
360 Gunner - A 2D platformer
to evaluate network latency

compensation

A Master Thesis Report
Submitted to the faculty of

Worcester Polytechnic Institute
In partial fulfillment of the requirements for the

Degree of Masters
in

Interactive Media and Game Development
By:

Thanh Long X. Vu

Date:
December 6th 2019

Thesis Advisor:

Professor Mark Claypool

Thesis readers:

Professor Charles Roberts

Professor Ralph Sutter

1

Abstract

Online gaming is rapidly growing as an entertainment choice, as it provides players with

a high variety in genres, affordability, ubiquity and also real-time online interactions.

However, slow networks or congestion can cause perceivable network latency and

make players suffer from a degraded gameplay experience. Latency compensation

techniques have been developed to combat the negative effects of network latency, but

more understanding of latencies affects and latency compensations benefits are still

needed. Our project studied the degradation of different game actions with latency and

how player prediction - a classic latency compensation technique - affects gameplay in

a 2D platformer. We designed and implemented an original 2D platformer with player

prediction implemented for player movement actions, then invited players to play our

game under different network and latency compensation conditions. Based on the

subjective and objective data collected, we found that 2D platformers are sensitive to

even modest amounts of network latency. Player prediction helped players have fewer

deaths below 200ms of latency, but at 400ms and above its benefits were outweighed

by its disadvantages to visual consistency.

2

TABLE OF CONTENTS
1. Introduction 4

2. Background & Related work 7
2.1. The Dragonfly engine 7
2.2. Latency 8
2.3. Latency compensation techniques 10
2.4. Related work 11

3. Methodology 14
3.1. The game: Game design & Features 14
3.2. The game: implementation 17
3.3. Experiment Design 25

4. Study results 29
4.1 Player demographics 29
4.2 Subjective results 32
4.3 Objective results 34

5. Conclusions 38

6. Future work 39

7. References 40

3

1. Introduction

In recent years, online games have become one of the most popular entertainment

applications in the world. Innovations in Internet technology and smartphones continue to fuel

the accessibility of online gaming. By the end of 2017, gamers spent on average 6.5 hours per

week playing with others online and only 4.5 hours per week playing with others in person [1].

By 2020, the number of online console gamers in the United States is expected to grow to

over 57 million, and the worldwide market for PC online games alone is predicted to reach a

value of around 44.2 billion U.S. dollars [2].

More players are opting for online gaming as an entertainment choice because of its

variety in genre, affordability, ubiquity, and also the opportunity for real-time interactions with

other players around the world. While playing online games, players are not only satisfying their

entertainment or serious purposes, but are also immersed in a virtual society. They can be

having fun with friends who live far away or interacting with new people who they would hardly

have a chance to talk to in real life. This real-time interaction between players despite

geographical distance is an important feature of online gaming that has brought about its

deserved attention [3].

Real-time player interaction in online games is achieved by two main types of game

architectures: client-server architectures and peer-to-peer architectures [4]. In a client-server

architecture, game data from players are centralized in the server, while in the peer-to-peer

architecture every game controls its own state, sends data to and receives data from all other

peers. Online game architectures can also be characterized as authoritative or

non-authoritative. Authoritative means the server has the “master” copy of the game, and any

actions by the players need to be received and authorized by the server. Non-authoritative

means game clients are responsible for some parts of the game logic. The most popular online

game architecture is authoritative server-client, which is used in well-known games such as

Counter-Strike: Global Offensive (Valve Corporation, 2012) or Overwatch (Blizzard

Entertainment, 2016) since it limits the ability of players to cheat, because only the server can

make decisions on game-critical player actions. More specifically, this architecture makes use of

4

a single authoritative server to support the main logic inside the game. Every client connected to

the server periodically receives data, then locally creates a representation of the game state.

Through the network connection, the server executes the input commands received from the

clients, applies the input and updates the game world, then sends back to the client any

changes to game objects [5].

The authoritative client - server architecture provides benefits to online games, but there

are also intrinsic challenges that must be overcome. When players take actions inside the game

- for example moving an avatar - network messages containing the critical information about

these actions take time to arrive at the game servers. The game servers then take time to

process these messages and send back update messages to the clients. In a similar fashion,

these update messages arrive back at the game clients after a round-trip delay. Under good

network conditions, the total round-trip time is small enough that it is not noticeable for players.

However, sometimes the connection between game clients and game servers is slow enough

that the delay becomes perceivable. As a result, the game feels unresponsive, leading to

disruptive gaming sessions or even the sense of real-time interactions between players being

lost. In general, the pace of the game and the frequency of user actions largely determine how

sensitive a game is to network latency.

There are known solutions to mitigate the effects of latency, which are called latency

compensation techniques [5]. One example of these techniques is player prediction, where

player actions are sent to the server and performed on the clients at the same time. This

technique makes player actions feel immediately responsive, but can lead to inconsistencies

that need to be fixed up later because the same player action might be resolved differently on

the server and the player’s client. In general, latency compensation techniques can help game

systems ameliorate the negative effects of network latency by reducing perceived latency or

making the game fair for players who have higher network latencies.

Many studies are being done on traditional latency compensation techniques, their

effects in certain situations and also their improved versions. Newer techniques are also being

developed in the everlasting battle with network latency. However, the effectiveness of latency

compensation techniques covering the wide range of game types and game actions is still not

fully understood. For game designers and developers to deliver the best Quality of Experience

5

(QoE) to players, more understanding is needed of how different latency compensation

techniques can be used effectively for all types of games and all types of actions inside a game.

This project studies how different amounts of lags affect players with different types of

game actions in a 2D platformer game, and the impact of the player prediction latency

compensation technique on player performance and QoE under such conditions. I first designed

and implemented an original 2D platform Contra-like game with a classic authoritative

server-client networking architecture. I then implemented player prediction where the client

predicts the result of player actions before contacting the authoritative server. After that, I

conducted a user study of player experiences under different amounts of network latency, with

and without the latency compensation technique. In each case, I measured the players’

objective performance and asked them for their subjective opinions with short survey questions.

Results from analysis of 17 players shows that, on a range of network latencies from 0

ms to 800ms, when the latency compensation technique is enabled, players feel an increased

responsiveness and generally improved gameplay experiences. However, player performance

does not differ much from when the latency compensation is disabled since the latency

compensation does not affect the game logic on the server side. Overall, 400ms of latency is

the approximate threshold where the benefits of latency compensation starts to be outweighed

by its disadvantages.

The remaining chapters of this thesis are organized as follow: Chapter 2 provides

background concepts and related works; Chapter 3 describes my methodology in designing and

implementing the game and also the latency compensation technique; Chapter 4 describes the

user study and analyzes the collected results; Chapter 5 summarizes the conclusions and

mentions possible future works.

6

 2. Background & Related work

This section provides background and related works, including the Dragonfly engine, the

concept of latency, latency compensation techniques, and previous research done on latency in

games.

2.1. The Dragonfly engine
Dragonfly is a text-based game engine designed to teach students how to make a game

engine as part of a university class [6]. Dragonfly uses the Simple and Fast Multimedia Library 1

(SFML) as its graphics engine to draw game objects and interfaces on the screen, as well as

loading and playing music and sound effects. Although Dragonfly only supports ASCII graphics

and is single-threaded, it fully supports the core functionalities of complete games such as sprite

rendering and animations, collision detection, game world hierarchy, message logging or

custom scripting.

We used a networked version of Dragonfly for the implementation of our program. In this

version, Dragonfly had been extended to make use of TCP sockets to support client-server

communication, including setting up network nodes as either servers or clients, marshalling and

unmarshalling basic game object data and transmitting information between network nodes.

