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Abstract 

 

 

Video streaming is an increasingly popular Internet application. However, 

despite its popularity, real-time video streaming still remains a challenge in many 

scenarios. Limited home broadband bandwidth and mobile phone 3G bandwidth 

means many users stream videos at low quality and compromise on their user 

experience. To overcome this problem, we propose CStream, a system that 

aggregates bandwidth from multiple co-operating users in a neighborhood 

environment for better video streaming. CStream exploits the fact that wireless 

devices have multiple network interfaces and connects co-operating users with a 

wireless ad-hoc network to aggregate their unused downlink Internet bandwidth 

to improve video quality. CStream dynamically generates a streaming plan to 

stream a single video using multiple connections and continuously adapts to 

changes in the neighborhood and variations in the available bandwidth. We have 

built CStream and evaluated it on a controlled test-bed of computers with various 

performance measures. The results show linear increase in throughput and 

improved video streaming quality as the number of cooperating users in a 

neighborhood increase. 
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1    Introduction 

 

 

The popularity of video streaming systems has grown tremendously in the 

past few years. Sites like YouTube [oYT] support user generated video content 

and contribute to a significant amount of Internet traffic [GALM07].  According 

to a recent survey by Cisco, video accounts for 25% of the total Internet traffic 

and is expected to contribute about 50% of the Internet traffic by 2012 [oEE09].  

 

The quality of video streaming is mainly dependent on the downlink 

Internet bandwidth available to the end user. Although Websites like YouTube 

support high quality videos, due to the limited Internet bandwidth available today, 

many users stream videos at low quality and compromise on their user experience. 

Systems like Orb [oORB] dynamically adapt the quality of videos based on the 

available bandwidth, but still end up streaming videos at low quality because of the 

limited bandwidth. Additionally, video streaming in mobile devices, like smart 

phones, will be an important application in the future.  The 3G Internet 

bandwidth [oWiki3G] offered in such devices is expected to take a long time to 

meet the demand for real-time streaming. Hence, despite the popularity, real-time 

video streaming that provides a good user experience still remains a challenge in 

many scenarios with the Internet downlink bandwidth as the major bottleneck. 

 

To overcome this problem and enable users to stream quality videos in 

real-time, we propose CStream (Collaborative Streaming), a system that aggregates 

bandwidth from multiple co-operating users in a neighborhood. The motivation 

for the system stems from the fact that although individual users have limited 

bandwidth, the high density of Internet users in a neighborhood with only a small 

percentage active at any given time provides the opportunity to exploit the unused 
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bandwidth to improve video streaming quality. When a user streams a video, 

CStream aggregates bandwidth by connecting to nearby co-operating users and 

avail their Internet connection in addition to the user‟s own connection. 

 

Many video servers use layered encoding to support streaming in 

heterogeneous networks. Streaming additive layers when more bandwidth is 

available enhances video quality. CStream can exploit the layered encoding of 

videos and streams different enhancement layers through different neighbors. As 

the number of neighbors contributing to the client bandwidth increases, CStream 

can stream videos at higher quality. In the current implementation, CStream does 

not use enhancement layers but streams individual frames through multiple links 

for better throughput and video quality. 

 

Users increasingly use mobile devices to access the Internet. For example, 

many users at home and business use laptops or smart phones for Internet access. 

These mobile devices are typically equipped with multiple network interfaces to 

offer flexibility of Internet access. Laptops have both Ethernet and Wireless 

802.11 interfaces. Mobile phones may have 3G, 802.11 and Bluetooth interfaces. 

CStream exploits the fact that devices with multiple network interfaces can 

connect to other devices while being connected to the Internet. Specifically, 

CStream uses the 802.11 wireless interface to connect to neighboring nodes to 

aggregate bandwidth. Consider a common scenario where in a home community, 

users connect to their ISPs using laptops. CStream connects these laptops in a 

wireless ad-hoc network to aggregate bandwidth for video streaming.  Consider 

another scenario, an airport where there are many users with mobile smart 

phones. CStream connects these phones together through an ad-hoc wireless 

network to aggregate their 3G bandwidth for multimedia streaming.  
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The main components of the CStream system are the Video Server, the 

CStream Client (running CStream Video Player) and the Neighbors running a 

simple support application. The Video Server encodes and stores the videos that 

can be requested by clients. A user requests a video through the CStream Client. 

The Client creates an ad-hoc network asking if any node in a neighborhood is 

willing to contribute bandwidth. Neighbors having spare bandwidth connect to 

the ad-hoc network initiated by the Client. The Client informs the Video Server 

about the Neighbors. The server streams the video to the Client through all the 

available links (Client and Neighbors). The Neighbors act as a proxy sending the 

frames received from the server to the Client through the ad-hoc network, thereby 

contributing additional bandwidth. 

 

Figure 1.1 shows an example scenario of streaming with CStream. Client 

C1 and Neighbor N1 are connected to Internet by Ethernet through their ISP. 

Neighbor N2 is a smart phone connected to Internet through 3G. All three nodes 

are nearby i.e. with good wireless connection. C1 uses the CStream Video Player 

to request a video. Neighbors N1 and N2 have spare bandwidth and, being willing 

to cooperate, connect to C1 using a wireless ad-hoc network. C1 informs the 

CStream Video Server about its active Neighbors and the server streams the video 

through all the three links. The server sends frames through different links thereby 

aggregating bandwidth to achieve higher throughput. For example, the server 

sends frame 1 directly to the Client, sends frame 2 through Neighbor N1 and 

frame 3 through Neighbor N2. While streaming, the system fully utilizes the 

available bandwidth in all the three links and adapts dynamically to any change in 

bandwidth. The system also dynamically adapts to change in neighborhood. For 

example, when a new Neighbor joins the ad-hoc network, the system quickly uses 

the bandwidth of that Neighbor to improve streaming. Similarly, when a Neighbor 
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leaves in the middle of a streaming session, the system recovers and streams the 

lost frames through the active links. 

 

 

 

Figure 1.1: Aggregating bandwidth from neighboring nodes for video 

streaming 

 

We build CStream and evaluate it using a four -node test-bed comprising a 

Video Server, a Client and two Neighbors. Testing CStream in a controlled 

environment allowed us to control the bandwidth of the Client and Neighbors to 

the Video Server. This helps us evaluate CStream for various bandwidth settings. 

CStream is evaluated varying the number of Neighbors, location of the Neighbor 

nodes (to vary the wireless throughput) and video content. We test the 

adaptiveness of CStream under dynamic conditions when Neighbors join and 

leave in the middle of video streaming. CStream System performance is evaluated 

using metrics such as aggregate throughput and video quality. To assess the video 
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quality, we measure the playout time, start-up delay and re-buffer events during 

streaming. Effectiveness of the streaming protocol is evaluated by measuring the 

server‟s ability to effectively and proportionally use the bandwidth of the available 

links. 

 

We find linear improvement in throughput and video quality as the number 

of Neighbor nodes increases. For example, when there is one cooperating 

Neighbor with the same bandwidth as the Client, the performance improves by 

almost 2x and when there are two neighbors, the performance improves by almost 

3x. As the number of Neighbors increase, the video start up delay, the playout 

time and the re-buffer events decrease almost linearly. Results show that the 

system effectively utilizes the available bandwidth and adapts quickly to neighbors 

joining and leaving. Also note that the ratio of the frames distributed by the server 

across multiple links perfectly matches their ratio of bandwidths. 

 

The contributions of this thesis include: 

 A novel system for video streaming that connects neighboring nodes in an ad-

hoc network to aggregate Internet bandwidth. 

 A Video Plan Manager that determines how to stream video through multiple 

Internet connections and that dynamically adapts to the changing 

neighborhood (nodes joining and leaving). 

 A frame distribution scheme that distributes video frames across multiple 

connections and makes full utilization of the available bandwidth. 

 Detailed performance evaluation of the entire video streaming system over a 

range of video and network configurations that shows linear improvement in 

throughput and video quality as the number of co-operating users increases. 

