}

40 next;
}

warn "$doc: $pic: left, right, and turn defined.\n" if defined $left and
defined $right and defined $spin;

warn "$doc: $pic: Endpoint slide.\n" if not defined $left and not defined
$right and not defined $spin and not defined $forward;

45
print " <slide>\n",

" <file>$pic</file>\n",
" <next>\n";

print " <forward>$forward</forward>\n" if defined $forward;
50

if (defined $left) {
print " <left>$left</left>\n"

} elsif (defined $spin) {
print " <left180>$spin</left180>\n"

55 }
if (defined $right) {

print " <right>$right</right>\n"
} elsif (defined $spin) {

55

Script to convert Excel-format graphs into XML APPENDIX A: CODE

print " <right180>$spin</right180>\n"
60 }

print " </next>\n </slide>\n";
}

}
}

65 print "</game>\n";

56

Script to convert XML to Pyzzle’s input format APPENDIX A: CODE

Script to convert XML to Pyzzle’s input format

Listing A.10: xml2py.pl
0 #!/usr/bin/perl -w

use strict;

use XML::Simple;
use Data::Dumper qw/Dumper/;

5
my $xp = XML::Simple->new(ForceArray=>[qw/slide state/],

GroupTags=>{
color => ’is’,
fullscreen => ’is’,

10 testmode => ’is’,
bgcolor => ’is’,
transition => ’is’,

},
);

15
our ($file, $prefix) = (’’, ’’);
sub out(@) {

$file .= $prefix;
$file .= $_ foreach @_;

20 }

my $lname = &{sub {my $count = 0; return sub {return "lFunc" . $count++;}}};

my $x = $xp->XMLin(shift);
25

my $c = $x->{config};

#die Dumper $x;

30 out <<HERE;
import os, sys
import pyzzle
from pyzzle import *
parameters.setScreenSize(($c->{screensize}->{width},$c->{screensize}->{height}))

35 parameters.setSlideSize(($c->{slidesize}->{width},$c->{slidesize}->{height}))
parameters.setResolution($c->{color})
parameters.setFullScreen($c->{fullscreen})
parameters.setTestMode($c->{testmode})
parameters.setDefaultTransition($c->{transition}_transition)

40 parameters.setZipMode($c->{zip}->{start})

X1 = 0
X2 = 2
Y1 = 1

45 Y2 = 3
WIDTH = 0
HEIGHT = 1
T = parameters.TURNMAPDEPTH

50 SIZE = (parameters.SLIDESIZE[0], parameters.SLIDESIZE[1])
LEFTRECT = (0, 0, T, SIZE[HEIGHT])
LEFT180RECT = LEFTRECT
RIGHTRECT = (SIZE[WIDTH]-T, 0, T,SIZE[HEIGHT])
RIGHT180RECT = RIGHTRECT

55 UPRECT = (0, 0, SIZE[WIDTH], T)
DOWNRECT = (0, SIZE[HEIGHT]-T, SIZE[WIDTH], SIZE[HEIGHT])
FORWARDRECT = (LEFTRECT[X2]+1, UPRECT[Y2]+1, RIGHTRECT[X1]-1, SIZE[HEIGHT]/2-1)
BACKRECT = (LEFTRECT[X2]+1, SIZE[HEIGHT]/2+1, RIGHTRECT[X1]-1, DOWNRECT[Y1]-1)

60 mustDie = 0
def newSlide(file):

global mustDie

57

Script to convert XML to Pyzzle’s input format APPENDIX A: CODE

path = os.path.join(paths.getSlidePath(), file + ’.jpg’);
if not os.access(path, os.F_OK):

65 print "Eek!", file, "is missing"
mustDie = 1

return Slide();

HERE
70

out "parameters.disableZipMode()\n" if $c->{zip}->{allowed} == 0;

while (my ($key, $val) = each %{$c->{paths}}) {
$key =˜ s/(.*?)(s|)$/\u$1/;

75 out "paths.set${key}Path(os.path.join(",
join(’,’, (map {"’$_’"} split(’/’, $val))), "))\n";

}

my %slides;
80 foreach my $s (@{$x->{slide}}) {

local $prefix = $s->{file};
out " = newSlide(\’$s->{file}\’)\n";
$slides{$s->{file}}++;