The art sprites used in Dragonfly games are made up of ASCII symbols rather than

individually colored pixels, which makes the art pipeline different from what most game artists

are used to. Most game artists use industry standard 3D software such as Zbrush, Maya, and

Blender to make 3D objects for game assets, drawing software like Photoshop or Illustrator to

make 2D game assets. Dragonfly, on the other hand, only supports sprite sheets in text files

containing ASCII symbols with a very specific format which is shown in Figure 1. The header

includes the number of frames in the sprite and its size and color. The body of the file include

the frames with an “end” line after each frame. The footer is an “eof” line after all the frames are

listed.

1 https://www.sfml-dev.org/

7

Figure 1. Example Dragonfly sprite

2.2. Latency
In online games, there are two sources of latency that could potentially have negative

impacts on gameplay: local latency and network latency.

The first source, local latency, is comprised of latency from the local computer [7]. A

small amount of local latency (4-8 milliseconds) comes from the polling of user input from input

devices. Different kinds of monitors have different refresh rates and can add up to 66

milliseconds to the local latency. Additionally, a large portion of local latency comes from the

processing delays of the game software and local graphics rendering, known in general as

graphic latency [8]. In most cases, graphic latency comes from the CPU (central processing

unit) and GPU (graphics processing unit). The game screen rapidly displays static images called

frames, measured in frames per second (fps). Generally, the higher the frame rate, the

smoother the picture is and the smoother the game plays. In contrast, if the frame rate is low -

for example when the game software is taking too long for its calculations - the picture feedback

appears as inconsistent or jittery animations, known as graphics lag. However, this is not the

kind of latency that this thesis studies about.

The second source is network latency, which is caused by network connections between

game servers and clients and often referred to as “ping” by gamers. In computer networking,

latency is the time it takes for information to travel from a source computer to the server and

back to the source computer [9]. This latency mainly comes from 3 sources, all of which add

cumulatively to the total network latency experienced. The first source is propagation delay,

8

caused by the physical distance between the client and the server. The speed of light is the

upper bound of how fast data can be transmitted through a particular medium. This puts a lower

bound on latency between points on the Internet based on how far they are geographically.

When this distance spans thousands of kilometers, the propagation delay can become

noticeable. The second source is serialisation delay, which is the time taken to transmit an IP

packet one bit at a time. This delay mostly depends on the speed of each network link (in bits

per second), which is sometimes imposed on the connection by the Internet provider, and the

length of the packet. The third source is queueing delay. When multiple packets arrive at the

same router faster than it can process and transmit, they will be queued up and transmitted one

after another. The queuing delay that a packet in the queue experiences comes from the

serialisation delays of all the packets ahead of it in the queue.

When these delays add up to a value large enough, players are aware of the time

difference between when commands are made and when the game responds. As a result, high

network delay in games make the game feel unresponsive and can result in game objects being

teleported or out of control. In multiple game genres where timing is crucial such as First Person

Shooter (FPS), racing games or rhythm games, high network latency greatly degrades the

gameplay experience because player actions are slowed down by this delay time. The game

can even become unfair when players who have different amounts of latencies play together.

For example, consider two players working together to defeat a level, one with really high

network latency and the other without. After the level is completed, the server spawns some

rewards for them to loot. The player with low latency will receive the update from the server first

and will be able to net on the dropped loot faster. In general, high network latency causes online

gaming to be less enjoyable.

In online games, the effect of latency depends upon each game action’s precision and

deadline [10]. Precision means the accuracy required for the players to complete the action

successfully. For example, players need to be accurate if they want to shoot an opponent who is

far away. Deadline means the amount of time players can have to achieve the final outcome of

the action. For example, in a rhythm game, because songs with a slower tempo give players

more time to press the required sequences of buttons, player actions have looser deadline than

in faster songs. In general, even the smallest amount of latency can affect game actions that

require high precision or have tight deadlines, while having little effect on game actions with low

9

precision and loose deadlines. A part of my study was to learn about how network delay affects

different types of game actions in the chosen game genre.

2.3. Latency compensation techniques
Latency compensation techniques are methods for games to mitigate latency to reduce

the effects of latency from the player’s perspective. Two commonly used latency compensation

techniques are player/opponent prediction and time manipulation techniques.

With player prediction, the client takes the user input, tries to predict the server’s

response to that input and renders the player actions immediately. After the client receives the

authoritative response from the server, it fixes up any inconsistency between the server state

and its predicted state. Player prediction can make the game appear immediately responsive

because the results of the player actions are shown before the client communicates with the

server. As a result, the game appears to be running with no network latency. On the other hand,

with opponent prediction, the client tries to predict units that are not controlled by the player but

by other players or the server. This approach works well when units in the game world are static

or have constant movement because the predicted states of the units will be computed and

used at each client without the client having to receive many state updates over the network.

However, when units move unpredictably, like in a chaotic first-person shooter game, there may

be a lot of inconsistencies between the clients’ predicted states of game units and their actual

states. As a result, the benefits of trying to predict other units’ locations diminish.

Time manipulation is an approach to account for the difference in latency among clients.

Messages from a client further away from the server take longer to arrive than those from a

client closer to the server, which leads to unfairness in gameplay. Time delay is one technique

of time manipulation. With time delay, the server delays client commands and/or world state

updates for the client closer to it, so that this client has the same latency with the client further

away from the server. A widely used time manipulation technique is time warp. With time warp,

when the server processes a message from a client it rolls back the game world to the time

when that message was sent and executes the message at that time. By using this technique,

the server can still execute commands that come from clients with a high latency at the time that

those commands were made in the game by the player.

10

Brun et al. (2006) described latency compensation techniques as "trading

inconsistencies" [11]. For example, player prediction reduced the perceived response time of

the program upon player input, but could lead to incorrect predictions resulting in these

predictions having to be revoked and seen by players as local roll-backs on their machines.

Time-warp let players aim their hit exactly at the opponents' positions being shown on their

computers without having to lead the target based on their network latency. The server would

resolve the hit correctly no matter how much latency the players had, but this process would

delay hit registrations perceived by players and can lead to “shots-around-corners” where the hit

confirmations from the server arrives at the clients of the hit victims after the victims have moved

behind walls where they cannot be hit. These inconsistency trade-offs are crucial to understand

for game developers and designers in order to deliver the best Quality of Experience (QoE) to

online game players.

2.4. Related work
Previous works have proven that not all types of traditional games are equally

latency-sensitive. In general, online games with the Avatar model – where players are

represented in the game world by a single character – are more sensitive to network latency

than those with the Omnipresent model – where players can interact with different aspects of

the game world simultaneously [10]. More specifically, games with a first-person perspective,

like racing games or first-person-shooters, are most susceptible to network latency. Games with

a third-person perspective like sports games or role-playing games can be more tolerant

towards network latencies up to 500 milliseconds. Games using the Omnipresent model such as

real time strategy games are the least latency-sensitive. Researchers have studied the impact

of network latency on the most popular genres like First Person Shooters (FPS) [13], Sports [14]

or Real-time Strategies (RTS) [15]. However, little work has been done on 2D platformers, which

also belong to the Avatar model and might suffer from even low amounts of network latency.

Our work attempts to clarify the effects of network latency on 2D platformers by studying how

player performance and QoE are affected in an original 2D platformer game under a range of

network latency.