 



 
 

6 

The rest of the thesis is organized as follows. In Chapter 2, we explore related 

work and compare and contrast with CStream. Chapter 3 discusses the design and 

architecture of CStream. First, we list the challenges in building such a system and 

explain how the design meets the challenges.  CStream design explains in detail the 

components of CStream, the Video Server, the Client and the Neighbor and 

discusses how the system works. Chapter 4 explains the implementation details of 

the CStream. We present the details of neighbor discovery and maintenance, 

frame distribution, dynamic plan handling and the buffering policy. Chapter 5 

explains our experimental setup and presents detailed evaluation based on various 

performance measures such as aggregate throughput, video quality and frame 

distribution. CStream is evaluated varying the bandwidth, the number of 

Neighbors, the location of the Neighbors and video content. We present future 

work in Chapter 6 and conclusions in Chapter 7. 
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2    Related Work 

 

 

There has been considerable research on improving Internet bandwidth 

and application throughput in recent years. Initially, the focus was on effectively 

using the available bandwidth at a single network interface (for example, using 

download accelerators). Later, with the proliferation of multi-homed devices, the 

focus shifted towards aggregating bandwidth from multiple Internet connections 

on a single device to improve application throughput. Recently, with the 

increasing popularity of devices with multiple interfaces such as smart phones, 

some research prototypes have focused on aggregating bandwidth across multiple 

devices to improve application throughput. This chapter describes some related 

work in these areas in detail and discusses how CStream differs from each of 

them. 

 

2.1    Download Accelerators 

 

Download accelerators and peer-to-peer (P2P) systems improve file 

download speed by getting parts of the file over multiple connections. Download 

accelerators [RKB00] improve the download rate on a single Internet link by 

opening multiple connections to mirrored servers in parallel and downloading 

different parts of a file simultaneously. The download performance improves 

because a single bad server selection may severely impact the download 

performance, while downloading in parallel from multiple servers reduces the 

impact of a bad server selection. 
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In [RKB00], the authors implement a dynamic parallel-access scheme 

where clients connect to mirror sites using unicast TCP and dynamically request 

different pieces of a document from different sites, thus, adapting to changing 

network and server conditions. They built a prototype of the dynamic parallel-

access scheme as a JAVA client that takes the URL of the mirror servers as an 

input parameter. They evaluated their scheme with various mirrored sites for 

different document sizes under different network/server conditions. The results 

show dramatic speedups in downloading a document, even when network or 

server conditions change rapidly. When all the servers used in the experiment have 

similar performance, then the speedup gain is very large. When the performances 

of the different servers are mismatched then the resulting speedup is not as 

significant when compared to the fastest server‟s performance. Even in this case, 

the parallel-access scheme achieves response times as low as the ones provided by 

the fastest server alone and at the same time eliminating the critical decision of 

server selection. 

 

P2P networks can improve video stream rate by streaming different parts 

of a video from multiple nodes [LRLZ06]. In P2P networks, a client connects to 

multiple peers and parts of the file are downloaded from different peers. Similar to 

accessing multiple servers, P2P networks provide link diversity thereby improving 

the download performance. 

 

 [LRLZ06] reviews the state-of-the-art of peer-to-peer Internet video 

broadcast technologies. The authors describe the basic taxonomy of peer-to-peer 

broadcast and summarize the major issues associated with the design of broadcast 

overlays. They examine two approaches, namely, tree-based and data-driven, and 

discuss their fundamental trade-off and potential for large-scale deployment. In a 
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tree-based approach, peers are organized into structures (typically trees) for 

delivering data, with each data packet being disseminated using the same structure.  

Data-driven overlay designs contrast to tree-based designs in that they do not 

construct and maintain an explicit structure for delivering data. Instead they use 

the availability of data to guide the data flow. 

 

Both download accelerators and P2P use multiple connections and parallel 

downloads to enhance their download performance. Although these systems can 

improve download speeds over traditional client-server systems, they can never 

achieve capacity more than the downlink bandwidth available at the end-host. In 

CStream, we consider the scenario where the user Internet downlink is the 

bottleneck and increase its application bandwidth through multiple connections. 

CStream can achieve more than the user downlink bandwidth since the bandwidth 

of the neighbors is aggregated to improve video streaming. For CStream the 

bandwidth gain is limited by the number of collaborating neighbors and not the 

client downlink capacity as in download accelerators and P2P systems. 

 

2.2    Network Sharing 

 

Network sharing is a well-explored field. Wireless Mesh Network (WMN) 

[AWW05] provides connectivity to users in a neighborhood which do not have 

direct Internet access. In mesh networks, nodes in a neighborhood connect 

wirelessly to form a grid and share Internet access from one or a few nodes which 

do have an Internet connection. Wireless mesh networks consists of mesh routers, 

mesh clients and gateways. Mesh routers are dedicated nodes that operate in ad-

hoc mode, usually stationary to support meshing. Gateways are nodes that have an 

Internet connection. Mesh clients can be stationary or mobile and communicate 

peer to peer with the mesh routers and gateways. There are three types of mesh 
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networks: infrastructure supported mesh networks, client wireless mesh networks 

and hybrid mesh networks. In infrastructure mesh networks, mesh routers provide 

the infrastructure for the clients. In client mesh networks, client nodes form a 

peer-to-peer network for extending Internet connectivity and perform actual 

routing. Hybrid meshing is a combination of infrastructure and client meshing. 

[AWW05] presents a detailed study on advances and challenges in wireless mesh 

networks. Wireless mesh networks are cost effective way of increasing Internet 

connectivity. They are self organizing, self healing and self configuring. WMNs 

provide redundancy and involve multi-hop routing to transfer data to a gateway 

and back to a node. WMN protocols assign one gateway per flow and routes all 

the packets in a flow through the same path. WMN has scalability issues and 

suffers in performance as many nodes join the mesh network. CStream is similar 

in theme to mesh networks in forming a neighborhood network, but unlike mesh 

networks which uses a single Internet connection per flow, CStream nodes 

aggregate bandwidth from all nearby nodes in addition to its own Internet 

connection. CStream also splits a single video stream across multiple Internet 

connections. 

 

2.3    Bandwidth Aggregation 

 

There have been several research efforts recently on aggregating Internet 

bandwidth from multiple connections. Bandwidth aggregation techniques 

seamlessly use multiple Internet connections as if it is a fat connection. The 

system presented by Chebrolu [CR06] assumes multiple Internet connections on 

the same device through multiple interfaces and aggregates bandwidth across 

these interfaces for video streaming. An important aspect of an architecture that 

does bandwidth aggregation for real-time applications is the scheduling algorithm 

that partitions the traffic onto different interfaces such that the QoS requirements 
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of the application are met. [CR06] proposes Earliest Delivery Path First (EDPF), 

an algorithm that ensures packets meet their playback deadlines by scheduling 

packets based on the estimated delivery time of the packets. They show through 

analysis that EDPF performs close to an idealized Aggregated Single Link 

discipline, where the multiple interfaces are replaced by a single interface with the 

same aggregated bandwidth. Using a prototype implementation and simulations 

carried using video traces, they show performance improvement with EDPF 

scheduling over using just the highest bandwidth interface and other scheduling 

approaches based on weighted round robin.  

 

The number of network interfaces per device is limited (usually two) and 

the maximum capacity these systems can achieve is the sum of the Internet 

bandwidths at these interfaces. CStream also does bandwidth aggregation but 

instead of combining bandwidth from network interfaces in a single device, it 

aggregates Internet bandwidth from multiple neighbors. Hence, CStream can 

achieve greater capacity than such multi-homed systems, only limited by the 

wireless capacity (up to 600 Mbps in IEEE 802.11n [80211N]). 

 

Systems discussed thus far attempt to improve throughput by parallel 

access to mirrored servers or simultaneous usage of multiple network interfaces. 

Recent research has focused on exploiting bandwidth at nearby nodes to improve 

application performance. COMBINE [APRT07] is a research prototype which 

aggregates bandwidth from multiple nearby phones by forming a wireless ad-hoc 

network between the nodes. COMBINE aggregates the 3G bandwidth on phones 

to download large files using HTTP. It improves HTTP download by getting 

different chunks of a file through different links. COMBINE uses an adaptive 

workload distribution algorithm to farm out work across the participants in the 

collaboration group. COMBINE uses HTTP byte-range requests for parallel 
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downloads and hence does not require server support. The main focus of 

COMBINE is an incentive system that is based on battery energy cost. An 

accounting system pays and bills users based on their bandwidth contribution. 

COMBINE includes an energy-efficient protocol for nodes to discover each 

other, exchange their bids, and form a collaboration group. The authors have 

prototyped COMBINE on Windows XP and evaluated its performance on 

laptop-class devices equipped with 802.11b WLAN NICs and GPRS WWAN 

modems. They show near-linear speedups for group sizes of up to five nodes. 

 

CStream is similar to COMBINE in forming an ad-hoc network with 

neighbor nodes and aggregating bandwidth from multiple neighbors.  CStream 

applies bandwidth aggregation across multiple nodes to effectively improve video 

streaming performance. Video streaming is a high bandwidth application and 

unlike HTTP download, has real time constraints where the bandwidth gain from 

collaborating with neighbors can boost video performance tremendously. 