}
85

$c->{bgcolor} =˜ m/#(..)(..)(..)/;
out "parameters.setBackgroundColor((",join(’,’, map(hex, $1, $2, $3)),"))\n";

sub noType($$;$)
90 {

my ($fn, $n, $quiet) = (@_);
$quiet = 0 unless defined $quiet;
my %n = %{$n};
warn "No nav type could be guessed from (", join(’,’, keys %n), ")\n"

95 if not $quiet;
while (my ($key, $val) = each %n) {

if (defined $slides{$val}) {
out ".appendHotspot($val, ", uc($key)."RECT, ", "$key", "_cursor)\n";

} else {
100 warn "Cannot create $key transition from $fn to unknown slide: $val (skipping)

\n"
}

}
}

105 sub numCheck($$$)
{

my ($guess, $n, $cnt) = (shift, shift, shift);
my @k = keys %{$n};
warn "Direction ignored in $guess guess from (", join(’,’, @k), ")\n"

110 if @k != $cnt;
}

foreach my $s (@{$x->{slide}}) {
my $self = $s->{file};

115 if (defined $s->{action}) {
my $a = $s->{action};
die "Can’t handle action type $a->{type}\n"

unless defined $a->{type} and $a->{type} eq ’moore’;
my $fname = &$lname;

120 my $if = ’if’;
out "def $fname():\n";
while (my ($id, $data) = each %{$a->{state}}) {

out " $if $self.getState() == $id:\n",
" $self.updateSlide(’$data->{content}.jpg’)\n",

125 " $self.setState($data->{next})\n";
$if = ’elif’ if $if eq ’if’;

}
out " else:\n",

" $self.updateSlide(’$self.jpg’)\n",

58

Script to convert XML to Pyzzle’s input format APPENDIX A: CODE

130 " $self.setState(1)\n";
$_ =˜ s#(.*)%#($1/100).’*SIZE[0]’#e foreach @$a{qw/left right/};
$_ =˜ s#(.*)%#($1/100).’*SIZE[1]’#e foreach @$a{qw/top bottom/};
$a->{right} .= "-$a->{left}";
$a->{bottom} .= "-$a->{top}";

135 out "$self.appendHotspot(action,(",
join(’,’, @$a{qw/left top right bottom/}), "),action_cursor)\n";

out "$self.setState(1)\n",
"$self.setAction($fname)\n";

}
140 local $prefix = $s->{file};

out ".setSlideFile(’$s->{file}.jpg’)\n";

my %n = %{$s->{next}};
if (defined $s->{action})

145 {
noType($s->{file}, \%n, 1);

}
elsif (defined $n{forward})
{

150 if (defined $n{left180} and defined $n{right180})
{

out ".setNavType(’std’)\n";
out ".setNavigation([", join(’,’, @n{qw/left180 forward right180/}),"])\n";
numCheck(’std180’, \%n, 3);

155 }
elsif (defined $n{left} and defined $n{right})
{

out ".setNavType(’std’)\n";
out ".setNavigation([", join(’,’, @n{qw/left forward right/}),"])\n";

160 numCheck(’std’, \%n, 3);
}
else {

noType($s->{file}, \%n);
}

165 }
elsif (defined $n{left} and defined $n{right})
{

if (defined $n{up})
{

170 out ".setNavType(’LandRup’)\n";
out ".setNavigation([", join(’,’, @n{qw/left up right/}),"])\n";
numCheck(’LandRup’, \%n, 3);

}
elsif (defined $n{down})

175 {
out ".setNavType(’LandRdown’)\n";
out ".setNavigation([", join(’,’, @n{qw/left down right/}),"])\n";
numCheck(’LandRdown’, \%n, 3);

}
180 else

{
out ".setNavType(’LandR’)\n";
out ".setNavigation([", join(’,’, @n{qw/left right/}),"])\n";
numCheck(’LandR’, \%n, 2);

185 }

}
elsif (defined $n{up} and defined $n{down})
{

190 out ".setNavType(’updown’)\n";
out ".setNavigation([", join(’,’, @n{qw/up down/}),"])\n";
numCheck(’updown’, \%n, 2);

}
else

195 {
noType($s->{file}, \%n);

}

59

Script to convert XML to Pyzzle’s input format APPENDIX A: CODE

$prefix=’’;
out "\n";

200 }

out <<HERE;
pyzzle.setFirstSlide($x->{slide}->[0]->{file})

