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Abstract

General purpose operating systems have been designed to provide fast, loss-free disk

service to all applications. However, multimedia applications are capable of tolerating

some data loss, but are very sensitive to variation in disk service timing. Current research

efforts to handle multimedia applications assume pessimistic disk behaviour when decid-

ing to admit new multimedia connections so as not to violate the real-time application

constraints. However, since multimedia applications are soft real-time applications that

can tolerate some loss, we propose an optimistic scheme for admission control which uses

average case values for disk access taking advantage of caching in the operating system

and on the hard disk controller. We have also optimized the measurement based admis-

sion controller to admit variable bandwidth multimedia clients even when the requesting

client’s requirements cannot be completely met. We assume that the multimedia files have

been encoded as multiple layers, each adding resolution to the previous one.

Typically, disk scheduling mechanisms for multimedia applications reduce disk access

times by only trying to minimize movement to subsequent blocks after sequencing based

on Earliest Deadline First. We propose to implement a disk scheduling algorithm that

prioritizes requests to help align service to application requirements. The disk scheduling

algorithm uses knowledge of the media stored (like MPEG or Realmedia) and permissi-

ble loss and jitter for each client, in addition to the physical parameters used by the other

scheduling algorithms, to schedule requests efficiently. We evaluate our approach by im-

plementing our admission control policy and disk scheduling algorithm inside the Linux

kernel under a framework called Clarity and measuring the quality of various mul-

timedia streams and performance of non-multimedia applications. Clarity provides

better bandwidth utilization by admitting more multimedia clients than the traditional



pessimistic approach. It also guarantees disk bandwidth availability to clients of a par-

ticular class in the presence of a large number of clients of other classes. This results in

fewer deadlines violations for multimedia clients, higher throughput and lower average

response time for non-multimedia clients. We find that our approach results in improved

performance for multimedia and non-multimedia applications. The contributions of this

thesis are the development of a new admission control and flexible disk scheduling algo-

rithm for improved multimedia quality of service and their implementation on Linux.

2



Acknowledgments

For me, it has been a big journey from the start to finish. A journey that has been

wrought with endless sleepless nights, disappointments, and a lot of struggle. Needless

to say, that the only thing that kept me going was the support of a number of people. First

and foremost, Prof. Mark Claypool. Mark, “Without your unstinting support, faith in my

work, there is just no way that I could have completed my thesis. You have been always

there whenever I needed your help in any form and that is what saw me through times

of confusion, and helplessness. I guess no words can adequately describe what you have

done for me and my work as an advisor, and companion. I thank you for everything.” I

thank my reader, Prof. Bob Kinicki for taking the time to read my thesis carefully and

giving numerous suggestions to improve it.

There are a number of friends who have contribute greatly to the closure on my thesis.

I would like thank my close friend, Gana for all his patience and support during the times I

was away in the lab for days together. I cannot think of anything more he could have done

to help me concentrate on my research. In the developmental stage of my work, I spent a

lot of time with Nitin discussing the various aspects of my work. While he would claim

to understand nothing, it usually ended up with my clarifying/rectufying some method or

assumption of mine. I thank him for all the time he spent patiently listening to my rant

(mostly very late in the night/very early in the morning).

I thank Srikanth for his support and help with many things including numerous trips

to the lab to reboot the machine whenever I lost remote connectivity. Without that, work-

ing seamlessly away from school would have been impossible. Many thanks to Pravin,

Manish and Akshay for their sustained interest and endless prodding to help me complete

my thesis. My very special thanks to Roshan, who literally helped me turn this thesis over

to the institute. Without his sustained help at the last minute I would have been late.

Finally, I would also like to extend my gratitute to all my friends who have made my

i



stay at WPI one to remember forever.

ii



Contents

1 Introduction 1

1.1 Disk scheduling for multimedia . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Research 14

2.1 Disk Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Multimedia Operating Systems . . . . . . . . . . . . . . . . . . 15

2.1.2 Modifications to Present Operating Systems . . . . . . . . . . . . 16

2.1.3 Simulation Driven Disk Scheduling . . . . . . . . . . . . . . . . 18

2.2 Admission Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 MPEG Layering of Video . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Linux Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Clarity 28

3.1 Service Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Layered Multimedia Streams . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Admission Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Optimistic Admission Control . . . . . . . . . . . . . . . . . . . 37

3.3.2 Measurement-based Admission Control . . . . . . . . . . . . . . 42

3.3.3 Adaptive Measurement-based Admission Control . . . . . . . . . 46

iii



3.3.4 Cache aware measurement-based admission control . . . . . . . . 48

3.4 Disk Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Alignment of disk service through Service Classes . . . . . . . . 55

3.4.2 Protection of Service Classes . . . . . . . . . . . . . . . . . . . . 56

3.4.3 Protection of Clients Within a Service Class . . . . . . . . . . . . 57

3.4.4 Adaptability to Changing System Load . . . . . . . . . . . . . . 59

3.4.5 Minimization of Seek and Rotational Latencies . . . . . . . . . . 59

3.4.6 Awareness of Caching Policies in Linux . . . . . . . . . . . . . . 60

3.4.7 Ability to Exploit Inherent Media Characteristics . . . . . . . . . 61

3.4.8 Efficiency in Computation . . . . . . . . . . . . . . . . . . . . . 62

4 Implementation of Clarity 63

4.1 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Admission Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Disk Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Implementation Considerations . . . . . . . . . . . . . . . . . . 71

5 Performance Evaluation and Results 84

5.1 Determination of Running Time for Clients . . . . . . . . . . . . . . . . 86

5.2 Admission Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Disk scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Conclusion 126

7 Future Work 130

iv



List of Figures

3.1 Clarity in the Linux kernel . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Flow-chart for admission control . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Determination of Client Execution Time: Average response times versus

Client execution times for 10 clients . . . . . . . . . . . . . . . . . . . . 87

5.2 Determination of Client Execution Time: Average throughput versus Client

execution times for 10 clients . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Number of clients admitted by pessimistic, optimistic and measurement-

based admission controllers for a block size of 1KB . . . . . . . . . . . . 90

5.4 Number of clients admitted by pessimistic, optimistic and measurement-

based admission controllers for a block size of 2KB . . . . . . . . . . . . 91

5.5 Number of clients admitted by pessimistic, optimistic and measurement-

based admission controllers for a block size of 4KB . . . . . . . . . . . . 92

5.6 Measurement-based admission control: Disk bandwidth consumed for

various disk block sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.7 Comparison of measurement-based admission control and its adaptive

variation for various block sizes: Number of MPEG-like clients admit-

ted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.8 Fraction of total bandwidth consumed by MPEG-like clients under the

adaptive measurement-based admission control scheme . . . . . . . . . . 98

v



5.9 Performance comparison of Linux and Clarity in the presence of only

non-multimedia clients: Average throughput . . . . . . . . . . . . . . . . 101

5.10 Performance comparison of Linux and Clarity in the presence of only

non-multimedia clients: Average response time . . . . . . . . . . . . . . 102

5.11 Bandwidth partitioning under Linux in the presence of excess non-multimedia

clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.12 Percentage of deadlines missed under Linux and Clarity in the pres-

ence of excess non-multimedia clients . . . . . . . . . . . . . . . . . . . 105

5.13 Bandwidth partitioning under Clarity in the presence of excess non-

multimedia clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.14 Jitter comparison for multimedia clients under Linux and Clarity in

the presence of excess non-multimedia clients . . . . . . . . . . . . . . . 108

5.15 Bandwidth partitioning under Linux in the presence of excess multimedia

clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.16 Bandwidth partitioning under Clarity in the presence of excess multi-

media clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.17 Average throughput for non-multimedia clients under Linux and Clar-

ity in the presence of excess multimedia clients . . . . . . . . . . . . . 112

5.18 Average response time for non-multimedia clients under Linux and Clar-

ity in the presence of excess multimedia clients . . . . . . . . . . . . . 114

5.19 Blocks serviced under Linux and Clarity in the presence of excess

multimedia clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.20 Disk utilization with and without bandwidth re-allocation policies under

Clarity when multimedia service class is under-utilized . . . . . . . . 117

5.21 Average throughput with and without bandwidth re-allocation policies

under Clarity when multimedia service class is under-utilized . . . . . 118

vi



5.22 Average response time with and without bandwidth re-allocation policies

under Clarity when multimedia service class is under-utilized . . . . . 119

5.23 Jitter observed by multimedia clients with and without bandwidth re-

allocation policies under Clarity when multimedia service class is

under-utilized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.24 Disk utilization with and without bandwidth re-allocation policies under

Clarity when non-multimedia service class is under-utilized . . . . . . 121

5.25 Average throughput with and without bandwidth re-allocation policies

under Clarity when non-multimedia service class is under-utilized . . 123

5.26 Average response time with and without bandwidth re-allocation policies

under Clarity when non-multimedia service class is under-utilized . . 124

5.27 Percentage of deadlines missed under Linux and Clarity in the pres-

ence of excess non-multimedia clients . . . . . . . . . . . . . . . . . . . 125

vii



List of Tables

3.1 Layered playback pattern for layered MPEG streams . . . . . . . . . . . 34

4.1 System call table allocation for the various system calls . . . . . . . . . . 69

4.2 Time Complexity for Various Commonly Performed Operations in the

Disk Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

viii



Chapter 1

Introduction

“First you guess. Don’t laugh, this is the most important step. Then you

compute the consequences. Compare the consequences to experience. If it

disagrees with experience, the guess is wrong. In that simple statement is the

key to science. It doesn’t matter how beautiful your guess is or how smart you

are or what your name is. If it disagrees with experience, it’s wrong. That’s

all there is to it.”

Richard P. Feynman

Most traditional applications (e.g. word processors, spreadsheets, graphical editors,

file transfer, web servers) often execute, store and retrieve data aperiodically or asyn-

chronously and are not required to have some CPU time or access to disks at regular

intervals of time. Additionally, they are loss intolerant but are typically insensitive to

variance in delay (jitter). As a result, general purpose operating systems were geared to

provide best-effort (throughput-oriented) service to these random-access, often I/O in-

tense applications. In the context of operating sytems, best-effort service means that there

there are no guarantees about the timing of execution of or delivery of data to the appli-

cations, but simply that the underlying framework (particularly consisting of the process
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scheduler, disk scheduler, disk layout and recovery mechanism etc.) tries to do the best

it can to meet the service requirements of the applications. While a considerable delay in

meeting their requirements can cause severe degradation in performance, relatively minor

variations in service do not visibly affect performance. Throughput and response times

are the primary measures of performance for these applications.

With the recent advances in computer capabilities, compression technologies and

broadband networking audio and video applications have become an integral part of our

everyday computational life. It has become necessary for us to provide an integrated en-

vironment for the execution of these multimedia applications. It becomes especially rele-

vant in content servers that can serve different kinds of data to various clients. Multimedia

applications have quite different resource and performance constraints than do traditional

applications [1]. They require time-constrained, fair execution environments and periodic

access to disks. Execution of and retrieval of data for these applications have deadlines

by which the application must get all the resources (data, CPU time etc.) to render video

or audio. Most multimedia applications are softreal time applications, which means that

some loss is tolerable while delay and jitter can greatly reduce performance[2, 3]. Al-

though it is important that a certain amount of data be supplied to the application within

a given period of time, it is not necessary that all the requests are satisfied in order to

provide reasonable application performance. Omission of a few disk requests does not

proportionally translate into degradation of quality. This is especially important in order

to cater to the information-accessneeds of a large number of users.

With the explosive growth of the Internet, there has been a huge increase in the amount

of content accessed from other computer systems (content providing servers). In order to

meet their service 1 requirements of local and remote applications most efficiently, the
1serviceis provided by the operating system to applications, in terms of providing CPU bandwidth for

execution, making decisions for laying out data and providing disk bandwidth for efficient storage and
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operating system needs to be aware of many different kinds of service patterns that the

applications might have. For example, an FTP application requires that data get trans-

ferred as fast as possible. So throughput would be used to measure the performance of

such an application. Interactive applications require a portion of the CPU or fetch data

every now and then but do not necessarily complete their task quickly. Continuous media

applications, on the other hand, require a guaranteed rate of delivery of data from the

disk when playing back files. Service patterns for these applications are different and the

operating system needs to have this knowledge incorporated in it to efficiently service

requests from these applications.

One of the most ubiquitous components of a computer system is the hard disk, which

is used for storage and retrieval of programs and data (both application and system de-

pendent) etc, as well as for essential operating system functions like virtual memory man-

agement and more. Therefore, one of major factors impacting application performance

is how fast data can be stored and retrieved from the hard disk. More importantly, disk

access is orders of magnitude slower than memory access, and it is a bottleneck to over-

come in order to provide good application performance by retrieving data quickly and

efficiently. Efforts to speed disk accesses included efficient algorithms that sequence disk

requests in a way that would minimize time spent in retrieving data. The gap in the op-

erating speeds of hard disks and memory has only widened with increase in computing

power and faster memory access, making the problem of optimizing disk access even

more critical. Compounding this problem is the fact that the applications developed for

present day systems have significantly different service requirements [1].

Traditional execution environments in content servers would be unable to distinguish

and support the requirements of multimedia applications and hence would execute as

normal processes and retrieve data in a similar fashion to conventional data. Additionally,

retrieval, and managing other hardware components required by applications.
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they would be unable to utilize the sequential nature of access of multimedia data to

prefetch data into buffer cache or layout data on the disk.

There have been multiple approaches suggested to improve the performance in content

servers for a variety of applications ranging from throughput intensive to soft real-time

applications. Some important aspects of operating systems that have been considered for

providing support for real-time applications are process scheduling, disk layout, recovery

and scheduling.

Work on modifying process schedulers to support real-time 2 has attempted to ensure

that multimedia clients receive a fair portion of the CPU bandwidth even in the presence

of a large number of non real-time clients. However, the problem of providing “fairness”

has been dealt with differently by various approaches. The two basic approaches to pro-

cess scheduling are (1) Earliest Deadline First and (2) Rate Monotonic [4]. The former,

as the name suggests, executes tasks depending on the urgency of the task. However, the

latter decides on task priorities at admission control or connection time and executes tasks

depending on those priorities. Since the two major approaches mentioned above suffer

from problems such as not being efficient under over-loaded conditions, being inappro-

priate for supporting conventional applications together with real-time applications, and

not providing QoSguarantees for real-time applications, a number of improvements have

been suggested.

Weighted fair queuing (stride and lottery) tries to ensure fairness by assigning weights

to executing thread classes [5]. Start-time fair queuing guarantee fairness bound using

start tags assigned to each thread which are computed using weights and quantum of ex-

ecution [6]. Eclipse and Nemesis systems provide predictable performance via allocation

of processes to reservation domains that are collections of processes and corresponding
2The terms real-time, multimedia, and continuous mediaapplications are used interchangebly and refer

to the same class of applications.
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resource reservations [7, 8]. Move-To-Rear List Scheduling provides strict guarantees re-

garding the cumulative service obtained by a process while also providing guarantees for

more traditional QoSparameters like fairness and delay [9]. While these strategies have

been designed to provide a fair share (decided by application requirements) of the CPU

bandwidth to the multimedia applications, they cannot ensure a guaranteed rate of data

delivery from the disk. In order to meet the deadlines imposed by multimedia applica-

tions, it is critical to optimize the order in which media blocks are retrieved from the disk

and implement mechanisms to handle overload conditions.

[10, 11] discuss strategies to stripe data across multiple disks and/or decide on how

data must be stored on the disk so that data retrieval can be speeded up. While effi-

cient techniques for striping and laying out of data on multiple disks can reduce service

times significantly, they alone cannot provide bounded disk service times. In order for the

system to be able to adapt to varying service loads and handle a large number of multime-

dia clients efficiently, it is important that they complement disk scheduling algorithms to

provide guaranteed QoS. Disk scheduling algorithms not only resequence disk requests to

align disk service to application needs and increase efficiency of disk access, but also help

discard media blocks optimally and spread loss among the various multimedia clients un-

der overloaded conditions. Apart from the techniques mentioned above, there are several

striping and disk layout techniques. But their detailed discussion is beyond the scope of

this work.

Since processors and memory accesses have been getting faster by the day the num-

ber of processes that can be executed in a given time has increased. This means that the

bottleneck that needs to be addressed in order to provide better support for real-time appli-

cations is the hard disk. Better disk scheduling mechanisms need to evolve to accomodate

the service requirements of a wide variety of applications.

Although efficient disk scheduling algorithms, which are aware of application require-
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ments would help improve the performance of non real-time and real-time applications,

there are other issues that must also be considered in order to provide a stable and reliable

environment. One of the biggest problems faced by servers providing text and/or multi-

media content is that of overloading 3. Clearly, since multimedia applications require that

data be provided to them periodically, it is very important to shield them from the effects

of increased load of non real-time clients. Also, in an effort to meet the QoScontract

with the multimedia clients being served, it is important to prevent the server from being

oversubscribed by other multimedia clients.

An additional problem facing the numerous content serving machines (servers) is that

of overload. When there are too many clients that need to be served, the servers tend

to slow down. Thus, the kind of service that is obtained from these servers depends on

the number of clients currently being serviced by it. While this might be acceptable for

normal text content, it is unacceptable for multimedia content which requires periodic

delivery of data, since it could result in violation of deadlines. This implies that there

needs to be a mechanism in the servers providing multimedia content in addition to text,

to isolate the effects of an increase in the number of clients from affecting multimedia

clients which are already being serviced. Since the disk bandwidth is limited, there is

an upper limit on the number of multimedia clients that can be simultaneously supported

while maintaining an acceptable quality of service for all admitted clients. It is very

important that the server enforce this limit on the number of clients it services to prevent

a potential overload.

Admission control is a mechanism that multimedia servers use to restrict service to a

few clients while either having a mechanism to allow re-negotiation with session request-

ing clients or deny service to the other clients till such time that there is enough bandwidth
3For our discussion, we assume that an overloaded condition is characterized by insufficient system

resources (e.g. disk bandwidth, CPU cycles) to meet the service requirements of clients
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available to serve them.

From the client’s perpective, it is important that the server guarantee a certain rate

of delivery for multimedia content before starting the transmission. Multimedia clients

typically negotiate using what are called Quality of Service (QoS) parameters to obtain a

certain amount of service in terms of periodicity of data delivery. These QoSparameters

are commonly expressed as bit rate, block rate and frame rate [12]. These performance

parameters supplied by the clients are used for admission control and subsequent service

by the server. The server processes a client request based on QoSparameters and decides

whether or not the performance guarantees for the client request can be met. This is

essential to ensuring acceptable deterioration in performance perceived by clients already

being served [13, 14, 15, 16].

There are three major approaches to carrying out admission control. The first ap-

proach is to provide deterministic guarantees to the clients [17], the strictest form of

admission control, since it uses worst case values for retrieving media blocks from the

disk. The advantage of this approach is that all admitted clients receive all the blocks and

no service agreements are violated. The obvious disadvantage is that it is an overkill for

softreal-time applications like continuous media applications. Also, this approach admits

far fewer clients than can be serviced by the disk resulting in the under-utilization of the

disk bandwidth. This is because algorithms like SCAN, CSCAN (widely used schedul-

ing algorithms) tend to resequence requests so as to service all of those which are in the

direction of the arm movement, which results in seek and rotational latency times being

far less than the worst case ones (maximum possible values for seek times and rotational

latencies). Additionally, owing to the sequential nature of access of multimedia files, a

number of serially laid out blocks are cached by the disk controller and operating system

for future service. When the actual disk requests arrive for those blocks, they are served

from the cache and hardly incur any service time in comparison to a disk access.
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The second approach is probabilistic in nature [13]. This only provides a statistical

guarantee that the deadlines for all the admitted clients will be met. This means that at

least a fixed percentage of the blocks are retrieved for each client but not necessarily all

of them. One of the biggest advantages of this approach is that it results in an increase in

the number of clients that are admitted compared to the deterministic approach, since it

is not important that all the blocks are retrieved for all the clients. The obvious problem

with this approach is that applications that have very strict deadline and loss requirements

cannot be accomodated. In the event that deadlines are violated, there needs to be a

mechanism to determine the blocks that can be dropped and to distribute the violation

of service guarantees among as many of the admitted clients as possible. Therefore, this

approach works very closely with the disk scheduling algorithm.

The third approach is one based on observation [14]. In this approach, the times taken

for retrieving various media blocks are recorded. When there is a request for admission,

an extrapolation is made from current values for access times to obtain the time taken for

the new client. This estimated time is used to either accept or decline a client’s request

for admission. Although this does not provide very strict service guarantees like the de-

terministic approach, it still provides a fair amount of improvement over the deterministic

approach. This algorithm also works very closely with the disk scheduling algorithm in

order to spread the effects of deadline violations among as many clients as possible.

1.1 Disk scheduling for multimedia

Once a client has been admitted for service, careful disk scheduling is very important to

attempt to meet the QoS requirements for each of the clients [18, 19, 20, 21]. As already

mentioned there is a necessity to provide a unified approach to handle requests from

different kinds of applications. Therefore, while the algorithm ensures that disk seeks
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are optimized to meet the deadlines of the multimedia clients, it must also optimize for

non real-time clients so that the average response times are low and throughput high. Disk

scheduling for multimedia applications must also efficiently handle overloaded conditions

when all the blocks cannot be retrieved, and an optimal set of blocks need to be retrieved,

in order to best meet the QoS guarantees of all admitted clients. In short, while admission

control provides real-time guarantees to various applications, it is the job of the disk

scheduler to eventually provide real-time guarantees to the clients and enforce whatever

policies are required to meet the applications’ service requirements.

There have been a number of disk scheduling algorithms proposed that try to opti-

mize the servicing of disk requests. The most basic one is Earliest Deadline First (EDF).

In this approach, the requests are sequenced in increasing order of their deadlines. There-

fore, a request with a deadline of, say 200 milliseconds later than the present time will

be serviced earlier than one with a deadline of 400 milliseconds. However, the employ-

ment of strict EDF results in poor throughput and excessive seek times. So while this

might be a good idea for serving only multimedia clients, this cannot be used without any

modifcations for serving real-time as well as non real-time clients [4].

Many other disk scheduling algorithms start from the Earliest Deadline First algo-

rithm and then try to reduce the amount of disk access time. One of the most used one

is SCAN-EDF [18]. It tries to service with the earliest deadline first. But, if several re-

quests have the same deadline, they are serviced by their track locations on the disk or by

using seek optimization. This strategy combines the benefits of both real-time and seek-

optimizing scheduling algorithms [18, 4, 22]. D-SCAN is a modification of the traditional

SCAN algorithm which uses the track location of the read request with the earliest dead-

line to determine the scan direction [23]. FD-SCAN is similar to D-SCAN, but differs

from it in that read requests with feasible deadlines are chosen as targets [23]. Typically,

these algorithms do not assign immediate deadlines to requests. Instead, when retrieving
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media blocks for multimedia clients in rounds, they have all the deadlines set to the end

of the round 4. This lets the disk scheduler perform seek and rotational optimizations for

all the multimedia requests in that round. Shortest Seek And Earliest Deadline by Or-

dering/Value (SSEDO/V) attempts to give requests with earlier deadlines, higher priority.

