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Abstract

The explosive increase in Internet traffic has placed a growing emphasis on congestion

control and fairness in Internet routers.  Approaches to the problem of congestion, such as

active queue management schemes like Random Early Detection (RED) that are

successful with TCP flows, use congestion avoidance techniques.  Approaches to the

problem of fairness, such as Fair Random Early Drop (FRED), punish misbehaved, non-

TCP flows.  Unfortunately, these punishment mechanisms result in a significant

performance drop for multimedia flows that are well behaved.  We propose a new active

queue management mechanism as an extension to RED called Dynamic Class-Based

Threshold (D-CBT) to improve multimedia performance on the Internet.  Also, as an

effort to further improve multimedia performance especially on jitter, we propose a

lightweight packet scheduling called Cut-In Packet Scheduling (ChIPS) as an alternative

to FIFO packet scheduling.  The performance of our proposed mechanisms is measured,

analyzed and compared with other mechanisms (RED and CBT) in terms of throughput,

fairness and multimedia jitter through simulation using NS.  The study concludes that D-

CBT improves fairness among different classes of flows and ChIPS improves multimedia

jitter without degrading fairness.  The contributions we make are the design,

implementation and evaluation of D-CBT and ChIPS, the first study of multimedia jitter

due to network queue management policy, and a simulator implementation of CBT, D-

CBT and ChIPS.
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1. Introduction

The Internet has moved from a data communication network for a few privileged

professions to an essential part of public life similar to the public telephone networks,

while assuming the role of the underlying communication network for multimedia

applications such as Internet phone, video conferencing and video on demand (VOD).

As a consequence, the volume of traffic and the number of simultaneous active flows that

an Internet router handles has increased dramatically, placing new emphasis on

congestion control and traffic fairness. Complicating traditional congestion control is the

presence of multimedia traffic that has strict timing constraints, specifically delay

constraints and variance in delay, or jitter constraints [lc95, GP97, AP97].  This paper

presents a router queue management mechanism that addresses the problem of congestion

and fairness, and improves multimedia performance on the Internet.  Figure 1.1 shows

some of the current and the proposed router queue mechanisms.

 <Figure 1.1> Router Queue Mechanisms (shaded are proposed)
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There have been two major approaches suggested to handle congestion by means other

than traditional drop-tail FIFO queuing.  The first approach uses packet or link

scheduling on multiple logical or physical queues to explicitly reserve and allocate output

bandwidth to each class of traffic, where a class can be a single flow or a group of similar

flows.  This is the basic idea of various Fair Queuing (FQ) disciplines [DH90] and the

Class-Based Queuing (CBQ) algorithm [FJ95, Fl].  The main advantage of this approach

is in its ability to assign network resources to classes of flows in a predefined manner.

Moreover, when coupled with admission control, the mechanism not only suggests a

solution to the problem of congestion but also offers potential performance guarantees for

the multimedia traffic class.  However, the explicit resource reservation approach would

change the “best effort” nature of the current Internet, and the fairness definition of the

traditional Internet may no longer be preserved.  Adopting this mechanism would require

a change in the network management and billing practices. Also, the algorithmic

complexity and state requirements of scheduling make its deployment difficult [PJS99].

The second approach, called Active Queue Management, uses advanced packet queuing

disciplines other than traditional FIFO drop-tail queuing on an outbound queue of a

router to actively handle (or avoid) congestion with the help of cooperative traffic

sources.  This approach is based on the observation that packets from a connection

usually take the same path, and depend on the ability of the traffic source to respond to

the congestion in the network.  In the Internet, TCP recognizes packet loss as an indicator

of network congestion, and its back-off algorithm reduces transmission load when
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network congestion is detected [Fl94].  Recently, active queue management has become

the subject of interest within the Internet research committee [PJS99].

The most well-known and basic active queue management mechanism is Random Early

Detection (RED), which prevents congestion through monitoring outbound buffers to

detect impending congestion, and randomly chooses and notifies senders of network

congestion so that they can reduce their transmission rate [FJ93, FF97].  More precisely,

RED uses a weighted-average queue size and minimum-maximum thresholds to detect

impending congestion, and randomly drops incoming packets according to the calculated

rate based on the average queue size during impending congestion.  While fairly handling

congestion for only TCP flows, RED reveals the critical problem that non-TCP flows that

are unresponsive or have greedier flow-control mechanisms than TCP take more share of

the output bandwidth than TCP flows [LM97, PJS99].  In the worst case, it is possible for

non-TCP flows, especially for unresponsive ones, to monopolize the output bandwidth

while TCP connections are forced to transmit at their minimum rates.  This unfairness

occurs because non-TCP flows reduce transmission load relatively less than TCP flows or

do not reduce at all, and the same drop rate is applied to every flow.  This problem may

become critical as the number of multimedia flows increases.  Delay sensitive Internet

multimedia applications use UDP rather than TCP because they require in-time packet

delivery and can tolerate loss, rather than the guaranteed packet delivery with potentially

unbounded end-to-end delay that TCP produces.  Also, they prefer periodic packet

transmission characteristics of UDP rather than bursty packet transmission characteristics

of TCP that can introduce higher receiver side jitter. The multimedia UDP applications
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either do not use any flow-control mechanism or use their own application-level flow

control mechanisms that are rate-based rather than window based and tend to be greedier

than that of TCP taking the multimedia Quality of Service (QoS) requirements into

account.

In addressing the problem of fairness, there have been a strong argument that

unresponsive or misbehaving flows should be penalized to protect well-behaved TCP

flows1.  As a result, various extensions to RED, such as Fair Random Early Drop

(FRED), have been suggested [LM97].  FRED adds per-active-flow accounting to RED,

isolating each flow from the effect of others.  It enforces fairness in terms of output

buffer space by strictly penalizing unresponsive or misbehaving flows to have an equal

fair share while assuring packets from flows that do not consume their fair share are

transmitted without loss.  FRED serves its purpose not only in protecting TCP flows from

unresponsive and misbehaving flows but also in protecting fragile TCP connections from

robust TCP connections.  However, the per-active-flow accounting is an expensive

process that might slow down the performance of routers as the number of flow increase.

FRED also has a potential problem that its TCP favored per-flow punishment could

unnecessarily discourages flow-controlled interactive multimedia flows.  Under FRED,

incoming packets for a well-behaved TCP flow consuming more than their fair share are

randomly dropped applying RED’s drop rate.  However, once a flow, although flow

controlled, is marked as a non-TCP friendly flow, it is regarded as an unresponsive flow

                                                       
1 A well-behaved flow is defined as a flow that behaves like a TCP flow with a correct congestion
avoidance implementation.  A flow-controlled flow that acts different (or greedier) than well-behaved flow
is a misbehaving flow.
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and all incoming packets of the flow are dropped when it is using more than its fair share.

As a result, a flow-controlled multimedia UDP flow, which may have a higher chance to

be marked, will experience more packet loss than a TCP flow and be forced to have less

than its fair share of bandwidth.

Recently, Jeffay et al., [PJS99] proposes a new active queue management scheme called

Class-Based Threshold (CBT), which releases UDP flows from strict per-flow

punishment while protecting TCP flows by adding a simple class-based static bandwidth

reservation mechanism to RED.  In fact, CBT implements an explicit resource reservation

feature of CBQ on a single queue that is fully or partially managed by RED without using

packet scheduling.  Instead, it uses class thresholds that determine ratios between the

number of queue elements that each class may use during congestion. CBT defines three

classes: tagged (multimedia) UDP2, untagged (other) UDP and TCP.  For each of the two

UDP classes, CBT assigns a pre-determined static threshold and maintains a weighted-

average number of enqueued packets that belong to the class.  When a UDP packet

arrives, the weighted-average for the appropriate class is updated and compared against

the threshold for the class to decide whether to drop the packet before optionally applying

the RED test.  For the TCP class, CBT does not apply a threshold test but directly passes

incoming packets to the RED test unit.  Thus, by applying a threshold test to each UDP

class, CBT protects TCP flows from unresponsive or misbehaving UDP flows, and also

protects multimedia UDP flows from the effect of other UDP flows. CBT avoids

congestion as well as RED, has less overhead and improves multimedia throughput and
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packet drop rates compared to FRED.  However, as in the case of CBQ, the static

resource reservation mechanism of CBT could result in poor performance for rapidly

changing traffic mixes and is arguably unfair since it changes the best effort nature of the

Internet.

To eliminate the limitations due to the explicit resource reservation of CBT while

preserving its good features from class-based isolation, we propose Dynamic-CBT (D-

CBT).  D-CBT fairly allocates the bandwidth of a congested link to the traffic classes by

dynamically assigning the UDP thresholds such that the sum of the fair share of flows in

each class is assigned to the class at any given time.  As in CBT, D-CBT categorizes

flows into three classes.  However, unlike the class categorization of CBT in which flow-

controlled multimedia flows are not distinguished from unresponsive multimedia flows,

we propose that only flow-controlled multimedia UDP flows are tagged leaving the

unresponsive UDP flows untagged.  We categorize UDP traffic this way, since

multimedia applications are the primary sources of UDP traffic and generate high

bandwidth flows. By differentiating flow-controlled multimedia flows from unresponsive

flows, D-CBT not only protects flow-controlled multimedia flows from unresponsive

multimedia flows, but also encourages multimedia applications to use congestion

avoidance mechanisms.

In addition, as a means to improve multimedia jitter, we propose a lightweight

multimedia-favored packet scheduling mechanism, Cut-In Packet Scheduling (ChIPS), as

                                                                                                                                                                    
2 Tagged (multimedia) UDP flows can be distinguished from other (untagged) UDP flows by setting an
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an alternative to FIFO packet scheduling under D-CBT and possibly under other RED

like active queue management mechanisms.  ChIPS monitors average enqueue rates of

tagged and the other flows, and is invoked when the tagged flows are using a relatively

smaller fraction of bandwidth than the TCP flows.  On transient congestion in which the

queue length is greater than the average queue length, ChIPS awards well-behaved (flow-

controlled) multimedia flows by allowing their packets to “cut” in the line of queue

where the average queue length points.  We believe that the overhead of ChIPS will be

small while significantly improving multimedia jitter when a relatively small number of

multimedia flows are competing for the bandwidth with a large number of TCP flows.

To evaluate the proposed mechanisms, we use an event driven network simulator called

NS (version 2) that simulates variety of IP networks [ns2].  NS implements most of

common IP network components including RED.  However, it does not have a traffic

generator that simulates a flow-controlled multimedia application, which is essential to

evaluate the proposed mechanisms.  Therefore, we design and implement a general-

purpose multimedia traffic generator and a trace-driven MPEG-1 video traffic generator

that utilizes a rate-based flow control mechanism called media scaling, in which a

transmission rate is determined by a media encoding and transmission policy pair that the

source uses [DHH+93]. The multimedia applications, which show greedier bandwidth

utilization behavior and better jitter performance than TCP under RED queue

management, are used for the evaluation of D-CBT and ChIPS.

                                                                                                                                                                    
unused bit of the Type of Service field in the IP header (Version 4).



8

We also implemented CBT in NS, and ran a validation test that simulates an experiment

on Jeffay’s paper [PJS99].  By comparing our simulated result with Jeffay’s experimental

results, we not only validate that our CBT implementation is correct, but also confirm

that the simulator implementations of RED and TCP behave similar to the ones used for

the experiment.  Then, we built D-CBT by extending the CBT implementation, add

ChIPS into D-CBT, and compare the performance of D-CBT and D-CBT with ChIPS

with that of RED and CBT.  In the evaluation, our primary focus is on the effect of

heterogeneously flow-controlled traffic on the behavior of the queue management

mechanisms especially on fairness, and the effect of queue management on the

performance of well-behaved (flow-controlled) multimedia flows.

The next chapter presents related work, and Chapter 3 presents our approaches in detail

including the design and performance of the flow-controlled multimedia traffic

generators, the validation of our CBT implementation on NS, and the details of D-CBT

and ChIPS.  Chapter 4 evaluates and analyzes D-CBT and ChIPS, Chapter 5 discusses

future work, and Chapter 6 concludes the thesis.
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2. Related Work

This chapter is intended to serve as a roadmap to work that is related to this thesis: flow

control and perceptual quality of multimedia.  We omitted router queue management

mechanisms from this chapter, since they are introduced in Chapter 1 and also are

discussed in detail throughout this thesis.