205 if mustDie:
print ’Bailing out due to previous errors!’
sys.exit(-1)

pyzzle.start()
210 HERE

print $file, "\n";

60

LATEX Class For WPI Reports APPENDIX A: CODE

LATEX Class For WPI Reports

Listing A.11: wpi.cls
0 \NeedsTeXFormat{LaTeX2e}[1995/12/01]

\def\RCS$#1: #2 ${\expandafter\def\csname RCS#1\endcsname{#2}}
\RCS$Revision: 1.4 $
\RCS$Date: 2006/04/28 14:20:33 $

5 \ProvidesClass{wpi}
[\RCSDate\space v\RCSRevision\space
(WPI M/IQP document class)]

\newcommand\@ptsize{}
10

\setlength\paperheight {11in}
\setlength\paperwidth {8.5in}
\DeclareOption{landscape}

{\setlength\@tempdima {\paperheight}%
15 \setlength\paperheight {\paperwidth}%

\setlength\paperwidth {\@tempdima}}

\newif\if@mqp
\newif\if@appendix

20 \newif\if@magictoc

\@mqptrue
\@appendixfalse
\@magictocfalse

25
\DeclareOption{mqp}{\@mqptrue}
\DeclareOption{iqp}{\@mqpfalse}
\DeclareOption{10pt}{\renewcommand\@ptsize{0}}
\DeclareOption{11pt}{\renewcommand\@ptsize{1}}

30 \DeclareOption{12pt}{\renewcommand\@ptsize{2}}
\DeclareOption{draft}{\setlength\overfullrule{5pt}}
\DeclareOption{final}{\setlength\overfullrule{0pt}}
\DeclareOption{leqno}{\input{leqno.clo}}
\DeclareOption{fleqn}{\input{fleqn.clo}}

35 \ExecuteOptions{11pt,final,mqp}
\ProcessOptions
\input{size1\@ptsize.clo}
\setlength\lineskip{1\p@}
\setlength\normallineskip{1\p@}

40 \renewcommand\baselinestretch{}
\setlength\parskip{0\p@ \@plus \p@}
\@lowpenalty 51
\@medpenalty 151
\@highpenalty 301

45 \setcounter{topnumber}{2}
\renewcommand\topfraction{.7}
\setcounter{bottomnumber}{1}
\renewcommand\bottomfraction{.3}
\setcounter{totalnumber}{3}

50 \renewcommand\textfraction{.2}
\renewcommand\floatpagefraction{.5}
\setcounter{dbltopnumber}{2}
\renewcommand\dbltopfraction{.7}
\renewcommand\dblfloatpagefraction{.5}

55
\RequirePackage{setspace}
\RequirePackage[letterpaper,margin=1in,lmargin=1.5in]{geometry}
\RequirePackage{ifthen}

60 \def\title#1{\gdef\@title{{\large\textsc{\textbf{#1}}}}\gdef\mytitle{{#1}}}
\def\date#1{\gdef\@date{Date:˜#1}\gdef\mydate{{\@date}}}
\def\id#1{\gdef\@id{#1}\gdef\myid{{#1}}}

61

LATEX Class For WPI Reports APPENDIX A: CODE

65 % This creates a list type.
% #1: name
% #2: what \and expands to
% #3: prefix
\long\def\listtype#1#2#3{

70 \expandafter\gdef\csname#1\endcsname##1{{%
\expandafter\gdef\csname @#1\endcsname{{%

\def\and{#2}
#3##1%

}}%
75 \def\and{and }

\expandafter\xdef\csname my#1\endcsname{{##1}}
}}

}

80 \def\@sign{\rule{2in}{0.8pt}\\[\@rskip]}

\listtype{author}{\par\@sign}{\@sign}
\listtype{keyword}{\item}{\item}
\listtype{advisor}{\par\@sign}{\@sign}

85
\def\@tskip{0.3in}
\def\@rskip{.05in}

\newcommand{\maketitle}{{%
90 \interlinepenalty \@M

\linepenalty \@M
\hyphenpenalty \@M
\exhyphenpenalty \@M
\offinterlineskip

95 \begin{titlepage}
\singlespacing
\setlength{\parskip}{\@tskip minus \@tskip}
\raggedleft \@id