However, in the presence of later deadlines requests closer to the disk arm, they might

re-assign priorities to service those first [22].

While all these algorithms try to optimize read and write operations for multimedia

clients, they do not necessarily support a variety of applications. It is important that they

recognize separate service classes that would enable them to make intelligent decisions

about request prioritization.

In order to provide guaranteed service to multimedia applications in the presence of

traditional throughput-oriented applications, we have designed an optimistic measure-

ment based admission controller. This determines whether a new session is to be accepted

given the current load on the disk. It uses values for recent disk access times to predict the

time taken for retrieving all the blocks for the requesting client. If the time thus predicted

along with the cumulative disk access times for all multimedia clients does not exceed the

alloted time for multimedia clients, the client is admitted for service. We have also de-

signed a disk scheduler that resequences requests so as to align disk service to application

requirements. Our disk scheduling algorithm identifies some service classes and tries to

categorize applications into these classes. While it is not possible to segregate all appli-

cations strictly into as many service classes as service requirements of applications, we

have made an attempt to capture some categories into which applications can be broadly

fitted. The categories into which we classify applications are (1) Delay sensitive real-time
4Broadly speaking, a roundis any interval of time over which application requirements are defined. The

disk scheduler attempts to meet application requirements in this period by keeping statistics, and performing

optimizations for disk access.
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applications, (2) Loss sensitive real-time applications, (3) Non-essential responsive non

real-time applications, and (4) Essential non real-time applications. We have also incor-

porated the logic to service these classes into our disk scheduler. These classes will be

discussed in detail in our approach (Chapter 3).

There are a number of compression schemes used to deliver multimedia streams

(MPEG, Real Video). None of the present disk scheduling algorithms attempt to improve

average multimedia quality using knowledge of the media being retrieved. We use infor-

mation on the relative importance of the media blocks being accessed, to schedule disk

requests optimally even under over-loaded conditions, so that fewer clients are affected

(experience a reduction in performance).

Thus, our disk scheduling algorithm, upon receiving requests for disk blocks, takes

into consideration the kind of media being retrieved, loss and jitter that is permissible

(depending the applications class of the client) to continue to meet the QoS of a client so

as not to degrade its quality too much, in order to best schedule those requests.

Our admission control algorithm is similar to the ones proposed in [13, 14, 24]. How-

ever, instead of assuming that each disk access consumes the highest value observed for

any disk access (worst-case), we use average case values for disk seek time and rotational

latency when retrieving a media block. The average values for disk access are not ob-

tained from any measurements, which would require the disk scheduler to keep maintain-

ing statistics about previous accesses to the disk but simply fixed at the time the operating

system boots. This value is obtained from previous characterization of the disk access

by the manufacturer. We have also implemented a measurement based admission con-

troller. This uses the actual access times during Direct Memory Access (DMA) transfers

from the disk (that constitute status quo measurements) to estimate the amount of time

that would be taken by a requesting client. Our measurement based admission controller

also attempts to exploit some characteristics of MPEG file format to admit clients reading
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MPEG files in an attempt to improve server utilization. While the former method of using

average case values for disk access times, would provide an improvement to the existing

method of using pessimistic scheduling, the latter method of measurement is expected to

provide substantial increase in the number of clients admitted for service and also better

service guarantees.

We have implemented Clarity, a framework for content servers, consisting of an

admission controller and disk scheduling algorithm in Linux. Linux is a UNIX-like oper-

ating system originally created by Linus Torvalds with the assistance of developers around

the world. Linux natively does not have any special support for multimedia clients either

in the form of admission controller or disk scheduling. Our admission controller and disk

scheduler run as priviledged processes and are a part of the kernel. We have compared

the performance of our admission strategy with others under Linux. We have also carried

out performance evaluation of our disk scheduling algorithm with the existing Linux disk

scheduler which employs the C-SCAN algorithm to service requests.

In order to evaluate efficiency of our algorithms for responsive non real-time clients,

we measure the average response time. This gives an indication of how long a responsive

application has to wait before getting data from the disk. Since none of the applications

used for our performance evaluation continuously request media blocks over a period

of time, we do not concern ourselves with throughput measurements. Also, throughput

measurements do not give an accurate picture of how often an application gets data from

the disk. Since the goal of our admission controller and disk scheduler is to minimize

QoSviolations for real-time applications, we look at percentage of missed deadlines for

various kinds of loads. As mentioned earlier, one of the factors that affects visual quality

is jitter. Hence we have tried to evaluate the amount of delay variance in disk service for

a client. The efficiency of the admission controller is measured by the number of clients

that can be simultaneously serviced while meeting their service requirements and by the
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amount of disk utilization achieved by way of admitting clients at bit-rates lower than that

asked for by clients without siginificant degradation to perceptual quality.

The rest of the thesis is organized as follows. Chapter 2 briefly presents work that

has been done relating to admission control and disk scheduling for supporting multi-

media clients. This discusses the pros and cons of various schemes that have been pro-

posed. Chapter 3 details our approach to designing multimedia clients, and designing

and implementing the admission control policy and disk scheduler in Clarity under

Linux. Chapter 5 presents our method of evaluating the algorithms that we implemented

and presents results from those performance evaluations. Chapter 6 summarizes the re-

sults obtained from evaluation of our approach, the advantages and disadvantages of our

approach, and concludes the thesis. Chapter 7 proposes some new directions in which

further research could continue.
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Chapter 2

Related Research

“Begin with another’s to end with your own”

Baltasar Gracian

This chapter discusses the work that has been done relating to this thesis. It outlines

the previous contributions towards admission control and disk scheduling for supporting

real-time as well as non real-time clients. Although we studied some of the mechanisms in

process scheduling, disk layout and recovery used in improving multimedia performance,

we will not discuss them in this chapter since they have already been dealt with earlier.

We will however, briefly discuss the modifications/extensions made to Linux in order to

provide better support for multimedia in Section 2.3.

It is clear that given the diversity of the current and emerging applications, traditional

file systems have to be re-designed to support them. There are two ways of enhancing

support for multimedia applications:

1. Build multimedia operating systems : There have been a number of efforts in this di-

rection [7, 20, 24]. This involves designing the kernel (file systems, process sched-

uler, disk scheduler, disk layout and recovery schemes) and all layers above it to
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optimize performance for the various applications that are required to be supported.

However, the amount of time and effort required to do this is substantial.

2. Modify the existing operating systems : In this approach, modifications could made

to one or more of the operating system’s core components mentioned above. This

task might be an easy or a difficult one, depending on the ease with which changes

can be made to the opeating system’s design. Since there are a large number of

present-day operating systems that lack the capability to support guaranteed service

to multimedia applications in the presence of non real-time clients, we think it

would be useful to provide increased support for multimedia applications. We shall

however, restrict ourselves to the disk scheduling sub-system of an operating system

when discussing improvements to enhance multimedia performance.

There has been a lot of research done on building multimedia operating systems and

adding support for multimedia in the present-day operating systems. The following sec-

tions describe the various approaches taken for enabling disk scheduling support for mul-

timedia in the presence of non-real time applications.

2.1 Disk Scheduling

2.1.1 Multimedia Operating Systems

In [20], Prashant Shenoy et al have described the implementation of Symphony, a phys-

ically integrated file system which features a (1) a QoS-aware disk scheduler that ef-

ficiently supports both real-time and non real-time traffic, (2) a storage manager that

supports multiple block sizes and allows control over their placement, therby enabling

diverse placement policies to be implemented in the file system [11], (3) a fault-tolerance

layer that enables data-specific failure recovery [10], and (4) a two level meta data (inode)
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structure that enables data type specific structure to be assigned to files while continuing

to support traditional byte stream interface. The disk scheduler in Symphony (Cello)

identifies three classes of applications which are (1) real-time, (2) throughput intensive,

and (3) responsive and tries to align the service to application requirements [21]. We have

discussed Cello in greater detail under simulation-driven contributions.

While work in [7] concentrates mainly on improving process scheduling (hence not

discussed here), [24] has been categorized as more of a change to existing operating

systems since the Fellini server software has been ported to a number of UNIX-like

operating sytems and Windows NT.

2.1.2 Modifications to Present Operating Systems

[25] describes the implementation and evaluation of a Multimedia File System (MMFS)

that extends the UNIX file system specifically for interactive multimedia applications.

The essential aim is to help in operations like fast forward, reverse etc. while maintaining

the synchronicity between audio and video streams being played back. MMFS supports

intelligent prefetching, state-based caching, prioritized disk scheduling to enhance per-

formance for multimedia streams. The disk scheduler uses two classes (real-time and

non real-time) of disk requests to provide service. The actual scheduling is a variation of

SCAN-EDF (discussed earlier). Requests are prioritized so that concurrent non real-time

requests do not unduly affect the performance of real-time requests. The framework lets

the application specify deadlines for each multimedia read request. In order to service

multiple real-time requests, the scheduler employs EDF algorithm and retains SCAN for

non real-time requests. One of the biggest drawbacks of this approach is the potential

starvation of non real-time requests due to the strict deadline enforcement policy for mul-

timedia requests. Another important aspect of the scheduler is that it does not offer any

real-time guarantees to the applications. It is for this reason, that we have also implemen-
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tated an admission control scheme.

[24] describes the architecture of the Fellini multimedia storage system that supports

storage and retrieval of both continuous media as well as conventional data (text and

image). The algorithms used to retrieve data from the disks provide high throughput by

reducing the seek latency time. One of the important features of this implementation is the

buffer management scheme that exploits the sequential access pattern of multimedia data

in order to determine the buffer pages to be replaced from the cache. This apparently helps

reduce disk I/O by increasing cache hits and thus making more disk bandwidth available

for conventional data requests. In order to provide rate guarantees to multimedia clients,

it uses a pessimistic admission control which is discussed in Section 2.2. This work does

not deal with any mechanism to discard blocks when all the clients cannot be serviced

and does not recognize any application classes except real-time and non real-time. Cache

management in Fellini is discussed in the section on caching (Section 2.2.2).

YFQ, a disk algorithm that allows applications to set aside portions of the disk band-

width for exclusive use is introduced in [26]. It has been implemented as part of Eclipse/BSD

operating system which has been derived from FreeBSD. YFQ’s disk bandwidth reserva-

tions can guarantee file accesses with high throughput, low delay and good fairness. YFQ

uses weights and length of requests in addition to a work function to decide on which

request should be serviced ahead of others. However, such guarantees to individual appli-

cations come at the cost of excessive seek and rotational latencies and result in problems

in global disk scheduling optimizations. In order to handle this, YFQ has some extensions

to the original algorithm like choosing a bunch of requests instead of a single request and

re-ordering them to reduce seek and rotational latencies. While it has been shown that

YFQ provides higher throughput, it does not have a mechanism to protect clients from

one another and no scheme to handle overloaded conditions.
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2.1.3 Simulation Driven Disk Scheduling

David Anderson, Ramesh Govindan and Yoshimoto Osawa simulated a Continuous Me-

dia File System (CMFS) [17], which supports real-time storage and retrieval of contin-

uous media data on disk. CMFS also addresses several interrelated design issues like

real-time semantics of sessions, disk layout and an acceptance test for new sessions apart

from a disk scheduling policy. They introduced the concept of using a logical clock to

time read and write accesses to disk. The logical clock runs at a fixed rate reading from

or writing to a First In First Out (FIFO) buffer allocated for each session, stopping if it

catches up with the client. CMFS promises to stay ahead of the logical clock by a certain

amount of time. These semantics make it possible for CMFS to handle variable-rate and

other nonuniform access of files. This work also proposes an acceptance test to see if a

session can be accepted for service. This is discussed in the section on admission control

(Section 2.2). However, they try to provide hard guarantees to applications and do not

have a policy of dealing with overflow rounds.

In [23], the authors Robert Abbott and Hector Molina discuss methods to improve

some of the existing algorithms like D-SCAN, FD-SCAN and EDF through simulations.

They consider the problem of having to service read and write requests and investigate

the interaction between them. They propose two models to handle real-time read requests

and non time-constrained write requests. It is assumed that there is a buffer manager

between an application and the disk that issues the actual read and write requests to the

disk on receiving similar requests from the applications. While it is important that read

requests are serviced in accordance with their deadlines, it is also important that writes

to the disk are carried out from time to time depending on the dynamics of the system

and request arrival. The authors have proposed using k-buffers which can be viewed as

buffers managed by the disk handler instead of the buffer manager. So while writing

pages, the pages are copied from the dirty buffers in the buffer manager to frames in the
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k-buffer. By using k-buffers the authors decouple the disk handler from the rest of the

system. There are two schemes proposed to handle flushing of buffers for handling writes

while meeting the deadline requirements of the real-time applications. They are (1) Space

Threshold (looks at when the k-buffer is running out of frames to accomodate new write

requests), and (2) Time Threshold (creates an artificial deadline for a write event which

could consist of multiple writes). Finally, the authors evaluate how this scheme combined

with the algorithms mentioned above performs.

In [21], the disk scheduling algorithm Celloattempts to meet the diverse requirements

of applications. Cello employs a two level disk scheduling architecture, consisting of a

class-independent scheduler, which governs the coarse-grain allocation of bandwidth to

application classes, and a set of class-specific schedulers, which control the fine-grain in-

terleaving of requests. This mechanism while separating application-independent mecha-

nisms from the application-specific ones, enables the existence of multiple class-specific

schedulers. Thus, while real-time applications can use schedulers that would ensure that

requests are periodically serviced by the disk, there can be a class-specific scheduler for

the responsive applications that see to it that the response time does not exceed a threshold

time. Since Cellopartitions bandwidth among application classes, it ensures that applica-

tion classes are protected from one another. However, in principle Cello is a variation of

the SCAN-EDF algorithm. In serving, applications Celloconsiders three classes of appli-

cations, (1) Real-time, (2) Throughput intensive best-effort, and (3) Interactive best-effort.

The authors show that their scheme works better than SCAN in terms of average response

times for non real-time clients and fewer missed deadlines for real-time clients. One of

the biggest drawback of this work is the fact that all experiments were carried out using

a disk simulator. For the purposes of optimizations, the authors have also over-simplified

the view that disk scheduler has of the disk. This scheme presents a very non-practical

case since in the real world there are seldom any mechanisms to obtain information that
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the authors assume is easily available. The following are some of the other drawbacks of

this scheme:

• When creating a queue of application requests, it is assumed that all the multimedia

requests (for guaranteed service) that will be made in a particular round is known

apriori so that the disk requests can be laid out in appropriate fashion. The big prob-

lem is that all the disk requests cannot be known apriori. Even if one were to design

a framework where all the requests were known or generated by the disk scheduler

it would mean considerable overhead during disk access, might even be extremely

cumbersome to implement or adapt to existing implementation of an operating sys-

tem and last but not the least, constraining in a number of ways. In a number of

cases, especially with VBR (variable bit-rate) clients, number of data requests are

different every second. Also, it removes the possibility of applications employing

policies, like media scaling in order to be adaptive to over-loaded rounds since it

is assumed that the disk scheduler has complete knowledge of all the multimedia

requests at the beginning of each round.

• They assume that the duration of each and every request in the queue is known. This

information is used to insert non multimedia requests into the service queue, with

a view to servicing them only when there is time available between two adjacent

multimedia requests. The time taken for various requests is calculated using the

present disk head position. The service times of various disk requests cannot be so

easily assumed to be deterministic. While the disk access time for a block depends

a lot on the present position of the disk head, it must be noted that it is virtually

impossible in modern day operating sytems to retrieve the present position of the

disk head from the disk controller since it does not provide such information. This

makes the authors’ approach of calculating the overhead incurred as a result of
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inserting a disk request in the service queue using the present position of the disk

very unusable. Another important thing to remember is that file systems seldom

provide mechanisms for disk schedulers to know where a particular block of data

resides on the disk. This information would be required in order to calculate the

time taken to read data starting from the present position of the disk head.

• They conveniently ignore the CPU time that would utilized to ensure ordering and

re-ordering of the service queue in the presence of a large of requests. In a highly

loaded system, it can contribute to substantial CPU time.

Since this work has carried out simulations for only the disk sub-system, it does not

consider the feasibility of implementing some of the policies needed to support Cello.

This in turn results in the exclusion of any overheads (CPU and memory consumption)

introduced by Cello, which might be absent from a SCAN-EDF implementation, from the

statistics shown for various client-load scenarios. Also, this simulation model does not

deal with any media-aware mechanisms to decide how discarding of media blocks must

take place during overflow rounds.

2.2 Admission Control

In [17], the authors have proposed a criteria for admitting new sessions based on the as-

sumption that all applications need hard guarantees to be satisfied. For this, a sufficient

condition is the existence of a static schedule (that cyclically read fixed number of blocks

of each session) satisfying the rate requirements of all sessions under worst-case assump-

tions and for which enough buffer space is available. Quite clearly, when the clients are

reading from FIFO buffers, there are some that would read out the buffer faster than oth-

ers. As long as the minimum time taken (among all the sessions) to read the FIFO buffer
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is more than the worst-time it takes to read all the blocks for all the sessions, it is assumed

that the new session, given its data requirements, can be supported. One of the disad-

vantages of this approach is that it is an overkill for multimedia clients which are soft

real-time applications and can suffer an occasional distortion or loss of information. This

drastically reduces the number of such clients that can be serviced and results in server

under utilization. Our algorithm tries to overcome this problem by using reported average

case values and those obtained from averaging out the DMA times, to admit multimedia

clients.

The authors have proposed an observation based admission control algorithm in [14].

The admission of a client is permitted only if the extrapolation from the status quo mea-

surements of the storage server utilization indicate that service requirements of all the

clients will be met satisfactorily. While this mode of admission control provides fairly

reliable service to clients, there are no absolute guarantees and simultaneous servicing of

multiple clients may lead to deadline violation for some of the clients. One of the assump-

tions of this approach, is that the service times of clients will continue to exhibit similar

behaviour even after the admission of a new client. Thus, it is believed that measure-

ment of server performance is good for estimating service times in the presence of a new

client. While the approach mentioned above is used for admitting clients that can suffer

occasional distortion and loss of information, applications requiring hard guarantees are

admitted using theoretical worst-case values of disk parameters. Therefore, support has

been provided for both kinds of applications.

[13] discusses a statistical admission algorithm that is used to determine whether in

the presence of other clients, a new client should be admitted. This approach attempts to

(1) exploit the variation in access times of media blocks from disk as well as the variation

in client load induced by variable bit-rate (VBR) compression schemes, and (2) provides

statistical service guarantees to each client. The idea here is to use distributions of access
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times of media blocks and playback rate requirements of media strands encoded using

variable bit-rate compression techniques to provide at least a certain percentage (consti-

tutes the strand’s minimum bit-rate requirements) of the media blocks required by each

strand. These distributions need to be calculated apriori, possibly at the time of installa-

tion by measuring the service times for various placements of media blocks. The reason

for doing so is that the service times for media blocks is only dependent on the relative

placement of media blocks and not on client characteristics. The main reason behind

providing statistical guarantees is that human perceptual tolerances as well as inherent

redundancy in multimedia streams allow clients to be tolerant to brief distortions in play-

back continuity and occasional loss of media information. Thus, this scheme attempts to

provide increased usage of server resources while retrieving only a portion of the required

media blocks for the admitted clients. The admission criteria used in the presence of n

clients is:

q ∗ Fo + (1 − q)
n+1∑
i=1

fi ≥
n+1∑
i=1

pi ∗ fi

where,

q = probability of an overflow round

Fo = number of frames that are guaranteed to be retrieved in an overflow round

fi = number of frames retrieved in each round for client i

pi = percentage of frames to be retrieved each round to meet client i’s service req-

-uirements

We believe that while this approach might provide reasonable guarantees to the clients,

its performance is largely based on the ability to collect extensive samples of server per-

formance for varying workloads. In order to make the admission controller much more
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reactive to system dynamics, we have designed a measurement-based admission con-

troller.

[24] also describes an admission control policy used in Fellini. This work like [17] as-

sumes worst-case values for accessing disks and therefore prevents a number of multime-

dia clients from getting admitted without deadline violations for already existing clients.

2.2.1 MPEG Layering of Video

In [27], the authors discuss the implementation of a layered scheme for handling require-

ments of various multicast clients. An MPEG file consists 3 different kinds of frames

which constitute different resolutions for the video. Since the data rate requirements for

the transfer of MPEG-like video is very high, it is proposed that there be a demultiplexer

at the video server that breaks down the various frames in a manner that constitute lay-

ers (each one being responsible for increasing visual quality). This scheme allows the

selective delivery of the layers and thereby provides a mechanism to carry out controlled

degradation of quality at the receiving side in the presence of congestion or increased

traffic. We believe that this scheme can be used very effectively for serving MPEG files

from the disk. We assume that the files have been encoded as layers and can be retrieved

as such. While [28] assumes the presence of only two layers (a base layer and an en-

hancement layer) we assume that the file has been laid out using information from I, P

and B frames. We, however, believe that this still has the same effect of providing video

quality enhancement going from one layer to each additional layer.

We exploit the fact that MPEG-like layered clients can be served at bit-rates lower than

that constituted by all the layers encoded in the media file. The number of layers served

depends on the amount of residual disk bandwidth in the presence of admitted multimedia

clients. Additionally, when handling overflow rounds, the disk scheduler attempts to serve

only as many layers as can be obtained in the time available. This, therefore, can be used
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to provide fairly reliable service to clients that would have been refused admission by all

the schemes discussed above.

2.2.2 Caching

Caching has been used extensively for serving content quickly and reliably to clients when

there is an overlap in the content being requested by the clients. The content in the cache

is present either by way of prefetching or because some client accessed the data and it has

not yet been removed from the cache. In the context of an operating system, it is used to

serve applications pages from the disk that have been prefetched at an earlier time. This

not only reduces the response time to a request but also access to disk. There have been

several approaches to increasing performance of multimedia clients. Some of them are

discussed in the following paragraphs.

Symphony [20] enables the co-existence of multiple data type specific caching poli-

cies. The buffer subsystem maintains two buffer pools: one for deallocated buffers and

the other for cached buffers. So while LRU can be employed for text clients some other

form of caching can be used for continuous media clients. Thus, it can be expected that

there will be good performance for a number of clients.

Another scheme that attempts to use a buffer cache to provide better multimedia per-

formance has been described in [24]. The cache management policy is based on different

data access patterns, volume of data and deadline requirements of real-time clients. The

authors have also tried to handle scenarios like multiple clients being separated by only a

phase difference, in the caching policy for continuous media clients.