Many methods are being discovered to deal with the problem of network latency in

traditional online games. Moller et al. (2019) showed that gamers could adapt to a constant

delay by predicting and performing actions earlier in games with predictable parameters, and

11

proposed a network resource allocation scheme that gives more priority to games that are more

difficult to adapt to [16]. Cooper et al. (2014) showed that a player’s lag can have negative

effects on the Quality of Experience (QoE) of other players within the cooperative group and

suggested the reduction of the latency of the most lagged player in the group to improve the

overall QoE for all players [17]. Dynamically adapting game parameters to network latency, such

as modifying object sizes [18] or changing the pace of the game [19], was experimented by Kim

et al. (2019) and Griwotz et al. (2018) and yielded promising results despite needing extensions

to more complex tasks and games. Chang and Lee (2018) proposed an improved version of

time-warp called Advanced Lag Compensation for multiplayer shooting games to greatly reduce

the number of shots around corners by giving the victim a chance to appeal to the hit upon

being shot at [20]. Graham and Savery proposed simplifying the expressions of latency

compensation algorithms by making time an integral part of the programming model with

timelines [21]. These timeline objects stored all past values and the time these values were

inserted and are synchronized between network nodes automatically, thus enabling

programmers to quickly access past states and predict future states. Although timelines

provided many benefits, they required the whole shared objects to be sent over the network,

therefore were not suitable for large data structures and needed more optimizations. All of these

new methods proved promising in compensating for latency in certain cases, but they left even

more space to fill in the gap of knowledge on how different latency compensation techniques

would affect different types of games and actions in games, and how players would benefit in

these situations. Our work puts player prediction - a classic latency compensation technique -

into our original 2D platformer to study how effective the technique is in the 2D platformer genre.

Recently, more efforts are being put into studying the effects of network latency in cloud

gaming. Cloud-based games keep the game content and computations on the server, enabling

users to have lightweight game clients that are mostly responsible for sending user input to the

servers, receiving and decoding graphical frames from the cloud. Chen et al. developed a model

to predict how cloud-gaming friendly a game is based on the game pace and the frequency of

user actions [22]. The work also showed that cloud-gaming latency affects different games in

different ways. Claypool and Finkel (2014) showed that latency affects cloud-based games very

similarly to traditional first-person avatar games, the most sensitive class of games [23]. Many

researchers are finding new ways to combat network latency in these sensitive games.

Bruzgiene et al. proposed a method surrounding equalizing the up and downlink delays in

12

real-time for all players to compensate for latency in cloud FPS games [24]. Chu et al.

developed Outatime, a system that mask up latency effects for more lightweight cloud games by

sending future possible frames to the clients ahead of time and quickly recovering from

mispredictions [25]. These efforts, while aiming at a newer generation of online games, provided

little help to traditional games, which accumulate to the majority of online games and game

players on the current market. Our work helps provide a better understanding of how network

latency affects an online 2D platformers with a classic authoritative server-client architecture.

13

3. Methodology

In order to evaluate the effects of network latency and the impact of the player prediction

latency compensation technique in a networked 2D platformer game, we built an original

platformer from scratch so that we could control all game actions and latency. We then invited

players from the university to play the game cooperatively as pairs.

3.1. The game: Game design & Features
To control all the actions in the game, we built our test game from scratch using the

Dragonfly game engine. Our primary inspiration was Contra (Konami, 1987), which is a

well-known classic platformer. We also looked at more modern 2D platform shooting games

such as Cuphead (Studio MDHR, 2017) and the Mega Man franchise (Capcom). These games

are designed so as to not lose the player’s interest even though all the levels were extremely

difficult to beat. Our design goal was to achieve the same balance between high difficulty and

satisfaction.

Our game features robot themed arts with ASCII graphics, as shown in Figure 2. Since

SFML - the multimedia engine used by Dragonfly - supports drawing both color filled pixels as

well as ASCII characters, we had the options of ASCII graphics, pixel graphics or some

combinations of the two. After some prototypes, we opted to go for ASCII graphics since it is

already supported by Dragonfly and graphics complexity is not central to our project. Due to the

limitations in computational capabilities of the engine, we chose a relatively low resolution of

180x70 characters to ensure that the program can run smoothly on campus machines. With this

resolution, it was much easier to achieve fine details with ASCII characters for hard-edged

objects than for soft objects. Therefore, it was natural to go for a robot themed game.

Figure 2 depicts a screenshot of our game. The player controls the avatar - the Hero - on

the left and move to the right to reach the end of the level. On the way, the player has to move

at an agile pace through platforms to avoid the enemies coming from the right and their bullets.

The player can use different kinds of weapons to kill the enemies in the level, including a Boss

at the end. Because the player can attack 360 degrees around the avatar, we call our game

“360 Gunner”, or 360 for short.

14

Figure 2. 360 Gunner screenshot

Our game features realistic shooting mechanics similar to those found in typical FPS

games, but in 2D. For example, an assault rifle can fire light and fast bullets at a very high rate,

but the recoil causes successive bullet spraying to have a continually decreasing accuracy. A

sniper can be very inaccurate within the reticle area while unscoped, but has perfect precision

while scope mode is on. Because we aim for a realistic feeling for the weapons, we choose

realistic sound effects to fit these attacking mechanics.

There are 3 types of weapons in our game: AK-47 - an assault rifle type weapon, AWP -

a sniper type weapon, and Grenade Launcher. Each weapon features different properties such

as damage, projectile speed, accuracy, fire rate, area of effect or recoil. The first type of

weapon, AK-47, represents a game action with medium level of deadline and precision. The

second type of weapon, AWP, represents a game action with tight deadline and high precision,

because the raycast is very small compared to the hit boxes of enemies. The third type of

weapon, Grenade Launcher, represents a game action with loose deadline and low precision,

because the projectile can cover a good area around its path. These weapon characteristics are

crucial to examine when evaluating the effects of latency, and are explained in more detail later

in our thesis.

15

Figure 3. Boss fight screenshot

There are two levels in the current offline version of the game: a tutorial level and one

playing level. In the tutorial level, players are guided to walk through the basic moving and

shooting mechanics of the game through text messages on the screen. The level is completed

when players have carried out all moving tasks and tried out all weapons. In the playing level,

players make progress forward through a relatively small map and fight off waves of enemies

before encountering a boss at the end of the level. Figure 3 depicts a scene in the boss fight

where the player is launching a grenade with the Grenade Launcher at the red-eyed boss and

the minions on the right. There are multiple levels of platforms for the player to use to avoid

taking damage. The game pace in this playing level was tuned so that players have to be agile

between platforms to attack and avoid getting hit at the same time. A fellow WPI student also

helped us by composing two background music tracks, which fit the fast-paced gameplay and

the retro aesthetics of the game very well for their funky feel and tempo. After the boss is

defeated, the level is completed.

The game has 2 versions: an offline and an online version. The offline version includes

the 2 levels as described above. The online version was used in our study of network latency

and latency compensation. It contains only the playing level and is playable with either 1 or 2

players. In the latter, two players can connect to the server and play together remotely. In this

case, the enemies health and damage are scaled up by 2 to keep the same level of difficulty.

16

3.2. The game: implementation
We started with an offline single-player version, then mitigated the whole program into

an online version where 2 players could join a game and play cooperatively. We then

implemented player prediction into the game as a functionality that can be toggled on and off by

the server. The entire implementation was done with the Dragonfly engine in Microsoft Visual

Studio using the C++ programming language.

The offline game includes several main components: the player character, the weapon

system, projectiles, bots and bot behaviors and the levels system.

The player character class, the Hero, keeps track of player stats like movement speed,

jump height or health. It also keeps track of all the weapons currently owned by the player.