100 \begin{center}

\@title

A \if@mqp Major \else Interactive \fi Qualifying Project Report:
105

submitted to the Faculty

of the

110 \textsc{Worcester Polytechnic Institute}

in partial fulfillment of the requirements for the

Degree of Bachelor of Science
115

by

\@author

120 \@date

\vspace{\@tskip plus 1fil}

Approved:
125

\end{center}

\vspace{\@tskip}

130 \hbox to \hsize{%

62

LATEX Class For WPI Reports APPENDIX A: CODE

\rlap{\vbox{%
\begin{enumerate*}

\parskip 0pt
\itemsep 3pt

135 \@keyword
\end{enumerate*}

}}%
\hss
\llap{\vbox{%

140 \@advisor
}}%

}

\end{titlepage}
145 }}

\newcommand*\chaptermark[1]{}

\setcounter{secnumdepth}{2}
150 \newcounter {chapter}

\newcounter {section}[chapter]
\newcounter {subsection}[section]
\newcounter {subsubsection}[subsection]
\renewcommand \thechapter {\@arabic\c@chapter}

155 \renewcommand \thesection {\thechapter.\@arabic\c@section}
\renewcommand\thesubsection {\thesection.\@arabic\c@subsection}
\renewcommand\thesubsubsection{\thesubsection .\@arabic\c@subsubsection}
\newcommand\@chapapp{}

160 \newcommand\chapter{\clearpage
\thispagestyle{plain}%
\global\@topnum\z@
\@afterindentfalse
\secdef\@chapter\@schapter}

165 \def\@chapter[#1]#2{\ifnum \c@secnumdepth >\m@ne
\refstepcounter{chapter}%
\typeout{\@chapapp\space\thechapter.}%
\addcontentsline{toc}{chapter}%

{\textsc{\if@appendix \appendixname\space\fi
170 \protect\numberline{\thechapter%

\if@appendix : \fi}%
}\textsc{#1}}%

\else
\addcontentsline{toc}{chapter}{\textsc{#1}}%

175 \fi
\chaptermark{#1}%
\addtocontents{lof}{\protect\addvspace{10\p@}}%
\addtocontents{lot}{\protect\addvspace{10\p@}}%
\@makechapterhead{#2}%

180 \@afterheading
\label{cha:#2}}

\def\@makechapterhead#1{%
\vspace*{10\p@}%

185 {\parindent \z@ \raggedright \normalfont
\huge\bfseries\textsc{%
\ifnum \c@secnumdepth >\m@ne

\if@appendix
\@chapapp\space \thechapter:

190 \else
\thechapter

\fi
\fi
\space\space #1}\par\nobreak

195 \vskip 10\p@
}}

\def\@schapter#1{%

63

LATEX Class For WPI Reports APPENDIX A: CODE

\if@magictoc
200 \addcontentsline{toc}{chapter}{\textsc{#1}}

\fi
\@makeschapterhead{#1}
\@afterheading

}
205

\def\@makeschapterhead#1{%
\vspace*{10\p@}%
{\parindent \z@ \raggedright

\normalfont
210 \huge \bfseries \textsc{#1}\par\nobreak

\vskip 10\p@
}}

\newcommand\section{\@startsection {section}{1}{\z@}%
215 {-3.5ex \@plus -1ex \@minus -.2ex}%

{2.3ex \@plus.2ex}%
{\normalfont\Large\bfseries}}

\newcommand\subsection{\@startsection{subsection}{2}{\z@}%
{-3.25ex\@plus -1ex \@minus -.2ex}%

220 {1.5ex \@plus .2ex}%
{\normalfont\large\bfseries}}

\newcommand\subsubsection{\@startsection{subsubsection}{3}{\z@}%
{-3.25ex\@plus -1ex \@minus -.2ex}%
{1.5ex \@plus .2ex}%

225 {\normalfont\normalsize\bfseries}}

\setlength\leftmargini {2.5em}
\leftmargin \leftmargini
\setlength\leftmarginii {2.2em}

230 \setlength\leftmarginiii {1.87em}
\setlength\leftmarginiv {1.7em}
\setlength\leftmarginv {1em}
\setlength\leftmarginvi {1em}
\setlength \labelsep {.5em}

235 \setlength \labelwidth{\leftmargini}
\addtolength\labelwidth{-\labelsep}
\@beginparpenalty -\@lowpenalty
\@endparpenalty -\@lowpenalty
\@itempenalty -\@lowpenalty

