

CStream: Neighborhood Bandwidth Aggregation For

Better Video Streaming

by

Thangam Vedagiri Seenivasan

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

May 2010

APPROVED:

Professor Mark Claypool, Thesis Advisor

Professor Robert Kinicki, Thesis Reader

Professor Michael Gennert, Head of Department

Abstract

Video streaming is an increasingly popular Internet application. However,

despite its popularity, real-time video streaming still remains a challenge in many

scenarios. Limited home broadband bandwidth and mobile phone 3G bandwidth

means many users stream videos at low quality and compromise on their user

experience. To overcome this problem, we propose CStream, a system that

aggregates bandwidth from multiple co-operating users in a neighborhood

environment for better video streaming. CStream exploits the fact that wireless

devices have multiple network interfaces and connects co-operating users with a

wireless ad-hoc network to aggregate their unused downlink Internet bandwidth

to improve video quality. CStream dynamically generates a streaming plan to

stream a single video using multiple connections and continuously adapts to

changes in the neighborhood and variations in the available bandwidth. We have

built CStream and evaluated it on a controlled test-bed of computers with various

performance measures. The results show linear increase in throughput and

improved video streaming quality as the number of cooperating users in a

neighborhood increase.

Contents

1 Introduction .. 1

2 Related Work .. 7

2.1 Download Accelerators ... 7

2.2 Network Sharing .. 9

2.3 Bandwidth Aggregation ... 10

2.4 Virtual Interfaces .. 13

2.5 Summary .. 14

3 Design .. 15

3.1 Challenges .. 15

3.1.1 Neighbor Discovery and Maintenance .. 15

3.1.2 Multi-path streaming .. 16

3.1.3 Dynamically changing neighborhood .. 16

3.1.4 Buffering and Playing ... 16

3.2 Architecture ... 17

3.2.1 Client .. 18

3.2.2 Neighbor .. 21

3.2.3 Video Server .. 22

4 Implementation .. 24

4.1 Neighbor Management .. 24

4.2 Frame Distribution... 27

4.3 Adapting to changing neighborhood ... 30

4.3.1 Neighbor Joining .. 30

4.3.2 Neighbor Leaving ... 31

4.4 Buffering and Playing .. 34

5 Evaluation ... 36

5.1 Experimental Setup .. 37

5.1.1 Bandwidth Control ... 38

5.1.2 Experimental Parameters ... 39

5.1.3 Performance Metrics .. 39

5.2 Results .. 41

5.2.1 Aggregate Throughput ... 41

5.2.2 Playout Time ... 45

5.2.3 Startup Delay ... 48

5.2.4 Rebuffer Events .. 51

5.2.5 Frame Distribution ... 52

5.2.6 Impact of Wireless .. 54

5.2.7 Neighbors Joining ... 56

5.2.8 Neighbors Leaving ... 57

6 Future Work ... 58

6.1 Better Frame Distribution ... 58

6.2 Real-World Deployment ... 59

6.3 Other Video Formats .. 59

6.4 Audio stream ... 60

6.5 Incentives and Security .. 60

7 Conclusion .. 62

Bibliography .. 65

1

1 Introduction

The popularity of video streaming systems has grown tremendously in the

past few years. Sites like YouTube [oYT] support user generated video content

and contribute to a significant amount of Internet traffic [GALM07]. According

to a recent survey by Cisco, video accounts for 25% of the total Internet traffic

and is expected to contribute about 50% of the Internet traffic by 2012 [oEE09].

The quality of video streaming is mainly dependent on the downlink

Internet bandwidth available to the end user. Although Websites like YouTube

support high quality videos, due to the limited Internet bandwidth available today,

many users stream videos at low quality and compromise on their user experience.

Systems like Orb [oORB] dynamically adapt the quality of videos based on the

available bandwidth, but still end up streaming videos at low quality because of the

limited bandwidth. Additionally, video streaming in mobile devices, like smart

phones, will be an important application in the future. The 3G Internet

bandwidth [oWiki3G] offered in such devices is expected to take a long time to

meet the demand for real-time streaming. Hence, despite the popularity, real-time

video streaming that provides a good user experience still remains a challenge in

many scenarios with the Internet downlink bandwidth as the major bottleneck.

To overcome this problem and enable users to stream quality videos in

real-time, we propose CStream (Collaborative Streaming), a system that aggregates

bandwidth from multiple co-operating users in a neighborhood. The motivation

for the system stems from the fact that although individual users have limited

bandwidth, the high density of Internet users in a neighborhood with only a small

percentage active at any given time provides the opportunity to exploit the unused

2

bandwidth to improve video streaming quality. When a user streams a video,

CStream aggregates bandwidth by connecting to nearby co-operating users and

avail their Internet connection in addition to the user‟s own connection.

Many video servers use layered encoding to support streaming in

heterogeneous networks. Streaming additive layers when more bandwidth is

available enhances video quality. CStream can exploit the layered encoding of

videos and streams different enhancement layers through different neighbors. As

the number of neighbors contributing to the client bandwidth increases, CStream

can stream videos at higher quality. In the current implementation, CStream does

not use enhancement layers but streams individual frames through multiple links

for better throughput and video quality.

Users increasingly use mobile devices to access the Internet. For example,

many users at home and business use laptops or smart phones for Internet access.

These mobile devices are typically equipped with multiple network interfaces to

offer flexibility of Internet access. Laptops have both Ethernet and Wireless

802.11 interfaces. Mobile phones may have 3G, 802.11 and Bluetooth interfaces.

CStream exploits the fact that devices with multiple network interfaces can

connect to other devices while being connected to the Internet. Specifically,

CStream uses the 802.11 wireless interface to connect to neighboring nodes to

aggregate bandwidth. Consider a common scenario where in a home community,

users connect to their ISPs using laptops. CStream connects these laptops in a

wireless ad-hoc network to aggregate bandwidth for video streaming. Consider

another scenario, an airport where there are many users with mobile smart

phones. CStream connects these phones together through an ad-hoc wireless

network to aggregate their 3G bandwidth for multimedia streaming.

3

The main components of the CStream system are the Video Server, the

CStream Client (running CStream Video Player) and the Neighbors running a

simple support application. The Video Server encodes and stores the videos that

can be requested by clients. A user requests a video through the CStream Client.

The Client creates an ad-hoc network asking if any node in a neighborhood is

willing to contribute bandwidth. Neighbors having spare bandwidth connect to

the ad-hoc network initiated by the Client. The Client informs the Video Server

about the Neighbors. The server streams the video to the Client through all the

available links (Client and Neighbors). The Neighbors act as a proxy sending the

frames received from the server to the Client through the ad-hoc network, thereby

contributing additional bandwidth.

Figure 1.1 shows an example scenario of streaming with CStream. Client

C1 and Neighbor N1 are connected to Internet by Ethernet through their ISP.

Neighbor N2 is a smart phone connected to Internet through 3G. All three nodes

are nearby i.e. with good wireless connection. C1 uses the CStream Video Player

to request a video. Neighbors N1 and N2 have spare bandwidth and, being willing

to cooperate, connect to C1 using a wireless ad-hoc network. C1 informs the

CStream Video Server about its active Neighbors and the server streams the video

through all the three links. The server sends frames through different links thereby

aggregating bandwidth to achieve higher throughput. For example, the server

sends frame 1 directly to the Client, sends frame 2 through Neighbor N1 and

frame 3 through Neighbor N2. While streaming, the system fully utilizes the

available bandwidth in all the three links and adapts dynamically to any change in

bandwidth. The system also dynamically adapts to change in neighborhood. For

example, when a new Neighbor joins the ad-hoc network, the system quickly uses

the bandwidth of that Neighbor to improve streaming. Similarly, when a Neighbor

4

leaves in the middle of a streaming session, the system recovers and streams the

lost frames through the active links.

Figure 1.1: Aggregating bandwidth from neighboring nodes for video

streaming

We build CStream and evaluate it using a four -node test-bed comprising a

Video Server, a Client and two Neighbors. Testing CStream in a controlled

environment allowed us to control the bandwidth of the Client and Neighbors to

the Video Server. This helps us evaluate CStream for various bandwidth settings.

CStream is evaluated varying the number of Neighbors, location of the Neighbor

nodes (to vary the wireless throughput) and video content. We test the

adaptiveness of CStream under dynamic conditions when Neighbors join and

leave in the middle of video streaming. CStream System performance is evaluated

using metrics such as aggregate throughput and video quality. To assess the video

5

quality, we measure the playout time, start-up delay and re-buffer events during

streaming. Effectiveness of the streaming protocol is evaluated by measuring the

server‟s ability to effectively and proportionally use the bandwidth of the available

links.

We find linear improvement in throughput and video quality as the number

of Neighbor nodes increases. For example, when there is one cooperating

Neighbor with the same bandwidth as the Client, the performance improves by

almost 2x and when there are two neighbors, the performance improves by almost

3x. As the number of Neighbors increase, the video start up delay, the playout

time and the re-buffer events decrease almost linearly. Results show that the

system effectively utilizes the available bandwidth and adapts quickly to neighbors

joining and leaving. Also note that the ratio of the frames distributed by the server

across multiple links perfectly matches their ratio of bandwidths.