Additionally, it’s responsible for receiving and processing user input, including moving, jumping

up and falling down from platforms, crouching, shooting, reloading, switching between weapons

and turning the sniper scope on and off. The class also carries out other game logic related to

the hero such as taking damage on collision with enemies or enemy bullets.

Figure 4. Weapon object constructor signature

To achieve a highly customizable weapons system and more realistic attacking

mechanics, the weapon class supports different weapon types with various properties as shown

in Figure 4. The fireRate variable determines how fast the weapon can fire successive bullets.

The ammoLoadedMax variable determines how many bullets a weapon can shoot before

needing to be reloaded, also known as the clip size. AmmoBackupMax is the amount of backup

ammo the weapon has. The bulletSpeed, affectedByGravity and bulletWeight variables together

determine the path of the projectiles after the bullets are fired from the weapon. RadiusOfEffect

decides whether the bullets will create an explosion on collision with targets, and how large the

explosion will be. ReloadDuration dictates how long it takes for the reload action to be

completed. All weapons operate under the same logic using these different parameters. After

the fire button is pressed, the active weapon is called upon to fire a projectile at the reticle

17

position. If the ammo clip is not empty, an actual target is then calculated based on the accuracy

of the weapon, then a projectile is created and launched from the weapon and the ammo count

decreased. After firing a bullet, each weapon slightly decreases in accuracy for different

degrees due to the weapon recoil and becomes stable again after a short time not firing any

bullets. Different types of weapons also have distinct behaviors. For example, the sniper allows

players to aim at enemies in scope mode, where the accuracy is absolutely true to the center of

the reticle.

The projectiles are created whenever a player fires a weapon or an enemy bot attacks.

Projectiles therefore have 2 types: HERO_BULLET or ENEMY_BULLET, and use the type to

deal damage to the right entity on collision. Since the size of each bullet is usually as small as

an ASCII character (unless it comes from a Grenade Launcher), there are cases where a bullet

moves too fast such that it goes through the target without the collision being detected. This is a

classic problem in game development that appears even in industry-standard engines. For

example, in Figure 5, a bullet (B) on the left is moving to the right and towards the target (T). At

the frame update right before B reaches T, B is at Position 1. If B is not moving too fast, a

collision is detected on the next frame update because B is at Position 2 and partly overlapping

with T. On the other hand, if B is moving too fast and ends up behind T on the next frame

update (Position 3), the collision is overlooked by the engine. There are multiple ways to solve

this problem such as decreasing the speed of the bullets or increasing the sizes of the bullets or

the enemies, but these solutions place restrictions on the game design. Therefore, we

implemented bullet trails as a simple solution. At every update, a bullet moves to the next

position and creates a trail between this position and the position on its last frame with

BulletTrail objects. These BulletTrail objects can be seen as little dots following the bullet

(Figure 6). In case the bullet moves too fast, like from Position 1 to Position 3 in our example,

BulletTrail objects will still collide with the target and inform the bullet to deal damage to the right

entity. BulletTrail objects also provide an interesting visual effect showing the movement of the

bullets.

18

Figure 5. Collision undetected problem

Figure 6. Bullet trails

Similar to weapons, enemies in 360 Gunner have multiple parameters such as health or

damage. Each bot’s behaviors are also determined by two properties: movement type and

attack type. Each state update, the bot’s EnemyMovement entity determines where the bot

moves to, and its EnemyAttack entity determines if it’s time to fire a bullet and where to attack.

In the current version of 360, enemy bots can chase the hero, fly up and down, fly straight

across the screen or fly in a sine wave path or a spring-like path. Bots can also attack the hero

by firing fast bullets or slow double bullets. These behaviors are adequate for one playing level,

and are easily extendable for further bot designs and implementations with the

EnemyMovement and EnemyAttack entities. In addition to minions, a boss is a special type of

enemy that needs to be defeated to get through a level. A boss has attached parts called

WeakPoints that take critical damage when hit. A WeakPoint has its own total health and is

destroyed when its health reaches 0 or the boss is defeated. For example, in the boss fight in

Figure 3, the red eyes of the boss can be hit for 5 times the regular damage of a bullet. This

allows for more interesting boss designs in the future.

19

The level system lets players select which level they want to play. After a level is

selected, it initializes its own landscape and spawns the hero at the starting point. The level

object keeps track of the hero’s progress throughout the level and spawns correct waves of

enemies accordingly. At the end of the level, the boss is spawned and the boss fight music is

played. When the level concludes, a “Game Over” or “Level Completed” message is displayed,

and all the game world objects are cleaned up.

Figure 7. Weapon and ammo display

20

Figure 8. AWP Scope mode Reticle

Besides the main game components, there are also visual elements implemented into

the game that are necessary for a shooting game. The Weapon and Ammo Display placed on

the bottom left of the game screen uses information collected from the hero object to display the

name of the current weapon activated and how much loaded and backup ammo the weapon

has left. Figure 7 depicts this visual element where the AK47 is being used with 28 loaded

bullets and 90 backup bullets. The Reticle has a custom look and also behaves differently for

each type of weapon. The size of the Reticle helps demonstrate weapon characteristics. It’s

slightly enlarged when bullets are fired and weapons become unstable, and is shrunk back to

normal when the weapon is not fired and becomes stable again. It also has a scope mode for

the AWP, when players can focus on a very small point on the screen. Like depicted in Figure 8,

when this scope mode is activated the player can only see what is currently inside the scope of

the gun. However, the target of the hit is the exact center of the scope view, and the damage

will be dealt instantly. Additionally, there are also multiple particle effects to make the game look

better, such as enemy deaths or grenade explosions.

After the single-player offline game was fully implemented, we brought it to a game

testing event on campus called AlphaFest. The game received attention from the public and

21

generated excitement throughout the whole event. Although the graphics style of the game was

not suitable for a portion of playtesters, many players described the game as “appropriately

frustrating” as it keeps them playing despite having many deaths back to back. We also

received constructive feedback from the players that we took into account when mitigating the

game into the online version. For example, most players did not like how hero jumping felt

because it was too quick and heavy, so we made the jumping action of the hero smoother and

lighter for a better game feel. Most players also felt like the Grenade Launcher was too difficult

to use, so we slightly increased the bullet speed and also implemented a path preview for the

projectile whenever the player is using this weapon.

We started implementing the online version of the game by using a client-server

architecture with a thin client. The client’s only main duty is polling for mouse and keyboard

input from the players and sending it to the server through network messages. The server, on

the other hand, is responsible for handling user input, performing game logic such as spawning

enemies, handling events like collisions, updating all game objects and sending back to clients

all necessary changes to the game world every frame. Because two players can play

cooperatively in the online version, there are potentially two identical heroes in the game world.

This requires parts of the existing logic to be changed because certain subsystems in the

single-player version, such as the reticle or the Ammo display (Figure 7), rely on the assumption

that there is only 1 hero in the world, e.g. looking up the list of hero objects in the game world

and selecting the first one in the list. Since in Dragonfly, all objects have unique object ID

numbers unless enforced otherwise by the programmer, we used 20 and 40 to be the ID’s of the

hero objects, and the ID’s for other objects start at 100. The first client who connects to the

server uses 20 as their hero ID, and the second 40. Everytime a client connects to the server,

the server checks if the client is player 1 or player 2, and sends a message to the newly

connected client containing its hero ID number. With this information, the clients can display

game elements correctly, apply synchronize messages from the server to their corresponding

heroes and set the game view to follow the right hero. In addition to engine-specific information

like an object’s position or acceleration, certain functionalities on the screen, such as the Ammo

display or a hero’s health bar, also require the server and clients to exchange object

synchronization messages containing implementation-specific information, such as the hero’s

hit points or the remaining ammo of the weapons a hero has. This is achieved by overriding the

default marshalling method of the necessary object classes on the server to create network

22

messages containing extra information, and overriding the default unmarshalling method of the

same classes to read this extra information on the clients.