2.1 Flow Control

Van Jacobson and Michael J. Karels discussed the fundamentals of the TCP (Tahoe) flow

control mechanism [JK88].  This paper presented the slow-start and congestion avoidance

mechanisms of TCP, designed after the linear system theory that says that an unstable

system can be stabilized by adding some exponential damping to its primary excitation.

This paper also discussed the TCP’s Round Trip Time (RTT) estimation method.  For

information on additional TCP (Reno) congestion control mechanisms, refer to RFC2001

[rfc2001].

Sally Floyd and Kevin Fall discussed potential unfairness and congestion collapse due to

non-TCP friendly flows, defined as any flow with a long-term arrival rate that exceeds

that of any conformant TCP in same circumstance [FF98], and insisted that these flows

should be regulated.  This paper also introduced methods to detect non-TCP friendly and

unresponsive flows.
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Hari Balakrishnan, Hariharan S. Rahul and Srinivsan Seshan introduced an end-system

architecture, in which a Congestion Manager (CM) ensures proper congestion behavior

and allows applications to easily adapt to network congestion [BRS99]. The main

objective behind this work is to prevent users from misusing the network without proper

congestion control mechanism by letting CM take care of flow control, while giving

flexible options for the streams with different reliability requirements by separating

congestion control from the function of loss recovery.  Internally, CM used a window-

based flow control algorithm, a scheduler to regulate transmissions and a lightweight

protocol to elicit feedback from receivers.  Their result showed that TCP connections

using CM could effectively share bandwidth and obtain consistent performance, without

adversely affecting other network flows.  It also showed that CM enables audio

applications to adapt to congestion conditions without having to perform congestion

control or bandwidth probing on their own.

Luca Delgrossi et al., presented a media scaling mechanism that is proposed to make the

Heidelberg Transport System (HeiTS), a multimedia communication system for real-time

delivery of digital audio and video, work with networks with no reservation mechanisms

such as Ethernet [DHH+93].  Media scaling, which refers to a mechanism in which media

encoding is modified according to the bandwidth available in the underlying networks, is

essentially a rate-based flow control mechanism.  However, in their study, media scaling

was not used as a congestion control mechanism.  Their paper discussed transparent and

non-transparent scaling methods, and continuous and discrete scaling method that were

used in the HeiTS system.
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We used the above references to study the behavior of TCP and also to design a rate-

based multimedia flow control mechanism, which uses media scaling as a mean to avoid

congestion in response to network congestion.  The simulator that we used to evaluate

our proposed queue mechanisms does not support any flow-controlled multimedia traffic

generators.  Therefore, we built a general purpose and a trace-driven MPEG-1 traffic

generators, of which the flow-control is modeled after fast recovery and congestion

avoidance mechanisms of TCP (Reno), although it is rate-based rather than window-

based.  The design and implementation of our multimedia flow-control mechanism is

presented in detail in Chapter 3.1.

2.2 Multimedia Performance

Jonathan Walpole et al., introduced a media scaling mechanism that is based on an

MPEG-1 video stream, which dynamically adapts to changes in available bandwidth

[WKC+97].  The paper described in detail an MPEG-1 frame selection method, which

carefully considered the frame dependencies, and discussed a resolution-changing

method.  However, their media scaling approach was more concerned about the end-

system performance rather than its effect on the network.  The purpose of their media

scaling was described as to avoid waste of resources and improve perceptual quality by

monitoring the end-to-end performance and selectively dropping packets at the sender,

taking frame dependencies into account.  It is reported that the method was effective in

running streams over Internet connections of up to 28 hops and across networks with

several orders of magnitude variation in available bandwidth.  We used the MPEG-1
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frame section policies described in their paper as the transmission policies for our

MPEG-1 traffic generator, as described in Chapter 3.1.

Mark Handley measured Mbone multicast performance in 1997 [Ha97].  He examined

routing tables to monitor route stability, and observed traffic as it arrived at sites (to

which they had access) to look at individual packet losses. The research showed that 50%

of receivers had a mean loss rate of about 10% or lower, while 80% reported a loss rate

less than 20%.  Around 80% of receivers have some interval during the day when no loss

was observed.  On the other hand, 80 % of sites reported some interval during the way

when the loss rate was greater than 20%.  About 30% of sites reported at least one

interval where the loss rate was above 95% at some time during the day.  The research

also shows that although not as dominant as single loss, packet losses tend to occur in a

bursty manner.

Vicky Hardman, Martina Angela Sasse and Isidor Kouvelas presented an audio

piggybacking method, in which a low quality version of an audio frame is piggybacked

onto the next frame so that it can be played when its high quality version of frame is lost

[HSK98].  This study (a user study) shows that, using this method, a single copy of

redundancy is good enough to provide packet loss protection for loss rates of up to 20-

30%, assuming that packet loss follows a random pattern.  Similarly, Yanlin Liu and

Mark Claypool showed that video (MPEG-1) redundancy, which gives about 10%

overhead, is a reasonable repair method when the loss rate is under 20% [LC00].
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In this thesis, Handley’s research result is used as a reference to real-world multimedia

packet drop rates, and the result of the audio and video piggybacking redundancy studies

is used as a rough guide line of what is the maximum packet drop rate that does not affect

multimedia perceptual quality.  We used these results to see whether the multimedia

packet drop rate that D-CBT gives is reasonable, although the drop rate is also largely

determined by multimedia traffic source behaviors and the amount of network traffic

load.

Mark Claypool and Jonathan Tanner compared the effect of jitter and packet loss on

perceptual quality [CT99].  In this study, packet loss (8%) and residual jitter (from the

same trace) were induced into video clips based on Internet traces that sent simulated

video from locations across the United States and New Zealand to Worcester,

Massachusetts [GBC98], and perceptual quality was measured through a user study. The

study showed that the effect of jitter on perceptual quality could be nearly as important as

that of packet loss.  Our approach to reduce multimedia jitter at network routers using

ChIPS originates from and is supported by this user study.
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3. Approach

Throughout the thesis, an event driven network simulator called NS (version 2) is used

[ns2] to evaluate and compare the performance of Dynamic-CBT and ChIPS with that of

RED and CBT.  NS has most of the common IP network components implemented

including TCP (Tahoe, Reno and Vegas) and UDP transport agents, and RED router

queues.  We implemented CBT, and our proposed Dynamic-CBT and ChIPS into NS.

We also designed and implemented two traffic generators that simulate multimedia

applications with an application-level flow control mechanism, and modified the IP

packet header to represent tagged (multimedia) flows. This distinguishes well-behaved

UDP flows (flow-controlled multimedia traffic) from unresponsive UDP flows at the IP

level.

The first section of this chapter describes the design of the multimedia traffic generators,

and shows their behavior when put together with TCP flows under RED queue

management through simulation. This section also presents a simulation result showing

that TCP is not the transport agent of choice for multimedia applications because it

results in poor performance.  The next section is devoted to describing and validating our

CBT implementation.  The last two sections describe in detail the design and

implementation of Dynamic-CBT and ChIPS.
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3.1 Flow-Controlled Multimedia

As mentioned briefly in Chapter 1, we are interested in the effect of queue management

on performance of well-behaved (or flow-controlled) multimedia flows, as well as

heterogeneously flow controlled traffics’ effect on the behavior of the queue management

mechanisms, especially on fairness.  However, NS does not have a traffic generator that

simulates a well-behaved multimedia application, which is essential to evaluate D-CBT.

Also, the fact that evaluating the queue management mechanisms with well-behaved

multimedia traffic generators would result in far more accurate than with unresponsive

general-purpose CBR or VBR traffic generators already present in NS, pretending to be

well-behaved, encourages us to build them in NS.

3.1.1 Design and Implementation

We designed and implemented in NS two slightly different multimedia traffic generators

(or multimedia applications) that respond to network congestion using media scaling,

based on the work in [DHH+93].  The two traffic generators have the same congestion

control and avoidance (or flow control) mechanism, while the traffic they generate in

response to congestion notification from the network is different.  The first one, called

MM-APP, reduces or increases transmission rate by decreasing or increasing the

transmission interval with a fixed frame size.  The second one, called trace-driven

MPEG-APP (or MPEG-APP for short), changes the transmission rate by selecting frames

to transmit from an input MPEG trace, where frame sizes vary while the transmission

interval of frames in the file are fixed in terms of frames per second.  The next couple of
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paragraphs explain the congestion control and avoidance mechanism of the multimedia

applications.

Before transmitting actual data, it is assume that the multimedia sender and the

multimedia receiver agree on five scale values (0 to 4), each of which is assigned to a

different media encoding method and transmission policy (i.e. which frame to transmit)

pair.  The scale value 0 is assigned to a set from which a predetermined minimum

sustainable media quality can be achieved, the next value is assigned to sets from which a

better media quality can be achieved, and so on.  It is assumed that the media encoding

and transmission policy sets are carefully chosen so that the transmission rates resulting

from the sets increase linearly as the scale value increases.  Table 3.1.1 shows an example

assignment.

Scale Value Media Encoding and
Transmission Policy Set

Estimated Average
Transmission Rate (Kbps)

4 A 1100

3 B 900

2 C 700

2 D 500

1 E 300

<Table 3.1.1> Example Media Scale Assignment

Thus, having five discrete and linearly increasing transmission rates assigned to the scale

values, the sender starts from scale 0 transmitting at the lowest rate.  In designing the

multimedia applications, most of the congestion control and avoidance mechanisms are
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placed as receiver side functions.  More precisely, the receiver detects congestion,

determines the next transmission rate of the sender in terms of scale value, and notifies

the sender of this scale value.  The sender, being notified of the scale value, simply

changes the transmission rate by using media encoding and transmission policy assigned

to the scale value.

In detecting congestion, the receiver uses frame loss as the network congestion indicator.

There are two circumstances where the receiver claims frame loss.  The first is when the

receiver gets a frame whose sequence number is greater than the expected sequence

number.  The second is when the receiver times out by not receiving any frames within a

timeout interval.  Determining this timeout interval is often difficult in a dynamic

network and also can greatly affect the behavior of the congestion control mechanism.  A

timeout interval that is set too short will claim false frame loss, which will make the

sender to reduce the transmission rate needlessly.  On the other hand, a timeout interval

that is set too long will fail to detect multiple sequential frame loss effectively such that

the sender reduces transmission rate later than other competing connections, which could

result in an unfair allocation of bandwidth.  In our implementation, when the Round Trip

Time (RTT) of the connection is greater than the longest possible frame transmission

interval (Max_Interval), the timeout interval (TOI) is set to RTT.  Otherwise, TOI is set

to Max_Interval + α, where α is a value between 0 and RTT.

RTT > Max_Interval: TOI = RTT

RTT ≤ Max_Interval: TOI = Max_Interval + α (where 0 < α < RTT)
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The receiver, when detecting congestion, reduces its scale value to half (integer division)

and notifies the sender of this value by sending a small packet.  The receiver, when no

network congestion is detected within a RTT from the last checkpoint, increases the scale

value by one and notifies the sender of this value.  This design of drop scale to half at

congestion, and increase one scale up at a RTT is motivated by the fast recovery

algorithm that is found in TCP Reno implementations [FF96] and the TCP-friendly

definition: “TCP-friendly assumes TCP can be characterized by a congestion response of

reducing its congestion window at least by half upon indication of congestion, and of

increasing its congestion window by a constant rate of at most one packet per round trip

time” [FF98].

In fact, the congestion control mechanism of our multimedia applications, although its

exponential back off mechanism is conforming to linear system theory that says “if a

system is stable, the stability is exponential” [JK88], could be greedier than that of TCP

because of the following reasons.  First, reducing the scale value to one-half at congestion

is not necessarily dropping the transmission rate in half, and increasing one scale value at

a RTT can increase more than one packet within a RTT.  Second, the multimedia

applications always transmit frames at least at the lowest rate and never time out.  When

the available network bandwidth is decreased, TCP reduces transmission rate by

decreasing its congestion window size, which could make the connection fragile.