 

Link-alike [JJKPS08] is similar to COMBINE but is used to improve the 

upload capacity of the client. Many photo, video sharing services and online 

backup services require users to upload large amounts of data to their Websites, 

but the asymmetric broadband connections prevalent in residential network pose a 

challenge to users who want to publish information. Link-alike tries to solve this 

problem by increasing the upstream capacity of the client by aggregating the 

uplink capacities of the nodes in neighborhood. Link-alike addresses the 

challenges of operating in an environment that is highly lossy, broadcast in nature 

and half-duplex. Link-alike uses opportunistic wireless reception, a novel wireless 

broadcast rate control scheme, and preferential use of the wired downlink. 

Through analytical and experimental evaluation, [JJKPS08] demonstrates that 

Link-alike provides significantly better throughput than previous solutions based 
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on TCP or UDP unicast. CStream also aggregates bandwidth in a neighborhood 

environment, but unlike Link-alike CStream is focused on aggregating downlink 

bandwidth for video streaming. 

 

Since systems like COMBINE and Link-alike support only file transfer, 

they do not have any constraint on the upload or the download time, and hence 

use straight-forward work distribution techniques to assign a flow across multiple 

links.  CStream supports real-time video streaming and distributes frames across 

multiple connections for improved video quality. CStream effectively utilizes the 

available bandwidth and dynamically adapts to neighbors joining and leaving.  

 

2.4    Virtual Interfaces 

 

Although CStream assumes multiple interfaces at a device, it is not a 

requirement. Technologies like Multinet (Virtual WiFi) [CBB04] make a single 

wireless interface act as multiple network interfaces enabling them to connect to 

multiple nodes at the same time. For example, a node can connect to the Internet 

through an access point at the same time as it can connect to a neighboring node, 

both connections using the same wireless card. Multinet continuously switches a 

single wireless card across multiple networks. The system is transparent to the user 

and is agnostic to the upper layer protocols. Multinet is implemented as a 

Windows driver and virtualizes a single wireless card into multiple interfaces.   

 

FatVAP [KLBK08] is a system which enables a single wireless card to 

connect to multiple access points at the same time using similar techniques used in 

Multinet. FatVAP is implemented as an 802.11 Linux driver that aggregates the 

bandwidth available at accessible APs and also balances their loads. FatVAP 

chooses the APs that are worth connecting to and connects with each AP just 
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long enough to collect its available bandwidth. It ensures fast switching between 

APs without losing queued packets. FatVAP works with unmodified APs and is 

transparent to applications and the rest of the network stack. The authors evaluate 

FatVAP both in a lab, at hotspots and for residential deployments. FatVAP 

delivers a median throughput gain of 2.6x, and reduces the median response time 

by 2.8x.  

 

Using approaches like Multinet or FatVAP, CStream can be effective for 

devices with only one network interface. In our current implementation, devices 

have multiple interfaces but using technologies like Multinet and FatVAP CStream 

can work on devices with single network interface. 

 

2.5    Summary 

 

To summarize, CStream differs from all the previous systems in application 

and design. To the best of our knowledge, CStream is the first system to focus on 

aggregating bandwidth from nearby nodes for video streaming. It streams a single 

video through multiple connections and dynamically adapts to changing 

neighborhood. We design and implement CStream and present detailed 

performance evaluation under various settings. 
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3    Design 

 

 

This chapter presents the design details of the CStream. CStream is a proof 

of concept system to show the benefits of bandwidth aggregation in a 

neighborhood to improve the performance of a video streaming. There are several 

challenges in building a system that aggregates bandwidth from nearby nodes 

through an ad-hoc wireless network to improve video streaming. We list and 

explain the challenges below and show how our design addresses these challenges. 

 

Currently CStream does not focus on security and incentive model. We 

assume that neighbors having spare bandwidth are willing to participate in 

CStream without any incentives. Also we assume that all the neighbor nodes 

collaborating in video streaming are trusted and do not deal with security issues. 

We assume that the Client do not use CStream to download any illegal content. 

Finally, we assume users of both Client and Neighbors have installed the CStream 

software. 

 

3.1    Challenges 

 

3.1.1    Neighbor Discovery and Maintenance 

 

The Client and Neighbors should find each other and connect through an 

ad-hoc wireless network. Once connected, at any time the Client should have an 

updated knowledge of the active Neighbors willing to contribute bandwidth. 

Neighbors should be able to join and leave the system at any time during video 

streaming.   
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3.1.2    Multi-path streaming 

 

The Video Server should be able to stream a single video through multiple 

nodes. The server needs to know the Client and Neighbor end points to be able to 

send the frames. The server needs to distribute the frames to be sent based on the 

bandwidth available at each link and it should dynamically adapt to the changes in 

the bandwidth. An ideal distribution protocol will fully utilize the available 

bandwidth and proportionally distribute frames based on the ratios of the 

available bandwidths. 

 

3.1.3    Dynamically changing neighborhood 

 

The system should adapt to a change in the network neighborhood. 

Neighbors can then join and leave at any time during the video streaming. When 

new neighbors join, the system should be able to adapt quickly and start using the 

newly available bandwidth. When a Neighbor leaves, the system should be 

adaptive and recover the lost frames and redistribute them across the remaining 

active links. 

 

3.1.4    Buffering and Playing 

 

The Client should be able to buffer the frames received through different 

links and play them. The underlying mechanism of receiving frames from different 

links and playing them should be opaque to the user. The system should have an 

appropriate buffering mechanism which decides whether to wait for the late 

frames or discard them.  
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3.2    Architecture 

 

 The CStream design addresses all the above challenges. Figure 3.1 shows 

the architecture of CStream. The system has three distinct components: the Video 

Server, the Client node which requests the video and the Neighbors which help to 

aggregate bandwidth for better video quality. CStream assumes that multiple 

interfaces are present in the Client and Neighbors so that they can form wireless 

ad-hoc network wireless communications while being connected to the Internet.  

 

In brief, CStream works as follows.  The CStream Client forms a wireless 

ad-hoc network with Neighbors which are idle so that it can use their bandwidth. 

The Client periodically updates the Video Server with the Neighbor information 

and the server streams the video to the Client using both the Client and the 

Neighbor bandwidth. A participating Neighbor simply acts as a proxy in delivering 

the frames from the server to the Client. We explain the role of each component 

in greater detail below. We defer the implementation details to Chapter 4. 
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Figure 3.1: CStream architecture 

 

3.2.1    Client 

 

Users request video using the Video Player in the Client. The Client then 

sends the request to the Video Server. The Video Server replies back with the 

meta-data of the video which consists of the number of frames and the frame rate. 

The Client forms an ad-hoc network with the Neighbors and informs the Video 

Server about the available links to stream the video. As the frames start arriving, 

they are buffered and later the video is played by the Video Player. 

 

The Client has four main components and the role of each component is 

explained in detail below. 
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3.2.1.1    Neighbor Manager 

The role of the Neighbor Manager is summarized below: 

1. When a user requests a video, the Neighbor Manager creates an ad-hoc 

network and waits for Neighbors to join the ad-hoc network. 

2. The Neighbor Manager periodically broadcasts REQUEST messages to 

find new Neighbors in the ad-hoc network which are willing to contribute 

bandwidth. 

3. The Neighbor Manager keeps an updated knowledge of active Neighbors 

willing to help in the system. The Neighbor Manager monitors for periodic 

heartbeat messages (I-CAN-HELP messages) from the Neighbors and 

constantly keeps track of neighbors joining and leaving the neighborhood 

4. The Neighbor Manager periodically informs the Video Plan Manager about 

the active Neighbors and changes in neighborhood (new Neighbors joining 

and Neighbors leaving). 

5. The Neighbor Manager receives video frames from the active Neighbors 

and forwards it to the Buffer Manager. It keeps track of the frames received 

from each of the Neighbors and informs the Video Plan Manager. 

 

3.2.1.2    Video Plan Manger 

The Video Plan Manager is a core component of the Client that constantly 

informs the Video Server about the streaming plan. The role of the Video Plan 

Manager is summarized below: 

1. The Video Plan Manager constructs the streaming plan with Neighbor 

details and periodically updates the Plan Handler in the Video Server. The 

streaming plan consists of information about the Client and Neighbor links 

(IP address and Port) that the Video Server can use to stream video to the 

Client. 
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2. When a new Neighbor, ready to contribute bandwidth, joins the ad-hoc 

network, the Video Plan Manager informs the Video Server about the 

Neighbor so that the Video Server can quickly use additional bandwidth to 

stream. 

3. When a Neighbor leaves the network, the Video Plan Manager informs the 

Video Server so that the Video Server can recover lost frames and stream 

through other active links. 