The contributions of this thesis include:

 A novel system for video streaming that connects neighboring nodes in an ad-

hoc network to aggregate Internet bandwidth.

 A Video Plan Manager that determines how to stream video through multiple

Internet connections and that dynamically adapts to the changing

neighborhood (nodes joining and leaving).

 A frame distribution scheme that distributes video frames across multiple

connections and makes full utilization of the available bandwidth.

 Detailed performance evaluation of the entire video streaming system over a

range of video and network configurations that shows linear improvement in

throughput and video quality as the number of co-operating users increases.

6

The rest of the thesis is organized as follows. In Chapter 2, we explore related

work and compare and contrast with CStream. Chapter 3 discusses the design and

architecture of CStream. First, we list the challenges in building such a system and

explain how the design meets the challenges. CStream design explains in detail the

components of CStream, the Video Server, the Client and the Neighbor and

discusses how the system works. Chapter 4 explains the implementation details of

the CStream. We present the details of neighbor discovery and maintenance,

frame distribution, dynamic plan handling and the buffering policy. Chapter 5

explains our experimental setup and presents detailed evaluation based on various

performance measures such as aggregate throughput, video quality and frame

distribution. CStream is evaluated varying the bandwidth, the number of

Neighbors, the location of the Neighbors and video content. We present future

work in Chapter 6 and conclusions in Chapter 7.

7

2 Related Work

There has been considerable research on improving Internet bandwidth

and application throughput in recent years. Initially, the focus was on effectively

using the available bandwidth at a single network interface (for example, using

download accelerators). Later, with the proliferation of multi-homed devices, the

focus shifted towards aggregating bandwidth from multiple Internet connections

on a single device to improve application throughput. Recently, with the

increasing popularity of devices with multiple interfaces such as smart phones,

some research prototypes have focused on aggregating bandwidth across multiple

devices to improve application throughput. This chapter describes some related

work in these areas in detail and discusses how CStream differs from each of

them.

2.1 Download Accelerators

Download accelerators and peer-to-peer (P2P) systems improve file

download speed by getting parts of the file over multiple connections. Download

accelerators [RKB00] improve the download rate on a single Internet link by

opening multiple connections to mirrored servers in parallel and downloading

different parts of a file simultaneously. The download performance improves

because a single bad server selection may severely impact the download

performance, while downloading in parallel from multiple servers reduces the

impact of a bad server selection.

8

In [RKB00], the authors implement a dynamic parallel-access scheme

where clients connect to mirror sites using unicast TCP and dynamically request

different pieces of a document from different sites, thus, adapting to changing

network and server conditions. They built a prototype of the dynamic parallel-

access scheme as a JAVA client that takes the URL of the mirror servers as an

input parameter. They evaluated their scheme with various mirrored sites for

different document sizes under different network/server conditions. The results

show dramatic speedups in downloading a document, even when network or

server conditions change rapidly. When all the servers used in the experiment have

similar performance, then the speedup gain is very large. When the performances

of the different servers are mismatched then the resulting speedup is not as

significant when compared to the fastest server‟s performance. Even in this case,

the parallel-access scheme achieves response times as low as the ones provided by

the fastest server alone and at the same time eliminating the critical decision of

server selection.

P2P networks can improve video stream rate by streaming different parts

of a video from multiple nodes [LRLZ06]. In P2P networks, a client connects to

multiple peers and parts of the file are downloaded from different peers. Similar to

accessing multiple servers, P2P networks provide link diversity thereby improving

the download performance.

 [LRLZ06] reviews the state-of-the-art of peer-to-peer Internet video

broadcast technologies. The authors describe the basic taxonomy of peer-to-peer

broadcast and summarize the major issues associated with the design of broadcast

overlays. They examine two approaches, namely, tree-based and data-driven, and

discuss their fundamental trade-off and potential for large-scale deployment. In a

9

tree-based approach, peers are organized into structures (typically trees) for

delivering data, with each data packet being disseminated using the same structure.

Data-driven overlay designs contrast to tree-based designs in that they do not

construct and maintain an explicit structure for delivering data. Instead they use

the availability of data to guide the data flow.

Both download accelerators and P2P use multiple connections and parallel

downloads to enhance their download performance. Although these systems can

improve download speeds over traditional client-server systems, they can never

achieve capacity more than the downlink bandwidth available at the end-host. In

CStream, we consider the scenario where the user Internet downlink is the

bottleneck and increase its application bandwidth through multiple connections.

CStream can achieve more than the user downlink bandwidth since the bandwidth

of the neighbors is aggregated to improve video streaming. For CStream the

bandwidth gain is limited by the number of collaborating neighbors and not the

client downlink capacity as in download accelerators and P2P systems.

2.2 Network Sharing

Network sharing is a well-explored field. Wireless Mesh Network (WMN)

[AWW05] provides connectivity to users in a neighborhood which do not have

direct Internet access. In mesh networks, nodes in a neighborhood connect

wirelessly to form a grid and share Internet access from one or a few nodes which

do have an Internet connection. Wireless mesh networks consists of mesh routers,

mesh clients and gateways. Mesh routers are dedicated nodes that operate in ad-

hoc mode, usually stationary to support meshing. Gateways are nodes that have an

Internet connection. Mesh clients can be stationary or mobile and communicate

peer to peer with the mesh routers and gateways. There are three types of mesh

10

networks: infrastructure supported mesh networks, client wireless mesh networks

and hybrid mesh networks. In infrastructure mesh networks, mesh routers provide

the infrastructure for the clients. In client mesh networks, client nodes form a

peer-to-peer network for extending Internet connectivity and perform actual

routing. Hybrid meshing is a combination of infrastructure and client meshing.

[AWW05] presents a detailed study on advances and challenges in wireless mesh

networks. Wireless mesh networks are cost effective way of increasing Internet

connectivity. They are self organizing, self healing and self configuring. WMNs

provide redundancy and involve multi-hop routing to transfer data to a gateway

and back to a node. WMN protocols assign one gateway per flow and routes all

the packets in a flow through the same path. WMN has scalability issues and

suffers in performance as many nodes join the mesh network. CStream is similar

in theme to mesh networks in forming a neighborhood network, but unlike mesh

networks which uses a single Internet connection per flow, CStream nodes

aggregate bandwidth from all nearby nodes in addition to its own Internet

connection. CStream also splits a single video stream across multiple Internet

connections.

2.3 Bandwidth Aggregation

There have been several research efforts recently on aggregating Internet

bandwidth from multiple connections. Bandwidth aggregation techniques

seamlessly use multiple Internet connections as if it is a fat connection. The

system presented by Chebrolu [CR06] assumes multiple Internet connections on

the same device through multiple interfaces and aggregates bandwidth across

these interfaces for video streaming. An important aspect of an architecture that

does bandwidth aggregation for real-time applications is the scheduling algorithm

that partitions the traffic onto different interfaces such that the QoS requirements

11

of the application are met. [CR06] proposes Earliest Delivery Path First (EDPF),

an algorithm that ensures packets meet their playback deadlines by scheduling

packets based on the estimated delivery time of the packets. They show through

analysis that EDPF performs close to an idealized Aggregated Single Link

discipline, where the multiple interfaces are replaced by a single interface with the

same aggregated bandwidth. Using a prototype implementation and simulations

carried using video traces, they show performance improvement with EDPF

scheduling over using just the highest bandwidth interface and other scheduling

approaches based on weighted round robin.

The number of network interfaces per device is limited (usually two) and

the maximum capacity these systems can achieve is the sum of the Internet

bandwidths at these interfaces. CStream also does bandwidth aggregation but

instead of combining bandwidth from network interfaces in a single device, it

aggregates Internet bandwidth from multiple neighbors. Hence, CStream can

achieve greater capacity than such multi-homed systems, only limited by the

wireless capacity (up to 600 Mbps in IEEE 802.11n [80211N]).

Systems discussed thus far attempt to improve throughput by parallel

access to mirrored servers or simultaneous usage of multiple network interfaces.

Recent research has focused on exploiting bandwidth at nearby nodes to improve

application performance. COMBINE [APRT07] is a research prototype which

aggregates bandwidth from multiple nearby phones by forming a wireless ad-hoc

network between the nodes. COMBINE aggregates the 3G bandwidth on phones

to download large files using HTTP. It improves HTTP download by getting

different chunks of a file through different links. COMBINE uses an adaptive

workload distribution algorithm to farm out work across the participants in the

collaboration group. COMBINE uses HTTP byte-range requests for parallel

12

downloads and hence does not require server support. The main focus of

COMBINE is an incentive system that is based on battery energy cost. An

accounting system pays and bills users based on their bandwidth contribution.

COMBINE includes an energy-efficient protocol for nodes to discover each

other, exchange their bids, and form a collaboration group. The authors have

prototyped COMBINE on Windows XP and evaluated its performance on

laptop-class devices equipped with 802.11b WLAN NICs and GPRS WWAN

modems. They show near-linear speedups for group sizes of up to five nodes.