Multimedia applications, on the other hand, as the available network bandwidth gets

lower and lower, have a congestion control mechanism operating at low scales that does

not effectively respond to network congestion, since it cannot decrease transmission rate
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exponentially or at all. Because of the above difference, the multimedia streams can

unfairly use bandwidth over the competing TCP connections.

The last reason is that the multimedia flow-control mechanism is based on the

transmission rate while TCP is based on the congestion window.  The rate-based

multimedia applications could get greedier than TCP as round trip time (or end-to-end

delay) is increased.  Consider a situation that the two differently flow-controlled streams

competing in an IP network with high end-to-end delay.  When congestion occurs, the

network notifies the senders of this event by dropping packets or marking the ECN bit

[Fl94].  However, it will take a while  (at least half the RTT) for the senders to be notified

this event.  Meanwhile, the multimedia applications with the rate-based mechanism keep

sending packet at the last rate.  However, the congestion window based TCP agents after

sending packets up to the size of the congestion window wait for an ACK packet to

arrive.  Assuming that the end-to-end delay is large enough to make flows significantly

bursty (less responsive) and to make the sender’s waiting time significantly large, the

flows with the rate-based mechanism transmit considerably more packets during each

congestion notification delay than the TCP flows.  Moreover, the additional multimedia

packets injected in the network can cause greater congestion, in which bursty TCP flows

could be more severely punished than rather continuous multimedia flows by sequential

packet drops.  This effect would be enlarged as the available bandwidth share is

decreased due to the increased number of active flows, and as the ratio between the

number of multimedia flows and the number of TCP flows is increased.
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Now that the congestion control part of the multimedia traffic generators has been

examined, the specifics of how MM_APP and MPEG_APP generate traffic associated

with scales are presented below.  As briefly mentioned earlier, MM_APP directly

associates transmission rates to scale values without particular media encoding and

transmission policy pairs in mind.  It assumes that every media encoding and

transmission policy pair associated to the scale values generates traffic with a fixed frame

size.  In other words, it assumes that the transmission intervals are the only factor that

causes the rate changes.  Therefore, the resulting traffic can be characterized by CBR

traffic of fixed frame size and various transmission intervals associated with scale values.

Although not targeted at a specific multimedia application, MM_APP is useful in that it

is easy to change rate associated to scale values and to test the media scaling scheme

eliminating the effect of a specific traffic characteristic of a particular application.

MPEG_APP, on the other hand, simulates a very specific video application that is based

on MPEG-1 encoding scheme [MPFG97].  It implements five sets of MPEG-1 encoding

and transmission policies and associates them with scale values – in fact, it only changes

the frame transmission policy leaving the encoding scheme unchanged.  MPEG-1

encodes motion pictures at a given interval and quality.  It generates a stream of inter-

dependent frames of types, I, P and B, in a specific pattern such as IBBPBBPBB.  Among

the three frame types, only I-frames can be decoded on their own. The decoding of a B-

frame relies on a pair of I-frame and/or P-frame that comes before and after the B-frame

and the decoding of a P-frame relies on an I-frame or P-frame that comes before the P-

frame.  MPEG_APP supports MPEG-1 streams using the common pattern of
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IBBPBBPBB and IBBPBBPBBPBB.  Table 3.1.2 shows the transmission policies on the

two stream patterns, which are carefully selected keeping the frame dependencies in mind

[WCK+97].

Scale Transmission Policy (Pattern 1) Transmission Policy (Pattern 2)

4 I B B P B B P B B I I B B P B B P B B P B B I

3 I   B P   B P   B I I   B P   B P   B P   B I

2 I     P     P     I I     P     P     P     I

1 I     P           I I     P                 I

0 I                 I I                       I

<Table 3.1.2> MPEG Transmission Policy Associated with Scale Values

The MPEG_APP gets a MPEG-1 trace file that contains frame information for a stream

with the maximum frame rate (scale 4) as input along with the maximum frame rate and

the longest possible frame transmission interval that is used for congestion detection at

the receiver side.  At every scale 4 transmission interval, MPEG_APP reads the frame

information from the input file, and determines whether or not to transmit this frame

using the current scale value and the transmission policy associated with the scale value.

Figure 3.1.1 (a) shows an example input file that contains frame information for 30

frames per second IBBPBBPBB pattern stream in which the sizes of I-frames P-frames

and B-frames are 11 KB, 8 KB and 2 KB.  The frame sizes used in this example are the

mean frame size of each type obtained while playing a short, high-quality MPEG-1 news

clip.  Figure 3.1.1 (b) shows each transmission policy assigned to scale values with the

estimated average transmission rate for the input trace file.
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Maximum Frame Rate (Scale 4) = 30 frame/sec

Scale Transmission Policy
(Pattern 1)

Estimated Average
Transmission Rate

(Kbps)

4 I B B P B B P B B I 1056
3 I   B P   B P   B I 896
2 I     P     P     I 736
1 I     P           I 544

I 11000
B 2000
B 2000
P 8000
B 2000
B 2000
P 8000
B 2000
B 2000
I 11000
. .
. .
. . 0 I                 I 352

(a) Input Trace File (bytes)          (b) Transmission Policies and Associated Rates

<Figure 3.1.1> Example Input Trace File and Average Transmission Rates

Figure 3.1.2 visualizes the estimated transmission rate in Figure 3.1.1 (b).  The almost

linearly growing estimated average transmission rates shows that the assignment of the

transmission policies to the scale values works well with the given example MPEG-1

stream.  This is because the linear increment of scale results in a linear increment of

transmission rate and the exponential decrement of scale results in exponential decrement

of transmission rate.

<Figure 3.1.2> Estimated Average
Transmission Rate of the Example
in Figure 3.1.1

The transmission rate resulting from
the transmission policies assigned for
the scale value for the given MPEG-1
encoded news clip stream grows
linearly as scale value increases.
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3.1.2 Simulation Test and Analysis

We ran a series of simulations to validate the NS implementation of MM_APP and

MPEG_APP, and to measure their fairness when competing for bandwidth with TCP

flows under RED queue management.  Here, we present the results of two simulations

that exhibit the behavior of MM_APP and MPEG_APP.  The simulations, referred to as

SIM_MM1 and SIM_MM2, are designed to show the effect of available bandwidth and

end-to-end delay on fairness.  Figure 3.1.3 shows the network topology and the

application scenario used for the simulations.  Note that the only difference between

SIM_MM1 and SIM_MM2 is the delay for the link that connects the two network nodes

(n1-n2).

<Figure 3.1.3> SIM_MM1 and SIM_MM2 Scenario and Topology

Each link that connects a source or destination node and a network node is set to have 10

Mbps link capacity and 5ms of delay.  The link that connects the two network nodes is set

to have 6 Mbps of link capacity and 20ms of delay for SIM_MM1 and 60ms of delay for
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SIM_MM2.  The network node n1 uses RED queue management, for which the

parameter set used, shown in Figure 3.1.3 (b), is chosen from one of the sets that are

recommended by Floyd and Jacobson [RK99].

For traffic sources, 6 FTP, 2 MM_APP and 2 MPEG_APP traffic generators are used,

where FTP uses TCP Reno and the others use UDP as the underlying transport agent.  All

the TCP agents are set to have a maximum congestion window size of 20 packets and a

maximum packet size of 1500 bytes.  The UDP agents are also set to have a maximum

packet size of 1500 bytes.  The MM_APP traffic generators use the transmission rates

shown in Table 3.1.1, that is 300, 500, 700, 900, 1100 Kbps, for scale 0 to 4 transmission

rates.  The MPEG_APP traffic generators use the transmission policies and the trace file

shown in Figure 3.1.1, which generates traffic rates of 352 Kbps to 1056 Kbps.

Both simulations start with five FTP, and 1 MM_APP and 1 MPEG_APP in action, and

at 15 seconds the remaining traffic sources join.  For the first 15 seconds, the available

bandwidth share for each connection is about 857 Kbps, and for the next 10 seconds, the

share goes down to 600 Kbps.  Figure 3.1.4 and Figure 3.1.5 in the next two pages show

the results of SIM_MM1 and SIM_MM2.  For the throughput measurements, we omitted

the first 5 seconds to eliminate the effect of the initially unstable TCP and RED behaviors

on the fairness.
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       (a) Per-flow Throughput Data (Kbps)

        (b) Average Per-flow Throughput     (c) Throughput Gains over FTP-TCP

      (d) RED Queue Size            (e) Congested Link Throughput

5 – 15 (Sec) 15 – 25 (Sec)
FTP-TCP1 733.2 505.2
FTP-TCP2 888.0 464.4
FTP-TCP3 717.6 552.0
FTP-TCP4 958.8 412.8
FTP-TCP5 841.2 428.4
FTP-TCP6 367.2

MM-UDP1 868.8 669.6
MM-UDP2 727.8

MPEG-UDP1 809.6 826.8
MPEG-UDP2 647.2

Fair Share 857.1 600.0

<Figure 3.1.4> SIM_MM1 – Simulation
Test of MM_APP and MPEG_APP #1

This simulation is set to have the FTP
applications over TCP and the flow-
controlled multimedia applications to fairly
share the output bandwidth for the first 10
seconds (5 to 15 seconds).  For the next 10
seconds when three more sources join
decreasing the available bandwidth share, the
multimedia applications get more bandwidth
than the TCP flows.
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    (a) Per-flow Throughput Data (Kbps)

         (b) Average Per-flow Throughput       (c) Throughput Gains over FTP-TCP

       (d) RED Queue Size   (e) Congested Link Throughput

<Figure 3.1.5> SIM_MM2 – Simulation
Test of MM_APP and MPEG_APP #2

SIM_MM2 shows the effect of a longer end-
to-end delay on fairness. The only difference
from SIM_MM1 is that the network link is set
to have longer delay. Comparing the
throughput gain over FTP-TCP graph with
that of Figure 3.1.4, one can easily see that the
multimedia applications become greedier as
the end-to-end delay is increased.

5 – 15 (Sec) 15 – 25 (Sec)
FTP-TCP1 910.8 464.4
FTP-TCP2 734.4 453.6
FTP-TCP3 952.8 324.0
FTP-TCP4 493.2 465.6
FTP-TCP5 718.8 268.8
FTP-TCP6 552.0

MM-UDP1 976.8 804.0
MM-UDP2 746.4

MPEG-UDP1 888.4 699.2
MPEG-UDP2 723.2

Fair Share 857.1 600.0
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In SIM_MM1, as shown in Figure 3.1.4 (c), the multimedia streams that consume about

the same amount of bandwidth as the TCP streams during the first 10 seconds become

greedier as the available fair bandwidth share for each flow goes down to 600 Kbps for

the next 10 seconds.  Although difficult to pinpoint, the unfairness is mainly caused by

the average reduction of TCP’s congestion window size, and the widely fluctuating and

higher RED’s average queue length that is shown in Figure 3.1.4 (d).  As discussed in the

earlier section that describes the flow control mechanism of MM_APP and MPEG_APP,

reducing the congestion window size makes the TCP connection more fragile.  This could

result in TCP (Reno) performing more slow starts than fast recovery, and even timeouts,

especially when RED applies higher early-drop rates as the average queue length gets

high.