 

3.2.1.3    Buffer Manager 

The Buffer Manager maintains the playout buffer that the Video Player uses to 

play the video.  

1. Based on the meta-data response from the Video Server after the Client 

requests the video, the Buffer Manager initializes the playout buffer.  

2. The Buffer Manager receives frames from the Video Server and stores 

them in the buffer. 

3. The Buffer Manager also receives frames from the Neighbor through the 

Neighbor Manager and stores them in the buffer. 

 

3.2.1.4    Video Player 

The Video Player is the interface for the user in the CStream system. 

1. A user can request a video using the Video Player in the Client. 

2. The Video Player extracts frames from the playout buffer in the Buffer 

Manager and plays them. 

3. The Video Player plays the video based on the meta-data of the video 

(frame rate). 

4. When the frame to be played is missing, the Video Player stops playout and 

waits for late frames to arrive. The stop and buffering mechanism is 

explained in detail in the next chapter. 
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3.2.2    Neighbor 

A Neighbor is idle and has spare bandwidth which it is willing to share with 

the Client to improve the video streaming quality. Though Figure 2 shows only 

one instance of the Neighbor, multiple Neighbors can contribute bandwidth to a 

single Client. The role of each of the Neighbor components is explained below. 

 

3.2.2.1    Helper Manager 

The role of the Helper Manager is summarized below: 

1. When the Neighbor is willing to contribute bandwidth, it looks for an ad-

hoc network created by a CStream Client and joins the network. 

2. When the Helper Manager receives a REQUEST message from the Client, 

it starts sending I-CAN-HELP messages periodically to the Client. In the I-

CAN-HELP messages, the Helper Manager puts the IP Address and the 

port which the Neighbor keeps open for the Video Server to stream the 

video. 

3. When there is user activity or network activity (due to other applications), 

the Helper Manager stops sending I-CAN-HELP messages.  

4. The Helper Manager disconnects from the CStream ad-hoc network when 

the user exits the CStream application. 

 

3.2.2.2    Proxy 

The Proxy component in the Neighbor functions as below: 

1. The Proxy keeps a port open for the Video Server to stream video through 

it. 

2. The Proxy receives frames from the Video Server and forwards it to the 

Client through the ad-hoc network. Neighbors do not buffer the received 

frames and immediately forward the frames to the Client. 
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3.2.3    Video Server 

The Video Server stores the videos that Client can request. The Video 

Server streams a single video through multiple links. It adapts the streaming to 

changes in the network neighborhood. The role of each of the Video Server 

components is explained below. 

 

3.2.3.1    Video Database 

The Video Database stores the uploaded videos that Client nodes can stream: 

1. The videos are encoded and stored in AVI format. 

2. The Video Database splits a video into frames and allows queries to a 

specific frame in a video. The Frame Distributor extracts the frames from a 

video in the Video Database and distributes them through multiple links. 

 

3.2.3.2    Plan Handler 

The role of the Plan Handler is summarized below: 

1. The Plan Handler receives a streaming plan from the Video Plan Manager 

in the Client. The Plan Handler initializes the Frame Distributor to stream 

according to the plan. 

2. The Plan Handler receives plan updates from the Client about changes in 

the neighborhood. When the Client informs the Plan Handler about a new 

Neighbor, it updates the Frame Distributor to include the new Neighbor in 

the streaming process. When the Client informs the Plan Handler about a 

Neighbor that left in the middle of streaming, it updates the Frame 

Distributor to stop sending frames via that Neighbor. 

Chapter 4 explains in detail how the system adapts to changes in 

neighborhood. 
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3.2.3.3    Frame Distributor 

The Frame Distributor is the core component of the system that streams a single 

video through multiple links. 

1. The Frame Distributor runs a frame assignment module that assigns frames 

in a video to stream through different links.  

2. The Frame Distributor uses TCP to send the frames to Client and the 

Neighbor. 

3. The Frame Distributor adapts to change in bandwidth and effectively 

utilizes the links. 

4. The Frame Distributor works with the Plan Handler to adapt to the 

changes in neighborhood. The Frame Distributor starts streaming to new 

neighbors when they join and recovers lost frames when a Neighbor leaves. 

Chapter 4 explains in detail how the Frame Distributor effectively utilizes the 

bandwidth of the available links. 
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4    Implementation 

 

 

This chapter presents implementation details of the protocols in the 

CStream system. Specifically, it discusses four areas: 1. Neighbor Management, 2. 

Frame Distribution, 3. Adapting to changes in neighborhood, 4. Buffering and 

Playing. We show illustrative examples to explain each of these areas. 

 

4.1    Neighbor Management 

 

This section explains the ad-hoc network formation and neighbor 

management. Specifically we explain the implementation details of Neighbor 

Manager in the Client and Helper Manager in the Neighbor and their interaction. 

An illustrative example to explain the sequence of flow in the implementation of 

CStream System is included. 

  

Figure 4.1 shows an example scenario with a Client and two Neighbors. 

Assume that a user requests a video using the Client. We describe the sequence of 

events step by step using Figure 4.1. In the figure, the steps are show in black 

circles with the step number. 
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Figure 4.1: Ad-hoc network formation and neighbor management 

 

Step 1: The Client creates an ad-hoc network with SSID CStream. If such a 

network already exists, the Client joins it. If the Client is already connected to the 

CStream ad-hoc network, it continues with Step 3.  

 

The same ad-hoc network can be maintained across multiple video 

requests. For instance, the Neighbors may be connected in the ad-hoc network all 

the time even if a video is not requested. When it has user activity, the Neighbor 

disconnects from the ad-hoc network and connects back when it becomes idle 

again. This way of maintaining the ad-hoc network helps reduce the streaming 

start-up delay of forming the neighborhood network.  

 

Step 2: Neighbors which are nearby the Client are in the range of CStream ad-hoc 

network. If they are running the CStream application and are idle, they join the 

network. Client and Neighbors get an IP address once they join the ad-hoc 

network. 
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Step 3: The Client broadcasts a REQUEST message in the ad-hoc network that it 

needs to stream a video and is looking for neighbors to contribute bandwidth. In 

our implementation, we use IP broadcast in the ad-hoc network to broadcast the 

request.  

 

Step 4: When a Neighbor in the ad-hoc network receives a REQUEST message, it 

starts responding to the Client with I-CAN-HELP messages. The I-CAN-HELP 

messages contain the Neighbors IP address and port for the Video Server to 

stream the video via the Neighbor. The I-CAN-HELP messages are sent 

periodically to the Client (in our implementation, every second). The periodic I-

CAN-HELP messages from the Neighbors are used by the Client to determine if 

a Neighbor is still alive. 

 

The Neighbor Manager at the Client maintains a neighbor table with the 

following information using the I-CAN-HELP messages. 

Neighbor IP address Port Last Update Time Last Received Frame 

 

For each Neighbor, the table stores the IP address and the port for 

streaming, the last time when the Client received an I-CAN-HELP message from 

the Neighbor and the last received frame from the Neighbor. As detailed in 

subsequent sections, the Last Received Frame value will be used to recover lost 

frames when a Neighbor leaves. The Client decides that a Neighbor has left if it 

does not receive I-CAN-HELP messages for a specific amount of time (3 seconds 

in our implementation).  

 

Step 5: The Client sends the streaming plan periodically (every 500 msec in our 

implementation) to the Video Server. The streaming plan consists of the list of 

end points (IP address and port) to stream. The Client sends its own end point 
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and the end point of the Neighbors that are active (last update time is less than 3 

seconds).The streaming plan changes to capture the changes in the neighborhood 

(Neighbors joining and leaving) and the Client updates the Video Server with the 

new plan. 

 

Step 6:  Based on the streaming plan, the Video Server splits and streams the 

video across multiple links. The frame distribution protocol is explained in the 

section 4.2. 

 

4.2    Frame Distribution 

 

The Video Server sends a single video through multiple links. The video 

files are stored in AVI format in the Video Database. The Frame Distributor splits 

the video into frames and sends each frame through a single link. The sequence of 

flow at the server after the Client sends the initial streaming plan is illustrated with 

an example in Figure 4.2. The steps of the protocol are shown in black circles. In 

the example there are two active Neighbors and a Client. 

 

Step 1: As described in the section 4.1, the Neighbors periodically send I-CAN-

HELP messages to the Client. Here Neighbor N1 and N2 sends periodic I-CAN-

HELP messages. 

 

Step 2: The Client informs the Video Server about the Neighbors N1 and N2 as 

part of the streaming plan. 
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Figure 4.2: Frame Distribution 

 

Step 3: Now the server has three links for streaming video. The server creates 

three threads to simultaneously send frames through the three links. Each thread 

services one node. The job of each thread is to fetch frames and send it to the 

node.   