It is clear from the above references that there is a need for caching to provide im-

proved performance to applications. It assumes even more significance for multimedia

applications, given their deadline requirements and generally higher data rates (esp. for

MPEG-like files). In order to fully realize the effect of continuous media specific poli-
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cies in terms of an increase in the number of clients served and better performance for

admitted clients, one must translate this information for use in admission control.

Therefore, in addition to our briefly discussed schemes, we also propose a scheme

for making the admission controller cache aware. There can be a significant increase

in number of clients being simultaneously serviced and apparent reduction in the disk

service times if data stored in the cache (from previous disk accesses) can be managed

and used to admit new clients. This is especially true when there is a lot of locality in the

information accessed from a multimedia storage server.

2.3 Linux Implementations

One of the most significant changes made to the standard Linux kernel in order to provide

real-time guarantees is RT-Linux [29]. RTLinux is a hard real-timevariant of Linux that

enables control of robots, data acquisition systems, manufacturing plants and other time-

sensitive instruments. While RTLinux version 1 was designed to run on low-end x86

machines and provided very a limited set of APIs, RTLinux version 2 is a complete re-

write of the earlier version and is designed to support symmetric multiprocessing, run on a

larger range of systems, and with extensions for ease of use. RTLinux permits the running

of special real-time tasks and interrupt handlers on the same machine as standard Linux

1. This is possible because the Linux kernel is run at the lowest priority and permits pre-

emption by these tasks and handlers at any time irrespective of what Linux is doing. The

worst case time between the moment a hardware interrupt is detected by the processor and

the moment an interrupt handler starts to execute is under 15 microseconds on RTLinux

running on x86.

As mentioned earlier, the attempt to provide hard guarantees to clients would translate
1Henceforth, Linux shall refer to the standard Linuxkernel
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into fewer clients being serviced. Therefore, there needs to be a mechanism introduced

in RTLinux that makes it aware of continuous media clients that can be given fairly re-

liable service guarantees. Also, there needs to be a mechanism in RTLinux to ensure

fairness among clients when sharing disk bandwidth among them. In the case of over-

flow rounds, there needs to be a mechanism to spread the loss among as many clients as

possible. Most importantly, since the real-time clients can pre-empt the Linux kernel run-

ning non real-time tasks, there needs to be a scheme to protect non real-time applications

and ensure that non real-time requests do not starve in the presence of a large number of

multimedia clients. This would require some kind of a selective pre-emption of the Linux

kernel depending on the importance or priority of the real-time applications. In this ap-

proach, quite clearly applications requiring hard guarantees would have higher priorities

than multimedia clients.

Since we believe that the distribution of Linux far exceeds that of RTLinux, we have

tried to incorporate some of the above mentioned ideas into Linux. This is also an at-

tempt to add soft-real time capability to Linux. Also, to the best of our knowledge this is

first implementation of an admission controller and multimedia disk scheduler on Linux.

While [30] describes a Linux implementation for increased multimedia support, we found

that only the process scheduler has been modified to provide hierarchical start time fair

queuing [6]. The disk scheduler Cello described in [21] has not been implemented yet.
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Chapter 3

Clarity

Our approach towards supporting multimedia applications on Linux is in two directions.

One is in the form of an admission control mechanism and the other in the form of disk

scheduling. Both are important in ensuring that a guaranteed level of service can be

provided for a certain number of multimedia clients (a number that is dictated by the

amount of disk bandwidth available on the disk). The admission controller, as the name

suggests, admits and rejects requests for multimedia sessions and the disk scheduler tries

to efficiently service disk requests for the admitted clients so as to deliver a certain number

of blocks to the application within a given time frame.

The first section of this chapter describes the four service classes that we have iden-

tified to categorize applications and our approach to aligning the service provided to ap-

plications to those classes. In our context, service to application is primarily in terms

of providing enough disk bandwidth to retrieve data from the disk at a given rate. This

is followed by the section that describes the layering scheme that has been assumed for

MPEG-like clients. Then comes a section on our admission controlpolicy which briefly

describes the technique used to determine the availability of disk bandwidth for provid-

ing the performance specified by a requesting application. The last section describes our
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approach to scheduling disk requests in order to meet the QoS requirements of the var-

ious applications and balance allocation of disk bandwidth under overloaded conditions

to minimally affect application performance. It discusses our approach to modifying the

Linux scheduling algorithm in order to provide fair service to applications.

3.1 Service Classes

As mentioned earlier in chapter 1, there are different kinds of applications that an operat-

ing system must support and provide good performance. Therefore, there is a very clear

need to identify service classes so that applications can be grouped and serviced broadly

according to the requirements of that class. This helps us provide low-level optimizations

designed to improve application performance within each class.

In order to align applications to their service requirements, the task of identifying

application classes needs to be done carefully. A large number of application service

classes would result in significant maintenance and computational overhead and having

too few of them could result in significantly different applications getting assigned to the

same service class, thus preventing significant performance improvement.

Broadly speaking, we have categorized applications into multimedia and non-multimedia

applications. This classification is based on the fact that content servers primarily read

data from the disk to serve text, graphics and multimedia streams. Writes on content

servers are assumed to be performed only when uploading content. The classification re-

sults from the basic difference in the type of service required by these classes of applica-

tions. Multimedia applications are iso-chronic, needing data supplied to them at regular

intervals. On the other hand, the non-multimedia applications require higher through-

put and lower response time. In order to further separate application requirements, we

have identified four different kind of application classes (2 each for multimedia and non-
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multimedia applications) that most of all applications can be categorized into. They are:

1. Loss-tolerant multimedia applications - These are multimedia applications that

can maintain reasonable quality of service with some loss of data. For these applica-

tions, not all disk requests need to be satisfied. The requests that cannot be serviced

are dropped when they outlive their usefulness and scheduling is carried for frames

that need to delivered shortly after. Most multimedia clients (servers, playback ap-

plications etc.) fall into this category. However, it is important to remember that

they can tolerate only a certain amount of loss and there must be mechanisms in

place to recover from losses that induce deterioration to unacceptable quality lev-

els of transmission. This class includes both constant bit-rate (CBR) and variable

bit-rate (VBR) applications.

2. Delay-tolerant multimedia applications - While most multimedia applications

can tolerate some loss, sometimes it is essential that all frames be received and pro-

cessed. Typically, when a user is accessing multimedia content that is recorded and

not “live” or current, the user might want to get all the frames. Another reason for

this class is to separate the processing of audio content from the video content so

that although there might be deterioration of video, one can ensure that all audio

content is read from the disk. The discussion of such mechanisms is however be-

yond the scope of this work. For these applications each and every requests needs

to be satisfied while maintaining as much periodicity as possible. In the presence

of delayed service, the disk scheduler must make an attempt to recover from it by

having mechanisms that would allow for extra blocks to be processed when there is

some extra bandwidth so that normalcy is restored.

3. Responsive non-multimedia applications - These are the traditional applications

that require disk requests to be satisfied in the shortest time. However, this does
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not mean that they require all the data they request immediately. It is adequate to

service a small percent of requests from this class, so that the application keeps

getting blocks from the disk intermittently, without a prolonged delay.

4. Essential non-multimedia applications - This represents a special class of disk

requests which need to be satisfied for applications to execute. Although there are

no applications per se that fit into this category, all processes acting on behalf of the

operating system are automatically included in this class. These applications, if you

will, generate requests for swapping out pages, paging etc. that are generated by

the operating system to proceed with the execution of processes. The reason these

requests generated by these applications are essential is because they cannot always

be serviced subject to availability of disk bandwidth to any specific service class.

Multimedia applications may sometimes be unable to proceed without the disk re-

quest belonging to this class getting serviced. So delaying it due to non-availability

of disk bandwidth would mean wastage of disk bandwidth and delay/loss of blocks

to be delivered to the application. It is for this reason that no bandwidth is ex-

plicitly reserved for servicing disk requests belonging to this category. Also, since

these requests are not multimedia requests per se, we have categorized them into

a separate class to distinguish requests belonging to this class from the normal re-

quests multimedia/non-multimedia requests that are serviced subject to availability

of disk bandwidth. In the absence of this class, there is no way exceptions can be

made to deal with system related disk requests. In may be noted that although we

do not create such applications, we have mechanisms to identify such requests in

Clarity so that measurement of time consumed by non-multimedia applications

does not include time used by this category.
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3.2 Layered Multimedia Streams

When a client requests data, the admission controller tries to find out if there is enough

disk bandwidth to service the request for a multimedia session. Although this means that

we are essentially preventing the disk from being oversubscribed, we could try to put the

“residual” bandwidth to use to serve multimedia clients to improve disk utilization and

reduce wastage of bandwidth. We believe that a slightly modified approach to admission

control can increase the number of clients accepted and decrease the residual bandwidth

which is not utilized. This is especially true for high bit-rate streams like video. When

a video client requests a multimedia session, it is quite possible that although there is

substantial amount of disk time for servicing some lower bit-rate clients, it is inadequate to

service this client completely. Therefore, the video client could have the session rejected.

For example, suppose there is enough disk bandwidth to serve clients aggregating 700

Kbps, an video client might ask for an average bit-rate of 1.5 Mbps. Quite clearly, the

admission controller will reject the session based on its average bit-rate requirement and

maybe the client will want to try again. While this is definitely beneficial to the clients

that have been admitted since they get almost deterministic service without violation of

any deadlines, it leaves a large portion of disk bandwidth unused. This might turn out to

be a major concern if a number of files being served by a multimedia server are MPEG

files or files that require a lot of bandwidth.

In order to deal with this problem, we consider layering of MPEG files. In this ap-

proach, an MPEG file is assumed to be consisting of multiple layers, each contributing to

a portion of the total bandwidth required. While the base layer provides just the bare min-

imum visual quality, the additional layers enhance the quality of the video being played.

So while it would provide true quality if all the layers are serviced, it is not required that

all the frames be delivered to maintain a reasonable level of visual quality [27]. We be-
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lieve that in layered MPEG video, acceptable visual quality can be maintained by serving

the client with lesser number of frames (fewer I, P and B frames 1 that are actually en-

coded in the file [31, 27]. In the absence of disk bandwidth we think serving layers in

a priority fashion would keep the service predictable, spread the losses more efficiently

among the various requesting clients than servicing in a random fashion where the goal is

to serve as much to a client as possible.

There are several encoding schemes that can be assumed for MPEG layered streams.

Typically, the play-out pattern of the MPEG file is {I B B P B B P B B I} and the storage

of the stream does not really guarantee that sequential read of blocks will be sufficient

to decode them in this sequence. The MPEG file decoder has to access frames out of

order to generate other frames. As mentioned in section 2.2.1, B is a bidirectionally

predictive frame and needs a frame in the past and one in the future to be generated.

This imposes availability of P before the two B frames between the I and P frames can

be decoded and played back. While the B and P frames provide incremental quality

enhancement over the I frame, they actually contain temporal information apart from

spatial information. For our purpose of layering, we have assumed that each B and/or P

frame tends to increase clarity and smoothness of the playback (hence results in increased

visual quality). Therefore if a B or a P frame was dropped, it would not only result in

loss of information between the frames played but also in reduced clarity of images in the

streams. Table 3.1 2 shows the retrieval pattern that can be adopted so that the clients can

be served layers of streams instead of a bunch of blocks (dependent on what the clients

request) without any limitation on how much the clients can request.
1MPEG files are encoded using these frames. I is an Intra frame and is encoded without any history,

P is a Predictive frame and is predicted from the preceding I or P frame when decoding and B is a Bi-

directionally predictive frame and reconstructed from the closest 2 I or P frames (one in the past and the

other in the future).
2This table has been adapted from [32]
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Layer Playback Pattern Blocks Required % of Actual Blocks

Required

5 I B B P B B P B B I 192 100

4 I B P B P B I 161 84

3 I P P I 132 69

2 I P I 90 47

1 I I 63 33

Table 3.1: Layered playback pattern for layered MPEG streams

Quite clearly, this approach reduces the number of blocks that need to retrieved and

tries to provide a balance between the visual quality and timeliness of delivery of data

blocks for decoding. Some of the more important implications of this approach of re-

trieving the data blocks (constituting layers) from the disk based on the requirement of a

client in a particular round are follows:

1. Loss due to non-availability of disk service time is spread among a number of

clients.

2. Unnecessary time spent in retrieving blocks that do not completely constitute a

layer is minimized.

3. Request for blocks in a particular round is optimized (if possible) by the requesting

application, based on information that it can receive from the disk scheduler about

how much it can service in that round. The client can employ techniques like media-

scaling in order to change the sequence in which it reads blocks of data in the

absence of sufficient disk bandwidth to satisfy all its requests.
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3.3 Admission Control

We expressed the need for admission control in order to control the usage and allocation

of disk resources for various applications requiring service. Admission control is a key

component in multimedia servers, which need to allow the resources to be used by the

clients only when they are available. This assumes great significance when the server

needs to maintain a certain promised level of service for all the clients being served. If

the admission control admits too few clients, it results in wastage of system resources.

On the other hand, if too many clients are allowed to contend for resources, then the

performance of clients already degrades rapidly in the presence of new clients. Therefore,

judicious decision making mechanisms for allocating resources disk bandwidth to clients

are needed. Admission control is an integral part of supporting multimedia clients, since it

serves as a mechanism to not only identify clients that require multimedia clients that need

periodic delivery of a certain amount of data from the disk but also limits the amount of

contention for resources like disk that can operate considerably slower than the processor.

Here, we assume that we are dealing with only clients that are reading from the disk

and not writing to the disk. While the problem essentially remains the same, that of

determining whether there is adequate bandwidth available to serve clients that want to

write, there are enough differences to warrant our excluding them from our discussion.

Figure 3.13 represents how the admission controller fits into our framework for providing

support for multimedia clients.

Apart from the fact that admission control must be used to control the usage of re-

sources like the disk that are central to meeting the deadlines of the admitted clients, it is

also used to ensure that different classes of applications can co-exist without significantly

affecting each others performance. For example, in the traditional system disk bandwidth
3This figure has been adapted from [33]
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Figure 3.1: Clarity in the Linux kernel

is always shared and so if there are a large number of clients from a particular applica-

tion class, it is highly likely that disk requests from the other classes will be serviced in

a delayed fashion. Therefore, it is very important to reserve bandwidth for the various

application classes both during admission and scheduling so that requests belonging to

one class do not hamper the servicing of requests from another class. While the admis-

sion controller can be largely independent of the disk scheduler, it is such considerations

that highlight the need for them to complement each other in servicing client requests
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efficiently. For example, there is no point in admitting clients for a certain amount of

bandwidth when it is not guaranteed by the disk scheduler. Such implementations can-

not provide any guaranteed service for admitted multimedia clients. Therefore, in our

approach it is assumed that in a round only a certain fraction (ρ, which is fixed when

Clarity is activated through a loadable kernel module) of the total time in a round is

available for servicing multimedia clients and it is guaranteed by the disk scheduler that

under over-loaded conditions this portion of the round timing will be made available to

serve multimedia disk requests.

The admission controller can also be used for passing on some information about the

various clients being admitted to the disk scheduler which would help the scheduler align

service to the application requirements. This can help the admission controller and the

disk scheduler complement each other effectively to maintain the QoSof the admitted

clients. We shall discuss this in further detail in the following sections.

3.3.1 Optimistic Admission Control

There are some applications that are “hard” real-time as opposed to “soft” real-time appli-

cations where some deadlines can be missed and can be dealt with depending on whether a

loss-tolerant or delay-tolerant service is required by the applications. In “hard” real-time

applications, all the deadlines must be met since otherwise highly erroneous computa-

tions or unstable conditions could result. In order to service these kinds of applications,

admission control has to be designed to take into consideration the worst-case scenario

for disk access for blocks so that no retrieval is made beyond the deadline. For such ap-

plications, the admission controller has to use the pessimistic approach and assume that

each and every data block is going to incur the maximum overhead in terms of seek time

and rotational latency.

A number of multimedia applications are loss tolerant applications. Therefore, there
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is no need to deliver all the blocks in a round. This would not only result in fewer clients

being serviced but possibly gross under-utilization of the system resources (both CPU

and disk). This is because lesser clients for disk service would mean lesser clients using

the CPU for processing. Also, this would negate the effect of any optimizations and

efficient retrieval mechanisms used by the operating system. Therefore, we have designed

an optimistic admission controller. While, there might be times when the time for disk

access and retrieval of a block will be more than the average value, it is our belief that

over prolonged time and high load, the retrieval times average out. In this manner, we also

intend to use techniques used by the underlying operating system to cache blocks before

they are requested. It is this characteristic of seek times and rotational latencies to average

out over a prolonged period of time that we exploit to provide increased utilization and

service availability.

While optimistic admission control can be implemented and used largely independent

of the disk scheduler, it works better when it complements the disk scheduler in meeting

the deadlines of the clients that have been admitted.

Criteria

Suppose there are n clients that have been admitted for multimedia sessions. Let each of

the n clients be denoted by Ci . Each of these clients can have different playback rates and

therefore needs the disk scheduler to return blocks to them at different rates. Also, the

clients might play back streams at rates different than the rate at which disk blocks are

retrieved. Let the number of blocks to be retrieved for Ci in a round be bi and let the play

back rate of the blocks be Bi
pl bits/sec. Furthermore, let the block size be B bytes.

Multimedia clients need periodic access to the disks. The idea is to serve blocks to

the clients at regular intervals. The duration of the intervals is decided by the data rate

that the client is requesting. More specifically, it is dependent on the highest data rate
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that has been requested by the admitted clients. A client with a data rate of 20 Kbpswill

have to be served twice as often as a 10 Kbpsclient in a given time. Therefore, it is very

important to decide on the duration of a round.

Let the time in a round be denoted by R. This duration R is decided as follows:

R = min
i∈[1,n]

(
bi ∗ B ∗ 8

Bi
pl

)
(3.1)

While the play back rate of the client can be different from the rate at which blocks

are retrieved, without loss of generality and information we have assumed that they are

the same. Therefore, equation 3.1 reduces to a constant time of 1 second for serving

clients. This simplifying assumption decreases the computational overhead needed for

admitting clients and that for calculating the number of blocks to be retrieved during each

round. Also, having smaller rounds can significantly reduce the positive impact of various

optimizations employed by the disk scheduler to reduce disk service times. This aspect

shall be discussed further in the sections dealing with our approach to scheduling disk

requests.

The one and only criterion that is used to determine whether a client requesting a

multimedia session can be admitted is the availability of disk bandwidth to satisfy the

QoSrequirements specified by the client. Let there be n clients in the system, when a

new client (n + 1) requests admission. If the bit-rate that this client is asking for is rn+1,

then the number of blocks to be retrieved for this client bi can be calculated using the

block size B as:

bn+1 =
(

rn+1

B ∗ 8

)
(3.2)

39



Furthermore, let ρ be the fraction of every round (round time R) that is available for

servicing multimedia disk requests. Therefore, in order to service bi blocks, the disk takes

average case values for seek time and rotational latency. From this, we can derive that the

time spent in disk seek for i th client is bi ∗ (T seek
avg ). Similarly, the amount of time spent in

moving the required block under the read arm on an average is bi ∗(T rot. lat
avg ). This leads to

define our admission control criteria, which tests for the existence of residual bandwidth

sufficient to meet the minimum quality requirements of the client, in the manner shown

below:

n+1∑
i=1

bi ∗ (T seek
avg + T rot. lat

avg ) ≤ ρ ∗ R (3.3)

We assume that the data rate specified by the client when requesting a multimedia

session has already taken into consideration the amount of loss per round that is acceptable

for the session. However, the client can make a request for blocks that constitute the actual

data rate i.e. without any losses, at the beginning of each round from the disk scheduler.

Although this data-rate may be higher than the data rate at which the client was admitted,

the disk scheduler always attempts to first satisfy only as much as the client was admitted

for. Also, while the disk scheduler might try to satisfy the request for a client completely,

the disk scheduler is not at all constrained to do so and might decide to use the bandwidth

for servicing whatever it deems important.

There are a number of applications that are constant bit-rate applications. For these

it is easy to take into consideration the number of blocks that need to be retrieved in

a round. However, there are a number of multimedia clients that are variable bit-rate

applications. They playback a constant number of frames with the size of frames between

rounds varying. This makes the number of blocks retrieved in a round a variable. In order

to support variable bit-rate applications we carry out admission control using the average
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bit-rates necessary for those applications. We have mechanism to deal with the fact that

the highest bit-rates for these applications can be significantly different from their average

bit-rates and we shall discuss it later in our approach to disk scheduling (Section 3.4).

Figure 3.2: Flow-chart for admission control

Our algorithm to admit a requesting client is explained in a step by step manner in

figure 3.2. In order to illustrate our admission control policy, let us assume that there are

already 5 clients that have already been admitted and they consume in all 400 millisec-
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onds. Without loss of generality, we now suppose that there is another client that wants

multimedia session with a bit-rate of 80 Kbps. Assume that the time taken reserved for

disk access in a round for the i th client is given by ti . Furthermore, assume that the aver-

age seek time for a disk block T seek
av is 4.5 millisecondsand the average rotational latency

for it T rot. lat
av is 12.0 milliseconds. Suppose that the fraction of bandwidth in a round

available for serving multimedia requests ρ is 0.5 of the round timing R. We assume

that R is 1 second. Therefore, in a round the time available to service multimedia disk

requests is 500 milliseconds. The following are the steps carried out to determine whether

there is enough bandwidth to service the requesting client:

1. Number of blocks to be read every round for the new client is b6 = 80 ÷ 8 = 10

2. Time taken in the round for reading b6 blocks = 10 ∗ (T seek
av + T rot. lat

av ) = 10 ∗ (12 + 4.5) = 165 millise

3. Total time taken to satisfy all the clients with their minimum bit-rates =
∑6

i=1 ti =

400 + 165 = 565 milliseconds

4. But we know that the amount of time that we have in a round is 500 milliseconds.

Since the time required is more than the time available for servicing multimedia

applications, the client is denied admission.

3.3.2 Measurement-based Admission Control

While we feel that it is a good idea to expect that disk access time to statistically tend

towards an average value instead of worst-case values, there are other important consid-

erations that actually reduce the disk access times substantially. It is important to realize

that for every block of data, a request is sent to the disk, a seek is made to the appropriate

track containing data and then the appropriate sectoris brought under the read arm by

rotating the disk by the required amount. While this approach is adequate for comparing
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approaches like optimistic and pessimistic admission control by simulation and looking

at the relative improvement in performance, in reality present-day operating systems per-

form a number of optimizations to reduce disk requests sent and hence the disk service

time. We believe that by employing the optimistic admission control scheme, which uses

fixed average disk access time to calculate the cumulative time of access for a client, we

heuristically take into account the effects of caching on the disk controller, in operating

system and effects of the dynamics of disk access over a fairly extended period of time.