After mitigating the single-player game to the client-server architecture, two players can

connect to a previously started up server through a simple command line specifying the IP

address of the server’s computer and play the game. When a client connects, they are

immediately moved into the game world of the playing level. Their keyboard and mouse input

are received by the game client and sent to the server for processing. At the server, these

inputs are translated to the correct game action (moving the hero, firing the gun, etc.). Any

updates to any objects (new positions or movements, new objects created, objects destroyed)

are then sent back to the client. The client receives these updates and applies the received

information to the correct game objects using the aforementioned object ID. This chain of

actions repeats until the boss is killed.

To mitigate the effects of latency, we implemented player prediction for player

movement, which included moving forward and backward, crouching, jumping and dropping

down from a platform. The goal was to make the movement of the hero seem smooth and

responsive even when there is network latency involved. When player prediction is enabled, in

addition to sending player’s keyboard input to the server, game clients also forward this input to

their main hero object to execute. Therefore, movement code is executed similarly on the server

and the clients. This also requires clients to be able to handle collision events between the

heroes and platforms, a responsibility previously performed only on the server. This is because

when heroes land on platforms on the client side, the clients should not have to wait for the

server to send back important information such as the heroes’ new velocity or their ability to

jump being reset. Additionally, there is potentially no need for frequent update messages to be

sent from the server for player movement, because the movement code is always executed

similarly on the server and the clients. Therefore, the server, after receiving movement

commands and executing the necessary code, can clear the update flags for the newly updated

attributes of the heroes, such as position, velocity or acceleration, so that these attributes are

not included in the network messages distributed to the clients later on. However, this only

works if there is only one client connected to the server. For example, assume two players are

playing at the same time. Player 1 issues a movement command and the code is executed on

player 1’s game client. The command is also sent to the server and executed on the server

23

similarly. If the server now clears the update flags and does not notify the clients about what

happened to player 1’s hero, the changes will not appear on player 2’s client. Therefore, player

2 will have an incorrect representation of the game world. For this reason, we decide to send

hero update messages whenever changes happen to the heroes on the server, and let the

clients decide on their own when to use these update messages.

These hero-related update messages are used in several ways when received by a

client. A client applies updates of the hero of the other client as soon as these updates are

received, so that it has the closest representation of the game world to that on the server. On

the other hand, when a client receives updates of its main hero, it does not apply the

movement-related information in the message, because these changes are already present in

the client since the movement code is already executed beforehand. Instead, the client uses this

information only in cases where inconsistencies happen to fix up the hero’s position, such as

when the position of the hero on the client is too far away (55 spaces or more) from the position

received from the server. Fix-ups also happen when the main hero takes damage from any

source. In these instances, if the hero is not within a certain distance (more than 28 vertical

spaces or 54 horizontal spaces) from the place where the damage happened, it’s also snapped

back to the position received from the server. We experimented with gradually fixing up the

hero’s position over time - moving the hero somewhere between its current position and the

correct position every frame so that it keeps getting closer to the correct position. However, we

found out through these experiments that the method does not work well for the genre because

there are cases where the position of the hero is incorrect on the vertical axis. If the hero is on a

platform and a positional fix-up containing a vertical component needs to be done, he will be

placed somewhere below the platform and start falling down, which produces jittery effects.

Therefore, snapping the hero to the fix-up position is selected for simplicity.

Besides hero movements, weapon switching is also similarly predicted on the client for a

constant responsiveness with the movements. When the player hits the switch weapon button,

the command is executed on the client and sent to the server for execution at the same time.

After the hero on the server switches to the next weapon, the server sends back a

synchronization message to the client confirming the hero’s active weapon. If for some reason

this active weapon is different from the active weapon on the client, the weapon will be changed

to the correct one.

24

There are also other elements that are not synchronized between the clients and the

server. For example, the Ammo Display and the Reticle, as described above, are only present

on the clients and do not exist on the server. These elements use information acquired from the

main hero of their clients to function properly. Additionally, particle effects are used when game

elements on the clients receive meaningful updates from the server. For example, when an

enemy object on the client receives a message from the server stating that it has been

destroyed, it then triggers the enemy death visual effect. When a weapon receives an update

from the server that its bullet count has decreased by 1, it triggers the firing particle effects. Not

synchronizing these elements helps reduce network data as much as possible.

We also look to further reduce the network traffic between the server and the clients

since our game has potentially many objects to synchronize. For example, when the player is

spraying bullets from the AK47 at a wave of enemies, there are many bullets and bullet trail

objects coming from both sides being synchronized over the network at the same time. This

causes problems when the game world is too crowded because the engine is not provided

enough frame time to handle network messages. The unhandled updates are then delayed until

further frames, causing objects not receiving updates to appear frozen on the screen. To reduce

network traffic, we stop the synchronizing of bullet trail objects, which account for a large part of

all game objects in the world. Instead, each bullet on the client, after receiving updates from the

server about its new position in the game world, creates bullet trail objects between its last

position and this new position, the same way bullet trail objects are created on the server.

However, bullet trails only generate collision events on the server. This way, both the

functionality and the visual effect are preserved without taking up lots of network traffic. We also

give all bullet trail objects the same object ID of 0 to maintain a consistent object ID assignment

scheme for new game objects when they are created.

3.3. Experiment Design
The experiment is designed to answer these research questions:

(1) How does player prediction for movement change the players’ gameplay experience

under different network conditions?

25

The prediction of movement on the client should make the game feel more responsive

even when there’s a high amount of network latency, because player input is performed

immediately on the screen. However, there is a tradeoff between responsiveness and

consistency. Therefore, we want to assess whether player prediction helps make

players’ gaming experience better. Additionally, we want to study the latency threshold

where the visual inconsistencies outweighs the benefits of player prediction.

(2) How are different types of game actions affected by different amounts of network

latencies?

Not all game actions inside the game are equally affected by network latencies.

Therefore, we want to study the characterization of the implemented types of weapons in

terms of precision and deadline, and the degradation of different types of weapons as

the amount of network latency increases. Generally, a game action with higher precision

and tighter deadline will be more severely affected by the increase in latency. We want

to assess whether this hypothesis is true in our case.

(3) Does player prediction for movement help improve player performance?

Player prediction makes movement feel more responsive, but introduces more visual

inconsistencies to the screen. Furthermore, the logic on the server side stays the same

whether player prediction is on or off. Therefore, we want to assess whether player

performance separates much in both cases.

We used Clumsy ((https://jagt.github.io/clumsy/) on the server machine to inject

symmetrical network latency to the connection between the server and the clients. There are 5

values of latency added: 0ms, 100ms, 200ms, 400ms and 800ms. The latency is symmetrical,

meaning packets take an equal amount of time to travel from the server to the clients and from

the clients to the server. This is simulated with Clumsy by giving both the inbound and outbound

delay on the server machine the value of half the total latency wanted. This also gives all the

clients connected to the server at the same time the same amount of lag. Each latency value

was also used twice in playthroughs, once with no player prediction and once with player

prediction turned on. Therefore, there were 10 playthroughs in total for players to play. Each

playthrough had a 2-minute timer, so the level would end when the timer is up or the boss is

killed. The values of network latency and player prediction were also shuffled to avoid players

getting used to the delay in gameplay.