The server keeps all the frames in a Frame Queue and runs a simple frame 

assignment process. Whenever a thread is ready to send a frame, it fetches the 

frame at the head of the Frame Queue and assigns the frame to that thread. 

 

 The frames are sent to the node using TCP. We rely on TCP  to adapt and 

effectively utilize the available bandwidth in each link. When there is spare 

bandwidth, the thread requests the next frame from the Frame Queue and starts 

sending. In our implementation the TCP sender window is small, about 32 KB for 
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each node and hence only one frame for our source videos is accommodated in 

the sender buffer before fetching the next frame. This eliminates the problem of 

multiple frames being queued on the sender side when the Client and the 

Neighbor link are slow.  

 

Step 4: Thread N1 requests a frame and frame 1 that is at the head of the queue is 

assigned to the thread. The thread starts sending frame 1 to the Neighbor N1.  

 

Step 5: Thread C requests a frame and is assigned frame 2. 

 

Step 6: Thread N2 requests a frame and is assigned frame 3. 

 

Step 7: Suppose the Client has three times more bandwidth compared to the 

neighbors.  Frame 2 gets sent faster than frame 1 and frame 3. 

 

Step 8: Since there is spare bandwidth in the Client link, thread C requests for 

another frame and is assigned frame 4. 

 

Step 9: Frame 4 is also sent to the Client and the thread C requests another frame 

and is assigned frame 5. 

 

Step 10: Thread N2 finish sending frame 1 to Neighbor N2, N2 finishes 

forwarding frame 1 to the Client. 

 

Step 11: Now N2 requests another frame and is assigned frame 6. 

 

Thus, the system adapts to available bandwidth and proportionally 

distributes the frames to the links.  
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4.3    Adapting to changing neighborhood 

 

Sections 4.1 and 4.2 explained the basic mechanism used for streaming. 

Often a neighborhood may change and, hence, the system should adapt to 

Neighbors joining and leaving. This section explains the mechanisms CStream 

uses to adapt to these changes.  

 

4.3.1    Neighbor Joining 

 

We continue to use the same example in the section 4.2 to explain how the 

CStream system adapts to new Neighbors joining the network.  

 

When a new Neighbor running CStream comes into the vicinity of the 

existing ad-hoc network (Neighbor N3 figure 5), the Neighbor joins the „CStream‟ 

ad-hoc network. It receives the periodic REQUEST broadcasts from the Client 

seeking help. The flow sequence of Neighbor joining scenario is explained step by 

step using Figure 4.3, a continuation of the example scenario shown in Figure 4.2. 

 

Step 1: The Neighbor hearing the REQUEST messages starts responding to the 

Client with I-CAN-HELP messages.  

 

Step 2: With a new entry in its Neighbor table, the Client updates the streaming 

plan, informing the Video Server about the new Neighbor.  

 

Step 3: The server creates a new thread to send frames to the Neighbor N3.  
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Figure 4.3: Adapting frame distribution to neighbor joining 

 

Step 4: When a N3 thread requests a frame to send, it is assigned the next frame 

at the head of the queue (frame 7). 

 

Thus, the CStream system adapts to new Neighbors joining and starts to 

use its bandwidth, quickly improving the overall throughput of the system. 

 

4.3.2    Neighbor Leaving 

  

We will continue on the example in the section 4.3.1 to explain how the 

system adapts when an existing Neighbor leaves. Suppose Neighbor N1 leaves, 

the following describes the sequence of events: 
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Step 1: Neighbor N1 leaves. This is signaled by Neighbor N1 not sending I-CAN-

HELP messages for three consecutive seconds. Since N1 was mid way in receiving 

frame 6, the Client never received it. 

 

Step 2: The Client stops receiving I-CAN-HELP messages from the Neighbor. 

When the last update time in the neighbor table exceeds 3 seconds, the Client 

decides that the Neighbor has left.  As explained previously, for every Neighbor 

the Client maintains the last frame received. For N1, the last frame received is 

frame 1. 

 

Step 3: Since the neighborhood has changed, the Client informs the Video Server 

about the change. The Client informs the server that Neighbor N1 has left. The 

Client also informs the server about the last frame received from that Neighbor so 

that the server can recover and redistribute lost frames. Here, the last frame 

received from N1 is frame 1. 

 

Step 4: The Server kills the thread N1 so that no more frames are distributed to it. 

 

Step 5: The Server keeps track of the distribution of frames to links. For example, 

the server keeps track that frame 1 and 6 were assigned to thread N1 in that order. 

Now, since the last frame received from the Neighbor is 1, the server knows it 

needs to redistribute the rest of the frames assigned to N1. It inserts these frames 

into the head of the Frame Queue. Note that, the system ensures that the queue is 

always sorted so that the frames are assigned in order. Here, the server inserts 

frame 6 back to the queue. 
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Figure 4.4: CStream adapting to neighbor leaving 

 

Step 6: Suppose the Client thread now has spare bandwidth, it requests for 

another frame to send. The Server assigns frame 6 to the Client thread. Note that, 

the Client may get duplicate frames in case a Neighbor intermittently leaves, 

rejoins and resumes transmission.  

 

Thus the system ensures that all the frames are delivered reliably and never 

lost due to Neighbors leaving. This makes CStream adaptive to changes in the 

neighborhood. 
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4.4    Buffering and Playing 

 

The Video Player in the Client plays the video as frames are being received. 

We implement a policy where the player stops and waits for late frames to arrive 

as opposed to discarding late frames. The Buffer Manager which receives frames 

from the Server and through the Neighbor stores them in the buffer for the Video 

Player to extract, decode and play. The buffering policy has the following features. 

 

Initial Buffering: Before starting to play the video, the Video Player waits 

for some amount of frames to be initially buffered. In our implementation, the 

Video Player waits for first two seconds of the video to be buffered before 

starting to play. That is, we wait for (2 * fr) frames where fr is the frame rate. The 

choice of 2 to 4 seconds is common in many popular video players [oYT]. We 

found that around two seconds was optimal in our system both to decrease the 

startup delay and to give a good visual quality without too many rebuffer events.  

 

Stop and Rebuffering: After the initial buffering, the player plays the 

frames continuously as long as they are in the buffer. The Player plays the video 

with the appropriate frame rate that was reported in the meta-data. When the 

frame to be played is not yet available in the buffer, the video player stops playing 

the video and triggers a rebuffer event. It waits for the frames to arrive.  

 

Playing after Rebuffering: During a rebuffer event, the Player stops and 

waits for the next two seconds of frames (2 * fr) to be received before starting to 

play again. This is to reduce the total number of rebuffer events. If the total 

number of frames in the video is less than (current frame + 2 * fr), it waits until all 

the frames are received before playing again. 
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 To illustrate with an example, assume that the frame rate of a video is 15 

and the total number of frames is 120. Before starting to play the video, the player 

waits for the first 30 frames to be received (2 seconds of frames). Once they are 

received it starts playing. Suppose the 45th frame is not available in the buffer 

when the player is supposed to play it. The Player stops and triggers a rebuffer 

event. The Player waits until all the frames up to the 75th frame (next two seconds 

worth of videos frames) is received before starting to play again. Suppose another 

rebuffer event happens at the 105th frame, the player waits until all the 120 frames 

are received before playing again. 
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5    Evaluation 

 

 

We built the complete CStream system comprising the Video Server, Client 

and the Neighbor components. CStream was written in C# .NET with code base 

of about 3000 lines. Source video files are stored in AVI format and CStream uses 

an open source AVI Video Library [oAVI] to extract the frames from the source 

video files. Figure 5.1 shows a screen shot of the CStream Video Player. Users can 

request a video by filename using the video player. In addition to the video, the 

player also shows the video status (buffering or playing), the number of neighbors 

collaborating and their IP addresses. It also displays the aggregate throughput, the 

playout time and the number of rebuffer events.   

 

 

Figure 5.1: CStream system user interface 
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5.1    Experimental Setup 

 

 

Figure 5.2: Experimental setup 

 

The performance of CStream is evaluated in a controlled environment with 

a small test bed of computers. The bandwidth between the Video Server and the 

Client (and Neighbors) is controlled using CBQ and the experiments were run for 

different bandwidth settings. 