However, we do not completely consider the effects on disk access time due to optimiza-

tions in the operating system and their combination with one or more factors mentioned

above. That is why we have designed a measurement-based admission controller which

uses average values of disk access obtained from actual measurement to calculate cumu-

lative disk access times for various clients.

Modern day operating systems including Linux makes use of temporary storage in

memory called cache. When a client wants to retrieve a block of data, Linux sets up the

request for not only the requested block but also for some adjacent blocks too, the time for

reading which is substantially lower than if a new request was issued to read each one of

them. This only complements existing disk controllers many of which intelligently cache

an entire track when fetching data from the actual physical disk. These are blocks that the

operating system and the disk controller anticipate would be required by the client (the

word ’client’ means different entities for the disk controller and the operating system)

sometime in the near future. So when the client asks for a block that has been cached,

Linux simply retrieves it from memory. This prevents the generation of a separate request

to the disk and avoids all the overheads of seek times and rotational latencies. Quite

clearly, caching provides many magnitudes of service improvement. This is because (1)

retrieval of a block that is cached when reading another does not incur any substantial

seek time and rotational latencies since it is contiguous with the one requested for and (2)
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when a cached block is served, it is from memory.

We believe that there is a lot of merit to using values from measurement of times for

disk block retrieval to admit clients. This is because they reflect disk access times ob-

tained as a result of various optimizations in the operating sytem, like file layout, block

pre-fetching, caching etc. to enhance performance. Since these optimizations lower disk

access times, this approach would provide a further improvement in terms of the number

of clients admitted for guaranteed service. In order to carry out measurement-based ad-

mission control, we keep track of the time taken for various disk requests to be serviced

and use the average time taken to read a block of data to calculate the time that would be

required to satisfy a requesting client’s data rate.

Our approach to a measurement-based admission control mechanism heavily depends

on the disk scheduler and its ability to record and maintain information on the time taken

for the various disk reads. In order to make the system responsive to changing client

load, it is important for the disk scheduler to constantly communicate with the admission

controller. While the admission controller can make decisions about admitting or reject-

ing client requests independent of the disk scheduler, having the disk scheduler inform

the admission controller about its load and performance makes the admission controller

sensitive to the effects of the system as a whole on the disk. Since not all traffic passes

through the admission controller (text clients, traffic for paging, swapping etc.), this ap-

proach helps tremendously improve system responsiveness to shifting system loads and

helps the admission controller make well-informed decisions. Since typical processors

are very fast compared to the disk, typically disk reads are handled by a DMA controller.

This is so that the CPU does not spend cycles waiting for the disk read to complete and

can proceed with normal execution of other programs that need CPU bandwidth till such

time that the disk block is fetched. It is then that the CPU is interrupted by the DMA

controller and the blocks are returned to the requesting application. The CPU can now
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continue from where it left off in the program that it suspended waiting for disk I/O com-

pletion. Our approach is to keep track of these DMA transfers for both multimedia and

non-multimedia blocks, count the number of blocks and using the total time taken average

out the access time for a block. In order to more accurately measure the average, we also

take into consideration time for data access over a number of DMA transfers. The exact

number of such DMA transfers taken to calculate the average would probably need to be

finetuned and is a trade-off between how well one needs to have the average reflect load

on the system at different times versus the CPU cycles needed to calculate the average.

We determined through our experiments that averaging over around 30 DMA transfers

provides reasonably accurate disk access times without consuming too much CPU band-

width. There are a number of approaches that can be used to calculate the average time

for retrieving a block of data (it must be remembered, that we are not concerned about

the size of each block of data). For example, one of the most commonly used method is

divide the total time taken by the total number of blocks read to obtain the average time

per block. We will attempt to obtain the averaging mechanism that is most accurate for

our purposes.

Suppose that there are n clients that have already been admited for multimedia ses-

sions with the i th client having a bit-rate of ri . As in the discussion of optimistic admis-

sion control, let another client (n + 1) request for a multimedia session at a bit-rate rn+1 .

Then the number of blocks to retrieved for this client in a round is given by equation

3.2. Suppose that the average time for a block access is Tavg , measured over a certain

number of DMA transfers and ρ is the fraction of every round (round time R) that is

available for servicing multimedia disk requests. The admission control criterion then

can be represented by the following equation:

n+1∑
i=1

bi ∗ Tavg ≤ ρ ∗ R (3.4)
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One of the biggest advantages of this approach is that it tries to account for the time

reduction associated with pre-fetching blocks contiguous with the one(s) requested by

an application. For example, let us assume that an application requests block 1, which

is contiguous to block numbers 2, 3 and 4. So when an applications asks for block 1,

the operating system pre-fetches blocks 2, 3, and 4. Suppose the access time for block

1 is 15 milliseconds, then reading times for the contiguous blocks may be around 20

milliseconds since by the time the operating system pre-fetches these blocks, the disk

controller has already ensured that the blocks are retrieved from the disk. Quite obviously,

this is a huge improvement from a situation where requests to the disk are generated as

and when clients request data. This is because by the time the request is sent, the cache

on the disk controller may have been over-written by newer data and the new request

would have to be serviced by actually positioning the arm and moving the platter on the

disk. Assuming that this happens, it would result in an overall time of 60 milliseconds.

So, if there are a number of blocks pre-fetched into the cache, subsequent access for

those blocks report almost insignificant access times. So the average access time for

these blocks get lowered to an great extent. Essentially, the measurements are then an

indication of how fast contiguous blocks can be read and how intelligently the operating

system pre-fetches the data blocks.

In order to make use of disk scheduling optimizations and its effect on the time taken

for transferring a block of data, it is very important that measurements be made at appro-

priate places in the kernel. We shall discuss this aspect further in the chapter on imple-

mentation (Chapter 4).

3.3.3 Adaptive Measurement-based Admission Control

In this approach, we have essentially used the measurement-based approach to performing
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admission control for multimedia clients. However, we have attempted to use a different

form of admission control mechanism for MPEG kind of clients. These clients, as de-

scribed in section 3.2, can be served in layers, with each layer possibly contributing to

enhancing the clarity of video playback.

For such layered clients, we typically assume that there are no loss percentages that

the client tries to specify. This is so that the streams can be served in various number of

layers, the loss percentages of which are different. Our approach in this form of admission

control is to typically look at how many blocks can be served to the requesting client by

iteration. Suppose that a client requests a rate of ri and needs bi blocks, then we try

to find out the aggregate number of blocks (which can be different from bi ) that can be

served towards a certain number of layers. We use the criterion for measurement-based

admission control (equation 3.4) to determine the maximum number of layers for which

the client can be admitted. For the purpose of performing admission control, we assume

that the bit-rates for the layers are some fixed percentage of the amount of data needed

by a client in any single round. So when an MPEG client requires service, the admission

controller checks to see if there is enough bandwidth to serve the client completely using

its average bit-rate. If it is not feasible to support the required bit-rate, the admission

controller scales down the average bit-rate requested (this represents the dropping of a

layer) and repeats until such time that the client is either admitted or it has dropped all

layers. Subsequently, the disk scheduler serves blocks constituting the maximum number

of layers for which the client was admitted.

Let us assume that that N is the maximum number of the layers that can be serviced

for the stream that the client is asking service for. Further, if lmax is the maximum number

of layers that can be serviced without violating the admission control criteria, let r max
l (in

bps) be the rate associated with lmax. Equation 3.5 shows the admission control criteria

that used to determine whether or not a client can be admitted for service.
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n∑
i=1

bi ∗ Tavg + rmax
l ≤ ρ ∗ R, 0 < lmax ≤ N (3.5)

3.3.4 Cache aware measurement-based admission control

Modern day operating systems use cacheto increase the overall speed of execution and

overall response time of applications. Cache is used not only for pre-fetching blocks of

data from the disk so that they are quickly retrieved when the application asks for them

but also for keeping often used data in general.

In the earlier description of our approach to admission control, we have assumed that

all the content that needs to be fetched has to be from the disk. While this is a valid

assumption to make in a number of circumstances, there are others in which there is lot

of locality of referenceof data. This means that there is some content or part of it that

clients are most interested in and want to access more than other content hosted by the

multimedia server. This is a typical scenario when there is an audio or video clip of some

important event(s) that a lot of people are interested in. Therefore, the traffic to those

few files is very high compared to some other clip that is a little old. When there are a

certain number of files on a multimedia server that are accessed very often compared to

some others, some or all of the content can be kept in the cache and served from there.

Modern multimedia servers come with huge caches and some of these clips can easily be

accommodated in part or fully in the cache. Also, while it might be very beneficial to store

the video streams that are getting accessed in the cache completely, limitations on how

much of each stream can be stored in the cache necessitates explicit caching mechanisms

to store multimedia streams.

We believe that with careful caching policies, it is possible to admit clients requesting

sessions when some other client is just a little ahead in time and reading the same file.

A client which requests for data which is in the cache can be served from there instead
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of being refused admission for lack of disk access time. The situation is analogous to

one where there are a number of applications asking for a shared page which has been

cached. Even when the page changes, requests for it can be serviced from the cache

instead of from the disk till such time it is written to the disk and removed from the cache.

The number of clients serviced would then depend a little lesser on the disk bandwidth

and more on the efficiency of admission control and cache management policies.

Let us assume without loss of any generality, that there is a stream S that is accessed

by a number of people. During admission control, cache-unaware admission controllers

will try to find out if there is enough residual disk bandwidth before admitting clients by

calculating the amount of time required to service each and every required block request

from the disk. They would reject sessions to clients trying to access S once all the disk

bandwidth has been reserved or when the total bandwidth requested is more than that

available. However, as mentioned earlier, what they fail to take into consideration is

the fact that S can be present in part or fully in the cache and there is little or no disk

bandwidth needed to service requesting clients. So using this mechanism, we can admit

a client reading S in the presence of others reading it, without significantly increasing

disk traffic. A light coupling of the admission controller and the caching mechanism for

multimedia clients can result in locality of information accessbeing exploited to a very

great extent to provide far more clients with acceptable video content than is possible

with traditional admission control policies. Apart from the ability to interact with the

admission controller, the cache manager must have provisions to share the cache among

multiple frequently accessed video or audio streams in order that multiple streams are

allowed to be cached and results in increased cache-hit ratio. The amount of caching that

is done for each stream could depend on the number of clients accessing them, the rate at

which the streams are being played and how far apart in time are clients reading the same

stream etc.
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We briefly outline some of important considerations for the cache management scheme

to take into account to efficiently support (provide reasonably guaranteed service) multi-

ple multimedia clients, which could have locality of access or are trying to access a stream

some part of which is already present in the cache:

• The cache should be shared among multiple streams.

• Since the cache need not store the entire stream in the cache at the time of admis-

sion, a mechanism to pre-fetch data blocks for frames in the future into the cache

may be required to increase the cache-hit ratio for future accesses.

• Pre-fetching of data blocks, in order to provide guaranteed service to the client

throughout the session, must be carried out at a certain pre-determined rate and not

simply where there is free disk bandwidth. This rate would probably be take into

consideration how far separated in time the clients reading the same file are with

respect to each other.

• Caching mechanism should not make any policy decisions about whether a client

needs to be admitted or not.

• There must be an clearly defined interface to the admission controller to help it

obtain information about the state of cache and about the content of various streams

in it. This would help it make decisions on admitting a client.

• The admission controller must be able to influence what streams are cached and

how much of data is cached for any stream if required.

We have described below the admission control mechanism that uses the cache present

in any modern operating system. We have also outlined any support functionality required

and suggested possible directions for cache management in order to help this mechanism

work.
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Let us assume that the system has been servicing multimedia clients for sometime.

This would mean that there is data for various streams in the cache. For cache replace-

ment, we assume that a cache eviction scheme like LRU (Least Recently Used) is not

used. Although, this is a very widely used scheme and works well for most purposes,

it might not be suitable for our purposes since we would like to have data pertaining to

earlier frames in the playback in the cache as opposed to the later ones. Therefore, when

pages need to be selected from the cache for replacement, we assume the employment of

a scheme where the pages for frames later in time are removed before those earlier. This

lets us assume that the pages that carry data for frames at the start of the stream will be

replaced after those that carry data for frames further down in time. This ensures when-

ever data for a stream is present in the cache, it is for consecutive frames starting from the

beginning of the stream. This helps us keep the cache management simple and avoids our

having to deal with complications like having some intermediate part of the stream in the

cache during admission control. Let us assume that a client i needs a multimedia session.

Let ci be the number of blocks of data for a stream i in the cache. Let us further assume

the cache manager can obtain information on the size of the stream from the file system

data structures. Let the total size of the stream (file) be Fi blocks. Further, let the bit-rate

of the client be, as in the previous discussions, ri bps. Now, the original time taken for

playing back the stream would have been

torig =
Fi

ri
(3.6)

The total time taken to read the entire stream in the presence of cache data (assuming a

constant bit-rate stream) is

ti =
(Fi − ci)

ri
(3.7)

Since the cache already stores some of the data that the client needs in the coming rounds,

we can think of this time over which the cached data will be played out as the buffer time.
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Quite intuitively, it is unnecessary to completely commit all the resources required by the

client to reading the disk, since some of the data has already been cached. Therefore, an

interesting approach would be to find a reduced rate at which the client can be satisfied

throughout the duration of the playback. This reduced rate would have to consider the

proportion of cached data and clients, if any, in the system that are playing back the same

stream. The latter consideration could make available data to the client which is lagging

in time if the cache manager made sure that the disk blocks read and stored in the cache

by the client ahead in time is made available to the one lagging. This way, practically all

disk bandwidth usage can be eliminated for the client lagging in time for the playback of

the same stream. However, the problem of capturing the ability to do this at the time of

admission control (resource commitment) still remains.

Since the amount of data to be read from the disk is (Fi - ci ) over a period of torig, the

rate of reading from the disk would then be:

r
′
i =

(
Fi − ci

Fi

)
∗ ri (3.8)

It is clear from the formula above that the reduced rate would be lower for higher

values of ci . That is, more the data in the cache the lower would be bandwidth necessary

to meet the deadlines for the client.

In our previous discussion for specifying a reduced rate in the presence of data in the

cache, we wanted to be able to accomodate and make use of the clients playing back the

same stream but separated only slightly (possibly less than the average time of a page in

the cache) in time. Suppose at the time client i was attempting play back of stream S there

was another client Ca, just ahead in time to which sufficient resources were committed for

guaranteed service. Let us suppose that the cache replacement policy took into account

the number of simulataneously accessing clients before evicting the pages belonging to

a stream, so that some percentage pi of the number of pages required by the client i
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is provided from the playback of S for Ca. Then the reduced rate r
′
i can be simply

approximated to be a function of pi as

r
′
i = (1 − pi) ∗

(
Fi − ci

Fi

)
∗ ri (3.9)

It is clear from equation 3.9 that by increasing the percentage of the data available to

client i from the playback of Ca, we can greatly reduce the amount of disk bandwidth

committed to client i at the time of admission. Another way to look at p i is to consider

it as the probability that a page required (that can potentially be marked non-swappable)

can be provided to anyone needing it within a certain time limit. It can be intuitively

thought of as being similar to cache-hit ratio provided by the underlying cache manage-

ment scheme. This percentage can be determined statistically through simulation or by

gathering statistics in the kernel for such instances. Further discussion of the statistical

anaylsis for the determination of the probability with which pages can be made available

is beyond the scope of this work.

We have attempted to outline in somewhat detail an admission control scheme not

only to increase the number of clients serviced, but also reduce disk access by employing

a cache management scheme and using that in conjuction with the admission controller.

However, we have not implemented this scheme in the framework of Clarity. Our

discussion of a cache-aware admission controller not only gives more closure to the treat-

ment of various admission control policies proposed by us, but also serves to provide a

point of further research and analysis.

3.4 Disk Scheduling

One of the most important mechanisms to support multimedia clients is efficient servicing

of disk requests so that data blocks are delivered to the applications in a timely fashion

(according to their bit-rate requirements). While the admission controller restricts the

53



number of simultaneous multimedia clients in the system, it is up to the disk scheduler

to ensure that the admitted clients get the quality of service they were promised during

admission. Additionally, the disk scheduler also helps perform optimizations to the num-

ber of blocks needed for retrieval depending on the type of the client. One of the biggest

problems faced by disk schedulers are overflow rounds. These are rounds where the num-

ber of blocks to be retrieved for the admitted clients is more than the number of blocks

that can be retrieved by the disk scheduler. The challenge here is to reduce the service

time by droppingblock requests. However, this is a non-trivial task and requires careful

considerations so that dropping of the minimum number blocks requests will bring down

the service time below the available time.

Given the fact that different applications might have different service requirements, it

is important to incorporate as much knowledge as possible into the framework supporting

these clients. We provide a 2-tier approach for supporting multimedia applications, in the

form of an admission controller and a disk scheduler. While the admission controller tries

to make policy decisions about accepting or rejecting requests for multimedia clients, the

disk scheduler is responsible for enforcing those policy decisions. In order to complement

each other effectively, it is important for the admission controller and the disk scheduler to

have as much information as possible about the various service requirements and inherent

characteristics of multimedia files being read by the clients. We use information about

files being retrieved to increase multimedia clients being admitted for service and provide

improved service to the admitted clients in terms of more effective sequencing of requests

and discard of requests in overflow rounds etc.

Our approach has been largely motivated by the fact that in order to support multiple

application requirements, the disk scheduler needs to be as intelligent as possible. It

should be able to identify the application requirements and translate them in mechanisms

to be carried out in order that a large proportion of clients that are being serviced are
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satisfied.

In order to support multimedia applications efficiently, we have incorporated the fol-

lowing features into our disk scheduling algorithm:

• Use of multiple service (application) classes in order to match application needs

to static system descriptions of those. This helps Clarity align disk service to

application requirements by resequencing the order in which disk requests are ser-

viced.

• Protection of service classes from one another.

• Protection of multimedia clients from one another.

• Adaptability to changing system load.

• Minimization of seek and rotational latencies in accessing media blocks.

• Awareness of the presence of caching policies in the operating system.

• Ability to exploit inherent media characteristics to enable mechanisms for handling

loss.

• Ability to support variable bit-rate applications.

• Efficiency in computation.

The following paragraphs discuss each of the above mentioned points in detail and

describe our approach to design in order to support these policies.

3.4.1 Alignment of disk service through Service Classes

In order to align service provided by the disk to the various applications, we follow a two-

step method. Firstly, we have identified different classes into which we attempt to group
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applications as described earlier in section 3.1. This gives us a mechanism to broadly de-

termine what the disk requirements are going to be and how (if any) re-sequencing of disk

requests from these applications needs to take place. Secondly, we carry out application-

specific optimizations like reading data in layers for MPEG clients and averaging out loss

for real video clients by dropping frames that are delayed at the end of the round. While

it is highly desirable to have each and every application completely meet its requirements

in terms of loss, delay and jitter, such a service can be only provided at the risk of the

disk scheduler working with possibly too many variable parameters, a very large number

of classes, and a huge overhead of computation. Therefore, we have adopted this 2 step

mechanism to achieve alignment of disk service to application requirements.

3.4.2 Protection of Service Classes

One of the greatest concerns in handling multiple kinds of applications is that of fairness.

It is very important that each application get its fair share of the bandwidth that it was

admitted for. As long as the traffic for each of the classes is low, there is little concern

about any of the classes not getting its share of the disk bandwidth. However, when

traffic of any one application or a class of applications generates a huge number of disk

requests, it is possible they consume much more than their share of the bandwidth leaving

others deprived of any bandwidth at all. While this does not degrade performance of

best-effort applications too much, it could mean missing of a number of deadlines for

the multimedia applcations. As a result, the clients belonging to other application classes

suffer resulting in degraded performance. Our approach to handle this situation involved

bandwidth allocation to the various classes. We reserve a portion of the disk bandwidth

every round for servicing multimedia and non-multimedia requests. Servicing requests

for clients is purely subject to availability of bandwidth for the application’s class. In

the absence of adequate bandwidth, the request is queued till such time that bandwidth
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is available. We shall discuss means by which bandwidth can be become available to an

application in later paragraphs. Also, one has the option to further partition the bandwidth

allocated to the multimedia class among the delay and loss tolerant applications. Thus,

we have a policy in place for ensuring that too much traffic from one type of multimedia

service class does not result in significantly reduced bandwidth for others.

In our approach, the disk bandwidth that is available to the disk scheduler is statically

divided among the various classes. The percentage of disk bandwidth to be allocated to

various applications can be determined by an analysis of different contents on the server

and their bandwidth consumption. Any class that exceeds its quota of disk service time is

denied service unless there are no clients left that need disk service. For our purposes, we

have two classes, which are: (1) real-time class (2) non real-time class. We keep track of

the amount of time in a time period that the disk has spent servicing requests from these

two classes. When the disk scheduler realizes that a particular class has consumed all of

its fair share of bandwidth, it blocks all the disk requests for applications belonging to that

class until either the time period expires or bandwidth becomes available. This ensures

that an increased number of clients requesting data from the disk do not adversely affect

the bandwidth guarantees made to other service classes.

3.4.3 Protection of Clients Within a Service Class

Apart from ensuring reservation of bandwidth to classes, we also try to protect applica-

tions from the same multimedia class from one another. The idea is to give each appli-

cation only as much as it has asked for before preceeding with the service of any more

blocks for that application (for example, when the operating system is trying to cache).

Our approach is to let the application tell the scheduler before reading how much it needs.

Using this information, the disk scheduler can then block requests from an application

that has obtained all the data blocks it needs. It must be remembered, that when the appli-

57



cation informs the scheduler at the beginning of each round how much data the scheduler

needs to read, it is up to the disk scheduler to guarantee anything more than minimum that

the client was admitted for. This mechanism prevents a client from asking for too much

after admission at a rate far lower.

In order to illustrate this mechanism, let us suppose that there are three applications

that have been admitted with 20 KBps, 40 KBps, and 50 KBpsrespectively. Let us assume

without any loss of generality that none of the clients took into consideration the loss

percentage in stating this data rate requirement during admission for a multimedia session.