SIM_MM2 exhibits the “end-to-end delay effect on fairness” discussed in the section that

describes the multimedia flow control mechanism. As shown in the queue size graphs and

congested link throughput graphs of SIM_MM1 and SIM_MM2 (graphs (c) and (d)), as

the end-to-end delay is increased the router experiences more bursty packet reception,

because the congestion notification delay is also increased.  Comparing the throughput

gain graphs in Figure 3.1.4 and Figure 3.1.5, one can easily see that the longer end-to-end

delay significantly increases the unfairness.  The following calculates and compares the

number of transmitted packet during a congestion notification delay for a TCP and a

MM_APP in SIM_MM2.
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Network Packet Size (NPS) = 12 Kbits (1500 Bytes)

Network Link Capacity (NLC) = 6 Mbps

Average Queue Size (AQS) = 7 and 10 Pkts (for the first and second period)

Queuing Delay (QD) = AQS * NPS / NLC = 0.014 or 0.020 Sec

Total Link Delay (TLD) = Link Delay (SRC →  DST) = 0.070 Sec

Feedback Link Delay (FLD) = Link Delay (Router →  DST →  SRC) = 0.135 Sec

End-to-End Delay (EED) = QD + TLD = 0.084 or 0.090 Sec

Congestion Notification Delay (CND) = QD + FLD = 0.149 or 0.155 Sec

TCP Congestion Window Size for X Kbps of transmission rate = CWS(X) = X * EED / NPS

MM Transmission Interval for Y Kbps of transmission rate = MTI(Y) = NPS / Y

Assuming that congestion occurred and notified to both the TCP and MM, the following is

the number of packets each source injects into the network during the congestion

notification delay, when they are transmitting at 857 Kbps and 600 Kbps.

# of TCP packets injected during CND (TR = 857Kbps) = CWS(857) =   6.0 Pkts

# of MM packets injected during CND (TR = 857Kbps) = CND / MTI(857) = 10.6 Pkts

# of TCP packets injected during CND (TR = 600Kbps) = CWS(600) =   4.5 Pkts

# of MM packets injected during CND (TR = 600Kbps) = CND / MTI(600) =   7.8 Pkts

The following are the assumptions made in the calculation: First, the TCP and the

MM_APP are currently transmitting at the same transmission rate, did not change the

current transmission load in the near past, and also do not change the load before they are

notified of congestion.  Second, they reduce the same amount of transmission load in

responding to the congestion, recover to the previous load after the same amount of

delay, and never get additional congestion notification before fully recovering to the
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previous state.  Third, the TCP and the MM_APP are able to adjust the window size or

the transmission interval exactly to the given transmission rate, although this is not

possible since they discretely adjust window sizes or transmission intervals.  Last, to

make the calculation easy, it is assumed that ECN marking is used for congestion

notification (although packet drop is used in the simulation).  The calculation is made for

the transmission rate of 857 Kbps that is the fair share during the first period and for the

rate of 600 Kbps that is the fair share during the second period.  Under SIM_MM2,

whenever both the TCP and MM_APP packets are marked for the network congestion,

MM_APP injected 4.6 and 3.3 more packets to the network during the notification delay

before reducing the transmission load for the first and the second period.  This gives an

instant bandwidth gain of 370 Kbps and 255 Kbps for the multimedia applications during

the notification delay of 0.149 and 0.155 second.  Assume that the TCP and the

MM_APP received the same number of congestion notifications at the same time, and the

notification delay total takes half the total simulation time.   The MM_APP will get 185

Kbps of bandwidth more than the TCP in the first period, and will get 146 Kbps more in

the second period.  Although this observation is based on the assumptions that would

never happen in a real life, it gives an intuition of how end-to-end delay could contribute

the unfairness.

SIM_MM1 and SIM_MM2 showed that the multimedia applications that use the rate-

based flow control mechanism could be greedier than TCP agents that use window-based

flow control mechanism.  It is likely that this is not only the problem with the flow

control mechanism we build, but with most of rate-based mechanisms.  In general,
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interactive multimedia applications today would not want to use TCP as the underlying

transport agent, but use UDP with no or their own flow control mechanism that is

possibly rate-based or window-based with transmission scheduling [BRS99].  Figure

3.1.6 that shows the TCP and MM_APP jitter in terms of inter-packet arrival time gives

an explanation why.

<Figure 3.1.6> FTP-TCP and MM-UDP Jitter under RED (Inter-Packet Arrival Time)

TCP’s bursty transmission policy that transmits data packets up to the minimum of

congestion and receiver side window at a time without using any particular transmission

scheduling introduces high jitter compared to the continuous transmission policy.

Furthermore, from time to time, TCP’s timeouts add huge peaks.  Delay sensitive

interactive multimedia applications degrade in quality under high jitter, since they need to

play out the multimedia data at a specific time interval.  They could use relatively large

buffers to normalize the jitter effect, however this gives extra delays that might not

satisfy the users of the application.  In addition, the fact that TCP does not separate flow

control from loss recovery discourages multimedia applications from using it [BRS99],
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since this gives possibly unbounded transmission delays for a multimedia packet that is

useless after a specific period due to the retransmission attempts for the previous packets.

In this section, we described the design and showed the behavior of the multimedia

applications (or traffic generators) that use a flow-control mechanism based on media

scaling, which we built and used to evaluate the proposed router queue management and

scheduling mechanisms.  As shown in the simulation results, the multimedia applications

become greedier than TCP when the round trip time is relatively high and the available

bandwidth share is relatively low.  This is mainly due to the transmission characteristics

of the rate-based mechanism and the minimum bandwidth requirements.  We also

demonstrated that TCP is not the transport agent of choice for multimedia applications by

showing its poor performance on jitter and delay that is due to its transmission policy.

The next section presents the implementation and validation of CBT on NS.
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3.2 CBT Implementation and Validation

As briefly mentioned in Chapter 1, the main idea behind the design of CBT [PJS99] is

applying class-based isolation on a single queue that is fully or partially managed by

RED without using packet scheduling.  Instead of using packet scheduling on multiple

logical queues, CBT regulates congestion-time output bandwidth for n classes of flows

using a RED queue management mechanism and a threshold for each of the n-1 classes

of flows, which is average number of queue units that a class may use.  CBT categorizes

flows into three classes, which are TCP, tagged (multimedia) UDP and untagged (other)

UDP, and assigns a pre-determined static threshold for each of the two UDP classes,

assuming that UDP flows are mostly unresponsive or misbehaving and need to be

regulated.  When a UDP packet arrives, the weighted-average for the appropriate class is

updated and compared against the threshold for the class to decide whether to drop the

packet before passing it to the RED algorithm.  For the TCP class, CBT does not apply a

threshold test but directly passes incoming packets to the RED test unit.  This is Jeffay’s

first design of CBT, called “CBT with RED for all”.    The conceptual view of the first

CBT design is shown in Figure 3.2.1 in the next page.

In Jeffay’s second design, called “CBT with RED for TCP”, only TCP packets are

subjected to RED’s early drop test, and UDP packets that survive a threshold test are

directly enqueued to the outbound queue that is managed by RED.  Another difference

from the first design is that the RED’s average queue size is calculated only using the

number of enqueued TCP packets.  CBT with RED for TCP is based on the assumption

that tagged (multimedia) UDP flows as well as untagged (other) UDP flows are mostly
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unresponsive, and it is of no use to notify these traffic sources of congestion earlier.  CBT

with RED for TCP improves the UDP packet drop rate by not applying the early drop

test, and thus improves multimedia performance compared to the first design [PJS99].

We implemented CBT with RED for all into NS, from which our proposed mechanism

D-CBT is extended, and validated the implementation by simulating an experiment from

Jeffay’s paper of which title is “Lightweight Active Router – Queue Management for

Multimedia Networking” [PJS99].  This section presents the implementation and

validation.  In the rest of this thesis, CBT refers to CBT with RED for all.

<Figure 3.2.1> CBT (with RED for all) Conceptual View

CBT recognizes the three different classes of flows at the IP level.  In IP, this can be done

by using a protocol field that tells it what the transport protocol is and an unused bit of

type-of-service field in IPv4 header [PJS99, NJZ97].  Likewise, we used the protocol

field variable in the header structure to distinguish UDP packets from TCP packets.
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However, to distinguish tagged UDP from untagged UDP, we decided to use a priority

variable, and modified the UDP agent to set the priority variable of the outgoing packets

to 15 when requested by the multimedia application (or traffic generator).  This was

because the type-of-service field parameter was not defined in the original NS IP header

definition, and we did not want to modify the header structure.  Indeed, the NS IP header

has the IPv4 parameters (but not all) and also has IPv6 parameters such as a priority field

at the same time.  Therefore, it is up to users which version of the header to assume.

<Figure 3.2.2> CBT (with RED for all) Implementation Diagram

We took the RED implementation in NS and extended it to CBT (with RED for all) as

described in Jeffay’s paper [PJS99].  The CBT implementation is shown in Figure 3.2.2.

When a packet arrives, it is classified into one of the three classes.  For an incoming UDP

packet, an appropriate class average is updated and the class’ threshold test is applied.  If

the packet survives the threshold test, it is given to the RED unit.  An incoming TCP

packet is directly given to the RED unit.  As a packet, either a UDP packet that survived a
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threshold test or a TCP packet, arrives the RED unit updates the average queue length

and applies its early drop test on it, in which one of three possible decisions is made.

First, when the average is less than the minimum threshold, the packet is given to the

queue manager.  Second, when the average is greater than the minimum and less than the

maximum threshold and the packet is selected for an early drop, the early drop test unit

drops the packet.  Third, when the average is greater than the maximum threshold, the

unit passes the packet to the queue management unit and signals congestion, where the

queue management unit enqueues this packet at the end, randomly selects a packet in the

queue and drops it 3.  When the actual queue overflows, the queue manager performs this

random drop without a congestion signal from the test unit.

<Figure 3.2.3> Jeffay’s Experimental Network

After the implementation, we validated the RED and the CBT implementations by

simulating Jeffay’s experiment and comparing his RED and CBT results with the

simulated ones. Figure 3.2.3 shows his experimental network consisted of two switched

100 Mbps Ethernet LANs (source and destination LAN) that were interconnected by a

                                                       
3 This is not the behavior of standard RED.  Standard RED drops all incoming packets when the average is
greater than the maximum threshold.
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full-duplex 10 Mbps Ethernet. For traffic sources, he used 6 ProShare multimedia

applications that generate approximately 210 Kbps of traffic, 240 FTP-TCP bulk transfers

and 1 UDP non-multimedia application that sent 1 Kbyte packets at 10 Mbps (the

maximum capacity of the network), of which the scheduling is shown in Figure 3.2.4.  To

simulate a large RTT for the TCP connections, the kernel on each machine was modified

to introduce a delay in transmitting packets from each connection.  Refer to [PJS99] for

the further experiment setup details.

<Figure 3.2.4> Traffic Source Schedules

Similarly, our simulation used the network topology of 100 Mbps source and destination

Ethernet LAN, each of which consisted of 248 nodes (147 hosts and a router), connected

by a 10 Mbps link.  However, instead of introducing a large delay in the nodes, we give

the 10Mbps link the delay of 20ms.  For the traffic source, we assumed many of the

parameter settings, since no detailed source behavior or parameter settings are described

the paper.  To simulate the ProShare multimedia application, we used a CBT traffic

generator that transmitted 6 Kbytes frames at the rate of 210 Kbps, each of which was

broken into six 1 Kbyte tagged packets at the underlying UDP layer.  For the TCP (Reno)
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connection, we set the maximum packet size to 300 Bytes and the maximum congestion

window size to 10 packets.

• RED Settings:

qsize =  60 pkts
max-th =  30 pkts
min-th =  15 pkts
qweight =  0.002 (not specified in the paper)
max-pro =  0.1     (not specified in the paper)

• CBT Settings: the above settings plus

mm-th =  10 pkts
udp-th =    2 pkts

<Table 3.2.1> RED and CBT Settings

Table 3.2.1 shows the RED and CBT parameter settings used for the experiment and the

simulation.  Each router is set to have a 60 packet long output queue.  For RED, the

maximum and minimum thresholds were 30 packets and 15 packets, the weight was

0.002 for the weighted queue average calculation, and the maximum early drop

probability was 0.1.  For CBT, in addition to the RED settings, the tagged UDP class

threshold (mm-th) was set to 10 packets, and the untagged UDP class threshold (udp-th)

was set to 2 packets.  These class thresholds were determined based on an assumption

that the average of the average queue length would be about 26 packets throughout the

experiments (or the simulation), and all packets are of the same size.  By assigning the

maximum average of a 10-packet space of the queue to the tagged flow class, it

approximately gets the maximum bandwidth of 3.8 Mbps, 10/26 of the network link

bandwidth, at congestion.  This was enough for the 6 ProShare flows whose aggregated
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average bandwidth requirement was approximately 1.3 Mbps.  Similarly, for the

untagged UDP flows, by assigning the average of a 2-packet space the class for

congestion, approximately 0.8 Mbps of output was reserved for the class.  From the

above calculation, the aggregated throughput of TCP, which should have been about 8.7

Mbps (or 1088 Kbytes/Sec) when TCP flows are sharing the bandwidth with the

ProShare flows, should have dropped down to approximately 7.9 Mbps (or 988

Kbytes/Sec) when the UDP blast joins.  However, TCP flows got a little bit less

bandwidth than the calculation due to their smaller packet size.  By using smaller packets,

TCP agents would operate in a larger congestion window size and transmit more packets

into the network resulting in more TCP packet drops at the router.  However, since the

TCP bandwidth loss due to a packet drop was reduced, the TCP bandwidth loss was not

that much.