CStream is similar to COMBINE in forming an ad-hoc network with

neighbor nodes and aggregating bandwidth from multiple neighbors. CStream

applies bandwidth aggregation across multiple nodes to effectively improve video

streaming performance. Video streaming is a high bandwidth application and

unlike HTTP download, has real time constraints where the bandwidth gain from

collaborating with neighbors can boost video performance tremendously.

Link-alike [JJKPS08] is similar to COMBINE but is used to improve the

upload capacity of the client. Many photo, video sharing services and online

backup services require users to upload large amounts of data to their Websites,

but the asymmetric broadband connections prevalent in residential network pose a

challenge to users who want to publish information. Link-alike tries to solve this

problem by increasing the upstream capacity of the client by aggregating the

uplink capacities of the nodes in neighborhood. Link-alike addresses the

challenges of operating in an environment that is highly lossy, broadcast in nature

and half-duplex. Link-alike uses opportunistic wireless reception, a novel wireless

broadcast rate control scheme, and preferential use of the wired downlink.

Through analytical and experimental evaluation, [JJKPS08] demonstrates that

Link-alike provides significantly better throughput than previous solutions based

13

on TCP or UDP unicast. CStream also aggregates bandwidth in a neighborhood

environment, but unlike Link-alike CStream is focused on aggregating downlink

bandwidth for video streaming.

Since systems like COMBINE and Link-alike support only file transfer,

they do not have any constraint on the upload or the download time, and hence

use straight-forward work distribution techniques to assign a flow across multiple

links. CStream supports real-time video streaming and distributes frames across

multiple connections for improved video quality. CStream effectively utilizes the

available bandwidth and dynamically adapts to neighbors joining and leaving.

2.4 Virtual Interfaces

Although CStream assumes multiple interfaces at a device, it is not a

requirement. Technologies like Multinet (Virtual WiFi) [CBB04] make a single

wireless interface act as multiple network interfaces enabling them to connect to

multiple nodes at the same time. For example, a node can connect to the Internet

through an access point at the same time as it can connect to a neighboring node,

both connections using the same wireless card. Multinet continuously switches a

single wireless card across multiple networks. The system is transparent to the user

and is agnostic to the upper layer protocols. Multinet is implemented as a

Windows driver and virtualizes a single wireless card into multiple interfaces.

FatVAP [KLBK08] is a system which enables a single wireless card to

connect to multiple access points at the same time using similar techniques used in

Multinet. FatVAP is implemented as an 802.11 Linux driver that aggregates the

bandwidth available at accessible APs and also balances their loads. FatVAP

chooses the APs that are worth connecting to and connects with each AP just

14

long enough to collect its available bandwidth. It ensures fast switching between

APs without losing queued packets. FatVAP works with unmodified APs and is

transparent to applications and the rest of the network stack. The authors evaluate

FatVAP both in a lab, at hotspots and for residential deployments. FatVAP

delivers a median throughput gain of 2.6x, and reduces the median response time

by 2.8x.

Using approaches like Multinet or FatVAP, CStream can be effective for

devices with only one network interface. In our current implementation, devices

have multiple interfaces but using technologies like Multinet and FatVAP CStream

can work on devices with single network interface.

2.5 Summary

To summarize, CStream differs from all the previous systems in application

and design. To the best of our knowledge, CStream is the first system to focus on

aggregating bandwidth from nearby nodes for video streaming. It streams a single

video through multiple connections and dynamically adapts to changing

neighborhood. We design and implement CStream and present detailed

performance evaluation under various settings.

15

3 Design

This chapter presents the design details of the CStream. CStream is a proof

of concept system to show the benefits of bandwidth aggregation in a

neighborhood to improve the performance of a video streaming. There are several

challenges in building a system that aggregates bandwidth from nearby nodes

through an ad-hoc wireless network to improve video streaming. We list and

explain the challenges below and show how our design addresses these challenges.

Currently CStream does not focus on security and incentive model. We

assume that neighbors having spare bandwidth are willing to participate in

CStream without any incentives. Also we assume that all the neighbor nodes

collaborating in video streaming are trusted and do not deal with security issues.

We assume that the Client do not use CStream to download any illegal content.

Finally, we assume users of both Client and Neighbors have installed the CStream

software.

3.1 Challenges

3.1.1 Neighbor Discovery and Maintenance

The Client and Neighbors should find each other and connect through an

ad-hoc wireless network. Once connected, at any time the Client should have an

updated knowledge of the active Neighbors willing to contribute bandwidth.

Neighbors should be able to join and leave the system at any time during video

streaming.

16

3.1.2 Multi-path streaming

The Video Server should be able to stream a single video through multiple

nodes. The server needs to know the Client and Neighbor end points to be able to

send the frames. The server needs to distribute the frames to be sent based on the

bandwidth available at each link and it should dynamically adapt to the changes in

the bandwidth. An ideal distribution protocol will fully utilize the available

bandwidth and proportionally distribute frames based on the ratios of the

available bandwidths.

3.1.3 Dynamically changing neighborhood

The system should adapt to a change in the network neighborhood.

Neighbors can then join and leave at any time during the video streaming. When

new neighbors join, the system should be able to adapt quickly and start using the

newly available bandwidth. When a Neighbor leaves, the system should be

adaptive and recover the lost frames and redistribute them across the remaining

active links.

3.1.4 Buffering and Playing

The Client should be able to buffer the frames received through different

links and play them. The underlying mechanism of receiving frames from different

links and playing them should be opaque to the user. The system should have an

appropriate buffering mechanism which decides whether to wait for the late

frames or discard them.

17

3.2 Architecture

 The CStream design addresses all the above challenges. Figure 3.1 shows

the architecture of CStream. The system has three distinct components: the Video

Server, the Client node which requests the video and the Neighbors which help to

aggregate bandwidth for better video quality. CStream assumes that multiple

interfaces are present in the Client and Neighbors so that they can form wireless

ad-hoc network wireless communications while being connected to the Internet.

In brief, CStream works as follows. The CStream Client forms a wireless

ad-hoc network with Neighbors which are idle so that it can use their bandwidth.

The Client periodically updates the Video Server with the Neighbor information

and the server streams the video to the Client using both the Client and the

Neighbor bandwidth. A participating Neighbor simply acts as a proxy in delivering

the frames from the server to the Client. We explain the role of each component

in greater detail below. We defer the implementation details to Chapter 4.

18

Figure 3.1: CStream architecture

3.2.1 Client

Users request video using the Video Player in the Client. The Client then

sends the request to the Video Server. The Video Server replies back with the

meta-data of the video which consists of the number of frames and the frame rate.

The Client forms an ad-hoc network with the Neighbors and informs the Video

Server about the available links to stream the video. As the frames start arriving,

they are buffered and later the video is played by the Video Player.

The Client has four main components and the role of each component is

explained in detail below.

19

3.2.1.1 Neighbor Manager

The role of the Neighbor Manager is summarized below:

1. When a user requests a video, the Neighbor Manager creates an ad-hoc

network and waits for Neighbors to join the ad-hoc network.

2. The Neighbor Manager periodically broadcasts REQUEST messages to

find new Neighbors in the ad-hoc network which are willing to contribute

bandwidth.

3. The Neighbor Manager keeps an updated knowledge of active Neighbors

willing to help in the system. The Neighbor Manager monitors for periodic

heartbeat messages (I-CAN-HELP messages) from the Neighbors and

constantly keeps track of neighbors joining and leaving the neighborhood

4. The Neighbor Manager periodically informs the Video Plan Manager about

the active Neighbors and changes in neighborhood (new Neighbors joining

and Neighbors leaving).

5. The Neighbor Manager receives video frames from the active Neighbors

and forwards it to the Buffer Manager. It keeps track of the frames received

from each of the Neighbors and informs the Video Plan Manager.

3.2.1.2 Video Plan Manger

The Video Plan Manager is a core component of the Client that constantly

informs the Video Server about the streaming plan. The role of the Video Plan

Manager is summarized below:

1. The Video Plan Manager constructs the streaming plan with Neighbor

details and periodically updates the Plan Handler in the Video Server. The

streaming plan consists of information about the Client and Neighbor links

(IP address and Port) that the Video Server can use to stream video to the

Client.

20

2. When a new Neighbor, ready to contribute bandwidth, joins the ad-hoc

network, the Video Plan Manager informs the Video Server about the

Neighbor so that the Video Server can quickly use additional bandwidth to

stream.

3. When a Neighbor leaves the network, the Video Plan Manager informs the

Video Server so that the Video Server can recover lost frames and stream

through other active links.

3.2.1.3 Buffer Manager

The Buffer Manager maintains the playout buffer that the Video Player uses to

play the video.

1. Based on the meta-data response from the Video Server after the Client

requests the video, the Buffer Manager initializes the playout buffer.

2. The Buffer Manager receives frames from the Video Server and stores

them in the buffer.

3. The Buffer Manager also receives frames from the Neighbor through the

Neighbor Manager and stores them in the buffer.

3.2.1.4 Video Player

The Video Player is the interface for the user in the CStream system.