240 \renewcommand\theenumi{\@arabic\c@enumi}
\renewcommand\theenumii{\@alph\c@enumii}
\renewcommand\theenumiii{\@roman\c@enumiii}
\renewcommand\theenumiv{\@Alph\c@enumiv}
\newcommand\labelenumi{\theenumi.}

245 \newcommand\labelenumii{(\theenumii)}
\newcommand\labelenumiii{\theenumiii.}
\newcommand\labelenumiv{\theenumiv.}
\renewcommand\p@enumii{\theenumi}
\renewcommand\p@enumiii{\theenumi(\theenumii)}

250 \renewcommand\p@enumiv{\p@enumiii\theenumiii}
\newcommand\labelitemi{\textbullet}
\newcommand\labelitemii{\normalfont\bfseries \textendash}
\newcommand\labelitemiii{\textasteriskcentered}
\newcommand\labelitemiv{\textperiodcentered}

255 \newenvironment{description}
{\list{}{\labelwidth\z@ \itemindent-\leftmargin

\let\makelabel\descriptionlabel}}
{\endlist}

\newcommand*\descriptionlabel[1]{\hspace\labelsep
260 \normalfont\bfseries #1}

\newenvironment{abslike}[1]{%
\titlepage
\null\vfil

265 \@beginparpenalty\@lowpenalty
\begin{center}%

64

LATEX Class For WPI Reports APPENDIX A: CODE

\bfseries #1
\@endparpenalty\@M

\end{center}
270 }%

{\par\vfil\null\endtitlepage%
}

\newenvironment{abstract}{\abslike{Abstract}}{\endabslike}
275 \newenvironment{ack}{\abslike{Acknowledgements}}{\endabslike}

\newenvironment{verse}
{\let\\\@centercr
\list{}{\itemsep \z@

280 \itemindent -1.5em%
\listparindent\itemindent
\rightmargin \leftmargin
\advance\leftmargin 1.5em}%

\item\relax}
285 {\endlist}

\newenvironment{quotation}
{\list{}{\listparindent 1.5em%

\itemindent \listparindent
\rightmargin \leftmargin

290 \parsep \z@ \@plus\p@}%
\item\relax}

{\endlist}
\newenvironment{quote}

{\list{}{\rightmargin\leftmargin}%
295 \item\relax}

{\endlist}
\newenvironment{titlepage}

{\newpage
\thispagestyle{empty}%

300 \setcounter{page}\@ne}%
{\newpage\setcounter{page}\@ne}

\newcommand\appendix{\par
\setcounter{chapter}{0}%

305 \setcounter{section}{0}%
\gdef\@chapapp{\appendixname}%
\gdef\thechapter{\@Alph\c@chapter}
\@appendixtrue

}
310 \setlength\arraycolsep{5\p@}

\setlength\tabcolsep{6\p@}
\setlength\arrayrulewidth{.4\p@}
\setlength\doublerulesep{2\p@}
\setlength\tabbingsep{\labelsep}

315 \skip\@mpfootins = \skip\footins
\setlength\fboxsep{3\p@}
\setlength\fboxrule{.4\p@}
\@addtoreset {equation}{chapter}
\renewcommand\theequation

320 {\ifnum \c@chapter>\z@ \thechapter.\fi \@arabic\c@equation}
\newcounter{figure}[chapter]
\renewcommand \thefigure

{\ifnum \c@chapter>\z@ \thechapter.\fi \@arabic\c@figure}
\def\fps@figure{tbp}

325 \def\ftype@figure{1}
\def\ext@figure{lof}
\def\fnum@figure{\figurename\nobreakspace\thefigure}
\newenvironment{figure}

{\@float{figure}}
330 {\end@float}

\newenvironment{figure*}
{\@dblfloat{figure}}
{\end@dblfloat}

\newcounter{table}[chapter]

65

LATEX Class For WPI Reports APPENDIX A: CODE

335 \renewcommand \thetable
{\ifnum \c@chapter>\z@ \thechapter.\fi \@arabic\c@table}

\def\fps@table{tbp}
\def\ftype@table{2}
\def\ext@table{lot}

340 \def\fnum@table{\tablename\nobreakspace\thetable}
\newenvironment{table}

{\@float{table}}
{\end@float}

\newenvironment{table*}
345 {\@dblfloat{table}}

{\end@dblfloat}
\newlength\abovecaptionskip
\newlength\belowcaptionskip
\setlength\abovecaptionskip{10\p@}