Figure 3.2.4 shows the aggregated TCP throughput (in Kbytes/Sec) under RED and CBT

for the experiment and the simulation – the throughput graph for the experiments is

copied from Jeffay’s paper.  By comparing the experimental result and the simulated

result under RED, one can see that the traffic source parameter settings we guessed for

the unspecified ones are similar to the settings used in the experiments.  Also, the results

imply that the TCP and RED implementation on NS are comparable to the ones used in

the experiment. Next, the aggregated TCP throughputs under CBT for the experiment and

the simulation show that our NS implementation is correct, although the experimental

result shows several sharply dropping aggregated TCP throughputs during the period
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when the UDP blast joins.  We believe that this phenomenon is caused by experimental

“noises” from the real world.

         RED CBT with RED for all

(a) Jeffay’s Experimental Results

             RED  CBT with RED for all

(b) NS Simulated Results

<Figure 3.2.4> Aggregate TCP Throughput (X-axis = Seconds, Y-axis = Kbytes/Sec)

Comparing the experimental and the simulated results carefully, one would notice the

delayed throughput of the experiment at the beginning and at the end.  This could be
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simply from the fact that Jeffay used a transmission source scheduling that is slightly

different than shown in Figure 3.2.3. Assuming that the same schedule is used, it is

possible that this difference comes from the mechanism in the host kernels that

introduces a delay for TCP packet transmissions could be set to have a higher delay than

that of the network link in the simulation.  Another possible factor is the routing delays of

the routers in the experiment.  In fact, the router implementation in NS does not have a

routing delay and thus does not have an inbound queue.  It appears that each router in the

experiment is set to have a large inbound queue.  In this situation, when a severe overload

occurs in the inbound link that is considerably off the router’s switching capacity (or

processing delay), the incoming packets wait a significant time in the inbound queue to

be processed or even dropped. At the period when TCPs start transmission the overload

occurs due to the slow start algorithm with the relatively large congestion window sizes.

Likewise, it seems that when the UDP blast starts, a very significant overload occurred at

the inbound link.  These effects, we believe, contributed to the delayed transmission at

the router, and possibly the sharply dropping aggregated TCP throughput during the

period of 60 to 110 seconds.

This section described our CBT implementation on NS, and the validation of the TCP,

RED and the newly added CBT implementations.  By simulating the Jeffay experiment

and comparing the results with the experimental results, we showed that the TCP, RED,

and the CBT implementations are comparable to the ones used in his experiments.  The

next section presents the design and implementation of our proposed mechanism, D-CBT

and ChIPS.
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3.3 Dynamic-CBT and Cut-In Packet Scheduling

Dynamic-CBT (D-CBT) is an active queue management mechanism that is derived from

CBT and based on RED, and Cut-In Packet Scheduling (ChIPS) is a lightweight

multimedia favored packet scheduling mechanism that can be used under RED and its

variants.  While the two mechanisms can be used separately, we implemented ChIPS into

D-CBT and measured the performance of D-CBT w/o ChIPS and D-CBT w/ ChIPS.

This section presents the design and implementation of D-CBT and ChIPS.

3.3.1 Dynamic-CBT (D-CBT)

D-CBT is an extension of CBT (with RED for all) that enforces fairness among classes of

flows, and gives UDP classes better queuing resource utilization. Figure 3.3.1 in the next

page shows the design of D-CBT.  The key difference from CBT is (1) the dynamically

moving fair thresholds and (2) the UDP class threshold test that actively monitors and

responds to RED indicated congestion.  To be more specific, by dynamically assigning

the UDP thresholds such that the sum of the fair average queue resource share of flows in

each class is assigned to the class at any given time, D-CBT fairly allocates the

bandwidth of a congested link to the traffic classes.  Also, the threshold test units, which

are activated when RED declares impending congestion (i.e. red_avg > red_min),

coupled with the fair class thresholds, allow the UDP classes to use the available queue

resources more effectively than in CBT, in which each UDP class uses the queue

elements an average of no more than its fixed threshold at any time.   Looking at it from a
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different view as shown in Figure 3.1.1, D-CBT can be thought of a Class-Based FRED-

like mechanism that does per-class-accounting on the three classes of flows.

As in CBT, D-CBT categorizes flows into TCP, tagged UDP and untagged UDP classes.

However, different from the class categorization of CBT in which flow-controlled

multimedia flows are not distinguished from unresponsive multimedia flows (all tagged),

D-CBT classifies UDP flows into flow-controlled multimedia (tagged) UDP and other

(untagged) UDP.  The objective behind this classification is to protect flow-controlled

multimedia flows from unresponsive multimedia flows, and encourage multimedia

applications to use congestion avoidance mechanisms, which may be different than those

of TCP.  We believe that there are advantages in categorizing UDP traffic in this way for

the following reasons: First, multimedia applications are the primary flows that use UDP

and generate high bandwidth.  Second, by categorizing flows by their congestion

responsiveness characteristic (i.e. TCP friendly, flow-controlled but misbehaving

multimedia and unresponsive flows), different management can be applied to the classes

of differently flow-controlled flows.

In fact, in determining the fair4 UDP thresholds, D-CBT calculates the fair average output

buffer share of the tagged UDP class from the average queue length that is maintained by

RED, and that of untagged UDP class from the RED’s minimum threshold (plus a small

allowance).  This is based on the assumption that tagged flows (or flow-controlled

multimedia) can respond to network congestion and will actively try to lower the average

                                                       
4 Fair share of a class is the number of active flows in a class divided by total number of active flows.
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length of a congested queue on notification of congestion.  Therefore, they are allowed to

use the impending congestion state queue buffers (i.e. red_avg – red_min when red_avg

> red_min) up to their fair share of the average.  However, unresponsive (untagged)

flows, which have no ability to respond to network congestion, are not allowed to use the

impending state queue buffers at impending congestion.  Actually, we allow the

unresponsive UDP class to use a small fraction of the impending state queue buffers,

which is 10% of (red_max – red_min) * untagged_UDP_share when the maximum early

drop rate is 0.1, to compensate the effect of needless additional early drops for the class.

<Figure 3.3.1> Design and Implementation of D-CBT

Figure 3.3.1 shows the design and also the implementation of D-CBT, in which the

existence of the active flow counting unit is a big structural difference from CBT.  In

order to calculate a fair threshold (or average queue resource share) for each class, D-

CBT needs class state information, and therefore keeps track of the number of active
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flows in each class.  Generally, as in FRED, active flows are defined as ones whose

packet is in the outbound queue [LM97].  However, we took slightly different approach

in detecting active flows, in that an active flow is one whose packet has entered the

outbound queue unit during a certain predefined interval since the last time checked.  In

D-CBT, an active flow counting unit that comes right after the classifier maintains a

sorted linked list, which contains a flow descriptor and its last packet reception time, and

a flow counter for each class.  Currently, the flow descriptor consists of a destination IP

address and the flow ID (IPv6).  However, assuming IPv4, this could be replaced by

source and destination address, although this would redefine a flow as per source-

destination pair.

For an incoming packet after the classification, the counting unit updates an appropriate

data structure by inserting or updating the flow information and the current local time.

When inserting new flow information, the flow counter of the class is also increased by

one.  The counting unit, at a given interval (set to 300ms in our implementation),

traverses each class’ linked list, deletes the old flow information and decreases the flow

counter.  The objective behind this probabilistic active flow counting approach is

twofold: First, D-CBT does not necessarily require an exact count of active flows as do

other queue mechanisms that are based on flow-based-accounting, although a more exact

count is better for exercising fairness among flow classes.  Second, it might be possible to

improve the mechanism’s packet processing delay by localizing the counting unit with

the help of router’s operating system and/or device.  For example, the traversing delete is

a garbage collection-like operation that could be performed at the router’s idle time or
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possibly processed by a dedicated processor in a multiprocessor environment.  In our

implementation, we used a sorted linked list data structure that has the inserting and

updating complexity of O(n), and the traversing complexity of O(n), where n is the

number of flows of a class.  Assuming that a simple hash table is used instead, the

complexity of inserting and updating operation drops to O(1), while the complexity of the

traverse delete will remain O(n).

For a incoming packet that is updated or inserted for its flow identification to its class

data structure at the counting unit, D-CBT updates the RED queue average, the tagged

UDP average and the untagged UDP average, and passes the packet to an appropriate test

unit as shown in Figure 3.3.1.  Note that for every incoming packet all of the averages are

updated using the same weight.  This is to apply the same updating ratio to the weighted-

averages, so that a snapshot in time at any state gives the correct average usage ratio

among the classes.  Using the three averages and the active flow count for each class, the

UDP threshold test units calculate the fair thresholds for the tagged and untagged UDP

classes as described earlier, and apply the threshold test to incoming packets of the class

when the RED queue indicates impending congestion.  The rest D-CBT work the same in

CBT, which are explained in the previous section.

Thus, D-CBT is designed to exercise the traditional fairness between flows of different

characteristics by classifying and applying different enqueue policies to them, and restrict

each UDP class to use the queue buffer space up to their share in average.  We

hypothesize that the advantages of D-CBT are the following: First, D-CBT avoids
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congestion as RED with the help of responsive traffic sources.  Second, assuming that the

flows in a class (especially the tagged UDP) use flow control mechanisms of which the

congestion responsiveness characteristics are almost the same, D-CBT will fairly assign

bandwidth to each flow with much less overhead than FRED, which requires per-flow

state information.  Even if the tagged flows do not use their fair share, D-CBT will still

successfully assign bandwidth fairly to each class of flows, protecting TCP from the

effect of misbehaving and unresponsive flows and also protecting the misbehaving (flow-

controlled multimedia) flows from the effect of unresponsive flows.  Lastly, D-CBT

gives tagged (flow-controlled multimedia) flows better chance to fairly consume the

output bandwidth than under FRED by performing per-class punishments instead of the

strict per-flow punishment.  Also, D-CBT may more flexibly assign the bandwidth share

within the class.

3.3.2 Cut-In Packet Scheduling (ChIPS)

ChIPS is a light-weight multimedia favored packet scheduling mechanism that can

replace the FCFS enqueue style packet scheduling of a RED-managed queue for CBT, D-

CBT and possibly other RED-like mechanism, which is specifically targeted to improve

multimedia jitter.  ChIPS monitors average enqueue rates of tagged and the other flows,

and is activated when the tagged flows are using a relatively smaller fraction of

bandwidth than TCP flows.  On transient congestion in which the queue length is greater

than the average queue length, ChIPS awards tagged (flow-controlled multimedia) flows

by allowing their packets to “cut” in the line of queue where the average queue length
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points.  Figure 3.3.2 in the next page shows the design of ChIPS (the virtual queue is

described later).

<Figure 3.3.2> ChIPS (Tagged Packet Insertion on Transition Congestion)

By inserting tagged UDP packets at the average queue length on transition congestion,

ChIPS improves flow-controlled multimedia jitter.  However, this could harm TCP flows

and even make them time out by introducing a large extra delay when the multimedia

traffic is taking a considerable portion of the output bandwidth.   Under the normal RED

queue mechanism that has no means to regulate the queue buffer usage among the classes

of flows, it is essential for ChIPS to monitor the average enqueue ratio between the

tagged and other flows and turn on its function only when the ratio is small.  However,

under CBT, in which the tagged threshold can be explicitly set to use a small fraction of

the available queue buffer, this automatic turn on/off function is not really necessary.