1. A user can request a video using the Video Player in the Client.

2. The Video Player extracts frames from the playout buffer in the Buffer

Manager and plays them.

3. The Video Player plays the video based on the meta-data of the video

(frame rate).

4. When the frame to be played is missing, the Video Player stops playout and

waits for late frames to arrive. The stop and buffering mechanism is

explained in detail in the next chapter.

21

3.2.2 Neighbor

A Neighbor is idle and has spare bandwidth which it is willing to share with

the Client to improve the video streaming quality. Though Figure 2 shows only

one instance of the Neighbor, multiple Neighbors can contribute bandwidth to a

single Client. The role of each of the Neighbor components is explained below.

3.2.2.1 Helper Manager

The role of the Helper Manager is summarized below:

1. When the Neighbor is willing to contribute bandwidth, it looks for an ad-

hoc network created by a CStream Client and joins the network.

2. When the Helper Manager receives a REQUEST message from the Client,

it starts sending I-CAN-HELP messages periodically to the Client. In the I-

CAN-HELP messages, the Helper Manager puts the IP Address and the

port which the Neighbor keeps open for the Video Server to stream the

video.

3. When there is user activity or network activity (due to other applications),

the Helper Manager stops sending I-CAN-HELP messages.

4. The Helper Manager disconnects from the CStream ad-hoc network when

the user exits the CStream application.

3.2.2.2 Proxy

The Proxy component in the Neighbor functions as below:

1. The Proxy keeps a port open for the Video Server to stream video through

it.

2. The Proxy receives frames from the Video Server and forwards it to the

Client through the ad-hoc network. Neighbors do not buffer the received

frames and immediately forward the frames to the Client.

22

3.2.3 Video Server

The Video Server stores the videos that Client can request. The Video

Server streams a single video through multiple links. It adapts the streaming to

changes in the network neighborhood. The role of each of the Video Server

components is explained below.

3.2.3.1 Video Database

The Video Database stores the uploaded videos that Client nodes can stream:

1. The videos are encoded and stored in AVI format.

2. The Video Database splits a video into frames and allows queries to a

specific frame in a video. The Frame Distributor extracts the frames from a

video in the Video Database and distributes them through multiple links.

3.2.3.2 Plan Handler

The role of the Plan Handler is summarized below:

1. The Plan Handler receives a streaming plan from the Video Plan Manager

in the Client. The Plan Handler initializes the Frame Distributor to stream

according to the plan.

2. The Plan Handler receives plan updates from the Client about changes in

the neighborhood. When the Client informs the Plan Handler about a new

Neighbor, it updates the Frame Distributor to include the new Neighbor in

the streaming process. When the Client informs the Plan Handler about a

Neighbor that left in the middle of streaming, it updates the Frame

Distributor to stop sending frames via that Neighbor.

Chapter 4 explains in detail how the system adapts to changes in

neighborhood.

23

3.2.3.3 Frame Distributor

The Frame Distributor is the core component of the system that streams a single

video through multiple links.

1. The Frame Distributor runs a frame assignment module that assigns frames

in a video to stream through different links.

2. The Frame Distributor uses TCP to send the frames to Client and the

Neighbor.

3. The Frame Distributor adapts to change in bandwidth and effectively

utilizes the links.

4. The Frame Distributor works with the Plan Handler to adapt to the

changes in neighborhood. The Frame Distributor starts streaming to new

neighbors when they join and recovers lost frames when a Neighbor leaves.

Chapter 4 explains in detail how the Frame Distributor effectively utilizes the

bandwidth of the available links.

24

4 Implementation

This chapter presents implementation details of the protocols in the

CStream system. Specifically, it discusses four areas: 1. Neighbor Management, 2.

Frame Distribution, 3. Adapting to changes in neighborhood, 4. Buffering and

Playing. We show illustrative examples to explain each of these areas.

4.1 Neighbor Management

This section explains the ad-hoc network formation and neighbor

management. Specifically we explain the implementation details of Neighbor

Manager in the Client and Helper Manager in the Neighbor and their interaction.

An illustrative example to explain the sequence of flow in the implementation of

CStream System is included.

Figure 4.1 shows an example scenario with a Client and two Neighbors.

Assume that a user requests a video using the Client. We describe the sequence of

events step by step using Figure 4.1. In the figure, the steps are show in black

circles with the step number.

25

Figure 4.1: Ad-hoc network formation and neighbor management

Step 1: The Client creates an ad-hoc network with SSID CStream. If such a

network already exists, the Client joins it. If the Client is already connected to the

CStream ad-hoc network, it continues with Step 3.

The same ad-hoc network can be maintained across multiple video

requests. For instance, the Neighbors may be connected in the ad-hoc network all

the time even if a video is not requested. When it has user activity, the Neighbor

disconnects from the ad-hoc network and connects back when it becomes idle

again. This way of maintaining the ad-hoc network helps reduce the streaming

start-up delay of forming the neighborhood network.

Step 2: Neighbors which are nearby the Client are in the range of CStream ad-hoc

network. If they are running the CStream application and are idle, they join the

network. Client and Neighbors get an IP address once they join the ad-hoc

network.

26

Step 3: The Client broadcasts a REQUEST message in the ad-hoc network that it

needs to stream a video and is looking for neighbors to contribute bandwidth. In

our implementation, we use IP broadcast in the ad-hoc network to broadcast the

request.

Step 4: When a Neighbor in the ad-hoc network receives a REQUEST message, it

starts responding to the Client with I-CAN-HELP messages. The I-CAN-HELP

messages contain the Neighbors IP address and port for the Video Server to

stream the video via the Neighbor. The I-CAN-HELP messages are sent

periodically to the Client (in our implementation, every second). The periodic I-

CAN-HELP messages from the Neighbors are used by the Client to determine if

a Neighbor is still alive.

The Neighbor Manager at the Client maintains a neighbor table with the

following information using the I-CAN-HELP messages.

Neighbor IP address Port Last Update Time Last Received Frame

For each Neighbor, the table stores the IP address and the port for

streaming, the last time when the Client received an I-CAN-HELP message from

the Neighbor and the last received frame from the Neighbor. As detailed in

subsequent sections, the Last Received Frame value will be used to recover lost

frames when a Neighbor leaves. The Client decides that a Neighbor has left if it

does not receive I-CAN-HELP messages for a specific amount of time (3 seconds

in our implementation).

Step 5: The Client sends the streaming plan periodically (every 500 msec in our

implementation) to the Video Server. The streaming plan consists of the list of

end points (IP address and port) to stream. The Client sends its own end point

27

and the end point of the Neighbors that are active (last update time is less than 3

seconds).The streaming plan changes to capture the changes in the neighborhood

(Neighbors joining and leaving) and the Client updates the Video Server with the

new plan.

Step 6: Based on the streaming plan, the Video Server splits and streams the

video across multiple links. The frame distribution protocol is explained in the

section 4.2.

4.2 Frame Distribution

The Video Server sends a single video through multiple links. The video

files are stored in AVI format in the Video Database. The Frame Distributor splits

the video into frames and sends each frame through a single link. The sequence of

flow at the server after the Client sends the initial streaming plan is illustrated with

an example in Figure 4.2. The steps of the protocol are shown in black circles. In

the example there are two active Neighbors and a Client.

Step 1: As described in the section 4.1, the Neighbors periodically send I-CAN-

HELP messages to the Client. Here Neighbor N1 and N2 sends periodic I-CAN-

HELP messages.

Step 2: The Client informs the Video Server about the Neighbors N1 and N2 as

part of the streaming plan.

28

Figure 4.2: Frame Distribution

Step 3: Now the server has three links for streaming video. The server creates

three threads to simultaneously send frames through the three links. Each thread

services one node. The job of each thread is to fetch frames and send it to the

node.

The server keeps all the frames in a Frame Queue and runs a simple frame

assignment process. Whenever a thread is ready to send a frame, it fetches the

frame at the head of the Frame Queue and assigns the frame to that thread.

 The frames are sent to the node using TCP. We rely on TCP to adapt and

effectively utilize the available bandwidth in each link. When there is spare

bandwidth, the thread requests the next frame from the Frame Queue and starts

sending. In our implementation the TCP sender window is small, about 32 KB for

29

each node and hence only one frame for our source videos is accommodated in

the sender buffer before fetching the next frame. This eliminates the problem of

multiple frames being queued on the sender side when the Client and the

Neighbor link are slow.

Step 4: Thread N1 requests a frame and frame 1 that is at the head of the queue is

assigned to the thread. The thread starts sending frame 1 to the Neighbor N1.

Step 5: Thread C requests a frame and is assigned frame 2.

Step 6: Thread N2 requests a frame and is assigned frame 3.

Step 7: Suppose the Client has three times more bandwidth compared to the

neighbors. Frame 2 gets sent faster than frame 1 and frame 3.

Step 8: Since there is spare bandwidth in the Client link, thread C requests for

another frame and is assigned frame 4.

Step 9: Frame 4 is also sent to the Client and the thread C requests another frame

and is assigned frame 5.