350 \setlength\belowcaptionskip{0\p@}
\long\def\@makecaption#1#2{%

\vskip\abovecaptionskip
\sbox\@tempboxa{#1: #2}%
\ifdim \wd\@tempboxa >\hsize

355 #1: #2\par
\else

\global \@minipagefalse
\hb@xt@\hsize{\hfil\box\@tempboxa\hfil}%

\fi
360 \vskip\belowcaptionskip}

\DeclareOldFontCommand{\rm}{\normalfont\rmfamily}{\mathrm}
\DeclareOldFontCommand{\sf}{\normalfont\sffamily}{\mathsf}
\DeclareOldFontCommand{\tt}{\normalfont\ttfamily}{\mathtt}
\DeclareOldFontCommand{\bf}{\normalfont\bfseries}{\mathbf}

365 \DeclareOldFontCommand{\it}{\normalfont\itshape}{\mathit}
\DeclareOldFontCommand{\sl}{\normalfont\slshape}{\@nomath\sl}
\DeclareOldFontCommand{\sc}{\normalfont\scshape}{\@nomath\sc}
\DeclareRobustCommand*\cal{\@fontswitch\relax\mathcal}
\DeclareRobustCommand*\mit{\@fontswitch\relax\mathnormal}

370 \newcommand\@pnumwidth{1.55em}
\newcommand\@tocrmarg{2.55em}
\newcommand\@dotsep{4.5}
\setcounter{tocdepth}{2}
\newcommand\tableofcontents{%

375 \chapter*{\contentsname
\@mkboth{%

\MakeUppercase\contentsname}{}}%
\@starttoc{toc}%
}

380 \newcommand*\l@chapter[2]{%
\ifnum \c@tocdepth >\m@ne

\addpenalty{-\@highpenalty}%
\vskip 1.0em \@plus\p@
\setlength\@tempdima{1.5em}%

385 \begingroup
\parindent \z@ \rightskip \@pnumwidth
\parfillskip -\@pnumwidth
\leavevmode \bfseries
\advance\leftskip\@tempdima

390 \hskip -\leftskip
#1\nobreak\hfil \nobreak\hb@xt@\@pnumwidth{\hss #2}\par
\penalty\@highpenalty

\endgroup
\fi}

395 \newcommand*\l@section{\@dottedtocline{1}{1.5em}{2.3em}}
\newcommand*\l@subsection{\@dottedtocline{2}{3.8em}{3.2em}}
\newcommand*\l@subsubsection{\@dottedtocline{3}{7.0em}{4.1em}}
\newcommand\listoffigures{%

\@magictoctrue
400 \chapter*{\listfigurename}

\@magictocfalse
\@mkboth{\MakeUppercase\listfigurename}%

66

LATEX Class For WPI Reports APPENDIX A: CODE

{}%
\@starttoc{lof}%

405 }
\newcommand*\l@figure{\@dottedtocline{1}{1.5em}{2.3em}}
\newcommand\listoftables{%

\@magictoctrue
\chapter*{\listtablename}

410 \@magictocfalse
\@mkboth{%

\MakeUppercase\listtablename}%
{}%

\@starttoc{lot}%
415 }

\let\l@table\l@figure
\newdimen\bibindent
\setlength\bibindent{1.5em}
\newenvironment{thebibliography}[1]

420 {\@magictoctrue
\chapter*{\bibname}%
\@magictocfalse
\@mkboth{\MakeUppercase\bibname}{}%
\list{\@biblabel{\@arabic\c@enumiv}}%

425 {\settowidth\labelwidth{\@biblabel{#1}}%
\leftmargin\labelwidth
\advance\leftmargin\labelsep
\@openbib@code
\usecounter{enumiv}%