Assuming that the block size of the file system in which these files have been stored is

1 KB, and they need to read in 20, 40, and 50 blocks of data on an average every round.

However, these applications might want to read more depending on whether they are

constant or variable bit-rate applications. Now at the beginning of every round, let us

assume each of the clients states that it needs 25, 45, and 55 blocks respectively. During

the course of a round, we keep track of the number of bytes retrieved for each client. It

is not necessary that all data requirements for a client are met before the other clients

are serviced. Service will mostly take place in an interleaved fashion with each slice of

execution ensuring partial fulfilment of the bit-rates of each client. Suppose that the client

that needed 45 kbpsgets all the guaranteed data (40 blocks) but wants more. When the

request for the 41st block comes in, the disk scheduler checks to see if all the clients

that were admitted have been satisfied by going through the linked list of clients. If they

have not been, it blocks the requests for this client. This procedure is continued, until

clients that have not obtained their data are forced to be executed by the process scheduler

since the others have been blocked. When the last client has its data requirements met,

Clarity signals all the multimedia clients to compete for the remaining time slice (if

any available) to try and meet their data requirements for that round. In this manner, we

ensure that no client gets more than the share of the bandwidth allocated to its class.
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3.4.4 Adaptability to Changing System Load

We also implemented a mechanism to make allocation of bandwidth/time slice to real-

time and non real-time class adaptive to varying loads (dynamic). When starting a time

period, the time allocated to the various service classes is static as decided at the time of

kernel compilation. As the round proceeds, we keep track of the amount of disk service

time that is getting used for each of the service classes using the method outlined in

description of measurement of time for disk access and depending on the dynamics of

disk usage we carry out the process of re-assigning disk bandwidth for the remainder of

the round. This can be done in a number of ways. One is the aggresive approach, where

the amount of unused bandwidth is completely assigned to the other application classes.

In our approach, it would amount to all the unused bandwidth being passed to either the

non real-time or real-time class depending on which is under-utilizing its quota. Our

scheme is to use a semi-aggresive policy for re-assignment of disk bandwidth reservation.

Using this mechanism, we re-allocate a part of the bandwidth reserved for the class that

we believe would under-utilize its bandwidth to the one that might need it. Needless

to say, that this is based on heuristics that a vast difference in service utilization times

(derived from measurements at regular intervals during a round) is likely to translate into

bandwidth wastage by one of the classes at the end of the round.

3.4.5 Minimization of Seek and Rotational Latencies

Linux uses CSCAN algorithm to service disk request. We have modified this algorithm

to incorporate knowledge of multimedia clients, so that it is a variation of the original

algorithm. Our approach is a variation of CSCAN-Earliest Deadline First (EDF). We

assume that the deadlines for all the disk requests is the end of the round and perform

CSCAN optimizations to sequence the requests so that they incur minimum seek and
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rotational latencies. Furthermore, requests that belong to the different service classes are

treated differently as far as their insertion into the queue is concerned. For example, the

delay sensitive clients are given preference over loss sensitive clients, since their deadlines

need to be met as much as possible. However, in order to ensure that delay tolerant clients

that have already been delayed do not suffer monotonically increasing delay in the future

rounds, the insertion of their requests is carried out in preference to the delay intolerant

ones. Thus, in this sense it is a variation of the CSCAN-EDF algorithm. However, it must

remembered that all the requests belonging to either classes are treated more broadly as

multimedia requests which are different from non real-time requests and optimizations

carried out accordingly.

3.4.6 Awareness of Caching Policies in Linux

Caching is a very important part of an operating system. It prevents excessive disk re-

quests being sent and significantly reduces the service times of disk access. When a disk

request is received for a certain number of blocks, Linux requests those blocks for the

client from the disk. When the blocks are received, the disk scheduler passes them onto

the requesting client. Linux also maintains a copy in memory of the blocks that were

retrieved. This is so that any subsequent access (before the page is removed from cache)

to this page, is handled by retrieving data from the page in memory. This avoids the huge

cost of sending another disk request. Another important aspect of having a cache is the

fact that it acts as a storage for blocks that are adjacent to the block that is requested

by a client. Whenever a disk request for a block is received, Linux creates a request

for accessing the adjacent blocks on the disk in the hope that they will be subsequently

be needed by the same application. We make use of this mechanism when scheduling

disk requests, since we can avoid having to deal with requests that can be satisfied in

the cache itself. This reduces any computational overhead associated with processing
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requests whose blocks are in the cache and is expected to reduce any performance hits

accompanying making decisions about how requests that require access to the disk need

to be handled.

3.4.7 Ability to Exploit Inherent Media Characteristics

As mentioned before, media like MPEG can be handled differently from other streams.

The fact that they are layered can be exploited by the disk scheduler and the application

to ensure that there is a certain controlled degradation of quality when there are over-

loadedrounds. Overloaded rounds occur when the disk scheduler lacks the bandwidth

to schedule multimedia requests so that the appropriate clients’ QoSrequirements can be

met. This typically happens in the presence of variable bit-rate streams like MPEG that

could read different number of blocks every round although the frame rate is a constant.

As a result when a number of MPEG clients read substantially more than the average bit-

rate that they were admitted with, Clarity might lack the disk bandwidth to meet the

deadlines for all the clients. When this happens, the disk scheduler has to drop requests.

Clarity attempts to spread the loss as evenly as possible by dropping disk requests

from all the admitted clients.

In case of MPEG-like clients, the requests can be dropped in such a manner that they

constitute a layer’s worth of data. For CBR clients, it would amount to something like

media scaling, with lesser than normal amount of data being read from the disk. With

layered streams, the disk scheduler does not attempt to drop requests intermittently so as

they add upto a layer’s worth of data. It just decides that the client would read one layer

less than it normally would. The client can employ whatever techniques it chooses to

read data efficiently so that it does degrade the video quality too much. One of the very

important things that we have avoided doing is imposing exactly what data is available to

the clients. There are no restrictions imposed by this approach about what frames can be
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read given the amount of bandwidth that can be used to do it.

3.4.8 Efficiency in Computation

Given the complexity of our framework, it is quite obvious that there is a lot of computa-

tion overhead involved in providing efficient service. In order to keep Clarity efficient,

it is important to achieve the right balance between how much CPU power can be used

in making various decisions versus how much can be sacrificed for simplicity in design,

code and execution. We have made a conscious attempt to make simplifying assump-

tions where we believe that the merits of computation do not exceed the time overhead

associated with it. For example, we have assumed that the duration of a round, although

dependent on the client with the highest bit-rate, is a constant (1 second). This helps us

avoid a lot of computational overhead associated with calculating round times, synchro-

nizing clients, making synchronized measurements and validating those measurements

by possible adjustments in timing in the kernel. We also attempt to limit the increase in

the size of the kernel arising from addition of the admission controller and disk scheduler.

We shall evaluate the increase in kernel code and image size as a result of Clarity.
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Chapter 4

Implementation of Clarity

“STRATEGY is; A style of thinking, a conscious and deliberate process, an

intensive implementation system, the science of insuring future success”

Pete Johnson

In order to evaluate our approach and the performance of our framework, we imple-

mented an admission controller and a disk scheduler in the Linux kernel. Our design and

implementation does not mandate the usage of either the admission controller or the disk

scheduler unless required by the user. This is so that normal system operations can be

carried out in the kernel with support for multimedia applications. Apart from describing

the implementation of the admission controller and the disk scheduler, this chapter also

details some of the secondary issues like timing, measurement of DMA transfers etc.

4.1 System Configuration

All our implementation and experimentation was carried out on a machine that was run-

ning on a Pentium process at 166 MHz. The linux kernel reported 66 bogomips for the
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processor speed after calibration. The system had 96MB of RAM and a hard disk capacity

of 4GB. The Linux kernel version was 2.0.36

4.2 Admission Controller

The admission controller has been implemented as a loadable kernel module [34, 35].

This means that while it is not part of the kernel at all times, it can be loaded whenever

admission control needs to be used for admitting multimedia clients into the system. Once

it has been loaded, it can interact with the rest of the kernel just like it is a part of the

kernel. It can share data structures with the disk scheduler if required. This is especially

useful in order to perform measurement-based admission control. When being unloaded

the admission controller relinquishes all the control that it has over clients being admitted

and activates all the clients whose disk requests are pending.

As described earlier in Figure 3.1, we see that from an application’s perspective, the

admission controller is the interface to the disk scheduler. We have provided this interface

in the form of system calls that can be used by applications to reserve disk bandwidth and

get guarantees for delivery of data.

There are two ways in which support for admission control can be added to the set

of system calls supported by Linux. The first method is to modify the existing system

calls to perform admission control. This would mean change in the parameter list of the

system calls since there a number of parameters that need to be supplied to the admission

controller in order to help it determine whether the client can be accepted for a multime-

dia session or not. Similarly, the return values could also change since the return value

from the system calls need to be interpreted by the multimedia clients differently from

the way normal clients do it. This is because the return values could contain information

on how much of the requested bandwidth has been allocated or the bit-rate that has been
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admitted. However, if this is done it would interfere with the execution of normal appli-

cations which use system calls like open(), close() etc. since they are not aware of the

extended parameter list or the different return values. Hence, this approach of modify-

ing the existing system calls would essentially break all applications written using them

and is not an acceptable solution. The second method is to introduce new system calls.

These calls would have additional parameters and return values that can be understood by

multimedia clients requesting sessions. They would then incorporate admission control

into the functionality that exists in the system calls they are replacing. This way we can

separate the set of system calls used by normal applications and multimedia clients. We

decided to implement our admission controller in the latter way so as to minimally impact

any existing applications and to aggregate changes related to Clarity separately.

There are a number of system calls that we have introduced in order to allow clients

to register themselves as multimedia clients. This is so that the kernel knows that they

are multimedia clients to provision bandwidth based on their requirements. Due to the

manner in which we have made system calls available to clients, we do not mandate the

usage of our framework for multimedia clients. However, it must be remembered that for

the clients that do not make use of these system calls, there are no guarantees for delivery

of audio and/or video content. Since there is no minimum rate of data delivery for these

clients, it could result in poor performance. This is since the disk requests from such

applications will be serviced as normal non real-time requests and will have to compete

with other similar applications for disk bandwidth. However, when using system calls

for setting up a multimedia session, it is quite possible that due to lack of bandwidth the

session request is rejected and the client has to try at a later time in order to get data.

The following section gives a brief description of all the system calls that have been

introduced. These system calls are considered a part of the admission controller.
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4.2.1 System Calls

We have provided two system calls that CBR clients are expected use to request a multi-

media session. They are:

(a) sys mmdopen(const char* filename, int flags, int* client id, uint

min rate)

This system call is used by a multimedia client to open a file specified by filenameusing

the flagsthat the sys open() operation takes as an argument. The client id is a value

that is returned to the client to be used for reading data during the multimedia session as

shall be explained later. The client, in fact uses a combination of the file descriptor and

client id to read every round. Additionally, the client specifies the minimum bit rate that

it wants for the duration of the session. It is assumed that min rate is used to specify the

rate that the client would want after losses in the form of dropped requests. Thus, the

client could potentially ask for more than this rate every round. It is up to the disk sched-

uler to provide more than this although the rate specified here is what the disk scheduler

tries to give all participating clients before any client is served more. This call is used

by clients that are delay tolerant and loss intolerant. This function performs the task

of admission control by finding out if there is enough bandwidth to admit the client. If

the client is admitted, then it is returned a valid file descriptor and client id. Additionally,

disk bandwidth is also reserved for the admitted client. In case of insufficient bandwidth

availability, it returns -1 for the client id and invalid file descriptor (same as that returned

by sys open()).

(b) sys mmlopen(const char* filename, int flags, int* client id, uint

min rate)

The parameters for this function mean the same as they do for sys mmdopen(). How-

ever, in contrast to sys mmdopen(), this call is used by clients that are loss tolerant
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and delay intolerant. All admitted clients are marked as being loss tolerant so that when

the disk scheduler encounters overloaded rounds, it drops requests from these clients in-

stead of waiting until bandwidth is available. This call also returns -1 for the client id

and invalid file descriptor (same as that returned by sys open()) when the bandwidth

requested is not available.

In addition to the two calls for CBR clients, we have provided system calls for MPEG-

like VBR clients to use. This is because there is a difference in the way admission control

is carried out for those clients since it is assumed that the MPEG files are present in a

layered format. The following two system calls are for admitting MPEG clients.

(c) sys mpegdopen(const char* filename, int flags, int* client id, uint

min rate, int max layer required)

This system call is used by a multimedia client to open a file specified by filenameusing

the flagsthat sys open() operation takes as an argument. The client id is a value that

is returned to the client to be used for reading data during the multimedia session as shall

be explained later. The client, in fact uses a combination of the file descriptor and client

id to read every round. Also, the client specifies the minimum bit rate that it wants for

the duration of the session. It is assumed that min rate is used to specify the rate that

the client would want after losses in the form of dropped requests. Thus, the client could

potentially ask for more than this rate every round. It is upto the disk scheduler to provide

more than this although the rate specified here is what the disk scheduler tries to give all

participating clients before any client is served more. The extra parameter in this system

call is max layer requiredwhich indicates the number of layers from the file that need

to be returned every round. This call is used by clients that are delay tolerant and loss

intolerant. This function performs the task of admission control by finding out if there is

enough bandwidth to admit the client. If the client is admitted, then it is returned a valid

67



file descriptor and client id. Additionally, disk bandwidth is also reserved for the admitted

client. In case of insufficient bandwidth availability, the cass reduces the numnber of lay-

ers to be supplied and tries to ascertain if the bit-rate requirements for those layers can be

supported. This process is repeated till either admission control succeeds or no layers can

be served. In this , the function returns -1 for the client id and an invalid file descriptor

(same as that returned by sys open().

(d) sys mpeglopen(const char* filename, int flags, int* client id, uint

min rate, int max layer required)

All the parameters mean the same as they do for sys mpegdopen(). The only differ-

ence being that this call is used by clients that are loss tolerant and delay intolerant,

with the clients marked as such after upon admission for helping the disk scheduler take

appropriate action in over-loaded rounds. All functions for admission control performed

in sys mpegdopen() are also carried out by this function.

All the above mentioned system calls have been inserted statically in the system call

table. Since there were problems with allocating random contiguous positions in the

system call table, we had to allocate indices carefully so as not to disrupt normal system

operations. Table 4.1 shows the assignments of indices in the system call table.

Since all the mechanisms for handling admission control have been implemented as

system calls, our admission controller is essentially a part of the kernel. While it is pos-

sible to implement the admission controller as a user level interface, for reasons of sim-

plicity and necessity of communication with the disk scheduler, we have implemented it

in the kernel.

The admission controller constantly interacts with the disk scheduler to measure the

times taken by the various disk requests so that it can admit clients more intelligently.
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System call name Assigned index

sys mmdopen 169

sys mmread 172

sys wfround 173

sys mmlopen 179

sys mpeglopen 180

sys mpegdopen 181

sys mmclose 184

sys reserve 185

Table 4.1: System call table allocation for the various system calls

Thus, there are some data structures shared between the admission controller and the

disk scheduler. The disk scheduler attempts to schedule disk requests optimally, and

also communicates to the admission controller about the various times it is taking for

multimedia clients. The admission controller then uses this information to correlate to

the times that it had been using for admission control and corrects them accordingly.

Thus, there is a feedback mechanism set up between the admission controller and the

disk scheduler to constantly measure and fine tune performance.

4.3 Disk Scheduler

The disk scheduler is central to providing good performance to the multimedia clients

that have been admitted. It serves to not only re-sequence disk requests in a manner that

will reduce the overall time for service, but also supports a certain guaranteed rate for the

multimedia clients. It is also important that the disk scheduler, while attempting to meet

the deadlines of all audio and video clients, does not neglect the non-real time clients. It
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is imperative they do not suffer by having huge response times.

4.3.1 System Calls

Quite obviously, the system call sys read() is insufficient to let the multimedia clients

read at a certain rate. Since there is no new information that can be passed on to the disk

scheduler from the application, the disk scheduler will be unable to distinguish between

multimedia and non-multimedia requests. Hence, we have introduced a new system call

sys mmread() that can be used to mark the requests as multimedia requests. The follow-

ing is the description of the system call:

(a) sys mmread(FILE *fp, int client id, int class, char *buf, int count)

In this system call, fp refers to the file pointer that is returned from one of the system calls

that is used by multimedia clients to request for a multimedia session. The client id is

also returned as one of the values by them. This is used by the disk scheduler to provi-

sion bandwidth, queue, deny or drop the request from the client indicated by the client id.

classrefers to whether the client is delay or loss tolerant. buf is the buffer that holds the

data of countbytes which has been requested by the client. By using this system call,

all information that is required to prioritize disk requests from this client are passed on

to the disk scheduler. This call functions pretty much like sys read() in that, it does

not obtain all the data that the client might want in one invocation. The clients need to

repeatedly use this function call to get all the data they want in a round. Since the amount

of buffer available in a system might be limited, it is not feasible to reserve huge buffer

space for a client so that only one call needs to be made. This could mean that another

client is denied service until such time that buffers allocated to a particular high bit-rate

client are freed. This mechanism of having to read each and every time is in consonance

with the way it is normally done by any client and helps multiple high bit-rate clients to
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function without buffer issues in a low RAM environment. The number assigned to it in

the system call table has been mentioned in Table 4.1.

When clients request service from Clarity, the CBR clients do not have a problem

specifying the bit-rate they want. However, the VBR clients have a constant frame-rate

and possibly varying bit-rates. In order to support VBR clients, Clarity provides a

system call that lets the clients specify in each round how much it wants service for. A

description of sys reserve() follows.

(b) sys reserve(int client id, double blocksRequested)

The first parameter is the client id that is obtained from the client’s call to one of the four

functions to initiate a session. The second parameter as the declaration states is the num-

ber of blocks the client wants to read in the present round. This is essentially so that the

disk scheduler can attempt to serve more than the average number of blocks to the VBR

client. Of course, the availability of extra disk bandwidth is always subject to the other

clients meeting their QoSrequirements. It helps the disk scheduler make better decisions

about using residual bandwidth when all the multimedia clients have been serviced, when

the client informs the scheduler right at the beginning of the round. While in practice,

the client can inform the scheduler at any point in the round, it is helpful if it does so

at the beginning so that the disk scheduler can attempt to service more than the client’s

minimum date requirements.

4.3.2 Implementation Considerations

In the following paragraphs, we shall discuss implementation issues and details pertaining

to the disk scheduler that helped us provide the features mentioned in the chapter on

our approach (Chapter 3). First, we shall discuss factors that directly affect the way our

scheduler works and are very relevant to a complete understanding of our implementation.
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Playback of Multimedia Files

The disk scheduler gives data to the clients which then play it back. Typically, in order

to prevent the clients from missing deadlines, the scheduler must be ahead of them. This

is to say that by the time the client finishes playing out the data for a particular round

completely the disk must have already put enough data in the client’s buffer that it will

continue to play it back unhindered. Simply put the disk must write to the client’s buffer

earlier than it attempts to read from it. Our disk scheduler does not maintain ring buffers

that would allow the data being read being stored in one half of the ring while the client

reads from the other half. We assume that this mechanism has been implemented in user

space by the application that is requesting data on behalf of the actual client. Therefore,

the applications 1 working on behalf the actual clients store data in their internal buffers

and manipulate the buffers so that data is constantly fed to the clients at the required rate.

So as far as the disk scheduler is concerned, it needs to deliver a certain amount of data

in the time period (a point discussed in the following section) to the application. The disk

scheduler does not worry about the actual playback itself.

Determination of Time Period

The determination of the time period over which the clients will be serviced is very im-

portant. It is the time in which the following tasks (a subset of all the tasks performed by

our disk scheduler) are performed:

1. Attempt to deliver all the data requested by the client. At the end of this time, it

is assumed that the time available to fetch data in that round is over and the disk

scheduler re-initializes the blocks read for each clients to start servicing the clients
1Henceforth, we shall use “clients” to mean applications working on behalf of the actual clients (local

or remote).
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all over again for another 1 second(not necessarily in the same order as in the

previous round since Linux does not guarantee it).

2. Measurement of disk access times taken, blocks read, blocks not serviced, deadlines

missed etc. for various clients.

3. Determination of excessive bandwidth usage by any class/individual clients is made

so that classes/clients can be protected from each other.

4. Optimizations in measurements and/or service for clients being serviced in that

round.

We observed that data rates are specified as the amount of data (in bits, bytes, or any

other multiples of these) per second. Therefore, in order to help reduce the complexity

of measurements and calculations (to provide reasonable performance with a low end

machine as the server), we have assumed that the time period is 1 second. Since the disk

scheduler does not directly concern itself with the playback of the file, it aims to deliver

whatever the application supporting a client determines must be delivered for a smooth

playback.

Alignment of Clients with the Time Period

Since we have mentioned that we service clients in rounds, there needs to be a mechanism

to deliver data, maintain statistics and measure performance over a time period that starts

at the time the client is granted admission and starts requesting data. Quite obviously, if

we maintain a timer for each and every client the system CPU will soon be loaded and

will be unable to handle the client requests efficiently. This is since every time a client’s

time period gets over, an interrupt will have to be generated to signal end of round, values

will have to be recorded and variables reset. Also, the process of adapting to the changing
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workload will be an extremely complicated process. In short, it will be extremely ineffi-

cient to have separate timer mechanisms for each client. We have deviced a method by

which clients will be in syncso it can be safely assumed that timing is the same for all

clients. The effect of synchronizing the clients is achieved by the implementation of a

system call sys wfround(). This considerably reduces the complexity of maintaining

state information, makes it easier to adapt to the load, measuring performance and making

other service decisions.

As soon as a client is granted admission, the client calls sys wfround(), which

makes the admission controller put it on a WAIT QUEUE. This WAIT QUEUE is shared

by (1) clients that have been admitted in that round, and (2) clients that have finished re-

ceiving their service for the ongoing round. When the 1 secondtimer interrupts signalling

the end of the round, the disk scheduler wakes up all the clients on this WAIT QUEUE.

This is done so that when the next roundstarts the new clients are woken up along with

the old clients for service so that there is no delay in letting the new clients request disk

service. We assume that the client is well-behaved in this respect and do not concern

ourselves with a situation when the client does not put itself on wait for the end of the

round.

Measurement of Disk Access Time

While it is theoritically possible to predict the disk access time from the application of

various schemes that model a hard drive, in reality it is very difficult to make measure-

ments for a particular block. In many cases, when the disk controller receives a request

for reading a block, it caches the entire track. If there is a request for a block on the

track that it cached before its expiry from the controller’s cache, it is serviced from there.

In our implementation, we mark each and every request as being a non real-time

or a real-time request. When a DMA transfer completes and the kernel is interrupted,
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end request() is called. end request() marks all the buffer head structures

dirty (having been written to) so that the application that owns the buffer head struc-

tures can pick up the data from them. We count the number of buffer head structures

that are freed for the non real-time and real-time clients. When all the buffer head

structures associated with a request have been marked, we subtract the time (obtained

with do gettimeofday()) when the DMA transfer began from the time that it ended.

The time taken for requests from each class is calculated as a weighted average of the

time taken for the DMA transfer.