Step 10: Thread N2 finish sending frame 1 to Neighbor N2, N2 finishes

forwarding frame 1 to the Client.

Step 11: Now N2 requests another frame and is assigned frame 6.

Thus, the system adapts to available bandwidth and proportionally

distributes the frames to the links.

30

4.3 Adapting to changing neighborhood

Sections 4.1 and 4.2 explained the basic mechanism used for streaming.

Often a neighborhood may change and, hence, the system should adapt to

Neighbors joining and leaving. This section explains the mechanisms CStream

uses to adapt to these changes.

4.3.1 Neighbor Joining

We continue to use the same example in the section 4.2 to explain how the

CStream system adapts to new Neighbors joining the network.

When a new Neighbor running CStream comes into the vicinity of the

existing ad-hoc network (Neighbor N3 figure 5), the Neighbor joins the „CStream‟

ad-hoc network. It receives the periodic REQUEST broadcasts from the Client

seeking help. The flow sequence of Neighbor joining scenario is explained step by

step using Figure 4.3, a continuation of the example scenario shown in Figure 4.2.

Step 1: The Neighbor hearing the REQUEST messages starts responding to the

Client with I-CAN-HELP messages.

Step 2: With a new entry in its Neighbor table, the Client updates the streaming

plan, informing the Video Server about the new Neighbor.

Step 3: The server creates a new thread to send frames to the Neighbor N3.

31

Figure 4.3: Adapting frame distribution to neighbor joining

Step 4: When a N3 thread requests a frame to send, it is assigned the next frame

at the head of the queue (frame 7).

Thus, the CStream system adapts to new Neighbors joining and starts to

use its bandwidth, quickly improving the overall throughput of the system.

4.3.2 Neighbor Leaving

We will continue on the example in the section 4.3.1 to explain how the

system adapts when an existing Neighbor leaves. Suppose Neighbor N1 leaves,

the following describes the sequence of events:

32

Step 1: Neighbor N1 leaves. This is signaled by Neighbor N1 not sending I-CAN-

HELP messages for three consecutive seconds. Since N1 was mid way in receiving

frame 6, the Client never received it.

Step 2: The Client stops receiving I-CAN-HELP messages from the Neighbor.

When the last update time in the neighbor table exceeds 3 seconds, the Client

decides that the Neighbor has left. As explained previously, for every Neighbor

the Client maintains the last frame received. For N1, the last frame received is

frame 1.

Step 3: Since the neighborhood has changed, the Client informs the Video Server

about the change. The Client informs the server that Neighbor N1 has left. The

Client also informs the server about the last frame received from that Neighbor so

that the server can recover and redistribute lost frames. Here, the last frame

received from N1 is frame 1.

Step 4: The Server kills the thread N1 so that no more frames are distributed to it.

Step 5: The Server keeps track of the distribution of frames to links. For example,

the server keeps track that frame 1 and 6 were assigned to thread N1 in that order.

Now, since the last frame received from the Neighbor is 1, the server knows it

needs to redistribute the rest of the frames assigned to N1. It inserts these frames

into the head of the Frame Queue. Note that, the system ensures that the queue is

always sorted so that the frames are assigned in order. Here, the server inserts

frame 6 back to the queue.

33

Figure 4.4: CStream adapting to neighbor leaving

Step 6: Suppose the Client thread now has spare bandwidth, it requests for

another frame to send. The Server assigns frame 6 to the Client thread. Note that,

the Client may get duplicate frames in case a Neighbor intermittently leaves,

rejoins and resumes transmission.

Thus the system ensures that all the frames are delivered reliably and never

lost due to Neighbors leaving. This makes CStream adaptive to changes in the

neighborhood.

34

4.4 Buffering and Playing

The Video Player in the Client plays the video as frames are being received.

We implement a policy where the player stops and waits for late frames to arrive

as opposed to discarding late frames. The Buffer Manager which receives frames

from the Server and through the Neighbor stores them in the buffer for the Video

Player to extract, decode and play. The buffering policy has the following features.

Initial Buffering: Before starting to play the video, the Video Player waits

for some amount of frames to be initially buffered. In our implementation, the

Video Player waits for first two seconds of the video to be buffered before

starting to play. That is, we wait for (2 * fr) frames where fr is the frame rate. The

choice of 2 to 4 seconds is common in many popular video players [oYT]. We

found that around two seconds was optimal in our system both to decrease the

startup delay and to give a good visual quality without too many rebuffer events.

Stop and Rebuffering: After the initial buffering, the player plays the

frames continuously as long as they are in the buffer. The Player plays the video

with the appropriate frame rate that was reported in the meta-data. When the

frame to be played is not yet available in the buffer, the video player stops playing

the video and triggers a rebuffer event. It waits for the frames to arrive.

Playing after Rebuffering: During a rebuffer event, the Player stops and

waits for the next two seconds of frames (2 * fr) to be received before starting to

play again. This is to reduce the total number of rebuffer events. If the total

number of frames in the video is less than (current frame + 2 * fr), it waits until all

the frames are received before playing again.

35

 To illustrate with an example, assume that the frame rate of a video is 15

and the total number of frames is 120. Before starting to play the video, the player

waits for the first 30 frames to be received (2 seconds of frames). Once they are

received it starts playing. Suppose the 45th frame is not available in the buffer

when the player is supposed to play it. The Player stops and triggers a rebuffer

event. The Player waits until all the frames up to the 75th frame (next two seconds

worth of videos frames) is received before starting to play again. Suppose another

rebuffer event happens at the 105th frame, the player waits until all the 120 frames

are received before playing again.

36

5 Evaluation

We built the complete CStream system comprising the Video Server, Client

and the Neighbor components. CStream was written in C# .NET with code base

of about 3000 lines. Source video files are stored in AVI format and CStream uses

an open source AVI Video Library [oAVI] to extract the frames from the source

video files. Figure 5.1 shows a screen shot of the CStream Video Player. Users can

request a video by filename using the video player. In addition to the video, the

player also shows the video status (buffering or playing), the number of neighbors

collaborating and their IP addresses. It also displays the aggregate throughput, the

playout time and the number of rebuffer events.

Figure 5.1: CStream system user interface

37

5.1 Experimental Setup

Figure 5.2: Experimental setup

The performance of CStream is evaluated in a controlled environment with

a small test bed of computers. The bandwidth between the Video Server and the

Client (and Neighbors) is controlled using CBQ and the experiments were run for

different bandwidth settings.

Figure 5.2 shows the experimental setup. Video Server, Client and

Neighbor machines are desktop PCs running Windows XP. All the machines have

a Pentium 4, 2.8 GHz CPU with 1 GB RAM. Video Server is connected to a PC

running Linux acting as a bridge via a crossover cable and the Bridge uses class

based queuing (CBQ) to perform traffic shaping on traffic from Video Server. The

Bridge has a Pentium 4, 2.0 GHz CPU and 512 MB RAM running SuSE Linux

10.3 and has the prebuilt Netem module. The Client machine and the Neighbors

38

are connected to each other through a wireless ad-hoc network. All the machines

in our experimental setup are in our Institute LAN.

5.1.1 Bandwidth Control

Figure 5.3: Bandwidth set using CBQ vs. measured bandwidth

We use the Linux bridge to connect Video Server to the Institute LAN and

hence all the traffic from the Video Server goes via the bridge. Class based

queuing (CBQ) discipline allow us to control bandwidth to specific destination IP

addresses. CBQ on the bridge is used to control the bandwidth on a per flow basis

from Video Server to each of the Neighbor and the Client. To ensure correct

operation, bandwidth values set using CBQ is validated by measuring the

throughput from the Video Server to the nodes (with iperf) over a 30 second time

interval. Figure 5.3 show that the actual throughput measured closely matches the

expected throughput.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1000 2000 3000 4000 5000 6000

M
e
a
su

re
d

 B
a
n

d
w

id
th

(k

b
p

s)

Bandwidth set using CBQ (kbps)

39

5.1.2 Experimental Parameters

We evaluated the performance of the CStream system by varying the following

parameters

 Number of Neighbor nodes: The number of Neighbors is varied from

zero to two.

 Bandwidth of the nodes to the Video Server: The available bandwidth

on the link from the Video Server to the Client and the Neighbors is varied

using bandwidth control as described in the previous section. Six different

bandwidth settings: 250 Kbps, 500 Kbps, 1 Mbps, 2 Mbps, 3 Mbps and 5

Mbps are used in the experiments

 Video content: Different video contents are used in the experiments.. A

short and a long video is used to evaluate CStream. The details of the video

are listed in Table 5.1.

 Location of nodes: The physical location of Neighbors with respect to the

Client is changed to vary the wireless ad-hoc network bandwidth.

5.1.3 Performance Metrics

The performance of CStream is evaluated using the following metrics. These

metrics are measured at the Client. We log the frame number, timestamp of each

arrived frame, frame size and information about the link (Client or Neighbor)

through which the frame was transferred. The metrics are then calculated offline

using the log.

 Aggregate Throughput (Kbps): Aggregate throughput is the total

application throughput at the Client. It is calculated as the ratio of the total

40

size of the video downloaded to the total time taken to download all the

frames.