 

Figure 5.2 shows the experimental setup.  Video Server, Client and 

Neighbor machines are desktop PCs running Windows XP. All the machines have 

a Pentium 4, 2.8 GHz CPU with 1 GB RAM. Video Server is connected to a PC 

running Linux acting as a bridge via a crossover cable and the Bridge uses class 

based queuing (CBQ) to perform traffic shaping on traffic from Video Server. The 

Bridge has a Pentium 4, 2.0 GHz CPU and 512 MB RAM running SuSE Linux 

10.3 and has the prebuilt Netem module. The Client machine and the Neighbors 
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are connected to each other through a wireless ad-hoc network. All the machines 

in our experimental setup are in our Institute LAN.  

 

5.1.1    Bandwidth Control 

 

 

Figure 5.3: Bandwidth set using CBQ vs. measured bandwidth 

 

We use the Linux bridge to connect Video Server to the Institute LAN and 

hence all the traffic from the Video Server goes via the bridge. Class based 

queuing (CBQ) discipline allow us to control bandwidth to specific destination IP 

addresses. CBQ on the bridge is used to control the bandwidth on a per flow basis 

from Video Server to each of the Neighbor and the Client. To ensure correct 

operation, bandwidth values set using CBQ is validated by measuring the 

throughput from the Video Server to the nodes (with iperf) over a 30 second time 

interval. Figure 5.3 show that the actual throughput measured closely matches the 

expected throughput. 
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5.1.2    Experimental Parameters 

 

We evaluated the performance of the CStream system by varying the following 

parameters 

 Number of Neighbor nodes:  The number of Neighbors is varied from 

zero to two.  

 Bandwidth of the nodes to the Video Server:  The available bandwidth 

on the link from the Video Server to the Client and the Neighbors is varied 

using bandwidth control as described in the previous section. Six different 

bandwidth settings: 250 Kbps, 500 Kbps, 1 Mbps, 2 Mbps, 3 Mbps and 5 

Mbps are used in the experiments 

 Video content:  Different video contents are used in the experiments.. A 

short and a long video is used to evaluate CStream. The details of the video 

are listed in Table 5.1. 

 Location of nodes: The physical location of Neighbors with respect to the 

Client is changed to vary the wireless ad-hoc network bandwidth. 

 

5.1.3    Performance Metrics 

 

The performance of CStream is evaluated using the following metrics. These 

metrics are measured at the Client. We log the frame number, timestamp of each 

arrived frame, frame size and information about the link (Client or Neighbor) 

through which the frame was transferred. The metrics are then calculated offline 

using the log.  

 Aggregate Throughput (Kbps): Aggregate throughput is the total 

application throughput at the Client. It is calculated as the ratio of the total 
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size of the video downloaded to the total time taken to download all the 

frames. 

 Playout Time (sec): The playout time is the total time taken to play the 

video. The total time taken is the sum of startup delay, the time taken for 

rebuffer events and the playing time. 

 Startup delay (sec): The startup delay is the time taken to play the first 

frame in the video after the video request is sent to the Video Server. 

 Re-buffer events:  The number of rebuffer events is the number of times 

the Video Player stopped to rebuffer frames after it started playing. 

 Frame Distribution (%): The frame distribution compares the ratio of the 

contribution of frames by the Client and the Neighbor compared to the 

ratio of their corresponding bandwidths. 

 

 Short Video 

cartoon_dog.avi 

Long Video 

foreman.avi 

Length 8 seconds 33 seconds 

Size 10 MB 26 MB 

Encoded bitrate 10 Mbps 6.3 Mbps 

Frames per second 15 12 

Average frame size 85 KB 68 KB 

Total frames 120 400 

Resolution 320x240 176x144 

 

Table 5.1: Features of the video content 
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5.2    Results 

 

We evaluate all the performance metrics for both the short video and long 

video. For all the experiments, we present the average over three runs of the 

experiment along with the standard deviation. Since the variance of the metrics 

was very less across the runs, average over three runs gave a good estimate of the 

CStream performance. Unless stated, equal bandwidth is set for the Client and the 

Neighbors for all the experiments. Also, unless otherwise stated, the Neighbors 

are placed near to the Client so that they have excellent wireless signal strength. 

The minimum bandwidth of the wireless network for excellent signal strength 

measured using iperf was around 13 Mbps (significantly higher than the wired 

bandwidth). 

 

5.2.1    Aggregate Throughput 

 

First, the aggregate throughput, i.e. the throughput observed at the Client 

both in the presence and absence of Neighbors is measured. The aggregate 

throughput is calculated as the ratio of the total size of the video downloaded to 

the total time taken to download all the frames. 

 

For each bandwidth setting (CBQ), we vary the number of Neighbors and 

compare the throughput. Figure 5.4 and Figure 5.5 show the throughput for each 

bandwidth setting with 0, 1 and 2 Neighbors for short video and long video 

respectively. The results show that bandwidth linearly increases with the increase 

in Neighbors. Table 5.2 and Table 5.3 show the average and standard deviation of 

throughput for the short video and long video, respectively. 
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For every bandwidth setting, the throughput approximately doubles in the 

presence of one Neighbor and it triples in the presence of two Neighbors with the 

Client and the Neighbor having the same bandwidth. As an example, when the 

bandwidth was set to 1 Mbps, with any number of Neighbors, the Client got a 

throughput of 938 Kbps for the short video. In the presence of one Neighbor 

with the same bandwidth, the throughput increased to 1854 Kbps. In the presence 

of two neighbors the throughput was 2806 Kbps. For both the short video and 

the long video the throughput numbers for all the settings remains similar. This 

shows that, irrespective of the video content, CStream effectively utilizes 

bandwidth. The increase in throughput improves the quality of streaming 

significantly as shown in the subsequent sections. 
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Figure 5.4: Average aggregate throughput for short video 

 

 

Per host 

bandwidth 

constraints 

Number of neighbors 

0 1 2 

Avg StdDev Avg StdDev Avg StdDev 

250 Kbps 239 0.3 486 1.6 734 0.8 

500 Kbps 477 0.7 962 2.4 1430 8.4 

1 Mbps 938 1.6 1854 22.7 2806 23 

2 Mbps 1767 3 3472 21.3 5411 219.7 

3 Mbps 2576 28.7 5047 30.7 7096 156.3 

5 Mbps 3754 179.3 7396 219.1 11047 1413.9 

 

Table 5.2: Average and standard deviation of aggregate throughput (in 

Kbps) for short video 
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Figure 5.5: Average aggregate throughput for long video 

 

 

Per host 

bandwidth 

constraints 

Number of neighbors 

0 1 2 

Avg StdDev Avg StdDev Avg StdDev 

250 Kbps 238 0.1 483 4.6 726 6.2 

500 Kbps 476 0.3 955 1.4 1434 3.2 

1 Mbps 932 10.2 1854 21 2778 35.5 

2 Mbps 1777 15.4 3558 70.6 5338 180.7 

3 Mbps 2611 51 5045 217 7624 72.4 

5 Mbps 3902 17.5 7437 142.7 10925 222.4 

 

Table 5.3: Average and standard deviation of aggregate throughput (in 

Kbps) for long video 
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5.2.2    Playout Time 

 

To quantify the quality of the video in different settings, playout time, 

startup delay and the number of rebuffer events are measured. The playout time is 

the total time taken to play the video, including the startup delay, the time taken in 

rebuffer events and the playing time. 

 

Figure 5.6 and Figure 5.7 shows the playout time for every bandwidth 

setting for the short and long video, respectively. Table 5.4 and Table 5.5 show the 

corresponding average values and the standard deviation. As can be seen, for a 

given bandwidth setting, the playout time decreases multiplicatively with the 

increase in the number of neighbors. For instance, for the 1 Mbps setting for the 

short video, without any neighbors, the playout time is around 90 seconds. With 

one neighbor, the playout time decreases to around 45 seconds, a 50% decrease in 

playout time. With two neighbors, the playout time decreases to around 31 

seconds, a 66% decrease in playout time. 
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Figure 5.6: Average playout time for short video 

 

 

Per host 

bandwidth 

constraints 

Number of neighbors 

0 1 2 

Avg StdDev Avg StdDev Avg StdDev 

250 Kbps 351.31 0.44 173.22 0.56 115.05 0.24 

500 Kbps 176.68 0.24 87.93 0.39 59.44 0.37 

1 Mbps 90.42 0.16 45.34 0.95 31.39 0.16 

2 Mbps 48.02 0.08 25.99 0.14 16.68 1.19 

3 Mbps 33.09 0.17 16.96 0.21 13.52 0.60 

5 Mbps 26.34 1.18 14.47 0.42 10.9 0.74 

 

Table 5.4: Avg and stddev of playout time (in seconds) for short video 
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Figure 5.7: Average playout time for long video 

 

 

Per host 

bandwidth 

constraints 

Number of neighbors 

0 1 2 

Avg StdDev Avg StdDev Avg StdDev 

250 Kbps 898.9 0.41 442.6 4.14 294.7 2.58 

500 Kbps 448.3 0.28 224.7 0.50 150.1 0.61 

1 Mbps 230.2 2.53 116.6 1.34 77.4 1.14 

2 Mbps 121.4 0.94 61.1 1.73 40.6 1.33 

3 Mbps 83.4 1.61 43.4 2.02 35.6 0.21 

5 Mbps 56 0.07 35.3 0.01 34.8 0.02 

 

Table 5.5: Average and standard deviation of playout time (in seconds) for 

long video 
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5.2.3    Startup Delay 

 

The startup delay is the time taken by the Video Player to play the first 

frame in the video after the video request is sent to the Video Server. In our 

implementation, the Video Player waits for two seconds of frames to arrive before 

playing the first frame. 