Measurement of Bandwidth Consumpion by Service Classes

This is an aspect that is very important from the point of implementation. Since there

is little precious bandwidth available to the various service classes, it is very important

that measurements are as accurate as possible. In our implementation, the time taken

by various requests is not predictive but measurement based. This translates into times

for service being available only after the actual disk service has taken place. While this

might seem fine, there is a subtlety involved that we have to be careful about. Suppose

that there is a request that is formed out of a number of requests. In Linux, a request can

be composed of reads to adjacent blocks (requests for which could come from different

clients). Suppose servicing this request takes 40 milliseconds. Since the requests are ser-

viced through DMA transfers, the CPU is potentially capable of putting more requests

on the service queue before the disk notifies it of the previous request having been ser-

viced. Suppose a request (R) is put on the disk service queue during the service of the

previous request (P). Let us further assume that both requests belong to the same class

(but different applications). If the aggregation of disk service times till request P is nearly

equal to the class time slice available in the round, it is quite possible that servicing R

will result in overconsumption of bandwidth by the class to which P and R belong. This
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is since a request is definitely processed if it is moved to the service queue for the disk.

While it is possible that a check can be made to see if the bandwidth for the class that the

request belongs to has been exceeded before passing it onto the disk controller, it is not a

very clean solution since the request could have been coalasced out of multiple smaller

requests from clients belonging to different classes. Furthermore, it would be extremely

complicated if we were to take out only those smaller requests which belong to the class

that has already consumed its fair share and re-arrange others. In fact, it would break the

consistency of the entire request structure since no longer are blocks adjacent to each

other. In order to avoid such complications, we felt it is a better idea to check before a

request from a client is sent for adding into the disk service queue where the request could

either get merged with existing ones (since it is for a block adjacent to some already asked

for) or get added as a separate request itself.

In order to prevent over-usage of bandwidth, we have made our measurement of disk

access time for a particular request predictive. This is to say that we use the average value

for disk access from previous DMA transfers and calculate the amount of time that will be

consumed if a particular request is let through. If this exceeds the class’s share of the disk

bandwidth, it is blocked. Otherwise, it is sent for addition to the disk service queue. We

also keep making adjustments to the average disk access time per block by small amounts

(ε), which is obtained by comparing the predicted value to the value obtained from the

latest DMA transfer. This is to make predictions of disk usage take into consideration the

changing state of the system.

Protection of Service Classes

As explained earlier in our approach, it is very important that presence of clients belong-

ing to one class should not be allowed to affect the performance perceived by the clients

of another class. While, it is not possible to completely eliminate effects of classes on
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each other we have attempted to minimize the performance degradation of any client due

to other clients in the system. Using the procedure for measurement of disk time us-

age outlined in the previous section, when it is found that a particular class has used up

its fair share of the bandwidth, the scheduler blocks all the requests from that class and

puts the client on a WAIT QUEUE. When either the round gets over or there is additional

bandwidth available, the scheduler starts processing all the client requests that had been

blocked.

Protection of Clients within a Service Class

While it is very important that different kinds of clients receive good service, it is equally

important to ensure that clients in one class do not force others in the same class to per-

form poorly due to their over using the bandwidth available to the class. This is a very im-

portant aspect that schedulers fail to consider while supporting multimedia clients. While

every class is provided with a certain percentage of the bandwidth every round, there is

no mechanism to limit the amount of data that is requested by a client in each round.

Also it could be disastrous to hope that the clients are all going to be well-behaved and

request only as much as they specified at the time of admission. Therefore, as described

in detail in section 3.4.3 we have incorporated a mechanism in the disk scheduler to limit

the service provided to any one client. When a client has obtained its stated requirements

for a round and wants to read more, the disk scheduler checks to see if all the remaining

clients in the same class have been satisfied (if they have any stated minimum require-

ments). If they have not been, it blocks the requests for the requesting client and puts it

on a WAIT QUEUE (defined in the Linux kernel [36, 37, 38]). This procedure is contin-

ued until clients that have not obtained their data are forced to be executed by the process

scheduler since the others have been put on a WAIT QUEUE. When the data requirements

of all the clients are met, the disk scheduler wakes up all the multimedia clients using the
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wake up() call so that they can compete for the remaining time slice (if any) to try and

meet their data requirements for that round.

Essential clients versus Non-essential clients

While the disk is generally used to store and retrieve data from the files, most (and it

might not be inaccurate to say all) modern computers use the disk for Virtual Memory

Management (VMM). This means that apart from disk requests being sent by normal

non-real time clients, they could well be sent for loading a page into the main memory on

a page fault. While, it might be acceptable to delay processing requests from a non-real

time client simply reading from a file, VMM related requests might have to be serviced

irrespective of whether there is enough disk bandwidth to service non-real time clients

or not. In such cases, bandwidth from any class that has it needs to be used to service

the page fault since the page to be retrieved could be critical to the running of another

application (which could well be a real-time application). We identify such disk requests

as essentialnon-multimedia disk requests. Therefore, we have classified non-multimedia

clients as essential and non-essential and allow disk service to the essential ones under all

circumstances.

Adaptability to Changing System Load

In our semi-aggresive implementation, we re-evaluate the amount of time that is necessary

for different classes in the remaining part of the period every 200 milliseconds. With

sufficient load of both classes of clients, one would expect a fairly even distribution of

disk usage every 200 milliseconds. However, depending on the amount of disk requests

generated by each class in the round, we attempt to re-allocate bandwidth so that in the

absence of disk requests from clients of one class and a large under-utilization of disk

bandwidth, disk can be used for servicing other classes if required in the future. When
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we detect that a class is consuming less than its share of bandwidth we extrapolate the

bandwidth requirements for a class from the measurement obtained so far in the round.

This takes into consideration the amount of time that the disk has been idle. We then re-

assign the excess bandwidth and increase the time slice of a class that needs bandwidth.

The amount of bandwidth (in milliseconds) that is re-assigned can vary depending on

the statistical analysis of client load depending on usage characteristics in various times.

However, if it is found that some of the multimedia clients are not meeting deadlines due

to re-assignment of some of the originally assigned bandwidth, Clarity gives back the

required bandwidth to the multimedia clients to avoid deadline violations.

We carry out this process of re-assignment in order to maximize the disk utilization

and let classes that need disk bandwidth take it from those that do not. It must be remem-

bered that this method is predictive in nature and a surge in the number of clients in a

class during the course of a round can cause this mechanism to breakdown. However, we

believe that this method of re-allocation is both useful and practical because the effects of

this mechanism are localized to a single round and in most of the cases, usage of band-

width measured at regular intervals during a round are a good representation of the load

on the system due to different clients.

Minimization of Seek and Rotational Latencies

As mentioned earlier, Linux uses CSCAN algorithm to service disk request. Our imple-

mentation is a variation of CSCAN-Earliest Deadline First (EDF). We simply assume

that the deadline for all the multimedia requests in the end of the roundbut do not assign

deadlines for each and every request. This has been specifically done to avoid a fairly

significant overhead of calculating and possibly re-calculating the deadlines for all the

requests in the queue as and when insertion take place. Also, we are prevented from as-

signing each request a deadline since the disk scheduler does not know apriori how many
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requests are going to be received each round (new clients can join, variable bit-rate appli-

cations can request more data etc.). This would mean the scheduler cannot determine how

soon a request needs to be scheduled to meet the requirements of all other multimedia re-

quests in that round. Additionally, this would not allow the disk scheduler to coalesce

requests for adjacent blocks to be combined into a single request (struct request).

This merging of requests is carried out since the time for reading a sequence of blocks is

far less than that taken for reading them through individual calls. This also tends to make

use of hard disk controller optimizations where entire tracks are read and cached on the

hard drive when a block of data is requested so that requests for subsequent blocks are

served from the cache rather than the disk. This results in a huge reduction of service

times.

Assigning the end of the roundas the deadline lets us perform CSCAN optimizations

to sequence the requests so that they incur minimum seek and rotational latencies. We

have not explored the option to allow coalescing of only those requests that belong to

the same class. This mechanism would partly allow us to assign deadlines to the various

multimedia requests, and insert non real-time requests whenever there is a slack. It is

our belief that the gains from optimizations arising from assignment of deadlines to the

individual requests do not outweigh the computational overhead incurred in the process

(especially on slow machines).

Awareness of Caching Policies in the Operating System

We have carefully avoided having any core scheduling functionality before the caching

layer so that all of it is below the layer that caches the disk blocks in memory. All our

disk related functionality has been incorporated in the ll rw blk.c which contains

the routines for low level read and writes like ll rw block(), make request()

and add request()When a client requests data, Clarity receives the request only
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if the requested block is not in memory already. This mechanism is especially helpful

for handling MPEG clients, since they do a lot of random access in order to generate

frames for display. Thus, all such random seeks (if fairly close to the present position

in the file being read) can be handled by the cache without sending a disk request. This

implementation is also consistent with our view that caches can be effectively used to

service clients separated in time and reading the same file and has been done with a view

to supporting cache-based admission controllers proposed by us in chapter 3.

Using Inherent Media Characteristics to Service Requests

In this work, we have tried to differentiate between two very different classes of multime-

dia applications, namely layered (MPEG) and non-layered (RealVideo, RealAudio etc.).

In order to service MPEG clients, the disk scheduler treats the file as a layered stream

with I, P and B frames contribution to increased frame resolution. However, it must be

remembered that the disk scheduler does not really understand the encoding/decoding

process for the files and that the layering is understood purely in terms of reduction in

the number of disk blocks returned to the application. The disk scheduler estimates the

amount of time that it would take to process the remaining requests using the average

time per block. When it determines that the round is going to be over-loaded, it drops

layers for the MPEG clients. After dropping out a layer for each of the MPEG clients, it

then drops the remaining blocks that cannot be serviced from the other clients uniformly.

By doing this, we ensure that the application can decide whether or not to drop a layer

by reducing the number of requests sent to the disk scheduler. This can help it ensure

that unnecessary data is not obtained for MPEG streams since when retrieving only a part

of the frame (might need a complete set of blocks before decoding them into I, P and

B frames) will not substantially increase visual quality. Our design ensures that any of

the media specific optimizations (mostly by the applications) are carried out before the
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request is put onto the system disk queue.

Ability to Support Variable Bit-rate Applications

While the mechanism to support variable bit-rate applications has not been completely

implemented in the disk scheduler, we attempt to support variable bit-rates by providing

mechanisms that can be used by the clients to read data at different rates during the course

of playback. Our kernel exports sys reserve() (a system call that can be used to

convey the number of bytes the client needs in the immediate round). The disk scheduler

uses the average value of the playback to first service the agreed upon data for all the

clients, before servicing clients with increased bit-rate requirements. While this allows

the clients to ask for more data than guaranteed, the actual amount of data received will

depend on the current load of the disk. Protection of service classes ensures that in the

presence of non real-time clients, and relatively few multimedia clients, variable bit-rate

clients can be adequately supported.

Efficiency of Computation

Theoretically speaking, there can be a number of optimizations made and the best de-

cisions taken regarding servicing a particular client/request. While these can be imple-

mented when the experiements are being conducted through simulations, actual imple-

mentations must take due consideration of the fact that optimizations can consume con-

siderable amount of system resources like CPU. Therefore, they should balanced opti-

mizations against their benefits. It is very important that restrictions imposed by memory

and processor speed are considered key factors while deciding on the amount of com-

putation to be carried out. We avoid complex re-arrangement, insertion of requests into

the system queue. We have preferred to keep re-ordering of requests less mathematical

while writing our disk scheduler within the framework offered by the existing Linux disk
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scheduler. Most of our computations are restricted to maintaining statistics to make our

scheduler as adaptive and intelligent as possible. We try to take a decision about whether

a request needs to be serviced prior to putting it on the request queue, which saves pre-

cious bandwidth used to insert it into the system disk queue. The following are the time

complexities of some of the commonly performed operations in our scheduler.

Operation Time Complexity

Determination of blocks serviced for a client O(1)

Insertion of request into a WAIT QUEUE O(1)

Removing client requests from WAIT QUEUE O(n)

Determination of average disk access time per block O(1)

Insertion into the system disk queue O(n)

Re-allocation of disk bandwidth O(1)

Updation of client information (blocks read, allowed etc.) O(1)

Table 4.2: Time Complexity for Various Commonly Performed Operations in the Disk

Scheduler

In table 4.2, n refers to the number of multimedia clients that have been admitted for

service.

We have carried out all the implementation using a 2.0.36 2 kernel for an Intel x86

architecture. All the software and their versions needed to compile this kernel can be

obtained along with the distribution from various web-sites.

2The current kernel version is 2.4.17
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Chapter 5

Performance Evaluation and Results

“Experimental confirmation of a prediction is merely a measurement. An

experiment disproving a prediction is a discovery.”

Enrico Fermi, Italian physicist

We present an evaluation of our proposed admission control and disk scheduling

schemes.

The measurement of performance of the different admission control schemes help us

better understand how various sytems can be better utilized to service multimedia clients

by allowing partial delivery of data that is requested by the clients and by exploiting

commonly implemented features in an operating system, like caching. The following

metrics were used to evaluate our admission controllers (optimistic and measurement-

based) and compare their performance with pessimistic admission control schemes.

• Number of Clients Admitted: The total number of clients that were admitted for a

multimedia session out of a large number of requesting clients.

• Percentage of Deadlines Missed: In admitting the multimedia clients, there could

be a number of deadlines missed. We measure the percentage of deadlines that
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were not satisfied (which reflects on the quality of service received by the admitted

clients).

• Disk Bandwidth Partitioning: In the absence of the disk bandwidth partitioning

being enforced by the disk scheduler, it is interesting to see how well the admis-

sion controller in conjunction with the disk scheduler can estimate the amount of

time consumed by the multimedia clients admitted for service. This is especially

important since an inaccurate estimation process could either deny service unnec-

essarily to multimedia or non-multimedia clients or result in a high percentage of

deadline violations for multimedia applications or increased response time for non-

multimedia ones.

The measurement of performance of the admission controller has been largely inde-

pendent of the disk scheduler and dependencies have been noted wherever applicable. In

order to measure the performance of our disk scheduling algorithm, we have focussed on

the following issues:

• Raw Throughput Performance: This experiment is aimed at measuring how nor-

mal applications would behave with Clarity, in the absence of any multimedia

clients.

• Protection of Service Classes: When there are a large number of clients belonging

to one particular class, the efficiency of Clarity in dividing bandwidth among

them in trying to ensure that performance of the other classes does not suffer.

• Intra-Service Class Protection: This focusses on how QoSis maintained for dif-

ferent multimedia clients in the presence of VBR (variable-bit rate) clients. VBR

clients can read more than the average number of blocks in a round, which can

cause other multimedia clients to miss their deadlines or suffer loss.
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• Bandwith Re-allocation: This focusses on how Clarity re-assigns bandwidth when

the bandwidth available to one class is under-utilized and is required for satisfactory

performance of applications belonging to another class.

• Overloaded Rounds: There are instances when a number of VBR clients trying to

use more than their share of the disk bandwidth can cause the round to be over-

loaded. In such cases, Clarity attempts to drop blocks and informs the applica-

tion about such an action so that the application can then decide what it needs to do

to minimize the impact of loss or delay etc.

5.1 Determination of Running Time for Clients

When designing the clients, it was very important to identify the minimum duration for

which the clients must run so that we can obtain stable statistics. Typically when multiple

clients are started for service there is an initial period of time when the kernel is setting

up data structures for the new processes. It takes some time for the system to achieve a

state of equilibrium so that measurements between one run and another, under the same

set of constraints or conditions, are consistent.

Therefore, in order to determine the minimum running time for the clients, we exe-

cuted clients and measured the average response time and throughput over various dura-

tions of client execution. The clients are not configured to read any specific number of

blocks and were all started at the same time. All the clients, when started, just go on read-

ing from the disk continuously and at the end of the run, record their average throughput

and response times. This very closely simulates scenarios that would occur during our

testing, where we will have to start a certain number of clients at the same time. The rea-

son we cannot always start one client at a time is because of limited space. Since starting

each client separately would mean that clients at the beginning of the test must read files
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that are very large in order for them to last the entire duration of the test. Due to limited

disk space, it was not possible for us to create a number of very large files (> 70 MB).

We measured the average response time and average throughput for 10 clients. This

was done in order to ascertain the minimum duration for which both these values would

be stable. Figure 5.1 shows the values obtained for various running times for 10 clients.

It can be seen that the values are not consistent for execution times from 5 secondsto 20

seconds. However, when the times of execution goes beyond 20 seconds, it is seen that

there is very high degree of consistency in measured values. It may be remembered that

for all our experiments we rely on the extended filesystem (ext2fs) implemented in Linux

for allocation of disk blocks.
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Figure 5.1: Determination of Client Execution Time: Average response times versus

Client execution times for 10 clients

A similar pattern is observed when looking at the average throughput for 10 clients.

It can be seen that while the average throughput is not predictable for execution times of
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5 secondsto 20 seconds, it is predictable and consistent thereafter. Figure 5.2 shows the

average throughput in MBytes/secover different client execution times.
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Figure 5.2: Determination of Client Execution Time: Average throughput versus Client

execution times for 10 clients

From the pattern seen in the two graphs, we decided to have client execution times

of at least 25 seconds. However, we have not restricted the running times for each client

to 25 secondsand there are a number of experiments where we have more than a single

client (i.e. a group of clients) execute for a minimum of 25 or 30 seconds. This was done

due to the limited amount of disk space available, since running each client for 30 seconds

for every experiment would mean the clients starting initially would require huge files.

5.2 Admission Control

In order to measure the performance of our schemes with that of pessimistic admission
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control scheme, we did measurements of various parameters. Since the amount of time

taken to retrieve data blocks from the disk is dependent on the size of each block of data,

we have attempted to measure the performance of different admission control schemes

for varying blocks sizes of 1KB, 2KB, and 4KB.

Number of Admitted Clients

In order to facilitate testing, we have multimedia clients attempting to start sessions using

Clarity’s framework. They are CBR (constant bit-rate) clients that attempt to read

the same number of blocks from the disk every round. However, each client attempts

to read a different file so that sufficient disk requests are generated and measurements

from disk access are used for admission control. We also made sure that the size of a

file was fairly large (> 35 MB) in order to prevent substantial caching of the file, which

would in turn reduce the number of disk requests. The bit-rate for each multimedia client

is 12KBps.1 The test was designed to start a multimedia session every 30 seconds(for

reasons explained earlier) and record the number of clients that are admitted for a multi-

media session. Upon, admission a multimedia client attempts to read as many blocks as

mentioned at the time of admission every round. Once the client has read the required

number of blocks, it waits for the kernel to signal end of the round before reading data for

another frame. This arrangement keeps all clients in sync with start and end of a round 2

and also ensures accuracy of measurements made during any particular round for various

multimedia clients.

Figure 5.3 shows the comparitive performance of pessimistic, optimistic and measure-

ment based admission controllers for a block size of 1KB.

Since the pessimistic admission control assumes that every access to the disk requires
1All multimedia clients read in kilobytes (KB)
2For definition please see footnote on page 10 in Chapter 1
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Figure 5.3: Number of clients admitted by pessimistic, optimistic and measurement-based

admission controllers for a block size of 1KB

the worst time observed, it is able to admit only a single client. It does not take into ac-

count the fact that when hard disk is accessed entire tracks can be cached and subsequently

provided with very little access time. Therefore, while it is able to provide guarantees to

hard real-time clients, it results in a very low number of soft real-time clients being admit-

ted. On the other hand, assuming that each access to the disk is going to be closer to the

average value, the optimistic admission controller, clealy performes better by admitting

two clients. However, even the optimistic admission controller also assumes that each

request needs to be sent to the disk for service. Since it assumes that for every request

sent disk access converges to an average value it performs better than pessimistic. As it

evident from the graph, it the measurement-based admission control that does extremely

well by admitting all the 27 3 clients that request for service. Measurement-based admis-
3The number of clients used to request service was restricted due to storage limitations. This does not
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sion controller measures the time taken for blocks to be read from the disk, which enables

it to to take advantage of system optimizations like pre-fetching of disk blocks both by

the operating system and the hard drive controller. We predict, based on measurements of

bandwidth usage, that the measurement-based admission controller admitted just as many

as can be accomodated for a disk block size of 1KB.

Figures 5.4 and 5.5 compare the performance of the admission controllers for 2KB

and 4KB block sizes respectively for clients reading at 12KB per second.
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Figure 5.4: Number of clients admitted by pessimistic, optimistic and measurement-based

admission controllers for a block size of 2KB

It may be noted from the graphs that for all admission controllers the equation of

the line depicting the number of admitted clients versus the number of requesting clients

would be x = y. This means that until such time that the admission controller rejects

necessarily represent the actual maximum number of clients that can be accomodated in the system by

measurement-based admission controller.
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admission controllers for a block size of 4KB

request for a multimedia session, the number of admitted clients is the same as the number

of clients that requested for a multimedia session. Once a client is rejected, the number of

admitted clients stays the same although the number of requesting clients keep increasing.

This is depicted by flattening of the graph at the point where a client requesting a session

is denied admission, i.e. does not become an admitted client.

Since the time for retrieving blocks from the disk decrease with increase in block sizes,

the pessimistic and optimistic admission controllers admit more clients with increasing

block sizes. In the 2KB block size case, while the pessimistic admission controller ad-

mits 2 clients, the optimistic admission control scheme does much better by permitting

5 clients into the system. This is because as the disk block size increases, using average

values for disk access provides much lower predicted values for disk bandwidth consump-

tion than using worst-case values. As observed earlier, the measurement-based admission
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scheme serves by far the most number of multimedia clients by admitting all the 27 re-

quested sessions. From the plot of disk bandwidth consumption in Figure 5.6, we predict

that the measurement-based admission scheme would admit around 30 clients. In the 4KB

case, it is observed the pessimistic admission control scheme permits 5 clients with the

optimistic scheme permitting 9 sessions. This is because for a given bit-rate, increasing

block size results in decrease in the number of requests to the disk. Therefore, the disk

bandwidth required to read the same amount of data decreases under both pessimistic and

optimistic admission schemes. The measurement-based admission controller admits all

the 27 requested multimedia sessions. While we could determine the maximum number

of clients that the measurement-based admission scheme would admit experimentally, we

predict that it would be around 50.

It is observed that all the admission control schemes permit an increasing number of

sessions with increase in block size. The difference in the number of clients admitted

by optimistic and pessimistic admission control is also found to increase with block size.

Although we did not measure performance with adaptive measurement-based scheme, we

expect that it would admit at least as many clients as the non-adaptive measurement based

admission control.