 Playout Time (sec): The playout time is the total time taken to play the

video. The total time taken is the sum of startup delay, the time taken for

rebuffer events and the playing time.

 Startup delay (sec): The startup delay is the time taken to play the first

frame in the video after the video request is sent to the Video Server.

 Re-buffer events: The number of rebuffer events is the number of times

the Video Player stopped to rebuffer frames after it started playing.

 Frame Distribution (%): The frame distribution compares the ratio of the

contribution of frames by the Client and the Neighbor compared to the

ratio of their corresponding bandwidths.

 Short Video

cartoon_dog.avi

Long Video

foreman.avi

Length 8 seconds 33 seconds

Size 10 MB 26 MB

Encoded bitrate 10 Mbps 6.3 Mbps

Frames per second 15 12

Average frame size 85 KB 68 KB

Total frames 120 400

Resolution 320x240 176x144

Table 5.1: Features of the video content

41

5.2 Results

We evaluate all the performance metrics for both the short video and long

video. For all the experiments, we present the average over three runs of the

experiment along with the standard deviation. Since the variance of the metrics

was very less across the runs, average over three runs gave a good estimate of the

CStream performance. Unless stated, equal bandwidth is set for the Client and the

Neighbors for all the experiments. Also, unless otherwise stated, the Neighbors

are placed near to the Client so that they have excellent wireless signal strength.

The minimum bandwidth of the wireless network for excellent signal strength

measured using iperf was around 13 Mbps (significantly higher than the wired

bandwidth).

5.2.1 Aggregate Throughput

First, the aggregate throughput, i.e. the throughput observed at the Client

both in the presence and absence of Neighbors is measured. The aggregate

throughput is calculated as the ratio of the total size of the video downloaded to

the total time taken to download all the frames.

For each bandwidth setting (CBQ), we vary the number of Neighbors and

compare the throughput. Figure 5.4 and Figure 5.5 show the throughput for each

bandwidth setting with 0, 1 and 2 Neighbors for short video and long video

respectively. The results show that bandwidth linearly increases with the increase

in Neighbors. Table 5.2 and Table 5.3 show the average and standard deviation of

throughput for the short video and long video, respectively.

42

For every bandwidth setting, the throughput approximately doubles in the

presence of one Neighbor and it triples in the presence of two Neighbors with the

Client and the Neighbor having the same bandwidth. As an example, when the

bandwidth was set to 1 Mbps, with any number of Neighbors, the Client got a

throughput of 938 Kbps for the short video. In the presence of one Neighbor

with the same bandwidth, the throughput increased to 1854 Kbps. In the presence

of two neighbors the throughput was 2806 Kbps. For both the short video and

the long video the throughput numbers for all the settings remains similar. This

shows that, irrespective of the video content, CStream effectively utilizes

bandwidth. The increase in throughput improves the quality of streaming

significantly as shown in the subsequent sections.

43

Figure 5.4: Average aggregate throughput for short video

Per host

bandwidth

constraints

Number of neighbors

0 1 2

Avg StdDev Avg StdDev Avg StdDev

250 Kbps 239 0.3 486 1.6 734 0.8

500 Kbps 477 0.7 962 2.4 1430 8.4

1 Mbps 938 1.6 1854 22.7 2806 23

2 Mbps 1767 3 3472 21.3 5411 219.7

3 Mbps 2576 28.7 5047 30.7 7096 156.3

5 Mbps 3754 179.3 7396 219.1 11047 1413.9

Table 5.2: Average and standard deviation of aggregate throughput (in

Kbps) for short video

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 1 2

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

Number of Neighbors

250 Kbps

500 Kbps

1 Mbps

2 Mbps

3 Mbps

5 Mbps

Per host
capacity
constraint

44

Figure 5.5: Average aggregate throughput for long video

Per host

bandwidth

constraints

Number of neighbors

0 1 2

Avg StdDev Avg StdDev Avg StdDev

250 Kbps 238 0.1 483 4.6 726 6.2

500 Kbps 476 0.3 955 1.4 1434 3.2

1 Mbps 932 10.2 1854 21 2778 35.5

2 Mbps 1777 15.4 3558 70.6 5338 180.7

3 Mbps 2611 51 5045 217 7624 72.4

5 Mbps 3902 17.5 7437 142.7 10925 222.4

Table 5.3: Average and standard deviation of aggregate throughput (in

Kbps) for long video

0

2000

4000

6000

8000

10000

0 1 2

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

Number of Neighbors

250 Kbps

500 Kbps

1 Mbps

2 Mbps

3 Mbps

5 Mbps

45

5.2.2 Playout Time

To quantify the quality of the video in different settings, playout time,

startup delay and the number of rebuffer events are measured. The playout time is

the total time taken to play the video, including the startup delay, the time taken in

rebuffer events and the playing time.

Figure 5.6 and Figure 5.7 shows the playout time for every bandwidth

setting for the short and long video, respectively. Table 5.4 and Table 5.5 show the

corresponding average values and the standard deviation. As can be seen, for a

given bandwidth setting, the playout time decreases multiplicatively with the

increase in the number of neighbors. For instance, for the 1 Mbps setting for the

short video, without any neighbors, the playout time is around 90 seconds. With

one neighbor, the playout time decreases to around 45 seconds, a 50% decrease in

playout time. With two neighbors, the playout time decreases to around 31

seconds, a 66% decrease in playout time.

46

Figure 5.6: Average playout time for short video

Per host

bandwidth

constraints

Number of neighbors

0 1 2

Avg StdDev Avg StdDev Avg StdDev

250 Kbps 351.31 0.44 173.22 0.56 115.05 0.24

500 Kbps 176.68 0.24 87.93 0.39 59.44 0.37

1 Mbps 90.42 0.16 45.34 0.95 31.39 0.16

2 Mbps 48.02 0.08 25.99 0.14 16.68 1.19

3 Mbps 33.09 0.17 16.96 0.21 13.52 0.60

5 Mbps 26.34 1.18 14.47 0.42 10.9 0.74

Table 5.4: Avg and stddev of playout time (in seconds) for short video

0

50

100

150

200

250

300

350

0 1 2

P
la

yo
u

t
ti

m
e
 (

s)

Number of Neighbors

250 Kbps

500 Kbps

1 Mbps

2 Mbps

3 Mbps

5 Mbps

47

Figure 5.7: Average playout time for long video

Per host

bandwidth

constraints

Number of neighbors

0 1 2

Avg StdDev Avg StdDev Avg StdDev

250 Kbps 898.9 0.41 442.6 4.14 294.7 2.58

500 Kbps 448.3 0.28 224.7 0.50 150.1 0.61

1 Mbps 230.2 2.53 116.6 1.34 77.4 1.14

2 Mbps 121.4 0.94 61.1 1.73 40.6 1.33

3 Mbps 83.4 1.61 43.4 2.02 35.6 0.21

5 Mbps 56 0.07 35.3 0.01 34.8 0.02

Table 5.5: Average and standard deviation of playout time (in seconds) for

long video

0

100

200

300

400

500

600

700

800

900

0 1 2

P
la

yo
u

t
ti

m
e
 (

s)

Number of Neighbors

250 Kbps

500 Kbps

1 Mbps

2 Mbps

3 Mbps

5 Mbps

48

5.2.3 Startup Delay

The startup delay is the time taken by the Video Player to play the first

frame in the video after the video request is sent to the Video Server. In our

implementation, the Video Player waits for two seconds of frames to arrive before

playing the first frame.

Figure 5.8 and Figure 5.9 show the startup delay with the increase in

number of neighbors for each bandwidth setting for the short video and long

video, respectively. Table 5.6 and Table 5.7 are corresponding tables that

summarizes the average and the standard deviation. Similar to the playout time

graph, there is approximately multiplicative improvement in the startup delay. As

an example, the startup delay at 1 Mbps with 0 neighbors for short video is around

22 seconds. The startup delay reduces to around 11.5 seconds for one Neighbor, a

2x improvement. With two Neighbors, the startup delay is around 7.5, a 3x

improvement compared to the scenario with no Neighbors.