26

https://jagt.github.io/clumsy/

We created two surveys with Google Forms to collect data from the players. The first

survey is used to collect player background information. This survey asks the players for their

age and gender, how many hours they spend each week playing games and the genres of

games they are most familiar with. The second survey is used to collect subjective data from

players after each of the playthroughs of the game. It asks the player to rate, from 1 (low) to 5

(high), how much lag they experience, how responsive the game is, how many visual glitches

they see, how much lag affects their gameplay, how challenging the level is and how much they

enjoy the playthrough.

The experiment was conducted in the WPI Zoo Lab. The clients were installed on two

Zoo Lab machines before the experiment started. Each of the two client computers is equipped

with an Intel Core i7-8700k @ 3.7GHz, a GTX 1080 and 64GB of RAM. The server was run on a

personal laptop equipped with an Intel Core i7-7700HQ @ 2.8GHz, a GTX 1070 and 12GB of

RAM. Both of these setups are capable of running the game at the designated 30 frames per

second. The frame rates are the same at the server and the game clients. While setting up the

Lab to prepare for the experiment, the offline version of the game, which contains the tutorial

level, was installed on the two client computers. The two client computers were chosen so that

players would face opposite directions and could not see each other during gameplay. This was

to minimize the distractions and influences players might get if they looked at each other’s

computer during the game. The laptop used to run the server was placed on the other side of

the room so that players would not feel pressured from being watched by the experiment

conductor.

We had 17 players from Worcester Polytechnic Institute participate in the experiments.

Among the 17 players, 14 participated in the experiment in pairs. The other 3 played the online

game solo. When they arrived at Zoo Lab for the experiment, they were first given a general

consent form that contains information about the general purpose of the study and the

procedures of the experiment. The experiment was also described to the participants as

voluntary, risk-free and confidential about participants’ personal information. Prior to each

experiment session, the offline game was started up on the client computers. The background

survey and the gameplay survey were also opened up so that players could easily access them.

After the players read the consent form and signed it, they were directed to their computers to

fill in the Player Background survey. After the survey was completed, we told both players to

27

learn the game’s controls through the tutorial level in the offline game. The level was short and

took no longer than 2 minutes to walk through for all players. Meanwhile, the server was started

up on the server machine along with Clumsy. After both players had completed the tutorial level,

they are guided to start the online game clients on their computers. When the clients connected

to the server, players were in a start screen with a Ready button. Once both players hit the

Ready button, the level started. Both players’ objective gameplay measurements were recorded

in log files as the players played the game. After the boss had been defeated or the 2 minute

timer had ended, the level was complete and players were moved back to the start screen.

Players then switched to the web browser tab to answer the gameplay survey questions. While

players were filling out the survey, we adjusted the network latency on Clumsy and the latency

compensation to prepare for the next playthrough. After the players had completed the

gameplay survey, they switched back to the game clients and started playing the next

playthrough. These chain of actions repeated until the players finished all the designated

playthroughs. The order of latency and player prediction values for the games played is as

followed:

- Game 1: 0ms -prediction on

- Game 2. 100ms - prediction off

- Game 3: 400ms - prediction on

- Game 4. 800ms - prediction on

- Game 5: 200ms - prediction off

- Game 6: 200ms - prediction on

- Game 7: 800ms - prediction off

- Game 8: 100ms - prediction on

- Game 9: 400ms - prediction off

- Game 10: 0ms - prediction off

28

4. Study results

In this chapter, we present the players’ background information that we collected before
starting each experiment session. We also summarize the subjective data from gameplay
surveys and objective gameplay measurements from the log files collected after each
playthrough. We then provide our analysis of the data collected to answer the research
questions presented previously.

4.1 Player demographics
The following graphs are retrieved from the demographic information survey given to the

user study participants. There are 17 players who participated in our study in total and 17
responses for each of the demographic questions.

Figure 9. Player’s age

Figure 10. Player’s gender

29

Figure 11. Player’s handedness

Figure 12. Player’s self rating of computer game ability

Figure 13. Player’s familiarity with different game genres

30

Figure 14. Player’s time spent per week playing video games

Figure 15. Player’s time spent per week playing computer games with mouse and keyboard

Among the 17 players, 10 are males and 7 are females. Most of them are 18 to 22 years

old with a few exceptions. The average age of all participants is 20.9 with a standard deviation
of 2.9. Only 1 player is left handed while the rest are either right handed or ambidextrous. On a
scale from 1 to 5 of computer gaming ability, players’ self rating are fairly evenly distributed with
a mean of 2.9 and a standard deviation of 1.4. Among all 17 players, 10 players rated
themselves as 3 (average) or above. Most players are familiar with popular online game genres
such as FPS or Real-time Strategies. Over half of the players spend above an hour per week
playing games. However, over 70% of the players spend less than 1 hour a week playing
computer games with a mouse and a keyboard. This suggests that players are more familiar
with console or mobile games than computer games and the need for our initial practice time.
The overall gaming experience of the players suggests that they should be able to get
comfortable with the game’s controls after some practice time but still be challenged by the
gameplay.

31

4.2 Subjective results
There are 6 questions in the short gameplay survey that players take after each

playthrough that ask them to rate different aspects of the gameplay experience on a Likert scale
from 1 (low) to 5 (high). These graphs show the means of player answers with standard error
bars versus the amounts of latency added. The orange trendlines with round markers show the
players’ ratings for playthroughs where player prediction is on, and the blue trendlines with
squared markers show the players’ ratings for playthroughs where player prediction is off.

 Figure 16. How much lag did you experience? Figure 17. How responsive was the game?

 Figure 18. How many visual glitches did you see? Figure 19. How much did lag affect your gameplay?

 Figure 20. How challenging was the level? Figure 21. How fun was the level?

32

From the data shown in these graphs, 400ms seem to be the latency threshold where
the benefits of player prediction diminishes. Below 400ms of network latency, when player
prediction is on, players notice less lag, feel that the game is more responsive and less affected
by the latency. On the other hand, from 400ms of network latency, the game starts to become
very difficult to play with the delay, and the number of visual glitches becomes very high
compared to the benefits of player prediction. The trade-off between responsiveness and visual
consistency can be better seen in Figure 22. In almost all cases, the number of visual
inconsistencies are higher when player prediction is on, but the game controls’ responsiveness
is improved, which is as expected. From Figure 20 and 21, although there does not seem to be
a clear separation of the players’ perception of how challenging and fun the level was between
when player prediction is on and when it is off, the higher network latency is shown to have
made the game harder to play and less fun, both of which translate to a degradation in
gameplay experience.

Figure 22. Trade-off between responsiveness and visual consistency

The subjective data collected from the study helps us answer the first study question

about how player prediction for movement changes the players’ gameplay experience under
different network conditions. Generally, when player prediction is on, the network latency is less
noticeable and the game controls feel more responsive. However, with player prediction, visual
inconsistencies are more noticeable. This explains why player prediction in this case did not
help players have more fun with their gaming experience. At Alpha testing, many players
described the offline version of our game as appropriately frustrating, meaning it has a good
balance between frustration and satisfaction which keeps players around. When the game is
played online however, network latency and visual inconsistencies throw off the balance as the
difficulty and frustration increase but the satisfaction does not. The challenge now is more due

33

to the latency rather than the game design and is not viewed as enjoyable. Therefore, players
do not seem to enjoy the gameplay experience as much. Additionally, 400ms appears to be the
approximate threshold where player prediction’s benefits are outweighed by its disadvantages.