Percentage Deadlines Missed

It quite obvious from the previous graphs that the measurement-based admission control

scheme performs very well by admitting a large number of clients. But what is of greater

interest is if admission for a large number of clients results in a high percentage of dead-

lines missed. It is definitely not acceptable to have a high percentage of admission which

results in a large number of those admitted clients not receiving guaranteed service, since

our case for recommending a measurement-based admission controller, which utilizes av-

erage values of measured times for disk access, is that it not only permits a large number
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of clients but also meets their quality requirements. In order to determine the efficiency

of the measurement-based admission controller, we compare the percentage of deadlines

missed by the various clients during the course of their playback. It was observed that all

clients admitted using the measurement-based admission controller receive all the band-

width they require to maintain their quality of service. This is shown by the fact the

deadlines met for all the clients is 100%. This is also true of clients admitted with the

pessimistic and optimistic criteria.

As a point of further interest, we also take a look at the amount of time that is con-

sumed in each round that the clients execute in, since not missing deadlines is not an accu-

rate indication of the amount of time taken in each round to maintain the quality of service

guaranteed to each client. This is because the disk scheduler is not constrained to restrict

the amount of time given to servicing multimedia clients, although it does provide the

average time per request to the admission controller. Since there are no non-multimedia

clients in the system, all the available time in a round can be used for servicing multimedia

clients to meet their deadlines. Therefore, an accurate representation of admission control

efficiency is a combination of the fact that all deadlines are met and the time estimated

time by the admission controller is close to the time available (and preferably less than

the time allocated for multimedia clients, which in this case is 500 milliseconds). Figure

5.6 shows the amount of time taken to service all the admitted multimedia clients in each

round (with a disk block size of 1KB). It can be seen that in admitting 27 4 clients, the

admission controller, in majority of the rounds, does not force the disk scheduler to spend

more than 500 millisecondsin servicing all the requests from these clients. There seems

to be a certain fraction of rounds where the disk scheduler spends more than 500 mil-

lisecondsservicing client requests. In addition to measurement with a block size of 1KB,

the total time taken for servicing multimedia clients was also taken with varying block
4Please refer to footnote on page 90 for explanation on the number of clients
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size of 2 and 4KB. The results obtained were similar to the 1KB case, but it is seen the

disk scheduler spends far less than time allocated for multimedia clients, in servicing the

same number of clients. Clearly, the measurement based admission controller not only

increases the number of clients serviced, but does so within the constraints of bandwidth

availability for all multimedia clients.
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Figure 5.6: Measurement-based admission control: Disk bandwidth consumed for various

disk block sizes

We next take a look at the comparitive performance of our measurement-based admis-

sion controller and its adaptive variation. In this case, we admit MPEG clients which have

very high bit-rate requirements. Also, since we observed in the previous experiments that

12KBpswere not sufficient to load the disk scheduler, using higher bit-rate clients helped

us observe the limit for admitting such clients. We compare the performance based on

2 factors: the number of clients admitted and the fraction of disk bandwidth consumed.

For this experiment, the clients had a bit-rate of 192KBpsor 1.5Mbps. This represents
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the bit-rate requirements of MPEG-like clients. The measurement-based admission con-

trol uses disk access times provided by the disk scheduler to grant or deny admission for

a multimedia session. On the other hand, the adaptive admission controller attempts to

find the maximum rate at which such MPEG-like clients (which are layered and so can

provide good picture quality even at reduced rates) can be admitted. Figure 5.7 shows the

number of clients admitted for various block sizes of 1KB, 2KB, and 4KB.
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Figure 5.7: Comparison of measurement-based admission control and its adaptive varia-

tion for various block sizes: Number of MPEG-like clients admitted

As can be expected, the number of client admissions are directly proportional to the

block sizes (at least for the block sizes that we have tested with). This is because time

for retrieval of data blocks decreases with an increase in the block size, since an access

to the disk fetches more. However, it is to be noted that there is performance gain only

up to a certain block size. Beyond that the fact that the disk takes very long for even a

single block of data can result in deterioration of disk performance. While both adaptive
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and non-adaptive measurement-based admission controllers admit an increasing number

of clients, it is observed that the adaptive admission controller always admits more clients

that the normal measurement-based admission controller. In this case, the difference in

the number of clients admitted is 1. Since in the absence of sufficient disk bandwidth,

the adaptive scheme attempts to find the maximum bit-rate that can be supported, most of

the residual bandwidth would be used for admitting the last client. However, it must be

remembered that variations in disk access times, bit-rates for serving various clients can

result in a much higher number of clients being admitted by the adaptive scheme.

Apart from the fact the adaptive variation of the measurement-based admission con-

troller admitted more clients it is able to do so while consuming less that the amount of

bandwidth allocated to the multimedia clients. This is especially important since it would

be prohibitive to incur penalties in terms of disk times used for multimedia clients by way

of admitting clients at slightly lower bit-rates. Figure 5.8 shows the amount of time con-

sumed for block sizes of 1 KB, 2KB and 4KB. The figure shows the fraction of the total

disk bandwidth that is consumed by multimedia clients. During the initial stages, when

more and more clients are getting admitted, the graphs rises since it results in increased

disk access. However, when no more clients can be admitted, the amount of disk band-

width used seems to flatten and shows very little increase or decrease. However, it can be

clearly seen that adaptive measurement-based admission control can be successfuly used

to not only increase the number of clients serviced, but also increase disk utilization.

From our performance measurements, it is clear that the optimistic admission con-

troller based on fixed average disk access times performs better than the traditional pes-

simistic admission controller. It not only admits more clients but also does not violate

any deadlines for the clients admitted. The measurement-based admission controller per-

forms much better than both the optimistic and pessimistic admission controllers in terms

of the number of clients admitted for service. It is found that averaging the measured
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Figure 5.8: Fraction of total bandwidth consumed by MPEG-like clients under the adap-

tive measurement-based admission control scheme

disk access times reported by the disk scheduler, and using that to admit clients results

not only in increased client admission but also led to better utilization of the bandwidth

assigned to multimedia clients. This implementation is also in contrast to the idea of us-

ing worst-case observed times for admitting clients, although the worst-case times would

still probably be less than the fixed worst-case times reported for retrieving a disk block

of data. In order to improve performance further, we use adaptive techniques applied to

the measurement-based admission controller. This attempts to exploit the inherent prop-

erty of clients that access layered streams, where admission to a reduced number of layers

would still not result in very poor video quality. We have carried out experiments based on

percentage of client admission, deadlines missed as a result of client admission, fraction

of bandwidth consumed by multimedia clients and conclude that our approach outper-

forms existing techniques for admission control. It must be remembered, however, that
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the optimistic admission control can function independently of the disk scheduler since it

does not need any information from the disk scheduler about the disk access times. On

the other hand, the measurement-based admission controller needs support from the disk

scheduler to find out the disk access times for a block of data. The disk scheduler does

not need to provide other services like inter-service class protection and intra-service class

protection.

5.3 Disk scheduling

We carried out performance measurements of Clarity’s disk scheduling mechanism

with emphasis on some of the points that were mentioned at the beginning of this chapter.

While we cannot simulate all possible scenarios which this framework might be required

to perform under, we have attempted to highlight some of the important scenarios that

merit attention and detail.

Raw Throughput

Clarity’s framework has been designed with an intent to add support to the Linux

kernel to allow various types of clients to have their application requirements met. For

the purposes of our evaluation we have considered only two major application classes,

multimedia and non-multimedia clients (traditional non-real time clients). It is there-

fore very important that in the absence of the multimedia clients Clarity perform as

well as the original disk scheduling framework for non-multimedia clients. For non-

multimedia applications, two of the most important factors for performance are response

time and throughput. Our first test of Clarity’s ability to handle non-multimedia

clients involved loading the system with only non-multimedia clients and measuring how

the clients performed. Since we have an intelligent disk scheduling framework in order to
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meet the service requirements of multimedia and non-multimedia clients, Clarity in-

curs additional overhead in terms of managing information for each clients in its various

internal data structures, re-sequencing disk requests, running timers so that the system

performance is constantly monitored and maintaining statistics on how well the applica-

tion requirements are being met. Therefore, it is of interest to see how much overhead we

incur as a result of the adding this framework.

Our first experiment consisted of adding non-multimedia clients, a certain number at

a time in order to simulate the presence of the number of clients in the system. The clients

once started just go on reading from the disk for as long as they run. Since we want to

be able to load the disk, we have attempted to keep the clients very thin with a view to

making them consume as little CPU time as possible. Figure 5.9 shows the results of our

experiment for measuring the average throughput of the clients. The graphs shows a plot

between the number of clients in the system on the X-axis versus the average throughput

seen by the clients on the Y-axis.

The graph shows that we introduce three clients at an interval of 30 secondsuntil we

reach a maximum of 15 clients. As the number of clients increases the average throughput

of each clients reduces. The experiement was repeated under Linux and Clarity for

various block sizes of 1KB, 2KB, and 4KB. It is observed that in each case the average

throughput experienced by the clients under Clarity matches that observed under the

Linux scheduling framework. This asserts the fact that our framework does not results in

loss of service in the absence of multimedia clients and will continue to perform as well

as the traditional system.

Apart from measuring the average throughput we also measured the average response

time seen by each client in the system. The response time is the difference in the time

between making a request and getting the requested block of data. This experiment also

involved introduction of three clients at 30 second intervals until the system had 15 clients.
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Figure 5.9: Performance comparison of Linux and Clarity in the presence of only

non-multimedia clients: Average throughput

Our measurements, in this case, were also made for different block sizes of 1KB, 2KB,

and 4KB. Figure 5.10 shows the results of this experiment. It is clear from the graph that

the average response time seen by the clients under Clarity is again very comparable

to that seen by them under the traditional Linux environment.

The graph shows that as the number of clients go on increasing the average response

time of each client increases, as can be expected. This also tallies with the fact that the

there is a reduction in the average throughput seen by each client as the number of clients

in the system increases.

We note that all the measurements were made at the application level and not at the

disk scheduler level. If we take measurements at the level of the disk scheduling, it

would hide any CPU intensive computation that Clarity might be do. If Clarity

consumed too much CPU resources to perform its functions, while we might be able to
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Figure 5.10: Performance comparison of Linux and Clarity in the presence of only

non-multimedia clients: Average response time

get comparable performance for data retrieval at the scheduler level, Clarity could

very easily fail to give the data back to the applications as quickly as Linux does it. It

is only because Clarity is computationally efficient that it is able to match Linux’s

performance even at the application level.

Inter Service Class Protection

While Clarity performs very well in the absence of multimedia applications, our pri-

mary goal is to be able to support both multimedia and non-multimedia applications at the

same time. There are a number of scenarios that are of interest in terms of performance

monitoring. One such scenario is the presence of an excess number of clients of one class.

Under traditional Linux there is no differentiation of service and all the clients compete

equally for disk bandwidth. However, it is of interest to see how well Clarity offers
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inter-service class protection. In other words, does Clarity ensure that multimedia

clients meet all their deadlines when there are excess non-multimedia clients and main-

tain acceptable response time and throughput for non-multimedia clients in the presence

of too many multimedia clients.

Our experiment involved starting with two multimedia clients at the beginning (t=0

seconds). These clients can be admitted using anyone of the previously discussed ad-

mission control schemes. For the purposes of our evaluation, we used the adaptive

measurement-based admission controller. Each of the clients attempted to start a sessions

requesting 192KB every second. Once the multimedia clients had run for 30seconds,

non-multimedia clients were introduced. As in the previous experiments, these clients

just read a file from start to finish. They had no upper bound on the number of data blocks

they should read in each round. We introduced 6 non-multimedia clients at an interval

of 30 seconds. The disk bandwidth was configured to be divided equally among real-

time and non-real time applications, i.e. ρ, the fraction of bandwidth available to service

applications with guarantees, is 0.5. Due to disk space limitations, we introduced only

twelve non-multimedia clients in all. But we believe that this generated a very good load

in which to test Clarity’s ability to efficiently partition bandwidth. We would like to

point out that the following anaylsis holds good for both loss-tolerant and delay-tolerant

multimedia applications. We will, however, make an attempt to identify situations that

are applicable to only one or the other wherever necessary.

Figure 5.11 shows the performance of the disk scheduler under Linux. It is observed

that initially the plot of the disk bandwidth consumed by multimedia clients is steady. In

the absence of any other clients in the system, the disk scheduler is able to meet all the

deadlines of the multimedia clients. Figure 5.12 shows a plot of the percentage deadlines

missed in the presence of different number of non-multimedia clients. Please note that

measurements were made only at points explicitly marked (6 and 12 clients). Also, this
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Figure 5.11: Bandwidth partitioning under Linux in the presence of excess non-

multimedia clients

measurement holds for both delay-tolerant and loss-tolerant applications. While dead-

lines missed seems to apply to more intuitively to loss-tolerant clients, with delay-tolerant

clients, we can still consider delayed frames as having missed their deadlines for being

displayed.

However, in order to keep representation of results simple and its understanding intu-

itive, we have used straight lines to join only those points at which measurements were

made. While we expect the percentage of deadline violations to be in the vicinity of the

line, we claim no accuracy of data at intermediate points. In figure 5.11, the introduction

of 6 non-multimedia clients is reflected by a spike in the amount of disk bandwidth con-

sumed by non-multimedia clients around the 30th round. We observe the assignment of

disk bandwidth to the multimedia clients becomes irregular and starts oscillating. It also

leads to a number of deadlines violations because of the fact that the newly introduced
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Figure 5.12: Percentage of deadlines missed under Linux and Clarity in the presence

of excess non-multimedia clients

non-multimedia clients consume all the disk bandwidth. It can be observed from figure

5.12, that the percentage of deadlines missed is a little more than 10% in the presence of

6 non-real time clients. When the number of non-real time clients is increased to 12, it

observed that percentage deadlines missed further increases. Figure 5.12 shows that more

than 12% of the deadlines are missed.

We repeated the same experiment under the Clarity framework. Figure 5.13 shows

how disk bandwidth allocations was carried out throughout the duration of the test. We

observed that the behaviour of multimedia clients before introduction of non-multimedia

clients is similar to that under Linux. This is because the multimedia clients are con-

suming much less than their share of the bandwidth and there are no non-multimedia

clients to compete for bandwidth. All their deadlines are met and the allocation of disk

bandwidth is steady. When 6 non-multimedia clients are introduced, there is a spike in the

105



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n 
of

 d
is

k 
ba

nd
w

id
th

 c
on

su
m

ed

Rounds

Non-multimedia clients
Multimedia clients

Figure 5.13: Bandwidth partitioning under Clarity in the presence of excess non-

multimedia clients

amount of disk bandwidth used for non-multimedia clients. However, the non-multimedia

clients are not allowed to over-run the multimedia clients by consuming all the disk band-

width. Clarity restricts the disk bandwidth consumed by the non-multimedia clients

to roughly their allocated portion of 500 milliseconds( ρ ∗ 1000.0). The reason for slight

deviations above 500 millisecondscan be attributed to the cumulative effect of small inac-

curacies associated with measurement of individual DMA times. It is therefore observed

that the disk bandwidth allocation to the multimedia clients continues to be steady even af-

ter there are sufficient non-multimedia attempting to access the disk continuously. A plot

of the percentage deadline violations in figure 5.12, shows that there are no deadline vio-

lations in the presence of 6 non-multimedia clients. When the number of non-multimedia

clients is further increased to 12, the pattern of bandwidth allocation to the multimedia

clients does not seem to suffer any distortion. Clarity continue to protect the multime-
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dia clients with service guarantees from the effects of too many non-multimedia clients.

Additionally, figure 5.12 shows that Clarity is able to keep the percentage of deadline

violations to 0%.

In addition to observing the deadlines missed for the multimedia clients, we also ob-

served the jitter experienced by the multimedia clients under Linux and Clarity. This

is especially relevant for delay-tolerant multimedia applications, which do not want loss

but would like to receive all the frames over possibly an extended period of time. With

the loss-tolerant applications, it would not matter much since frames could be lost during

the course of service without degrading the video quality too much. We measure jitter

as variation in the service times for the delivery of consecutive frames. In order to play-

back the video without significant jitter, we would expect that the frame be delivered to

the application with a maximum tolerance of 1 second. This would however, in reality

depend on the amount of buffering that the client has. Figure 5.14 shows the plot of jitter

observed for the two delay-tolerant multimedia clients throughout the duration of the test.

During the time that there are only multimedia clients in the system, the jitter observed

by the multimedia clients under Linux and Clarity are similar. However, around the

30th round when the non-multimedia clients are introduced, the performance of the mul-

timedia clients rapidly degrades. This can be seen by the large amount of jitter seen

by the multimedia clients. On the other hand, the introduction of more and more non-

multimedia clients seems to increase the jitter seen by the multimedia clients only very

marginally when they are running under Clarity. It can be seen that while there is an

increase in jitter under Clarity it is kept well within a second (which is the length of a

round).

Quite clearly, Linux fails to protect the multimedia applications from the effects of

a large number of non-multimedia applications competing for disk bandwidth. This is

primarily because Linux has no framework to indicated preferential service and no notion
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Figure 5.14: Jitter comparison for multimedia clients under Linux and Clarity in the

presence of excess non-multimedia clients

of differentiated services. However, by incoporating that notion into Clarity we are

able to provide guaranteed bit-rates to multimedia clients in the presence of a relatively

large number of clients belonging to another class.

While it is important that multimedia clients are protected against the presence of ex-

cessive non-multimedia clients, it is equally important that we protect non-multimedia

clients in the presence of excessive multimedia clients. Therefore, we conducted an ex-

periment with the previous scenario reversed. In this case, the number of multimedia

clients far exceeded the number of non-multimedia clients. Under such circumstances,

one would expect the throughput and average response time of the non-multimedia clients

to degrade. This is since more and more disk requests would be serviced for multimedia

clients.

For this test, we had two non-multimedia clients start at t=0 seconds. These two
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clients continuously read from the disk and have no upper limit on how much read in a

round. This is so that they attempt to consume all the bandwidth allocated to the non-

multimedia service class every round. Along with these two non-multimedia clients,

we also admitted three multimedia clients. As the test progressed, we introduced three

multimedia clients at a regular interval of 25 seconds with each multimedia client at-

tempting to read 192KB every round. Here again, the disk scheduler was configured to

partition disk bandwidth equally among multimedia and non-multimedia clients and we

used measurement-based admission control to admit clients. However, we noted that

measurement-based admission control scheme would not allow more than six multimedia

clients, reading at 192 KBps, to exist simultaneously at any given point in time (Figure

5.7). Therefore, it was concluded that to force consumption of more than 500 milliseconds

by multimedia clients each round (to simulate excessive multimedia clients), we would

need more than 6 clients reading at 192 KBps. Therefore, we decided to design multime-

dia clients that would request for data rate lower than 192 KBpsin order to be admitted

but after admission attempt to read at 192 KBps. The test was configured to admit nine

multimedia clients in all.

It was observed that in the presence of excessive non-multimedia clients, Linux does

not offer protection to the non-multimedia clients and their performance degrades with

an increasing number of multimedia clients in the system. Figure 5.15 summarizes the

bandwidth consumed by each service class under Linux.

When only three multimedia clients are admitted along with two non-multimedia

clients, there is no impact on the non-multimedia clients. This is because the multimedia

clients do not need more than their allocated share of the disk bandwidth every round.

However, when six clients are admitted the non-multimedia clients start to see degrada-

tion in their performance. Linux does not offer any protection from multimedia clients

since there is no bandwidth partitioning. Each class consumes disk bandwidth almost
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Figure 5.15: Bandwidth partitioning under Linux in the presence of excess multimedia

clients

in proportion to its requirement. However, when nine multimedia clients are admitted,

they consume most of the disk bandwidth every round. The performance of the non-

multimedia is seen to degrade further. In direct contrast, Clarity provides inter service

class protection by making sure that the multimedia clients do not consume bandwidth

that was allocated to the non-multimedia clients. It can be inferred from Figure 5.16 that

bandwidth allocation under Clarity is very fair5.

When only three multimedia clients are admitted, Clarity protects the multimedia

clients from the non-multimedia clients since the load due to multimedia clients is not

enough to consume close to 500 milliseconds. However, when six multimedia clients are

present, it ensures that disk allocation to non-multimedia clients is maintained. However,
5For our purposes, fairness of service is determined by how close disk bandwidth allocation or con-

sumption is to the percentage of bandwidth allowed for that class.
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Figure 5.16: Bandwidth partitioning under Clarity in the presence of excess multime-

dia clients

when nine clients are present in the system, it is observed that there is a further degra-

dation in the throughput for non-multimedia clients. Under Clarity it is observed that

the multimedia clients are restricted from stealing bandwidth from the non-multimedia

applications. However, a large number of multimedia clients seem to result in slightly

lesser CPU cycles being available for the non-multimedia clients. This can be noticed

from the fact that sum of fraction of the disk bandwidth consumed by multimedia and

non-multimedia clients is less than 1. During the test-run it was observed that there are

some essential non-multimedia requests generated by the system, that contribute in some

part to the non-multimedia clients getting a little less than their allocated share of the

bandwidth. However, the performance (average throughput and average response time)

of non-multimedia clients under Clarity is much better than that under Linux.

Figure 5.17 characterizes the average throughput observed by the non-multimedia
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clients with an increasing number of multimedia clients under Linux and Clarity.

When three multimedia clients are admitted, there is no impact on the performance of

the non-multimedia clients, since the multimedia clients do not load the system. In fact,

the throughput under Linux is seen to be better than under Clarity. This is since non-

multimedia clients consume all the bandwidth they require while the multimedia clients

consume much less than their allocated bandwidth under Linux. Clarity does not al-

low the non-multimedia clients to consume more than their share of the disk bandwidth

in order to provide inter- service class protection to the multimedia clients, resulting in

lower throughput. However, as soon as there are six multimedia clients in the system,

they tend to consume more than 500 millisecondsevery round. This results in a drastic

reduction of throughput for non-multimedia clients under Linux.
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Figure 5.17: Average throughput for non-multimedia clients under Linux and Clarity

in the presence of excess multimedia clients

In contrast, Clarity protects the non-multimedia clients from losing their share of
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disk bandwidth to the multimedia clients. This results in very little decrease in through-

put for non-multimedia clients. However, nine are admitted in the system it is observed

that the throughput for the non-multimedia clients drops significantly under Clarity

also. As explained earlier, some essential non-multimedia requests were generated and

the bandwidth for those are not subtracted from the bandwidth allocated to the multimedia

clients. Also, in the presence of applications other than just the test clients, an increased

number of multimedia clients consuming more CPU cycles result in a slight decrease in

the number of requests that the non-multimedia clients can make even though it is appar-

ent that their disk bandwidth is protected. This is because the multimedia clients do not

consume much more than their allocated bandwidth.

A very similar pattern is observed when plotting the average response times for the

non-multimedia with an increasing number of multimedia clients. Figure 5.18 shows the

plot of the average response time in the presence of three, six and nine multimedia clients.