430 \let\p@enumiv\@empty
\renewcommand\theenumiv{\@arabic\c@enumiv}}%

\sloppy
\clubpenalty4000
\@clubpenalty \clubpenalty

435 \widowpenalty4000%
\sfcode‘\.\@m}

{\def\@noitemerr
{\@latex@warning{Empty ‘thebibliography’ environment}}%

\endlist}
440 \newcommand\newblock{\hskip .11em\@plus.33em\@minus.07em}

\let\@openbib@code\@empty

\AtBeginDocument{%
\def\MakeUppercase{}

445 \let\@OldBibEnd\endthebibliography
\renewcommand{\endthebibliography}{%

\@OldBibEnd
\addcontentsline{toc}{chapter}{\textsc{\bibname}}}%

\renewcommand\chaptermark[1]{%
450 \markboth{%

\if@appendix%
\@chapapp\ \thechapter:\space\space#1

\else
#1

455 \fi
}{}

}%
\renewcommand\sectionmark[1]{%

\markright{#1}
460 }%

\let\@OldMkBoth\@mkboth
\def\@mkboth#1#2{%

\ifthenelse{\equal{#1}{#2}}%
{\@OldMkBoth{#1}{}}%

465 {\@OldMkBoth{#1}{#2}}%
}%

}

\newenvironment{theindex}
470 {

67

LATEX Class For WPI Reports APPENDIX A: CODE

\@makeschapterhead{\indexname}
\@mkboth{\MakeUppercase\indexname}%

{}%
\thispagestyle{plain}\parindent\z@

475 \parskip\z@ \@plus .3\p@\relax
\columnseprule \z@
\columnsep 35\p@
\let\item\@idxitem}

{\clearpage}
480 \newcommand\@idxitem{\par\hangindent 40\p@}

\newcommand\subitem{\@idxitem \hspace*{20\p@}}
\newcommand\subsubitem{\@idxitem \hspace*{30\p@}}
\newcommand\indexspace{\par \vskip 10\p@ \@plus5\p@ \@minus3\p@\relax}
\renewcommand\footnoterule{%

485 \kern-3\p@
\hrule\@width.4\columnwidth
\kern2.6\p@}

\@addtoreset{footnote}{chapter}
\newcommand\@makefntext[1]{%

490 \parindent 1em%
\noindent
\hb@xt@1.8em{\hss\@makefnmark}#1}

\newcommand\contentsname{Contents}
\newcommand\listfigurename{List of Figures}

495 \newcommand\listtablename{List of Tables}
\newcommand\bibname{Bibliography}
\newcommand\indexname{Index}
\newcommand\figurename{Figure}
\newcommand\tablename{Table}

500 \newcommand\chaptername{Chapter}
\newcommand\appendixname{Appendix}
\newcommand\abstractname{Abstract}
\def\today{\ifcase\month\or

January\or February\or March\or April\or May\or June\or
505 July\or August\or September\or October\or November\or December\fi

\space\number\day, \number\year}
\setlength\columnsep{10\p@}
\setlength\columnseprule{0\p@}
\pagestyle{plain}

510 \pagenumbering{arabic}

\RequirePackage{listings}
\RequirePackage{url}

515 % Code listing setup
\lstset{numbers=left,numberstyle=\tiny,tabsize=4,

basicstyle=\scriptsize\ttfamily,frame=L,breaklines=true,stepnumber=5,firstnumber
=0}

\def\@codedir{}
520 \newcommand{\codedir}[1]{%

\gdef\@codedir{#1}
}
\def\thecodedir{\@codedir}

525 % \code[path]{filename}{Title}
\newcommand{\code}[3][\@codedir]{{%

\ifthenelse{\equal{#1}{}}{\def\@path{#2}}{\def\@path{#1/#2}}
\singlespacing
\setcounter{secnumdepth}{-1}%

530 \section{#3}%
\urldef\@EvilHack\path{#2}%
\lstinputlisting[label=code:#2,caption=\@EvilHack]{\@path}%
\newpage
\setcounter{secnumdepth}{2}%

535 \doublespacing
}}

68

LATEX Class For WPI Reports APPENDIX A: CODE

\RequirePackage{calc}

540 \def\@maxwidth{1}
\def\maxwidth#1{\def\@maxwidth{#1}}

\def\picwidth{%
\ifdim\Gin@nat@width>\@maxwidth\linewidth

545 \@maxwidth\linewidth
\else

\Gin@nat@width
\fi

}
550

\def\@figdir{}
\newcommand{\figdir}[1]{%

\gdef\@figdir{#1}%
}

555 \def\thefigdir{\@figdir}

\newcommand{\fig}[3][\@figdir]{{%
\ifthenelse{\equal{#1}{}}{\def\@path{#2}}{\def\@path{#1/#2}}
\begin{figure}[htbp]%

560 \centering
\includegraphics[width=\picwidth]{\@path}%
\caption{#3}
\label{fig:#2}