 

Figure 5.8 and Figure 5.9 show the startup delay with the increase in 

number of neighbors for each bandwidth setting for the short video and long 

video, respectively. Table 5.6 and Table 5.7 are corresponding tables that 

summarizes the average and the standard deviation. Similar to the playout time 

graph, there is approximately multiplicative improvement in the startup delay. As 

an example, the startup delay at 1 Mbps with 0 neighbors for short video is around 

22 seconds. The startup delay reduces to around 11.5 seconds for one Neighbor, a 

2x improvement. With two Neighbors, the startup delay is around 7.5, a 3x 

improvement compared to the scenario with no Neighbors. 
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Figure 5.8: Average startup delay for short video 

 

 

Per host 

bandwidth 

constraints 

Number of neighbors 

0 1 2 

Avg StdDev Avg StdDev Avg StdDev 

250 Kbps 85.31 0.46 42.2 0.31 28.42 0.27 

500 Kbps 43 0.22 21.69 0.16 14.8 0.14 

1 Mbps 21.97 0.15 11.64 0.43 7.63 0.09 

2 Mbps 11.83 0.11 6.33 0.15 5 1.21 

3 Mbps 8.22 0.03 4.41 0.14 3.43 0.11 

5 Mbps 7.03 1.3 3.55 0.11 2.92 0.74 

 

Table 5.6: Average and standard deviation of startup delay (in seconds) for 

short video 
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Figure 5.9: Average startup delay for long video 

 

 

Per host 

bandwidth 

constraints 

Number of neighbors 

0 1 2 

Avg StdDev Avg StdDev Avg StdDev 

250 Kbps 52.97 0.13 26.4 0.39 17.9 0.37 

500 Kbps 26.69 0.02 13.68 0.06 9.57 0.01 

1 Mbps 13.94 0.12 7.32 0.12 5.12 0.19 

2 Mbps 7.58 0.25 4 0.05 2.95 0.16 

3 Mbps 6.33 1.81 2.94 0.03 2.37 0.21 

5 Mbps 3.65 0.15 2.12 0.01 1.65 0.02 

 

Table 5.7: Average and standard deviation of startup delay (in seconds) for 

long video 
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5.2.4    Rebuffer Events 

 

The final performance measure to assess the quality of the video is the 

number of rebuffer events. The number of rebuffer events is the number of times 

the Video Player stopped to rebuffer frames after it started playing. In our 

implementation, the CStream Video Player stops when it does not have the next 

frame in the sequence to play. After it stops, it waits until the next two seconds of 

frames is buffered except when the total remaining frames to be buffered is less 

than two seconds worth of frames. 

  

Table 5.8 shows the average number of rebuffer events over three 

experimental runs for every bandwidth and Neighbor setting for the short video. 

Table 5.9 shows the same measure for the long video. The number of rebuffer 

events decreases as the number of neighbors increases for a given bandwidth 

setting. It can be noted that for the long video, either three 3 Mbps links or two 5 

Mbps links are required to stream a video without any rebuffer events. 

 

Per host 

bandwidth 

constraints 

Number of neighbors 

0 1 2 

250 Kbps 3 3 3 

500 Kbps 3 3 3 

1 Mbps 3 3 2 

2 Mbps 3 2 1 

3 Mbps 2 1.3 1 

5 Mbps 2 1 0 

 

Table 5.8: Average of number of rebuffer events for short video 
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Per host 

bandwidth 

constraints 

Number of neighbors 

0 1 2 

250 Kbps 15 14.3 14 

500 Kbps 15 13 12 

1 Mbps 13 11 9 

2 Mbps 11 6.6 2 

3 Mbps 9 2.6 0 

5 Mbps 6 0 0 

 

Table 5.9: Average of number of rebuffer events for long video 

 

5.2.5    Frame Distribution 

 

To study the effectiveness of the frame assignment scheme, the ratio of the 

frames received by the Client and the Neighbor during streaming is compared to 

their corresponding bandwidth settings. An ideal frame assignment scheme should 

distribute the frames based on the bandwidth of the links to minimize the total 

download time and hence achieve maximum throughput. For example, if there is 

one Neighbor with a bandwidth of 1 Mbps and the Client with a bandwidth of 2 

Mbps, then ideally 66.66% of the video (frames) should be sent through the Client 

and 33.33% through the Neighbor to minimize the total download time. 

 

We measure the total size of the frames downloaded by each node and 

compare their ratio to the bandwidth settings. The frame sizes in both the short 

and the long video are different. Figure 5.10 shows four different experiments 

with the short video. In the first experiment, there was one Neighbor and the 
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bandwidth of both the Neighbor and the Client is set to two Mbps. The graph 

shows the contribution of each node during streaming. As expected, both the 

nodes contributed around 50% each. In experiment 2, we set unequal bandwidth 

for the Client and the Neighbor. The Client bandwidth is set to 2 Mbps and the 

Neighbor bandwidth to 1 Mbps. Again, in this scenario, the contribution of each 

node almost matches the ratio of their bandwidths. In experiment 3 and 

experiment 4, we had two Neighbors with equal and unequal bandwidth 

respectively. In the both the experiments, the ratio of the video frames 

downloaded by each node matched the ratio of their bandwidths. Figure 5.11 

shows the result of a similar set of experiments for the long video. 

 

 

Figure 5.10: Frame distribution vs. ratio of bandwidth for short video 
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Figure 5.11: Frame distribution vs. ratio of bandwidth for long video 

 

5.2.6    Impact of Wireless 

 

Finally, we study the impact of wireless bandwidth on video streaming. In 

all the previous experiments, the wireless bandwidth was more than the wired 

bandwidth and hence the overall throughput was limited by the wired bandwidth. 

We study the impact of wireless by changing the location of the Neighbors with 

respect to the Client. In wireless, the throughput depends upon the signal strength 

between the nodes which decreases as the distance between the nodes increase. 

We varied the location of the Neighbor such that it had excellent, good and bad 

signal strength, visually based on the bars in the “Connect to a network” Windows 

dialog. 

 

In our experiments, there was one Neighbor in addition to the Client both 

having a bandwidth of 2 Mbps. Long video is used for evaluating the Neighbor 

leaving and joining scenarios. Figure 5.12 shows the aggregate throughput 
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obtained in each of the scenario. In the excellent signal strength scenario, the 

wireless bandwidth was around 13 Mbps. In the good signal strength scenario, the 

wireless bandwidth was around 1 Mbps and it was around 500 Kbps in the poor 

signal strength scenario. As seen, the aggregate throughput dropped as the 

distance between the nodes increased. Specifically, it can be noted that the 

bandwidth contributed by the Neighbor in the good and poor scenario was 

constrained by the wireless bandwidth. In the excellent scenario the aggregate 

throughput was around 3500 Kbps, while in the good scenario it was around 2400 

Kbps and in the poor scenario it was around 2000 Kbps 

 

The bandwidth contributed by the Neighbor in CStream is the minimum of 

the wired and wireless bandwidth. 

 

 

Figure 5.12: Impact of wireless signal strength on aggregate throughput for 

long video. In the experiment, there was one client and one neighbor both 

with bandwidth 2 Mbps 
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5.2.7    Neighbors Joining 

 

Additionally, we studied the impact in the overall throughput when 

neighbors join and leave in the middle of a streaming session. We measured the 

instantaneous throughput over time observed at the Client when the 

neighborhood changed. The instantaneous throughput in our experiments was 

calculated as the ratio of the total size of the last 20 frames to the time taken to 

download them. We choose 20 frames to smooth the fluctuations in throughput.  

  

Figure 5.13 shows a single experiment run where Client and the Neighbors 

had a bandwidth of 2 Mbps. The first Neighbor joined at around 35 seconds and 

the second Neighbor joined at around 55 seconds. It can be seen that the 

throughput almost doubled (from a 1787 Kbps with no Neighbors to 3576 Kbps) 

after the first Neighbor joined and almost tripled (to 5747 Kbps) after the second 

Neighbor joined. 