When used with D-CBT, the ratio that turns off the ChIPS could be set relatively large
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(tested for up to 50% in our simulations with the RED minimum threshold of 5 and the

maximum of 15) without degrading the fairness because of the “self-adjusting” ability of

D-CBT.  When a relatively large number of tagged flows compete for the bandwidth with

TCP flows, ChIPS could instantly lower the TCP throughputs.  However, this will also

lower the average queue length of the queue, and therefore the fair threshold for the

tagged class will be reduced and the tagged class throughput will be reduced as well.

Thus, ChIPS may cause the average queue length to fluctuate a bit more but does not

reduce fairness significantly.  Chapter 4 has more detailed results.

Another issue in implementing ChIPS is that the increment of the tagged packet dequeue

rate caused by the insertion could degrade the fairness when the packet enqueue decision

makes use of each class’ buffer usage as in CBT and D-CBT.  This faster tagged packet

drain rate is not an issue for RED since it enqueue decision has nothing to do with the

drain rate.  However, in CBT and D-CBT, the faster drain rate lowers the average number

of enqueued packets for the tagged class, which could result in the tagged class getting

more bandwidth than its fair share.  To prevent this effect, we used a virtual queue for

counting the number of enqueued packets for the UDP classes, in which the class

information of an enqueuing packet is always enqueued at the end, even though ChIPS

cuts a tagged packet in the line of the real queue.  In this way, a virtual queue can deceive

the class average counting units by telling that the tagged packets that have been

transmitted already are still in the queue.  Thus, the actual tagged packet drain rate does

not affect the calculation of the average number of enqueued packets for the tagged class.
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Looking at the complexity of the design, ChIPS has O(1) behavior, since the insertion

complexity is O(1) and the virtual queue maintenance complexity is also O(1).  We

believe that ChIPS, which noticeably improves tagged flow (flow-controlled multimedia)

jitter, along with D-CBT would further encourage multimedia applications to use a flow

control mechanism.  An important issue that is not addressed in this paper is who is going

to monitor and tag the flow-controlled multimedia flows.  However, we believe that this

job has to be done in the Internet Service Provider (ISP) level or the local network

management level at the gateways to the public networks, and leave the routers of the

public networks free from this issue.  The next chapter presents the simulated

performance and evaluation of the proposed mechanisms.
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4. Results and Analysis

To evaluate our research approach, the performance of RED, CBT, D-CBT, and D-CBT

with ChIPS are measured and compared in terms of congested link throughput, fairness

among the different classes of flows and multimedia jitter through a series of simulations,

in which TCP, flow-controlled multimedia and unresponsive flows coexist.  For the flow-

controlled multimedia traffic sources we used the multimedia traffic generators described

in Chapter 3.1.  The first section of this chapter discusses the performance measurement

metrics used for the evaluation, and the second section presents the simulation setup.  The

third and the last sections present the simulation results and analysis.

4.1 Performance Measurement Metrics

The objective behind the design of D-CBT and ChIPS is to improve fairness among

different classes of flows and to reduce multimedia jitter.  This section presents the

fairness and jitter measurement metrics used to evaluate our proposed mechanism.  To

measure the fairness among the three different classes of flows and also to visualize the

fairness among individual flows, we use the following two metrics.  The first one is the

direct comparison of the average per-flow throughput in each class, which is an average

aggregated class throughput divided by the number of flows in the class.  We believe that

this is a good indicator of how fairly the output bandwidth is assigned to each class

considering the number of flows in the class.  However, it does not tell how fairly each

individual flow is assigned of the output bandwidth.  Therefore, we use a second fairness
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measurement metric, called Jain’s fairness index, to visualize the fairness among

individual flows [Ja91].  Figure 4.1.1 shows the formula that calculates Jain’s fairness.

<Figure 4.1.1> Jain’s Fairness ( f ): xi is the average throughput of ith flow

Jain’s fairness formula gets the average throughputs of the flows of which the fairness is

measured as an input, and produces a normalized number between 0 and 1, where 0

indicates the total unfairness and 1 indicates the greatest fairness.  However, looking at

the original Jain’s formula, which is used for our fairness calculations, it is hard to see

what it really measures.  Therefore, to better understand the formula, we rewrote the

formula into more meaningful form by converting the throughputs of flows into an offset

presentation, in which the throughput of the i th flow is written as throughput of the 0 th

flow (x0) plus the displacement from x0 that is denoted as d i.  The derived formula

indicates that the variation on the throughput displacements decreases the index value by

f (x0+d0 , x0+d1 , x0+d2 ,… , x0+dn)

f (x0, x1, x2,… , xn)  =
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=
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 (Derived)

(Offset Form)

0 ≤ f ≤ 1 (Greatest Fairness)



52

increasing the denominator.  Indeed, Jain’s fairness index is a good indicator of how

fairly each flow shares the output bandwidth, since it is the scaled displacement of each

flow’s bandwidth that determines the Jain’s value.  For example, when a couple of flows

are severely punished and have far less throughput than the others, the Jain’s fairness

value will decrease dramatically indicating that the system is unfair, although the class

average measurement would show that the system is fair.  We decided to use Jain’s

fairness index along with the direct comparison of the per-flow average throughput in

each class to visualize the system’s fairness on each flow as well as on the classes.

<Figure 4.1.2> Multimedia
Jitter – An Example: This
figure models packet video
between sender and receiver.
Each si is the time at which
the sender transmits video
frame i.  Each ri is the time
at which the receiver
receives frame i. [CT99]

Another network system performance factor we want to measure especially for

multimedia streams is the variance in packet delivery or jitter.  In a wide area multimedia

networking, jitter, which directly affects multimedia perceptual quality and also can

indirectly increase end-to-end delay, is an important performance factor as well as end-

to-end delay and packet loss [CT99].  Figure 4.1.2 depicts an example of jitter.

sender  s0       s1       s2      s3       s4

 receiver         r0       r1        r2       r3        r4

sender  s0       s1       s2      s3       s4

 receiver        r0       r1             r2  r3                r4

A Jitter Free Stream

     A Stream with Jitter
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“In the absence of jitter and packet loss, video frames can be played as
they are received, resulting in a smooth playout, as depicted in Figure
4.1.2-top.  However, in the presence of jitter, inter-arrival times will vary,
as depicted in Figure 4.1.2-bottom.  In Figure 4.1.2-bottom, the third
frame arrives late at r2.  In this scenario, the user would see the frozen
image of the most recently delivered frame (frame two) until the tardy
frame (frame three) arrived.  The tardy frame (frame three) would then be
played only briefly in order to preserve the timing for the subsequent
frame (frame four).” [CT99]

Jitter introduced by the Internet could degrade a multimedia perceptual quality

significantly especially on video.  In order to ameliorate the jitter effect, a receiver could

add a delay in the playout, which is called delay buffering.  However, delay buffering

results in increasing of end-to-end delay, which can degrade quality for interactive

multimedia applications.

Now that the impact of jitter on multimedia applications has been discussed, the next

issue is determining its measurement method.  First, jitter can be measured in terms of

variance in inter-frame arrival time at the receiver, which is a receiver-oriented

observation on the variance.  This is a useful and also an easy measurement method,

since this is what a receiver application actually experiences and what can be easily

measured at the end systems in a real network environment.  However, it has a limitation

that when a source application changes it transmission rate or the frame rate often as in

the case of a flow-controlled multimedia application, what it measures may no properly

visualize the effect of the underlying system on jitter.  Actually, we used this method in

comparing the performance of TCP and MM_APP on multimedia streams in Chapter 3.1,

in which we showed that TCP is not the choice for the transport agent for the multimedia

applications because of its bursty transmission characteristics. In this case, the method
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visualized the effect of TCP’s transmission policy well, because the effect was

tremendous.  However, more often than not the underlying network system’s effect on

jitter would be relatively smaller than the one contributed by the flow-controlled

application’s transmission policy.

The second method of measuring jitter is in terms of variance in end-to-end delay.  This

is a more network-oriented observation of the variance and a direct indicator of a

network, an operating system, or their subsystem’s performance on multimedia streams

compared to the first method, since it eliminates the inter-packet transmission periods of

the source.  However, in real environments, it is hard to measure jitter in this way

because of asynchronized clocks of the source and the destination.  However, in our

simulation environment where only one logical clock is used for the whole system, it is

very easy to measure actual variance end-to-end delay.  Moreover, this method can even

visualize the effect of queuing delays of a single router on jitter well.  Therefore, we

decided to use this second method in evaluating the effect of ChIPS on multimedia jitter.

Using the fairness metrics and jitter measurement metric discussed in this section, we

evaluated RED, CBT, D-CBT and D-CBT with ChIPS in terms of fairness in output

bandwidth allocation and multimedia jitter.  We also measured the congested link

throughput to visualize the effect of the mechanisms on the link utilization.  However,

since this is very primitive and well-known metric, it is not discussed in this section.  The

next section presents the simulation setup in detail.
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4.2 Simulation Setup

The purpose of this simulation study is twofold.  The first purpose is to measure the

effect of RED, CBT and D-CBT on congested link utilization and fairness when different

classes of flows coexist.  The second purpose is, by comparing the performance of D-

CBT and D-CBT with ChIPS, to see if ChIPS affects fairness and/or improves jitter.  We

ran a simulation for each of RED, CBT, D-CBT and D-CBT with ChIPS.  Every

simulation had the exactly same settings except for the network routers, each of which is

set to use one of the above four outbound queue management mechanisms.  The network

topology and the traffic source schedules are shown in Figure 4.2.1.

<Figure 4.2.1> Simulation Scenario and Network Setup
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In each simulation, we had 67 source nodes connected to one router and 67 destination

nodes connected to the other router, which are interconnected by a link with 25Mbps

bandwidth and 20ms of delay.  Each link that connects a source (or destination) node and

a router was set to have 25Mbps of bandwidth and 5ms of delay.  For traffic sources, 55

FTP, 10 flow-controlled MM_APP (tagged) and 2 CBR (untagged) traffic generators

were used, where FTP used TCP Reno and the others used UDP as the underlying

transport agent.  All the TCP agents were set to have a maximum congestion window size

of 20 packets and maximum packet size of 1Kbyte, with which a TCP agent could

transmit at the average rate of up to 4.6Mbps (the calculation is based on the average

queue size of 15 packets).  The UDP agents are also set to have maximum packet size of

1Kbyte, so that all the packets in the network are the same size.  The MM_APP traffic

generators (flow-controlled multimedia applications) used the transmission rates shown

in Table 3.1.1 (Chapter 3.1), that is 300, 500, 700, 900, 1100 Kbps, for scale 0 to 4

transmission rates, with the fixed packet size of 1Kbyte.  The CBR sources were set to

generate 1Kbyte packets at 5Mbps.

We scheduled the traffic sources such that 25 TCP flows and 10 MM_APP flows are

competing for the bandwidth during 0 to 10 seconds.  At this period the fair bandwidth

share for each connection is about 714Kbps (25Mbps / 35 flows).  In the next period (10

to 20 seconds), the two high bandwidth CBR blasts join trying to aggressively use the

output bandwidth of which the average fair share was about 675Kbps (25Mbps / 37

flows).  Later at 20 seconds, 30 more TCP flows came into the network lowering the

average fair share during the last 10 seconds to about 373Kbps (25Mbps / 67 flows).
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Network routers were assigned of a 60-packet long physical outbound queue.  For RED

queue management, the maximum and minimum thresholds were set to 15 and 5 packets,

the weight for the weighted queue average was set to 0.002, and the maximum early drop

probability was set to 0.1.  These RED parameters were chosen from one of the sets that

are recommended by Floyd and Jacobson [RK99].  For CBT, beside the RED parameters,

the tagged threshold (denoted as mmu_th in the figure) was set to 2.9 packets and the

untagged threshold (denoted as udp_th) was set to 0.6 packets.  These thresholds were

selected to force the UDP classes to get about their fair bandwidth shares during 0 to 20

seconds.  Assuming the average queue size is 10 packets, by reserving an average of 2.9-

packet space, the tagged class could get an average bandwidth of 7250Kbps (25Mbps *

2.9 / 10) at congestion, which is about 10 times (10 tagged flows) the fair share during 0

to 10 seconds.  Likewise, by reserving 0.6-packet space in the queue, the untagged class

could get an average of 1500Kbps, that is little bit more than 2 times (2 untagged flows)

the fair share during 10 to 20 seconds.