\end{figure}%
565 }}

\newcommand{\figh}[3][\@figdir]{{%
\ifthenelse{\equal{#1}{}}{\def\@path{#2}}{\def\@path{#1/#2}}
\begin{figure}[H]%

570 \centering
\includegraphics[width=\picwidth]{\@path}%
\caption{#3}
\label{fig:#2}

\end{figure}%
575 }}

\RequirePackage{subfigure}

\newcommand{\subfig}[3][0.5in]{%
580 \let\OldFig\fig

\begin{figure}%
\def\gap{\hspace{#1}}%
\centering
\def\fig##1##2{%

585 \subfigure[##2]{%
\label{fig:##1}%
\includegraphics[width=\picwidth]{\thefigdir/##1}%

}%
\gap

590 }%
\def\tab##1##2##3{%

\subtable[##2]{%
##3%
\label{tab:##1}%

595 }%
\gap

}%
\def\endsubfig{%

\caption{#2}%
600 \ifthenelse{\equal{#3}{}}{}{\label{fig:#3}}%

\let\fig\OldFig
\end{figure}%

}%
}

605

69

LATEX Class For WPI Reports APPENDIX A: CODE

\raggedbottom
\onecolumn
\doublespacing
\endinput

610
% vim: set ft=tex:

70

APPENDIX B: DEMOGRAPHIC

QUESTIONS

Our project is to create an entertaining and educational virtual tour of the Worcester

campus of Worcester Polytechnic Institute. The following survey will ask a variety of

questions based on activities you can perform in the game.

E-mail:

What age range best describes you?

1. Under 16

2. 14 - 18

3. 19 - 22

4. Over 22

Are you a current or previous student of Worcester Polytechnic Institute?

1. Yes

2. No

Have you ever visited WPI?

1. Yes

2. No

If yes, did you take part in a tour of the campus?

1. Yes

2. No

71

APPENDIX C: SURVEY

From the start, how would you get from Reunion Plaza to the campus center?

1. Turn right and follow the path to the end and then turn right

2. Go straight until the path ends, turn left and go straight until the end of the path

3. Turn left and enter the Campus center

4. Don’t know

Inside of Fuller Labs you can find the Dept.

1. Electrical and Computer Engineering

2. Biology

3. Computer Science

4. Don’t know

Salisbury Labs is directly located between Boynton Hall and Atwater Kent?

1. True

2. False

3. Don’t know

How would you get from Morgan Hall to Harrington Auditorium?

1. Turn left and follow the path until it goes into Harrington

2. Follow the path straight, after the turn in the path turn left

3. Turn right, follow the path and then turn left

4. Don’t know

The Birch Tree is between and .

1. Atwater Kent, Goddard Labs

2. Higgins Labs, Alden Memorial

3. Morgan Hall, Daniels Hall

72

APPENDIX C: SURVEY

4. Don’t know

Alumni Gym is next to Stratton Hall?

1. True

2. False

3. Don’t know

How would you get from Olin Hall to Salisbury Labs?

1. Go straight until you enter Salisbury

2. Turn left, follow path to the end turn right and follow path until the end

3. Turn around and enter building

4. Don’t know

The Music Dept. is in .

1. Bartlet Center

2. Riley Hall

3. Alden Memorial

4. Don’t know

Boynton Hall currently holds the administration?

1. True

2. False

3. Don’t know

Daniels Hall is connected to .

1. Morgan Hall

2. Riley Hall

3. Olin Hall

4. Don’t know

73

	List of Figures
	List of Tables
	Introduction
	Related Work
	Presence
	Usability

	Methodology
	Engine Selection
	Requirements
	Possible Engine Choices

	Making Slides
	Building Game
	game.dtd
	xml2py.pl
	path-to-xml.pl
	path-to-graph.pl

	User Survey

	Analysis
	Demographics
	Results

	Conclusion
	Future Work
	Bibliography
	Appendix Code
	Sample XML data file describing a game
	Main engine code
	Main header
	Rules to build the engine for Windows or Linux
	XML manipulation library
	XML manipulation header
	DTD describing a format to define a game
	Script to draw a directed graph of all paths
	Script to convert Excel-format graphs into XML
	Script to convert XML to Pyzzle's input format
	LaTeX Class For WPI Reports

	Appendix Demographic Questions
	Appendix Survey