 

 

Figure 5.13: Change in instantaneous throughput when neighbors join 
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5.2.8    Neighbors Leaving 

 

Figure 5.14 shows a similar experiment with neighbors leaving. To start 

there are 2 neighbors all with 2 Mbps bandwidth. The first Neighbor leaves at 

around 12 seconds and the second Neighbor leaves at around 32 seconds. The 

throughput drops from an average 5653 Kbps to 3773 Kbps when the first 

Neighbor left and to 1781 Kbps when the second Neighbor left. Both the 

experiments show that CStream dynamically handles changing neighborhood and 

effectively uses the available bandwidth. 

 

 

Figure 5.14: Change in instantaneous throughput when neighbors leave 
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6    Future Work 

 

 

This chapter presents the possible extensions to CStream. Section 6.1 

discusses a better frame distribution scheme that will improve the delivery of 

frames. Section 6.2 discusses plans for real world deployment and evaluation. 

Then, Section 6.3 and 6.4 details how CStream can be used with other video types 

and also streaming audio as a part of the video. Finally, Section 6.5 discusses 

security and incentives for CStream. 

  

6.1    Better Frame Distribution 

 

The current implementation of CStream adapts to the changes in the 

bandwidth, but when the bandwidth of the links is unequal, it leads to out of order 

delivery of frames. For example, if the Client is ten times faster than the Neighbor, 

and the first frame is assigned to the Neighbor, then according to current scheme 

it is likely that frames 2 to 11 will streamed via the Client link. Frame 1 will likely 

be received by the Client only after it has streamed frames 2 to 11.  This out of 

order delivery of frames may impact the performance of video streaming and may 

result in increased rebuffer events. In such a case where the Client and Neighbor 

links have different bandwidth, then the frame distribution algorithm could assign 

the frames more intelligently. A solution is to keep track of the frame requests by 

the Client and Neighbor threads and assign frames based on their frequency 

compared to others. The bandwidth of the links could be estimated and frames 

assigned based on their ratios. To make sure frames arrive in order, the frame 

assignment scheme could assign frames to threads in such a way that by the time 

they reach the Client, they are almost in order. For example, in the above scenario, 
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if the Video Server estimates that the bandwidth of the Neighbor is ten times 

slower than that of Client, it would look ahead and assign frame 11 to the 

Neighbor instead of the frame at the head of the queue (frame 1). In that way, 

frame 11 will arrive at the Client at the same time it had finished streaming frames 

1 to 10 through the Client link.  

 

6.2    Real-World Deployment 

 

A natural next step in evaluation is to measure the performance of CStream 

in a real-world setting. A real-world deployment, say in an apartment complex, will 

help study ISP diversity, their bandwidth optimizations and its effect on CStream 

performance. It will also help evaluate our assumption on the density of nodes 

and node idle time.  

 

In addition, we evaluated CStream performance on PCs but an immediate 

possible extension is to use CStream to aggregate 3G bandwidth for smart phones 

and see how it improves the video streaming performance. To accomplish this, 

the CStream code would need to be ported to a smart phone or a 3G modem 

could be used on the PCs. We can also evaluate the performance of CStream in 

scenarios that involve both 3G and Ethernet links (a mix of laptops and smart 

phones). 

 

6.3    Other Video Formats 

 

The source videos were stored in AVI format in our CStream 

implementation. CStream can be extended to support other video types like 

MPEG which are layer encoded. For instance, MPEG videos have three kinds of 

frames: I, B and P frames. I frames define the base layer of the video and the B 
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and P frames are enhancement layers. CStream could stream these videos in such 

a way that it sends base layer through the Client link and enhancement layers 

through the Neighbors. 

 

Additionally, CStream currently does not do video scaling when the 

combined bandwidth of the participating neighbors and the Client node is not 

sufficient to support the video. CStream could be extended to include different 

methods of video scaling when there is not enough bandwidth to stream the 

video. 

 

6.4    Audio stream 

 

The initial CStream system built sends only video frames and excluded the 

audio stream. A possible extension is to consider audio as part of the stream. One 

simple implementation would be to stream the audio entirely through the Client 

link and give higher priority to audio stream compared to video stream. 

 

6.5    Incentives and Security 

 

CStream assumes that all the Neighbors are willing to collaborate and are 

trusted, so there is no focus on incentives or security. One possible area of future 

work is to examine the security issues the system needs to address. This includes 

the Video Server encrypting and signing video frames and the Client verifying the 

content to prevent man-in-the-middle attacks. And maintaining a trusted set of 

neighbors and blacklisting malicious neighbors to control denial of service attacks. 

Similarly it would be useful to come up with an incentive model to make CStream 

more practical and deployable. A simple solution for incentives is to implement a 

TFT (tit for tat) based scheme as in BitTorrents [LRLZ06]. In a TFT based 
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scheme, a node gains credit when it uploads data to other peers and spends the 

credit to download data from other peers.  A more complex solution is to design a 

micropayment based scheme similar to COMBINE [APRT07] to incentivize 

nodes to help. The payment scheme COMBINE uses includes a signed node of 

credit, termed an IOU (abbreviated from the phrase “I owe you”) indicating the 

amount of payment made. 
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7    Conclusion 

 

 

The popularity of video streaming systems has tremendously increased over 

the past few years. Despite its popularity, video streaming still remains a challenge 

in many scenarios. With limited broadband bandwidth at homes and 3G 

bandwidth in smart phones, the quality of video streaming suffers. To overcome 

this problem, we note two important network characteristics typical of most 

homes. First, there is a high density of Internet connections available in every 

neighborhood with many idle users. Although the available bandwidth at one 

Client is limited, the total unused bandwidth available in a neighborhood is high 

and can be aggregated together. Second, most of today‟s wireless devices have 

multiple interfaces that enable them to connect to nearby devices in an ad-hoc 

network at the same time they are connected to the Internet. CStream leverages 

the above two facts to aggregate Internet bandwidth for better video streaming. 

 

This thesis presents CStream prototype, proof of concept implementation 

of a collaborative streaming system to improve video streaming in a neighborhood 

environment.  CStream connects nearby nodes in an ad-hoc network to aggregate 

the bandwidth available at each node. CStream streams a single video through all 

the available links to improve its quality. We designed and built an entire CStream 

system including the Video Server, Client and the Neighbors. CStream by design 

dynamically adapts to changes in the neighborhood.  

 

CStream was evaluated on a small test bed of computers. Aggregate 

throughput achieved with the CStream system- was measured varying the number 

of Neighbors participating in video streaming. Video quality was measured in 

terms of total playout time, startup delay and number of rebuffer events.  
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The results show that when the Client and the Neighbors have equal 

bandwidth, the aggregate throughput achieved with CStream system increases 

linearly with the increase in the number of neighbors participating in the 

streaming. Playout time to stream and play the entire video also decreases 

multiplicatively as the number of neighbors increased. Similarly, the startup delay 

to play the first frame also decreased with the increase in number of contributing 

neighbors. A sharp decrease in the rebuffer events was observed as more 

Neighbors participated in video streaming. We ran experiments to verify the 

contribution of the Neighbors to video streaming and the results show that the 

ratio of the frames contributed by all nodes (both Client and Neighbor) is 

proportional to the available bandwidth. We finally studied the impact of the 

location of the nodes, placing the Neighbors in different positions relative to the 

Client such that the signal strength between the Client and the Neighbor was 

excellent, good and bad. We observed that bandwidth contributed by the 

Neighbor was constrained by the limited wireless throughput for good and bad 

signal strengths. So bandwidth contributed by Neighbor is then limited by the 

minimum of the wired bandwidth and wireless throughput to the Client. CStream 

experimental results demonstrate how collaborative streaming improves the 

aggregate throughput and the quality of video streaming. 

 

The contributions of this thesis include the following: 

 Proposed a novel system for video streaming that connects neighboring nodes 

in an ad-hoc network to aggregate Internet bandwidth. 

 Designed a system that streams video through multiple Internet connections 

and that dynamically adapts to the changing neighborhood (nodes joining and 

leaving). 
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 Implemented a frame distribution scheme that distributes video frames across 

multiple connections and makes full utilization of the available bandwidth. 

 Built the entire CStream system including the Client, Neighbor and the Video 

Server. It also includes a Video Player through which users can request and 

play videos.  

 Performed detailed performance evaluation of the entire system over a range 

of video and network configurations, showing a linear improvement in 

throughput and video quality as the number of co-operating users increases.  
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