49

Figure 5.8: Average startup delay for short video

Per host

bandwidth

constraints

Number of neighbors

0 1 2

Avg StdDev Avg StdDev Avg StdDev

250 Kbps 85.31 0.46 42.2 0.31 28.42 0.27

500 Kbps 43 0.22 21.69 0.16 14.8 0.14

1 Mbps 21.97 0.15 11.64 0.43 7.63 0.09

2 Mbps 11.83 0.11 6.33 0.15 5 1.21

3 Mbps 8.22 0.03 4.41 0.14 3.43 0.11

5 Mbps 7.03 1.3 3.55 0.11 2.92 0.74

Table 5.6: Average and standard deviation of startup delay (in seconds) for

short video

0

10

20

30

40

50

60

70

80

0 1 2

S
ta

rt
u

p
 D

e
la

y
 (

s)

Number of Neighbors

250 Kbps

500 Kbps

1 Mbps

2 Mbps

3 Mbps

5 Mbps

50

Figure 5.9: Average startup delay for long video

Per host

bandwidth

constraints

Number of neighbors

0 1 2

Avg StdDev Avg StdDev Avg StdDev

250 Kbps 52.97 0.13 26.4 0.39 17.9 0.37

500 Kbps 26.69 0.02 13.68 0.06 9.57 0.01

1 Mbps 13.94 0.12 7.32 0.12 5.12 0.19

2 Mbps 7.58 0.25 4 0.05 2.95 0.16

3 Mbps 6.33 1.81 2.94 0.03 2.37 0.21

5 Mbps 3.65 0.15 2.12 0.01 1.65 0.02

Table 5.7: Average and standard deviation of startup delay (in seconds) for

long video

0

10

20

30

40

50

0 1 2

S
ta

rt
u

p
 D

e
la

y
 (

s)

Number of Neighbors

250 Kbps

500 Kbps

1 Mbps

2 Mbps

3 Mbps

5 Mbps

51

5.2.4 Rebuffer Events

The final performance measure to assess the quality of the video is the

number of rebuffer events. The number of rebuffer events is the number of times

the Video Player stopped to rebuffer frames after it started playing. In our

implementation, the CStream Video Player stops when it does not have the next

frame in the sequence to play. After it stops, it waits until the next two seconds of

frames is buffered except when the total remaining frames to be buffered is less

than two seconds worth of frames.

Table 5.8 shows the average number of rebuffer events over three

experimental runs for every bandwidth and Neighbor setting for the short video.

Table 5.9 shows the same measure for the long video. The number of rebuffer

events decreases as the number of neighbors increases for a given bandwidth

setting. It can be noted that for the long video, either three 3 Mbps links or two 5

Mbps links are required to stream a video without any rebuffer events.

Per host

bandwidth

constraints

Number of neighbors

0 1 2

250 Kbps 3 3 3

500 Kbps 3 3 3

1 Mbps 3 3 2

2 Mbps 3 2 1

3 Mbps 2 1.3 1

5 Mbps 2 1 0

Table 5.8: Average of number of rebuffer events for short video

52

Per host

bandwidth

constraints

Number of neighbors

0 1 2

250 Kbps 15 14.3 14

500 Kbps 15 13 12

1 Mbps 13 11 9

2 Mbps 11 6.6 2

3 Mbps 9 2.6 0

5 Mbps 6 0 0

Table 5.9: Average of number of rebuffer events for long video

5.2.5 Frame Distribution

To study the effectiveness of the frame assignment scheme, the ratio of the

frames received by the Client and the Neighbor during streaming is compared to

their corresponding bandwidth settings. An ideal frame assignment scheme should

distribute the frames based on the bandwidth of the links to minimize the total

download time and hence achieve maximum throughput. For example, if there is

one Neighbor with a bandwidth of 1 Mbps and the Client with a bandwidth of 2

Mbps, then ideally 66.66% of the video (frames) should be sent through the Client

and 33.33% through the Neighbor to minimize the total download time.

We measure the total size of the frames downloaded by each node and

compare their ratio to the bandwidth settings. The frame sizes in both the short

and the long video are different. Figure 5.10 shows four different experiments

with the short video. In the first experiment, there was one Neighbor and the

53

bandwidth of both the Neighbor and the Client is set to two Mbps. The graph

shows the contribution of each node during streaming. As expected, both the

nodes contributed around 50% each. In experiment 2, we set unequal bandwidth

for the Client and the Neighbor. The Client bandwidth is set to 2 Mbps and the

Neighbor bandwidth to 1 Mbps. Again, in this scenario, the contribution of each

node almost matches the ratio of their bandwidths. In experiment 3 and

experiment 4, we had two Neighbors with equal and unequal bandwidth

respectively. In the both the experiments, the ratio of the video frames

downloaded by each node matched the ratio of their bandwidths. Figure 5.11

shows the result of a similar set of experiments for the long video.

Figure 5.10: Frame distribution vs. ratio of bandwidth for short video

54

Figure 5.11: Frame distribution vs. ratio of bandwidth for long video

5.2.6 Impact of Wireless

Finally, we study the impact of wireless bandwidth on video streaming. In

all the previous experiments, the wireless bandwidth was more than the wired

bandwidth and hence the overall throughput was limited by the wired bandwidth.

We study the impact of wireless by changing the location of the Neighbors with

respect to the Client. In wireless, the throughput depends upon the signal strength

between the nodes which decreases as the distance between the nodes increase.

We varied the location of the Neighbor such that it had excellent, good and bad

signal strength, visually based on the bars in the “Connect to a network” Windows

dialog.

In our experiments, there was one Neighbor in addition to the Client both

having a bandwidth of 2 Mbps. Long video is used for evaluating the Neighbor

leaving and joining scenarios. Figure 5.12 shows the aggregate throughput

55

obtained in each of the scenario. In the excellent signal strength scenario, the

wireless bandwidth was around 13 Mbps. In the good signal strength scenario, the

wireless bandwidth was around 1 Mbps and it was around 500 Kbps in the poor

signal strength scenario. As seen, the aggregate throughput dropped as the

distance between the nodes increased. Specifically, it can be noted that the

bandwidth contributed by the Neighbor in the good and poor scenario was

constrained by the wireless bandwidth. In the excellent scenario the aggregate

throughput was around 3500 Kbps, while in the good scenario it was around 2400

Kbps and in the poor scenario it was around 2000 Kbps

The bandwidth contributed by the Neighbor in CStream is the minimum of

the wired and wireless bandwidth.

Figure 5.12: Impact of wireless signal strength on aggregate throughput for

long video. In the experiment, there was one client and one neighbor both

with bandwidth 2 Mbps

56

5.2.7 Neighbors Joining

Additionally, we studied the impact in the overall throughput when

neighbors join and leave in the middle of a streaming session. We measured the

instantaneous throughput over time observed at the Client when the

neighborhood changed. The instantaneous throughput in our experiments was

calculated as the ratio of the total size of the last 20 frames to the time taken to

download them. We choose 20 frames to smooth the fluctuations in throughput.

Figure 5.13 shows a single experiment run where Client and the Neighbors

had a bandwidth of 2 Mbps. The first Neighbor joined at around 35 seconds and

the second Neighbor joined at around 55 seconds. It can be seen that the

throughput almost doubled (from a 1787 Kbps with no Neighbors to 3576 Kbps)

after the first Neighbor joined and almost tripled (to 5747 Kbps) after the second

Neighbor joined.

Figure 5.13: Change in instantaneous throughput when neighbors join

57

5.2.8 Neighbors Leaving

Figure 5.14 shows a similar experiment with neighbors leaving. To start

there are 2 neighbors all with 2 Mbps bandwidth. The first Neighbor leaves at

around 12 seconds and the second Neighbor leaves at around 32 seconds. The

throughput drops from an average 5653 Kbps to 3773 Kbps when the first

Neighbor left and to 1781 Kbps when the second Neighbor left. Both the

experiments show that CStream dynamically handles changing neighborhood and

effectively uses the available bandwidth.

Figure 5.14: Change in instantaneous throughput when neighbors leave

58

6 Future Work

This chapter presents the possible extensions to CStream. Section 6.1

discusses a better frame distribution scheme that will improve the delivery of

frames. Section 6.2 discusses plans for real world deployment and evaluation.

Then, Section 6.3 and 6.4 details how CStream can be used with other video types

and also streaming audio as a part of the video. Finally, Section 6.5 discusses

security and incentives for CStream.

6.1 Better Frame Distribution

The current implementation of CStream adapts to the changes in the

bandwidth, but when the bandwidth of the links is unequal, it leads to out of order

delivery of frames. For example, if the Client is ten times faster than the Neighbor,

and the first frame is assigned to the Neighbor, then according to current scheme

it is likely that frames 2 to 11 will streamed via the Client link. Frame 1 will likely

be received by the Client only after it has streamed frames 2 to 11. This out of

order delivery of frames may impact the performance of video streaming and may

result in increased rebuffer events. In such a case where the Client and Neighbor

links have different bandwidth, then the frame distribution algorithm could assign

the frames more intelligently. A solution is to keep track of the frame requests by

the Client and Neighbor threads and assign frames based on their frequency

compared to others. The bandwidth of the links could be estimated and frames

assigned based on their ratios. To make sure frames arrive in order, the frame

assignment scheme could assign frames to threads in such a way that by the time

they reach the Client, they are almost in order. For example, in the above scenario,

59

if the Video Server estimates that the bandwidth of the Neighbor is ten times

slower than that of Client, it would look ahead and assign frame 11 to the

Neighbor instead of the frame at the head of the queue (frame 1). In that way,

frame 11 will arrive at the Client at the same time it had finished streaming frames

1 to 10 through the Client link.

6.2 Real-World Deployment

A natural next step in evaluation is to measure the performance of CStream

in a real-world setting. A real-world deployment, say in an apartment complex, will

help study ISP diversity, their bandwidth optimizations and its effect on CStream

performance. It will also help evaluate our assumption on the density of nodes

and node idle time.