While the average response time under Linux is much better than under Clarity, in

the presence of just three multimedia clients, it is seen to quickly degrade in the presence

of six or more clients. However, Clarity not only protects the multimedia clients

when non-multimedia clients attempt to use the disk for more than 500 milliseconds,

but also protects non-multimedia clients when the load due to the multimedia clients is

substantially higher. There is a degradation seen in the average response time of the non-

multimedia when there are six and nine multimedia clients under both Clarity and

Linux. However, the average response time in the presence of six and nine multimedia

clients under Linux is nearly 1.5 millisecondsand 6 millisecondsrespectively more than

under Clarity.

It has been very clearly established from the preceding graphs that Clarity pro-

vides inter service class protection to both multimedia and non-multimedia classes so that

performance of either is not affected in the presence of a large number of clients from
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Figure 5.18: Average response time for non-multimedia clients under Linux and Clar-

ity in the presence of excess multimedia clients

other classes. Under Linux, it is seen that multimedia clients lose a large percentage of

deadlines in the presence of a large number of non-multimedia clients. Also, the average

throughput and response time of non-multimedia clients in the presence of an increasing

number of multimedia clients is degraded.

Intra service class protection

In order to illustrate that Clarity provides intra service class protection, we use the

preceding experiment where we attempt to measure the performance of non-multimedia

clients in the presence of an excess number of multimedia clients. It may be recalled that

intra service class protection attempts to meet the minimum requirements of the multi-

media clients in overloaded rounds. In this experiment, we admitted multimedia clients

at rates of 60 KBps, which is lower that the rate at which they read from the disk in
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every round (192 KBps). With 500 millisecondsbeing inadequate to service all the re-

quests from the multimedia clients, Clarity will attempt to provide at least 60 KBps

to each client before processing requests for more bandwidth. During the preceding ex-

periment, we measured the number of blocks obtained by each multimedia client to see if

the minimum bit-rate for all the clients had been met. Figure 5.19 summarizes the results

obtained.
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Figure 5.19: Blocks serviced under Linux and Clarity in the presence of excess mul-

timedia clients

It is seen that while Linux meets all the deadlines for the clients when there are just

one to six multimedia clients in the system, it results in a slight performance degrada-

tion for some of the multimedia clients when the number of clients admitted increases to

nine. This is because it does not attempt to provide any minimum guarantees and serves

clients as and when requests are generated. While it does satisfy most clients completely,

it neglects some other clients so that they do not receive even their minimum. On the
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other hand, Clarity provides not only inter service class protection but also protection

to multimedia clients from each other by providing minimum guarantees to each client.

This is seen from the fact that for all the admitted clients, the minimum number of blocks

delivered by Clarity to any client is greater than or equal to the minimum number of

blocks requested by it at the time of admission. When all the clients cannot be provided

their requested bit-rate, Clarity makes sure that all the clients first get their negotiated

bit-rate before proceeding to service any extra requests from them. It was interesting to

note that the number of clients completely satisfied under Linux is more than those under

Clarity. However, the fact that some multimedia clients might not have their guaran-

tees met in the presence of an large number of multimedia clients indicates performance

degradation for multimedia clients under Linux.

Re-allocation of bandwidth

In this experiment, we attempt to show how intelligently Clarity re-allocates band-

width from a class with reduced load to another class that needs the bandwidth. The test

consisted of admitting two multimedia clients at t=0 seconds. They are admitted to read

at a rate of 192KBps. We use such a high bit-rate client so that we simulate a condition

where it is not very easily apparent to Clarity there is a substantially reduced load.

At the same time, we limited the number of clients to two so that some re-allocation

can take place, the intent being to check if Clarity is able to re-allocate bandwidth

when the multimedia clients do not consume all their bandwidth. We introduce six non-

multimedia clients all of which read continuously from the disk. There is no limit on the

number of blocks to read every round. This is done to simulate a condition where the

non-multimedia clients need more than their allocated bandwidth of 500 milliseconds.

After six non-multimedia clients have run for 25 seconds, we introduced an additional six

non-multimedia clients. This is done not only to increase the bandwidth required by the
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non-multimedia clients but also to observe how much bandwidth gets re-allocated to the

non-multimedia clients when their load on the disk increases.
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Figure 5.20: Disk utilization with and without bandwidth re-allocation policies under

Clarity when multimedia service class is under-utilized

Figure 5.20 shows the disk utilization for the two classes under Clarity in the ab-

sence and presence of bandwidth re-allocation strategies. It seen that throughout the du-

ration of the test there is no perceptible change in the fraction of bandwidth utilized by the

multimedia clients. This is because Clarity always attempts to provide the minimum

bandwidth required by multimedia clients in order to meet their bit-rate requirements.

When non-multimedia clients are introduced after 25 seconds, with re-allocation of band-

width disabled, it is observed that the fraction of bandwidth usage for non-multimedia

clients is restricted to 500 millisecondssince Clarity provides inter service class pro-

tection. This is independent of the load generated by the non-multimedia and multime-

dia clients. Therefore, the maximum fraction of the bandwidth that the non-multimedia
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clients can consume in the absence of bandwidth re-allocation is around 500 milliseconds,

as is seen from Figure 5.20.
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Figure 5.21: Average throughput with and without bandwidth re-allocation policies under

Clarity when multimedia service class is under-utilized

However, when bandwidth re-allocation is permitted it is noticed that the fraction of

bandwidth used by non-multimedia clients increases. Clarity re-allocates the band-

width that is not used by multimedia clients to the non-multimedia clients when its mea-

surements indicate that they need more than their allocated share. This results in higher

throughput and lower response times for the non-multimedia clients. This can be inferred

from Figures 5.21 and 5.22. However, it is also observed that the fraction of disk band-

width used by multimedia clients does not change and all their deadlines are met. This is

because Clarity keeps measuring the amount of bandwidth required by the multimedia

clients and re-allocates bandwidth only when all the deadlines for the multimedia clients

are met. The amount of bandwidth consumed by non-multimedia clients increases when
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Figure 5.22: Average response time with and without bandwidth re-allocation policies

under Clarity when multimedia service class is under-utilized

there are 12 non-multimedia clients, since Clarity re-allocates more to them when

their load increases. However, all the deadlines for the multimedia clients were met.

Apart from the fact, that there are no deadline violations resulting from disk bandwidth

re-allocation, we can also see from Figure 5.23, that the jitter resulting from re-allocation

is comparable to that when there is no re-allocation. This is because Clarity ensures

that the non-multimedia clients do not consume disk bandwidth required by the multime-

dia clients who are yet to receive their guaranteed service. The measurement of jitter was

made by each application running as a multimedia client and not the kernel. Therefore,

it shows that Clarity does not consume too many CPU cycles in order to carry out

re-allocation of disk bandwidth.

While we have seen how efficiently Clarity re-allocates bandwidth from multime-

dia to non-multimedia clients, it is also very interesting to consider measuring perfor-
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Figure 5.23: Jitter observed by multimedia clients with and without bandwidth re-

allocation policies under Clarity when multimedia service class is under-utilized

mance in the reverse scenario. When Clarity attempts to re-allocate bandwidth from

multimedia clients to non-multimedia clients, it can make an accurate prediction of the

amount of disk bandwidth required to satisfy the multimedia clients. This is because all

the multimedia clients need to reserve bandwidth at the beginning of each round by telling

the disk scheduler how much they intend to read. However, when there are a large num-

ber of multimedia clients, it is very difficult for Clarity to decide what the required

bandwidth for non-multimedia clients is. This information is absolutely essential for re-

allocation of bandwidth to take place. We performed an experiment where we introduced

a large number of multimedia clients and had non-multimedia clients read very little ev-

ery round. We measured how well Clarity re-allocates bandwidth to the multimedia

clients.

We started two non-multimedia clients at (t=0 seconds). These clients did not read
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continuously. Instead, they read 100 KB each every second. This simulates a lightly

loaded non-multimedia application class. We allowed them to run for 25 seconds before

introducing multimedia clients. The multimedia clients are admitted without any admis-

sion control. This was essential in order to overload the disk with requests from multime-

dia clients. They read at a rate of 192 KBps. The bandwidth allocation to multimedia and

non-multimedia clients was 500 millisecondseach. We introduced 3 multimedia clients

at intervals of 25 seconds, till there were nine clients in all. Figure 5.24 shows the disk

bandwidth utilization by multimedia and non-multimedia clients throughout the duration

of the test.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n 
of

 d
is

k 
ba

nd
w

id
th

 c
on

su
m

ed

Rounds

Non multimedia clients (with re-allocation)
Multimedia clients (with re-allocation)
Non-multimedia clients (without re-allocation)
Multimedia clients (without re-allocation)

Figure 5.24: Disk utilization with and without bandwidth re-allocation policies under

Clarity when non-multimedia service class is under-utilized

The fraction of disk bandwidth consumed by non-multimedia clients remains the same

throughout the test since they are consuming much less than their allocated bandwidth.

During the first 25 seconds of the test, non-multimedia clients consume the same frac-
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tion of the bandwidth in the presence and absence of re-allocation policies in Clarity.

When three multimedia clients are introduced, they do not completely consume the band-

width allocated to the multimedia clients. Therefore, bandwidth re-allocation does not

result in any improvement for multimedia clients. However, when there are six multime-

dia clients, they attempt to consume more than their allocated share. While in the absence

of bandwidth re-allocation, Clarity attempts to restrict them to their allocated share,

it does not do so when bandwidth re-allocation is permitted. Clarity attempts to re-

allocate bandwidth, whenever it is permitted to, by monitoring the disk utilization due to

non-multimedia clients. It can be observed that the multimedia clients get a higher portion

of the bandwidth than when there is no re-allocation. This difference in the bandwidth

consumption in the presence of re-allocation is seen to increase further in the presence of

nine multimedia clients. Since nine multimedia clients require more bandwidth than six,

the effect of Clarity’s allocation policy has a very significant effect. In the absence of

re-allocation, Clarity simply restricted each class to its allocated bandwidth causing a

substantial wastage of disk bandwidth.

In order to make sure that bandwidth was not being re-allocated by Clarity at

the cost of reduced non-real time performance, we measured the throughput and average

response time for the non-multimedia clients in the presence of an increasing number of

multimedia clients. Figures 5.25 and 5.26 show comparison of throughput and average

response time observed by the non-multimedia clients.

Figure 5.25 shows that the throughput observed by the non-multimedia clients in the

presence of re-allocation was almost the same as that observed when there was no re-

allocation of disk bandwidth. When Clarity re-allocated bandwidth it does so care-

fully so as not to degrade the performance of non-multimedia clients. The values remain

comparable even when more multimedia clients are introduced into the system. The av-

erage response times observed in Figure 5.26 are only slightly more when re-allocation
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Figure 5.25: Average throughput with and without bandwidth re-allocation policies under

Clarity when non-multimedia service class is under-utilized

is carried out. In the absence of multimedia clients, they are almost the same. When

three multimedia clients are introduced, only a very small difference is observed. With

the introduction of six and nine multimedia clients, there is very little increase observed

in the difference in the average response times and the response times in the presence

and absence of bandwidth re-allocation remains very comparable. When there is no re-

allocation of bandwidth the disk requests from non-multimedia clients wait much shorter

in the disk queue since the multimedia clients are restricted to their allocation share. How-

ever, when re-allocation takes place, the multimedia clients generate more disk requests

thus increasing the average response time. We see that there is no sudden increase in the

response time due to bandwidth re-allocation to multimedia clients. Thus, Clarity not

only improves disk usage by re-allocating disk bandwidth from an under-utilized non-

multimedia class to a loaded multimedia class, but also efficiently prevents performance
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Figure 5.26: Average response time with and without bandwidth re-allocation policies

under Clarity when non-multimedia service class is under-utilized

degradation of the non-multimedia clients.

In addition to the fact there is no significant impact on the non-multimedia clients, we

observed that re-allocation results is a big performance gain for the multimedia clients.

Although there was no necessity to re-allocate in the presence of three clients, Clarity

dramatically improved performance in the presence of six and nine multimedia clients.

Figure 5.27 compares the loss experienced by the multimedia clients in the presence and

absence of bandwidth re-allocation.

In the presence of three clients there is no loss observed by the multimedia clients

since they do not even consume their allocated share of 500 milliseconds. However, when

the clients increase to six the multimedia client attempt to use more than 500 milliseconds

but are restricted to reading less than that. Difficulties in measuring DMA times, leads

the disk scheduler to restrict the usage of bandwidth to a little less than the allocated
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Figure 5.27: Percentage of deadlines missed under Linux and Clarity in the presence

of excess non-multimedia clients

share. However, when disk bandwidth is permitted to be re-allocated, Clarity provides

additional bandwidth to the multimedia clients. This prevents any deadline violations by

them. When there are nine clients, re-allocation results in the multimedia clients getting

much more than 500 millisecondsresulting in their meeting all deadlines.
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Chapter 6

Conclusion

Most present day operating systems are designed to be general purpose operating sys-

tems, which provide best-effort service to applications that run on them. With the rapid

emergence of advanced computing capabilities, compression technologies and broadband

video and audio, it has become essential that an operating system provide an integrated

enviroment for a variety of applications, which include multimedia and non-multimedia

applications. This becomes especially relevant for content servers which can handle var-

ied kinds of data (text, graphics, multimedia streams etc.)

While the non-multimedia applications are typically I/O intensive requiring high through-

put and low response times when retrieving data from the hard disk, the multimedia appli-

cations are isochronous. They require time-constrained, periodic access to the hard disk

in order to meet their requirements for rendering video and playing back audio streams.

Also, most multimedia applications are soft real-time applications that can be resilient to

a small amount of loss but so much to delay and jitter. Thus, an operating system must be

designed to tune system performance in order to optimally meet the service requirements

of multimedia and non-multimedia applications.

We have presented and evaluated our approach to better admission control and disk
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scheduling with Clarity. Clarity has been designed as a framework for content

servers to provide differentiated services for multimedia and non-multimedia clients. All

the implementation was carried out under Linux.

We have presented an optimisitic admission controller by using fixed and measure-

ment-based values and compared its performance with current admission control policies

which assume worst-case values for disk access. We evaluated our approach for admission

control against the pessimistic admission control scheme using a number of criteria in-

cluding number of simultaneously admitted multimedia clients, bandwidth consumption,

and percentage of deadlines violated for all multimedia clients admitted for service. The

admission controller was implemented in system calls, which were added to the Linux

kernel. This was in addition to minor modifications to existing system calls.

It is clear from graphs in Chapter 5 that our approach clearly outperforms the pes-

simistic admission controller. While the optimistic admission controller based on fixed

average disk access times performs marginally better than the pessimistic variation, its

performance increases substantially with increase in disk block size. An improvement

over the optimistic admission controller that we proposed and implemented was the measurement-

based admission controller. It uses average values of measured DMA times for predicting

disk usage when admitting a client and outperformed the pessimistic admission controller

by not only admitting far more clients for service, but also by meeting all their deadlines.

We also formulated and implemented an adaptive admission controller based on measure-

ments, which can be used when admitting layered streams where each layer contributes

to enhancement of video quality. When there is insufficient bandwidth to admit a client

reading a layered stream at its full bandwidth requirement, our adaptive scheme increases

disk bandwidth utilization but admitting it at a slightly lower rate by exploiting the fact

that it is layered. In addition to the implementation of all the above mentioned admission

control schemes, we also made a detailed analysis of a cache based admission controller.
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In this approach, we attempted to make use of the cache to keep multimedia streams in

memory intelligently so that streams separated by only a small gap in time can be served

from the memory instead of the disk. This would not only dramatically decrease disk

usage, leaving room for other applications, but also work extremely well in conditions

where the number of clients is very large but the scope of access is limited to a few video

streams. This represents a very typical scenario on a multimedia server where a large

number of clients try to access a rather small group of important news or video clips at

similar but not identical times.

We also proposed and implemented a disk scheduling algorithm as a part of Clarity

under Linux. Our disk scheduler has been designed to provide differentiated service to

different kinds of clients. We have carried out all our experiments by making use of

only two classes: multimedia and non-multimedia. Clarity provides classfication of

services, inter service class protection, intra service class protection, and bandwidth re-

allocation.

We compared Clarity’s disk scheduling algorithm with the disk scheduling frame-

work under Linux under a number of different conditions. In the absence of clients be-

longing to different classes i.e. all clients being just non-multimedia clients, Clarity

matched the throughput and average response time provided by Linux. In the presence

of multimedia applications, Clarity protected guarantees given to multimedia clients

from the effects of an increased load due to non-multimedia clients. Also, Clarity

ensured that competing multimedia clients did not cause an increased deadline viola-

tion for other clients belonging to the same class. We also demonstrated that Clarity

re-allocates bandwidth very efficiently from one class to another when bandwidth of an

under-loaded class can be used to service bandwidth starved clients belonging to an-

other class. This resulted in higher throughput and lower average response time for non-

multimedia clients when bandwidth was re-allocated from the multimedia clients. On the
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other hand, when bandwidth was re-allocated from non-multimedia clients to multime-

dia clients, it resulted in no deadline violations for multimedia clients while keeping the

throughput and average response times for non-multimedia clients comparable to those

under Linux. From the graphs in Chapter 5, it is clear that our algorithm out-performs the

CSCAN disk scheduling scheme in Linux to provide fairly reliable service to soft mul-

timedia applications by meeting their deadlines, while providing higher throughput and

lower average response time to normal applications under different conditions.
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Chapter 7

Future Work

In order to better understand the requirements for handling various kinds of audio and

video applications within the framework of existing operating systems and for building

new ones, we believe that there are a number of areas that merit further research. This

chapter essentially provides some pointers to pursue further investigation for bulding bet-

ter video/audio servers.

We have proposed a cache based admission control. There are a number of areas

where this can be studied further. Existing caching techniques like First In First Out,

Least Recent Used etc. might not be suitable in their present form. They may require

changes because the cache must be made sharable between as many clients as possible.

Additionally, instead of evicting files completely or arbitrarily from the cache, there might

be some merit to retaining small portions of the file that was already there in cache when

deciding what needs to be removed from the cache during cache replacement. For exam-

ple, it might be a good idea to retain initial portions of a file as opposed to the later por-

tions since it could increase the chances of clients getting admitted. Additional resources

required may subsequently become available. Thus, the pages storing later portions of

data for a multimedia stream can be marked as more eligible for replacement than the
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others. It would be very interesting to see what caching mechanisms can be developed so

that cache hits for the multimedia clients can be maximized while sharing the available

memory efficiently between the various applications. Naturally, an increase in cache hit

percentage would have a direct bearing on the number of clients that can be admitted and

served without missing deadlines. Apart from the cache management itself, work can also

be done on defining the admission control criteria. Our approach takes into consideration

the amount of cached data the requesting client can access if admitted. This is so that

there is enough time to put the cache all the data that the client will require in the future.

Our approach also considers how far ahead of the requesting clients are others reading the

same file. There could be other considerations that can be incorporated to better represent

the requirements of the clients that have been admitted and the ones that need a session.

While we have categorized clients and services to provide differentited service, the

list is not exhaustive. Further research could be carried out to understand and incorporate

optimization techniques for other forms of video and audio encoding techniques. This

could lead to further classification of service and coupled with class specific optimizations

in the disk scheduler, it could result in service that is flexible and application-specific.

We have created a framework under Claritywhere the application has to repeatedly

request data. It might be interesting to explore an implementation where the kernel returns

all the data in one buffer without any necessity for going back and forth. This would

mean that the client is expected to have some sort of a ring buffer where one half gets

written into and the other half read from. While this might result in the kernel consuming

more memory, it might result in faster service and save CPU cycles involved in switching

between user and kernel spaces (since the kernel itself issues requests for a certain number

of blocks to be read). However, there needs to be a mechanism for the client to inform the

disk scheduler how much it needs at the beginning of the round, so that the disk scheduler

can schedule requests from various clients efficiently.
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While we introduced the concept of assuming that variable bit-rate clients (like MPEG)

have layered streams from which to read, further study of different layering schemes can

lead to better optimizations on the machine that acts as a multimedia server. This is espe-

cially important when reading blocks and dropping requests, where some could be more

important than others, during overloaded rounds. However, this kind of preferential treat-

ment to blocks needs extensive support from the file system, since it is only in the file

system that we can store some meta information about blocks. This will facilitate their

usage when requests are made for disk blocks.

One of the most important aspects of data storage that affects disk retrieval speed is the

manner in which data has been organized on the disk (in short the file system). Typically,

if the data belonging to a file are spread out in the disk, then a typical access to the disk

is more likely to look like a random seek than a sequential seek. Random seeks not only

increase retrieval times but also can result in little or no utilitization of any caching policy

the operating system might employ to reduce subsequent accesses to the same data. The

greater the sequential storage of files, the lower the times for retrieval, since subsequent

accesses to the data in a file has a greater chance of being serviced from the disk cache

and/or operating system’s cache. Therefore, a direction for further research could be the

design of a file system that is multimedia friendly and works well in conjunction with

the the way disk and operating sytem caches work. Such a file system could be used to

employ various schemes for storage. For example, since some blocks of data could be

more important than others, this information can be stored in the filesystem and can be

used to group more important blocks together. This can help Clarity achieve lower

disk access times for data that contributes significantly to the video/audio stream. Also,

it can help the disk scheduler, such as a part of Clarity, make decision easily and

quickly about how it can drop disk requests in over-loaded round with minimal impact to

the quality of the playback.
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Apart from the disk scheduler, the process scheduler to a great extent determines

the priority given to multimedia applications. In fact, the process scheduler can greatly

enhance the performance of multimedia applications by giving real-time guarantees to

applications for execution. We believe that for a system to be truly flexible and service-

oriented, knowledge of applications should be present in both the process and disk sched-

uler. Application specific optimizations in the process scheduler would in turn affect

disk scheduling in a number of ways. Real-time scheduling guarantees to multimedia

applications become especially important when the load is heavy. This ensures that an

application will give sufficient opportunities to request all needed data. A framework like

Clarity can make use of the guarantees provided by the process scheduler to schedule

requests Just In Time (JIT) for their service so that all the remaining bandwidth can be

used for scheduling requests from non-multimedia applications. This can be done by cal-

culating the slack time that is available to each disk request and inserting non-multimedia

requests whenever there is a slack. This can lead to better disk and processor utilizations,

better throughput and average response times for non-multimedia applications and lower

deadline violations for multimedia clients.
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[7] J. Bruno, E. Gabber, B. Özden, and A. Silberschatz, “The Eclipse Operating System:

Providing Quality of Service via Reservation Domains,” in Proceedings of the 1998

USENIX Annual Technical Conference, (New Orleans, Louisiana), June 1998.

[8] I. Leslie, D. McAuley, R. Black, T. Roscoe, B. P., D. Evers, R. Fairbairns, and

E. Hyden, “The Design and Implementation of an Operating System to Support

Distributed Multimedia Applications,” IEEE Journal on Selected Areas in Commu-

nication, vol. 14, pp. 1280–1297, September 1996.
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