D-CBT also shares the RED settings, however, since each threshold is assigned

dynamically to the fair share of each class, no threshold setup was necessary.  Finally,

ChIPS was set to turn off its cut-in scheduling feature when the ratio between the number

of tagged flows and the other flows are greater than 50%.  However, under our

simulation, ChIPS was always on since the ratio was always under 50 %.

Thus, the simulations were designed to give an environment under which every queue

management mechanism manages output bandwidth fairness during the first 10 seconds,
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RED fails during the second 10 seconds, and CBT fails during the last 10 period.  Then,

we wanted to see if D-CBT could dynamically offer fair bandwidth allocation in every

situation.  Also, by comparing the results (fairness and jitter) of D-CBT with ChIPS with

the basic D-CBT, we could measure the effect of ChIPS on fairness and multimedia jitter.

The next two sections present the simulation results and analysis.

4.3 Throughput and Fairness

This section presents our simulation results and analysis on RED, CBT, D-CBT and D-

CBT with ChIPS.  In the first part of the section, the fairness of the mechanisms in

managing bandwidth is shown using the fairness measurement metrics discussed in

Section 4.1.  Then, we showed the efficiency of the mechanisms in utilizing the output

bandwidth by visualizing the congested link throughput.

4.3.1 Class’ Average Per-Flow Throughput

Figure 4.3.1 (a) through (d) in the next page compares the periodic (i.e., 0-10, 10-20 and

20-30 seconds) average per-flow throughput for each class under the four queue

mechanisms.
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    (a) RED    (b) CBT

 (c) D-CBT      (d) D-CBT with ChIPS

<Figure 4.3.1> Average Per-Flow Throughput for TCP, Tagged UDP and
Untagged UDP Classes under RED, CBT, D-CBT and D-CBT with ChIPS

As shown in Figure 4.3.1 (a), RED absolutely failed to assign bandwidth fairly to each

class of flows from 10 seconds when the two high bandwidth untagged UDP flows

(unresponsive CBR) join transmitting at the total of 10Mbps, about 40% of the link

bandwidth.  During 0-10 seconds, when 25 TCP and 10 tagged (flow-controlled

MM_APP) flows are competing for the bandwidth, it was somewhat unfair as a tagged

flow gets an average of 37% more bandwidth than a TCP flow, but RED was able to
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manage the bandwidth.  However, when the untagged UDP blast came into the system,

RED was totally unable to manage bandwidth.  The 2 untagged UDP flows got most of

the bandwidth they needed (average of 4.68Mbps out of 5Mbps), and the remaining flows

used the leftover bandwidth.  Especially, the 25 TCP flows got severely punished and

transmitted at an average of 293Kbps per flow.  An interesting observation here is that

the tagged (MM_APP) flows were not punished much but each flow in average was

transmitting (720Kbps) over the fair share of the second period, that is 675Kbps.  This

was mainly because TCP (Reno) often failed to perform fast recovery and went back to

slow start mode [rfc2001], and/or even timed out due to a high packet drop rate at the

router.  Fairness got worse as 30 more TCP flows joined at 20 seconds, and experienced

starvation.

Figure 4.3.1 (b) shows that CBT can avoid the great unfairness of RED using fixed

thresholds for the UDP classes.  However, CBT was not assigning the output bandwidth

to each class as expected.  When designing the simulation, we set the UDP thresholds

such that during 0-10 seconds each tagged UDP flow should get 725Kbps (7250Kbps /

10) in average.  During 10-20 seconds, we expected that each tagged flow’s average

bandwidth would remain the same and each untagged UDP flow would get an average of

750Kbps (1500Kbps / 2).  Also, we expected that during the last period (20-30 seconds),

the tagged and untagged flows would get a large portion of the bandwidth that is close to

the figure during 10-20 seconds and the TCP flows would get much less than the fair

share during this period.  However, the simulation result shows that the tagged UDP class
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got more bandwidth than the expected values especially during the last period, while the

untagged UDP class got much less bandwidth than expected.

We found out that this is mainly due to how and when CBT updates each UDP class

threshold and RED queue average.  As shown in Figure 3.2.2 (Chapter 3.2), CBT updates

each UDP class average only for incoming packets that belong to the class, and the RED

unit updates its queue average for all incoming TCP packets and for UDP packets that

passed an appropriate threshold test.  Therefore, the class averages and the RED queue

average are almost independently updated at different speeds that are closely related the

number of incoming packets that belong to the class.  In addition, the RED average has a

higher chance of being updated faster than the UDP class averages.  In this situation,

which we call unsynchronized weighted-average updates, whoever (i.e. a class) updates

its weighted-average more often will get less bandwidth by having a larger weighted-

average than the average of others for the same amount of class output bandwidth, and

the output bandwidth is controlled using the averages at the UDP threshold test units.

Figure 4.3.2 shows this effect by comparing two situations where a UDP class that has an

initial class weighted-average of 1, a weight of 0.1 and a class threshold of 1.02, is

experiencing two different incoming packet rates.  Figure 4.3.2 (a) is the case when the

incoming packet rate is 0.5 packets per packet transmission delay, and Figure 4.3.2 (b) is

the case when the class is receiving packets at the rate of 1.0 packets per packet

transmission delay.  In this example, it is assumed that the traffic sources are

unresponsive CBR applications.  One thing to note in the figure is that the class average
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shown at the left bottom of each queue in each state is its value before making the

enqueue admission decision for an incoming packet at that state.  As you can see in the

figure, as the number of incoming packets for a class increases, packets are enqueued in a

bursty manner, and more importantly, its class average gets larger.  As the average is

updated more frequently, not only is a newly enqueued packet added to the average (with

the weight of 0.1), but also the existence of the other already enqueued packet are added

to the average.  For example, the existence of the first (red colored) packet is added to the

average (with the weight of 0.1) 2 times more for the second situation than for the first

situation.

<Figure 4.3.2> A CBT Class’s Weighted Average under
Two Different Incoming Packet Rates

(b) Incoming Packet Rate = 1.0 pkts / pkt-transmission-delay
(Dropped packets are not shown)

(a) Incoming Packet Rate = 0.5 pkts / pkt-transmission-delay



63

The weighted-average calculation method works fine when the purpose of measuring an

average queue size is to detect impending congestion as in RED.  However, when the

method is used to assign bandwidth to different classes of flows by comparing each class’

weighted-average number of enqueued packets, special care is needed in deciding how

and when to measure the averages.  We have determined that all the weighted-averages

should be updated at the same time and at an equal frequency to give a correct output

bandwidth utilization ratio among the classes.  In the case of CBT, by measuring each

UDP class average and the RED average independently, the classes’ bandwidth

utilization could not measured correctly by comparing the class averages.  By comparing

the fairness measurement in Figure 4.3.1 (b) and the CBT’s outbound queue averages in

Figure 4.3.3, especially for 20-30 seconds, one can easily see that CBT’s attempt of using

unsynchronously updated weighted-averages to regulate class bandwidth was misleading.

Figure 4.3.3 indicates that during 20-30 seconds, 10 tagged flows used an average of

about 2.5 packet-spaces in the queue that is 0.25 packet-spaces per each flow, and the 2

untagged flow used an average of about 0.6 packet-spaces that is 0.3 packet-spaces per

each flow.  However, as shown in Figure 4.3.1 (b), each tagged flow used about 657

Kbps of bandwidth and each untagged flow used about 318 Kbps, about one half of the

per-flow bandwidth of a tagged flow.
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<Figure 4.3.3> CBT Queue Averages: The ratio between the averages does
not correctly indicate the ratio between each class’ average bandwidth
utilization because of the effect of unsynchronized weighted-average updates.

From the above observation, we conclude that the current CBT design can only prevent a

great unfairness caused by unresponsive or misbehaving flows, and it needs some

adjustment on weighted-average calculation.  Indeed, we tried the average calculation

method that is used in D-CBT in CBT and got a much better result, that is the ratio

between the three averages indicates the ratio between the actual classes’ bandwidth

utilization.  However, we did not include the result in this paper, since the method is used

in only D-CBT and we are presenting D-CBT in the next paragraph.
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Figure 4.3.1 (c) shows the D-CBT result, which indicates that D-CBT fairly manages

bandwidth during all periods by dynamically allocating the right amount of output queue

space to each flow class.  It also shows that by updating each class and RED average at

the same time in a synchronized manner, the ratio between the averages is a good

indicator of the ratios between each class’ bandwidth utilization.  One thing to note in the

figure is that although we strictly regulate the untagged class by assigning a fair threshold

calculated from RED’s minimum threshold, the untagged class did get most of its share.

This is because the high bandwidth untagged (unresponsive) packets were allowed to

enter the queue without its threshold test, when RED indicated no congestion.  As a

reference, we show the queue averages of D-CBT in Figure 4.3.4, in which each class

average is actively moving proportional to RED’s average.

<Figure 4.3.4> D-CBT Queue Averages
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Figure 4.3.1 (d) shows the result of D-CBT with ChIPS.  The result confirms that ChIPS,

when used with D-CBT, does not affect fairness between each class of flows, due to the

virtual queue and D-CBT’s self adjusting capability described in Section 3.3.3.  In the

simulation, the ratio between tagged flows and all flows was about 28% during 0-20

seconds, and was about 15% during the last 10 seconds.  The next section presents the

fairness measurement of the simulations using Jain’s Fairness index, which visualizes

system’s fairness on individual flows in a normalized number.

4.3.2 Jain’s Fairness Measurement

Figure 4.3.5 shows the simulated systems’ fairness on individual flows using Jain’s

Fairness Index, where the periodic (0-10, 10-20 and 20-30) average throughput of each

individual flow was given as input to the original Jain’s equation.

<Figure 4.3.5> Jain’s Fairness Comparison
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The Jain’s fairness measurement shows that the simulated system that use RED queue

management fails to fairly assign bandwidth to each individual flow from 10 seconds

when the unresponsive flows join in the system.  The low Jain’s index value for the RED

system indicates that some flows are experiencing severe starvation during 10-20 seconds

and even more severe during 20-30 seconds when 30 extra TCP flows join.

The system that uses the CBT queue management mechanism was fair overall in

distributing bandwidth to each flow.   However, during 20-30 seconds, the system’s

fairness was degraded because the 10 tagged (multimedia) flows got about twice as much

bandwidth as the other flows.  One thing to note is that the CBT’s fairness was

engineered.  In a circumstance where traffic mixes change a lot, CBT might show more

degraded fairness.

On the other hand, the systems that use D-CBT or D-CBT with ChIPS were dynamically

adjusting to changing flow mixes, and were very fair not only to the classes of flows but

also to individual flows as Jain’s index numbers indicate.  The Jain’s fairness

measurement results on D-CBT and D-CBT with ChIPS also reconfirmed that ChIPS did

not degrade the system’s fairness.  The next section shows the congested link utilization,

and the section after presents the improved multimedia jitter performance of the system

that used ChIPS.
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4.3.3 Congested Link Utilization

In the previous section, we showed that D-CBT and D-CBT with ChIPS outperforms

RED and CBT in term of fairness in managing bandwidth.  However, the ability of a

system to exercise fairness without efficiently utilizing available resources is not always

acceptable.  Therefore, to compare efficiency of D-CBT and D-CBT with ChIPS with

that of RED and CBT, we present the congested link throughput for the simulated

systems.