4.3 Objective results
Objective data is retrieved from the log files that are used by the game clients to record

players’ objective measurements. The following figures show the average objective
measurements for all 17 players with standard error bars. The orange trendlines with round
markers show the means of the data for games where player prediction is on, and the blue
trendlines with squared markers show the means of the data for games where player prediction
is off.

Figure 23. Player deaths per game

Figure 23 depicts the average number of deaths per game that players have. Below

400ms of latency, players generally die fewer times when player prediction is on. At 0ms is a
special case where there are more deaths when player prediction is on. 0ms of latency with
player prediction on was the first game that participants played, so some players died more
times than they would have with more practice. 0ms lag with player prediction off, on the other
hand, was the last game played, where the players have had the most practice after having
played the same level 9 times. Furthermore, 100ms and 200ms seem to be the amounts of
latencies where player prediction has a small positive effect in aiding players in the gameplay,
especially at 200ms. Player deaths in 360 Gunner are caused by not being able to avoid
enemies and enemy bullets or falling off from platforms. The immediate responsiveness from
player prediction might have been the reason where players are able to position their heroes
better, thus having fewer deaths. At 400ms and above however, player prediction provides no
more benefits regarding player deaths.

34

Figure 24. Weapon Hit percentage versus Latency - AK47

Figure 25. Weapon Hit percentage versus Latency - AWP

Figure 26. Weapon Hit percentage versus Latency - Grenade Launcher

To understand how the implemented types of weapons differ in terms of deadline and

precision, we assume that the AK47, the most basic weapon in the game, is a game action with
a medium level of deadline and precision. Compared to the AK47, the AWP have a much higher
precision, because if a shot is fired at the same point on the screen, the AK47 will hit any enemy
anywhere on the line of the bullet until the bullet leaves the screen, but the AWP will only hit an

35

enemy that’s overlapping the raycast at the center of the Reticle. We consider the scenario
where an enemy bot is moving straight towards the hero, and the player is aiming the Reticle at
a point on the enemy’s line of movement. With the AK47, the player can fire a shot at any point
from when the enemy appears to when it passes the hero and the shot will hit the enemy. With
the AWP, the player only has a brief window of time where the enemy fly passes the center of
the Reticle to attack. Therefore, the AWP also have a much tighter deadline compared to the
AK47. On the other hand, while the AK47 bullet is only a single ASCII character, the Grenade
Launcher projectile is 3 characters tall and 5 characters wide. The Grenade Launcher bullet can
cover a larger area around its path than the AK47 bullet, but flies slower. Therefore, the
Grenade Launcher has a relatively similar if not slightly lower precision than the AK47.
Additionally, since it has a lower projectile speed and lower fire rate compared to the AK47, the
Grenade Launcher has a fairly looser deadline. Generally, if the AK47 represents a game action
with a medium level of deadline and precision, the Grenade Launcher represents a game action
with a slightly looser deadline and marginally lower precision, and the AWP represents a game
action with the tightest deadline and the highest precision.

Figure 24, 25 and 26 show the players’ performance with different types of weapons in

the game. As expected, there is not a clear difference between the Predicted series and the
Non-predicted series. It’s also noticeable that the standard error for the AWP weapon is quite
high. This is caused by the special controls of the weapon. Although every player has learned
about the scope mode of the weapon while warming up with the tutorial level, it is not natural for
a portion of the players to use it in a stressful situation such as the real level, especially when
there is network latency involved. Therefore, some players achieve much higher accuracy with
the weapon than others because they are more familiar with scoping in shooting games. This is
an oversight that should have been taken into account when weapon statistics are recorded so
that AWP statistics are separated between scoped hits and un-scoped hits.

Figure 20. Weapons hit percentages when player prediction is off versus Latency added

36

Figure 20 shows the comparison of all weapons’ hit percentages (without player

prediction) as latency increases with linear regression lines. The performance degradation is the
most severe with the AWP, with a linear regression slope of -0.439, while the AK47 and the
Grenade Launcher have relatively similar slopes of -0.016 and -0.0173, respectively. Compared
to the other 2 weapons, the AWP sniper has a much tighter deadline and higher precision. This
supports our hypothesis that the tighter the deadline and the higher the precision required for a
game action, the more sensitive the action is to network latency. It’s also notable that although
the Grenade Launcher has slightly looser deadline and lower precision than the AK47, it’s still a
more difficult weapon to use because of the projectile’s low speed and curved path. This could
be the reason why player performance for the Grenade Launcher degraded slightly more than
for the AK47.

The objective data collected from all players’ playthroughs help us answer the last two

study questions: How are different types of game actions affected by different amounts of
network latencies, and whether player prediction for movement helps improve player
performance. The data supports the hypothesis that a weapon with tighter deadline and higher
precision, such as the AWP, is more severely affected by network latency than weapons with
looser deadlines and lower precision, such as the AK47 or the Grenade Launcher. An
interesting finding about player performance suggests that player prediction does have a
positive impact on the number of deaths that the players have per game, because player
movement is closely related to the causes of player deaths in our game. On the other hand,
attacking actions do not benefit clearly from the network latency compensation.

37

5. Conclusions

Online gaming is a popular entertainment choice and fueled by the advancements in
Internet technology and mobile devices. Online games provide players with a high variety in
genres, affordability, ubiquity and also real-time virtual interactions with other players despite
geographical distance. Unfortunately, slow Internet connections, network congestion or a large
geographical distance from servers to clients sometimes causes players to suffer from a
degraded gameplay experience due to network latency. Latency compensation techniques can
combat the negative effects of latency. However, more understanding of how latency affects
different game actions and game genres is needed as well as the effectiveness of latency
compensation.

Our work provides knowledge on the effects of network latency in the 2D platformer
genre. We looked at how different types of game actions are affected by different amounts of
network latencies. We also studied how the player prediction latency compensation technique
helps ameliorate the negative effects of latency. We first implemented an original 2D platformer
called 360 Gunner in order to control all game actions and latency compensation. We then
invited players to play our game under different network conditions simulated with Clumsy. We
collected players subjective and objective data in all cases, and provided our analysis of these
data.

In our original fast-paced platformer game, 100ms of latency is noticeable by players.

This suggests that depending on the game pace and the complication of game actions, 2D
platformers can be as sensitive towards network latency as First Person Shooters, the most
latency-sensitive game genre [10]. Furthermore, previous findings that game actions with tighter
deadlines and higher precision are affected more severely by network latency [10] are
supported by our study. Players’ accuracy with the AWP - the weapon with the tightest deadline
and highest precision among all 3 weapons in our game - degraded much more as latency
increased than with the other 2 weapons. Additionally, latency compensation with player
prediction of hero movement helps the game feel more responsive, but is a trade-off for visual
inconsistencies. At 400ms of network latency, the disadvantages of the latency compensation
technique outweighs its benefits. Future work could look at smaller ranges of latency values to
find out a more precise point between 200ms and 400ms of network latency where player
prediction’s benefits are outweighed by its disadvantages to visual inconsistency. However,
despite having little impact on attacking actions, by making the player movement more
responsive, the latency compensation reduces the number of player deaths in our game, which
is closely related to being able to move correctly through platforms to avoid taking damage or
falling off. This suggests that player prediction, by making player actions more responsive on
the client side, can help players perform better in certain cases. However, to make player
prediction fully effective in making the player’s gameplay experience better, further steps need
to be taken to minimize the visual inconsistencies.