In addition, we evaluated CStream performance on PCs but an immediate

possible extension is to use CStream to aggregate 3G bandwidth for smart phones

and see how it improves the video streaming performance. To accomplish this,

the CStream code would need to be ported to a smart phone or a 3G modem

could be used on the PCs. We can also evaluate the performance of CStream in

scenarios that involve both 3G and Ethernet links (a mix of laptops and smart

phones).

6.3 Other Video Formats

The source videos were stored in AVI format in our CStream

implementation. CStream can be extended to support other video types like

MPEG which are layer encoded. For instance, MPEG videos have three kinds of

frames: I, B and P frames. I frames define the base layer of the video and the B

60

and P frames are enhancement layers. CStream could stream these videos in such

a way that it sends base layer through the Client link and enhancement layers

through the Neighbors.

Additionally, CStream currently does not do video scaling when the

combined bandwidth of the participating neighbors and the Client node is not

sufficient to support the video. CStream could be extended to include different

methods of video scaling when there is not enough bandwidth to stream the

video.

6.4 Audio stream

The initial CStream system built sends only video frames and excluded the

audio stream. A possible extension is to consider audio as part of the stream. One

simple implementation would be to stream the audio entirely through the Client

link and give higher priority to audio stream compared to video stream.

6.5 Incentives and Security

CStream assumes that all the Neighbors are willing to collaborate and are

trusted, so there is no focus on incentives or security. One possible area of future

work is to examine the security issues the system needs to address. This includes

the Video Server encrypting and signing video frames and the Client verifying the

content to prevent man-in-the-middle attacks. And maintaining a trusted set of

neighbors and blacklisting malicious neighbors to control denial of service attacks.

Similarly it would be useful to come up with an incentive model to make CStream

more practical and deployable. A simple solution for incentives is to implement a

TFT (tit for tat) based scheme as in BitTorrents [LRLZ06]. In a TFT based

61

scheme, a node gains credit when it uploads data to other peers and spends the

credit to download data from other peers. A more complex solution is to design a

micropayment based scheme similar to COMBINE [APRT07] to incentivize

nodes to help. The payment scheme COMBINE uses includes a signed node of

credit, termed an IOU (abbreviated from the phrase “I owe you”) indicating the

amount of payment made.

62

7 Conclusion

The popularity of video streaming systems has tremendously increased over

the past few years. Despite its popularity, video streaming still remains a challenge

in many scenarios. With limited broadband bandwidth at homes and 3G

bandwidth in smart phones, the quality of video streaming suffers. To overcome

this problem, we note two important network characteristics typical of most

homes. First, there is a high density of Internet connections available in every

neighborhood with many idle users. Although the available bandwidth at one

Client is limited, the total unused bandwidth available in a neighborhood is high

and can be aggregated together. Second, most of today‟s wireless devices have

multiple interfaces that enable them to connect to nearby devices in an ad-hoc

network at the same time they are connected to the Internet. CStream leverages

the above two facts to aggregate Internet bandwidth for better video streaming.

This thesis presents CStream prototype, proof of concept implementation

of a collaborative streaming system to improve video streaming in a neighborhood

environment. CStream connects nearby nodes in an ad-hoc network to aggregate

the bandwidth available at each node. CStream streams a single video through all

the available links to improve its quality. We designed and built an entire CStream

system including the Video Server, Client and the Neighbors. CStream by design

dynamically adapts to changes in the neighborhood.

CStream was evaluated on a small test bed of computers. Aggregate

throughput achieved with the CStream system- was measured varying the number

of Neighbors participating in video streaming. Video quality was measured in

terms of total playout time, startup delay and number of rebuffer events.

63

The results show that when the Client and the Neighbors have equal

bandwidth, the aggregate throughput achieved with CStream system increases

linearly with the increase in the number of neighbors participating in the

streaming. Playout time to stream and play the entire video also decreases

multiplicatively as the number of neighbors increased. Similarly, the startup delay

to play the first frame also decreased with the increase in number of contributing

neighbors. A sharp decrease in the rebuffer events was observed as more

Neighbors participated in video streaming. We ran experiments to verify the

contribution of the Neighbors to video streaming and the results show that the

ratio of the frames contributed by all nodes (both Client and Neighbor) is

proportional to the available bandwidth. We finally studied the impact of the

location of the nodes, placing the Neighbors in different positions relative to the

Client such that the signal strength between the Client and the Neighbor was

excellent, good and bad. We observed that bandwidth contributed by the

Neighbor was constrained by the limited wireless throughput for good and bad

signal strengths. So bandwidth contributed by Neighbor is then limited by the

minimum of the wired bandwidth and wireless throughput to the Client. CStream

experimental results demonstrate how collaborative streaming improves the

aggregate throughput and the quality of video streaming.

The contributions of this thesis include the following:

 Proposed a novel system for video streaming that connects neighboring nodes

in an ad-hoc network to aggregate Internet bandwidth.

 Designed a system that streams video through multiple Internet connections

and that dynamically adapts to the changing neighborhood (nodes joining and

leaving).

64

 Implemented a frame distribution scheme that distributes video frames across

multiple connections and makes full utilization of the available bandwidth.

 Built the entire CStream system including the Client, Neighbor and the Video

Server. It also includes a Video Player through which users can request and

play videos.

 Performed detailed performance evaluation of the entire system over a range

of video and network configurations, showing a linear improvement in

throughput and video quality as the number of co-operating users increases.

65

Bibliography

[80211N] IEEE 802.11n-2009—Amendment 5: Enhancements for Higher

Throughput. IEEE-Standards Association. 29 October 2009.

doi:10.1109/IEEESTD.2009.5307322

[APRT07] G. Ananthanarayanan, V. Padmanabhan, L. Ravindranath and C.

Thekkath. COMBINE: Leveraging the Power of Wireless Peers

through Collaborative Downloading. In Proceedings of ACM Mobisys,

San Juan, Puerto Rico, June 2007.

[AWW05] I. F. Akyildiz, X. Wang, and W. Wang. Wireless Mesh Networks: A

Survey. In Elsevier Journal of Computer Networks, vol. 47, no. 4, pp.

445-487, 2005.

[CBB04] R. Chandra, V. Bahl and P. Bahl. Multinet: Connecting to Multiple

IEEE 802.11 Networks using a Single Wireless Card, In Proceedings

of IEEE Infocom, Hong Kong, March 2004.

[CR06] K. Chebrolu and R. Rao. Bandwidth Aggregation for Real Time

Applications in Heterogeneous Wireless Networks, In IEEE

Transactions on Mobile Computing, vol. 5, no. 4, pp. 388-403, April

2006.

66

[GALM07] P. Gill, M. Arlitt, Z. Li and A. Mahanti. YouTube Traffic

Characterization: A View From the Edge, In Proceedings of ACM

Internet Measurement Conference (IMC), San Diego, California, USA,

October 2007.

[JJKPS08] S. Jakubczak, M. Jennings, M. Kaminsky, K. Papagiannaki and S.

Seshan. Link-alike: Using Wireless to Share Networking Resources

in a Neighborhood. In ACM SIGMOBILE Mobile Computing and

Communications Review (MC2R) (invited paper), vol. 12, no. 4, October

2008.

[KLBK08] S. Kandula, K. Lin, T. Badirkhanli and D. Katabi. FatVAP:

Aggregating AP Backhaul Bandwidth. In Proceedings of Networked

Systems Design and Implementation (NSDI), San Francisco, CA, USA,

April 2008.

[LRLZ06] J. Liu, S. Rao, B. Li and H. Zhang. Opportunities and Challenges of

Peer-to-Peer Internet Video Broadcast. In Proceedings of the IEEE,

vol. 96, no. 1, pp. 11-24, January 2008.

[oAVI] A Simple C# Wrapper for the AviFile Library.

http://www.codeproject.com/KB/audio-video/avifilewrapper

.aspx

[oEE09] The Exabyte Era. http://www.cisco.com/web/IN/about/

network/the_exabyte_era.html. Retrieved on 10 Sep. 2009.

http://www.codeproject.com/KB/audio-video/avifilewrapper%20.aspx
http://www.codeproject.com/KB/audio-video/avifilewrapper%20.aspx
http://www.cisco.com/web/IN/about/%20network/the_exabyte_era.html
http://www.cisco.com/web/IN/about/%20network/the_exabyte_era.html

67

[oORB] Orb. http://www.orb.com.

[oWiki3G] 3G. http://en.wikipedia.org/wiki/3G.

[oYT] YouTube. http://www.youtube.com.

[PMDC03] R. Prasad, M. Murray, C. Dovrolis and K. Claffy. Bandwidth

Estimation: Metrics, Measurement, Techniques and Tools. In

IEEE Network, vol. 17, pp. 27-35, November 2003.

[RKB00] P. Rodriguez, A. Kripa and E. W. Biersack. Parallel-access for

Mirror Sites in the Internet. In Proceedings of IEEE Infocom, Tel Aviv,

Israel, March 2000.

http://www.orb.com/
http://en.wikipedia.org/wiki/3G
http://www.youtube.com/