      (a) RED       (b) CBT

      (c) D-CBT       (d) D-CBT with ChIPS

<Figure 4.3.6> Congested Link Utilization (Throughput)
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Figure 4.3.6 shows that the efficiency of the systems that use D-CBT or D-CBT with

ChIPS was comparable with that of the systems that use RED or CBT.  All the systems

get to a stable state within few seconds after the start of the simulation, and generally

used the link bandwidth up close to the maximum.  During 10-30 seconds when the UDP

flows joined, D-CBT and D-CBT with ChIPS were even a bit more efficient than RED

and CBT.  This was mainly because UDP packets were admitted without its threshold test

and without forcing packets from responsive connections (i.e. TCP or Tagged UDP) to be

dropped, when the RED unit indicates no congestion.
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4.4 Analysis of ChIPS

Now that we have shown that D-CBT outperforms RED and CBT in managing

bandwidth, and that the use of ChIPS does not degrade the performance of D-CBT, this

section presents the performance of ChIPS on multimedia jitter and TCP throughput.

Figure 4.4.1 shows tagged UDP (or multimedia) jitter by comparing a MM_APP

application’s end-to-end frame delay under D-CBT and D-CBT with ChIPS.

<Figure 4.4.1> Improved Multimedia Jitter – ChIPS Effect on Jitter

The result indicates that ChIPS does improve tagged stream jitter by inserting tagged

packets into the line of the queue to which the RED average points on transient

congestion.  Under ChIPS, the maximum tagged-UDP jitter was about 5ms (36ms –

31ms) while it was about 12ms (43ms – 31ms) under normal D-CBT.  Noting that the
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8Kbits / 25Mbps) of queuing delay, ChIPS was able to regulate the maximum tagged

stream jitter around the queuing delay of the RED’s maximum threshold.

We believe that ChIPS effect on improved multimedia jitter could be very significant

because of the following two reasons.  First, what we show in Figure 4.4.1 is the jitter

gain due to a single router.  Assuming that a multimedia connection that is configured

similar to our multimedia traffic generator has to go through 10 routers that use D-CBT

with ChIPS and set the maximum threshold of RED to 15.  In this environment, the

application can almost completely remove the jitter effect on perceptual quality by using

a delay buffer of only 50ms, while it would be extremely difficult to determine the

optimal amount of the playout delay under the traditional Internet environment.  Second,

in the simulation, we used multimedia frames that are the same size as that of a network

packet, meaning that no frame fragmentation occurs in the IP layer.  Assuming that a

multimedia application uses frames that are larger than a network packet and are chopped

into multiple packets in the network, the jitter improvement due to ChIPS could be even

more significant, since the multimedia packets have better chance to be transmitted close

to each other at routers.  Thus, we believe that the potential of ChIPS to improve

multimedia jitter is larger than shown in our experiments.

In summary, we present TCP packet accounting and tagged packet accounting for the

simulation in Table 4.4.1 and Table 4.4.2. Table 4.4.1 shows the TCP packet drop rate

and throughput under ChIPS is very compatible with those of basic D-CBT.  The TCP

throughput under ChIPS was about 99.6% of the throughput under basic D-CBT.  This
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indicates that ChIPS, when used along with D-CBT, does not significantly affect the TCP

throughput.  Comparing the TCP throughput loss with the multimedia jitter gain, ChIPS

compensates 14.3% ((42ms - 36ms) / 42ms * 100) of multimedia jitter gain for 0.4% of

TCP throughput loss for the simulation.

TCP Packets
Delivered

TCP Packet
Drop Rate

TCP Throughput

D-CBT 66,648 pkts 4.46 % 17,773 Kbps

D-CBT with ChIPS 66,386 pkts 4.44 % 17,703 Kbps

<Table 4.4.1> TCP Packet Accounting (0 ~ 30 Seconds)

Tagged Packets Delivered Tagged Packet Drop Rate

D-CBT 21,126  pkts 11.85 %

D-CBT with ChIPS 21,519  pkts 12.95 %

<Table 4.4.2> Tagged (Multimedia) Packet Accounting (0 ~ 30 Seconds)

Table 4.4.2 shows the multimedia packet drop rate of the system that used ChIPS is very

compatible with that of the system that used basic D-CBT.  This result shows that ChIPS

has a high potential to improve end-user multimedia performance (perceptual quality) on

the Internet by improving jitter without increasing the multimedia packet drop rate, which

is another important factor in multimedia perceptual quality and for congestion control

and system utilization.
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5. Future Work

As shown in Chapter 4, our queue management approaches (D-CBT and ChIPS) were

mostly examined from the viewpoint of the network, concentrating on fairness and

multimedia jitter.  However, there still remain many performance aspects to be evaluated.

The first research would be to extend this study to evaluate D-CBT and ChIPS with TCP

Vegas, especially on fairness and TCP throughput.  The second research would be to

evaluate D-CBT and ChIPS under the environment where fragile and robust TCP

connections as well as multimedia connections with different end-to-end delay coexist in

the system.

The third essential research would be to extend this study to evaluate the limitation of

ChIPS on the fairness and the link utilization offered by D-CBT.  As denoted earlier in

Chapter 3.3.2, ChIPS introduces an additional delay to other traffic which may affect

TCP throughput.  Therefore, in order for the use of ChIPS to be more practical, future

work suggests an extended study to determine the maximum average ChIPS enqueue

ratio between tagged and the other classes of flows without degrading fairness or link

utilization.  Another study that we could not do due to the lack of time but suggest as a

future work is to compare the performance of the D-CBT with that of FRED.  We expect

that CBT could give better throughput performance for tagged UDP flows than FRED,

since it frees flow-controlled multimedia flows from the strict per-flow punishment.
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Another area for future work is measure of D-CBT and ChIPS on jitter, packet and/or

frame drop rates and the drop patterns for current Internet multimedia applications in

order to evaluate the effect on perceptual quality.  This work would involve a user study

as well as a network performance study, and could be carried out in two ways.  The first

approach is through simulations using NS, which may require implementing application

behavior of real world such as MPEG-2 or H.261 into NS.  The second approach is

through experiments.  This requires implementing D-CBT and ChIPS into an operating

system’s kernel such as Linux, which is currently a standalone project. Andrew Chillar,

Nicolas Leazard, Miguel Maldonado and Edwin Mercado are implementing the

mechanisms into a Linux kernel as their Major Qualifying Project (MQP), which is a

senior project at Worcester Polytechnic Institute (WPI) [CLM+00].

Another area for future work is combining simulation techniques with experiments.

Currently, NS is starting to support emulation, in which a machine running the simulator

gets a stream of packets from a host through a network interface, simulates a network

adding its effects to the stream and passes it to another host.  Although it may sound

attractive, emulation has a limitation that the size and capacity of a network that NS can

emulate is strictly determined by the processing power of the machine.  For example,

simulating the network shown in Chapter 4 took much more than the simulated time

under the Linux powered Intel Pentium 200Mhz machine with 64M memory and a

relatively slow hard disk drive.  However, it appears that emulating a small size network

is more than possible even with low performance machines such as the one we used, and

offers lots of options to researchers.  For example, in experiments, it is hard to generate a
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relatively large link delay.  But using emulation this job can be simply done by setting up

a virtual network of two nodes that is connected by a link with desired delay.

The last future work that may be interesting is to apply the dynamic three-class

bandwidth management concept of D-CBT into Class-Based Queuing (CBQ) [FJ95, Fl].

This would be similar to variety of Fair Queuing (FQ) [DH90] in that the output

bandwidth is dynamically managed.  However, the mechanism, say D-CBQ, is different

from common FQ mechanisms in that bandwidth management is done in class level, and

thus reduces the overhead of per-flow accounting.  It appears that CBQ is a mechanism

that could possibly offer a significant improvement for multimedia jitter due to its packet

or link scheduling.  However, the downside of CBQ is the complexity of the scheduling

that supports hierarchical queues, its potential unfairness in bandwidth management and

lack of a congestion avoidance mechanism.  Therefore, reinforcing its fairness with a

simple three-class dynamic scheduling and adding an appropriate congestion avoidance

mechanism to the queues for responsive flows could be a very interesting combination.
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6. Conclusion

In this thesis, we have presented the design and evaluation of our proposed router queue

mechanisms, Dynamic Class-Based Threshold (D-CBT) and Cut-In Packet Scheduling

(ChIPS), by comparing their performance with that of RED and CBT.  D-CBT is a new

active queue management mechanism that addresses the problem of fairness by grouping

flows into TCP, tagged (flow-controlled multimedia) UDP and untagged (other) UDP

classes and regulating the average queue usage of the UDP classes to their fair shares.

ChIPS is a multimedia-favored lightweight packet scheduling mechanism that can

substitute the FCFS enqueue style packet scheduling part of a RED-managed queue for

D-CBT and possibly for other RED-like queue mechanisms.

Prior to the evaluation, we built a general purpose and a trace driven MPEG-1

multimedia traffic generator that use a rate-based flow control mechanism since NS did

not support such traffic generators, while tagged multimedia flows were essential to

evaluate D-CBT and ChIPS.  While designing and testing the multimedia traffic

generators trying to make their congestion response behavior similar to TCP, we found

out that multimedia applications that use a rate-based flow control mechanism can be

greedier than TCP that uses a window-based mechanism.  This is because a rate-based

multimedia application will inject packets into the network at the rate lastly determined

while TCP could be waiting for ACK packets after transmit up to the congestion window

size, or even get timed out.  However, we found a strong reason why multimedia

applications today do not want to use TCP as the underlying transport agent.  That is,
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TCP’s bursty transmission policy introduces high jitter, and the fact that it does not

separate flow control from loss recovery gives possibly unbounded delays.

After developing the traffic generators, we implemented CBT, D-CBT and ChIPS on NS,

and validated CBT by simulating previous CBT experiments.  Then, we compared the

performance of RED, CBT, D-CBT and D-CBT with ChIPS under heterogeneous traffic

mixes in which tagged flows were generated with the general-purpose multimedia

application.  In the comparison, we primarily focused on fairness and congested link

utilization in order to evaluate the improved performance of D-CBT and to measure

ChIPS effect on fairness and link utilization.  Also, we measured and compared tagged

multimedia jitter and packet drop rate for the systems that use D-CBT and D-CBT with

ChIPS.

As expected, RED, that has shown to be fair among TCP, showed an extreme unfairness

with mixed traffic.  The result showed that under RED, high bandwidth unresponsive

flows get most of the bandwidth up to close to their transmission rates while TCP flows

suffer from severe starvation.  CBT that uses a fixed threshold on UDP classes was able

to avoid extreme unfairness.  However, during the analysis, we found that CBT has a

potential defect in its design, which we refer to as “unsynchronized weighted-average

updates”.  That is, the ratio between independently updated UDP class averages and RED

average does not correctly indicate the actual class bandwidth utilization ratio, since

whichever flows updates the average more frequently will have higher weighted-average

than the others will, although they all use the same amount of bandwidth.  Therefore, in
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CBT, bandwidth utilization ratio between each class was not only determined by the UDP

thresholds but also considerably affected by the number of incoming packets that

belonged to each class.

D-CBT fixes CBT’s problem by dynamically determining the UDP thresholds to

cooperate with RED by fairly assigning the output bandwidth to each class for all traffic

mixes.  The simulation result shows that ChIPS, when used with D-CBT, does not

degrade the fairness when the packet enqueue ratio between tagged and other flows are

about 30%, and improves tagged (flow-controlled multimedia) jitter significantly.  Table

6.1.1 shows summary of our results.

Fair to TCP Fair to Mixed
(Fixed)

Fair to Mixed
(Variable)

Improve MM
Jitter

RED 3

CBT 3 3

D-CBT 3 3 3

D-CBT
w/ ChIPS

3 3 3 3

<Table 6.1.1> Comparison of the Queue Mechanisms  ( 3=  yes )

Thus, we have shown that D-CBT, through the class-based accounting, protects TCP

from the effect of UDP flows and also fairly protects tagged UDP flows from untagged

flows.  We also have shown that ChIPS can improve multimedia jitter without degrading

the fairness. Further contributions we made through this thesis are the design and
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implementation of two flow-controlled multimedia traffic generators in NS as well as D-

CBT and ChIPS, and the first study of multimedia jitter due to network queue

management policy.
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