38

6. Future work

The immediate future work following our project includes fine-tuning the balance

between difficulty/frustration and satisfaction of the game to better suit an online gaming
scenario. Doing so will allow players to enjoy the gameplay better and researchers to have a
better understanding of how player experience is improved with player prediction. This can be
done by tuning bot parameters, finding ways to reduce visual inconsistencies, implementing
smoother transitions when visual fix-ups are needed. The satisfaction in gameplay can also be
increased with improved visual aspects, such as better sprite designs and animations, or even
moving the project to an industry-proven game engine. Furthermore, adapting the prediction to
specific game conditions, such as turning it on or off based on the position of heroes and
enemies, can provide benefits such as reducing the number of visual glitches.

Our codebase provides a framework that is easily extendable for new types of weapons,

enemies and level design. Future researchers can extend the game with new weapons, bots
and levels and evaluate these new aspects similarly. Having an extended set of data will allow
for clearer comparisons between different types of game actions and how these game actions
are affected by latency. Other latency compensation techniques such as time-warp can also be
implemented and evaluated through our game to figure out more effective ways of combating
network latency in 2D platformers. Furthermore, we suggest more investigation into different
types of mechanics from our realistic weapon scheme with other 2D platformer games. Doing so
will allow researchers to determine the latency susceptibility of these games, which may differ
from what our work has shown.

39

 7. References

1. Lofgren, Krista. “2017 Video Game Trends and Statistics – Who’s Playing What and

Why?” Big Fish Games, 5 Apr. 2017,

www.bigfishgames.com/blog/2017-video-game-trends-and-statistics-whos-playing-what-

and-why/.

2. Gough, Christina. U.S. Online Gaming Industry - Statistics & Facts. 7 Mar. 2019,

https://www.statista.com/topics/1551/online-gaming/.

3. “Top 5 Reasons Why Online Gaming Has Become Popular.” Connection Cafe, 31 May

2018,

https://www.connectioncafe.com/top-5-reasons-why-online-gaming-has-become-popular/

.

4. Bevilacqua, Fernando. “Building a Peer-to-Peer Multiplayer Networked Game.” Envato

Tuts Plus , 12 Aug. 2013,

https://gamedevelopment.tutsplus.com/tutorials/building-a-peer-to-peer-multiplayer-netw

orked-game--gamedev-10074.

5. Bernier, Yahn W. “Latency Compensating Methods in Client/Server In-Game Protocol

Design and Optimization.” Valve Developer Community, 2001,

developer.valvesoftware.com/wiki/Latency_Compensating_Methods_in_Client/Server_In

-game_Protocol_Design_and_Optimization.

6. Claypool, Mark. Dragonfly - Program a Game Engine from Scratch. Interactive Media

and Game Development, Worcester Polytechnic Institute, 2014,

https://dragonfly.wpi.edu/book/.

7. Raaen, Kjetil, and Andreas Petlund. “How Much Delay Is There Really in Current

Games?” Proceedings of the 6th ACM Multimedia Systems Conference on - MMSys 15,

2015, doi:10.1145/2713168.2713188.

8. Yanqi, Shi. “How Do We Determine the Bottlenecks on Hardware According to Lagging

in Game.” Zhihu Focus, Zhihu, 6 June 2018, zhuanlan.zhihu.com/p/35701078.

9. Armitage, Grenville, et al. Networking and Online Games: Understanding and

Engineering Multiplayer Internet Games. John Wiley & Sons, 2006.

10. Claypool, Mark, and Kajal Claypool. “Latency and Player Actions in Online Games.”

Communications of the ACM, vol. 49, no. 11, Jan. 2006, p. 40.,

doi:10.1145/1167838.1167860.

40

https://www.statista.com/topics/1551/online-gaming/
https://www.connectioncafe.com/top-5-reasons-why-online-gaming-has-become-popular/
https://dragonfly.wpi.edu/book/

11. Brun, Jeremy, et al. “Managing Latency and Fairness in Networked Games.”

Communications of the ACM, vol. 49, no. 11, Jan. 2006, p. 46.,

doi:10.1145/1167838.1167861.

12. “The state of online gaming - 2019.” Limelight Networks, 2019,

https://www.limelight.com/resources/white-paper/state-of-online-gaming-2019/.

13. Li, Zhi, et al. “Lag Compensation for First-Person Shooter Games in Cloud Gaming.”

Lecture Notes in Computer Science Autonomous Control for a Reliable Internet of

Services, 2018, pp. 104–127., doi:10.1007/978-3-319-90415-3_5.

14. Nichols, James, and Mark Claypool. “The Effects of Latency on Online Madden NFL

Football.” Proceedings of the 14th International Workshop on Network and Operating

Systems Support for Digital Audio and Video - NOSSDAV 04, 2004,

doi:10.1145/1005847.1005879.

15. Claypool, Mark. “The Effect of Latency on User Performance in Real-Time Strategy

Games.” Computer Networks, vol. 49, no. 1, 2005, pp. 52–70.,

doi:10.1016/j.comnet.2005.04.008.

16. Sabet, Saeed Shafiee, et al. “Towards the Impact of Gamers Adaptation to Delay

Variation on Gaming Quality of Experience.” 2019 Eleventh International Conference on

Quality of Multimedia Experience (QoMEX), 2019, doi:10.1109/qomex.2019.8743239.

17. Howard, Eben, et al. “Cascading Impact of Lag on Quality of Experience in Cooperative

Multiplayer Games.” 2014 13th Annual Workshop on Network and Systems Support for

Games, 2014, doi:10.1109/netgames.2014.7008965.

18. Lee, Injung, et al. “Geometrically Compensating Effect of End-to-End Latency in

Moving-Target Selection Games.” Proceedings of the 2019 CHI Conference on Human

Factors in Computing Systems - CHI 19, 2019, doi:10.1145/3290605.3300790.

19. Sabet, Saeed Shafiee, et al. “Towards Applying Game Adaptation to Decrease the

Impact of Delay on Quality of Experience.” 2018 IEEE International Symposium on

Multimedia (ISM), 2018, doi:10.1109/ism.2018.00028.

20. Lee, Steven W. K., and Rocky K. C. Chang. “Enhancing the Experience of Multiplayer

Shooter Games via Advanced Lag Compensation.” Proceedings of the 9th ACM

Multimedia Systems Conference on - MMSys 18, 2018, doi:10.1145/3204949.3204971

21. Savery, Cheryl, and T. C. Nicholas Graham. “Timelines: Simplifying the Programming of

Lag Compensation for the next Generation of Networked Games.” Multimedia Systems,

vol. 19, no. 3, 13 June 2012, pp. 271–287., doi:10.1007/s00530-012-0271-3.

41

22. Lee, Yeng-Ting, et al. “Are All Games Equally Cloud-Gaming-Friendly? An

Electromyographic Approach.” 2012 11th Annual Workshop on Network and Systems

Support for Games (NetGames), 2012, doi:10.1109/netgames.2012.6404025.

23. Claypool, Mark, and David Finkel. “The Effects of Latency on Player Performance in

Cloud-Based Games.” 2014 13th Annual Workshop on Network and Systems Support

for Games, 2014, doi:10.1109/netgames.2014.7008964.

24. Li, Zhi, et al. “Lag Compensation for First-Person Shooter Games in Cloud Gaming.”

Lecture Notes in Computer Science Autonomous Control for a Reliable Internet of

Services, 2018, pp. 104–127., doi:10.1007/978-3-319-90415-3_5.

25. Lee, Kyungmin, et al. “Outatime: Using Speculation to Enable Low-Latency Continuous

Interaction for Mobile Cloud Gaming.” May 2015, doi:10.1145/2742647.2742656.

42

