
Performance Analysis of QUIC Protocol under Network
Congestion

by

Amit Srivastava

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

May 2017

APPROVED:

Professor Mark Claypool, Major Thesis Advisor

Professor Robert Kinicki, Major Thesis Advisor

Professor Craig Shue, Thesis Reader



Abstract

TCP is a widely used protocol for web traffic. However, TCP’s connection setup

and congestion response can impact web page load times, leading to higher wait

times for users. In order to address this issue, Google developed with QUIC (Quick

UDP Internet Connections), a UDP-based protocol that runs in the application layer.

While already deployed, QUIC is not well-studied in academic literature, particularly

QUIC’s congestion response as compared to TCP’s congestion response which is

critical for stability of the Internet and flow fairness.

To study QUIC’s congestion response, we conduct three sets of experiments on a

wired testbed. One set of our experiments focuses on QUIC and TCP throughput

under added delay, another set compares QUIC and TCP throughput under added

packet loss, and the third set has QUIC and TCP flows that share a bottleneck link

to study the fairness between TCP and QUIC flows. Our results show that with

random packet loss, QUIC delivers higher throughput compared to TCP. However,

when sharing the same link, QUIC can be unfair to TCP. With an increase in the

number of competing TCP flows, a QUIC flow takes a greater share of the available

link capacity compared to TCP flows.



Acknowledgements

I am very thankful to my two advisers Prof. Mark Claypool and Prof. Robert

Kinicki for their time and patience. I would not have been able to complete my

thesis without their guidance. I would also like to thank Prof. Craig Shue for his

valuable feedback.

I would like to thank my friends at WPI for their support. Finally, I would like to

thank my parents who have always worked harder than me and always supported

me in every way they could.

i



Contents

1 Introduction 1

2 Background 5

2.1 Transport Control Protocol (TCP) . . . . . . . . . . . . . . . . . . . 5

2.1.1 Connection Setup . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Sliding Window . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Additive Increase Multiplicative Decrease (AIMD) . . . . . . . 7

2.1.4 Slow Start (SS) . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.5 Congestion Avoidance . . . . . . . . . . . . . . . . . . . . . . 7

2.1.6 Fast Retransmit . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.7 Fast Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.8 Evolution of Congestion Control in TCP . . . . . . . . . . . . 8

2.2 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Quick UDP Internet Connections . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Packet Header . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 QUIC Packet Types . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.4 QUIC Frame Types . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.5 Setting up a Connection . . . . . . . . . . . . . . . . . . . . . 18

ii



3 Experiments 21

3.1 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Network Topology and Components . . . . . . . . . . . . . . . 22

3.1.2 Software Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 QUIC Client and Server . . . . . . . . . . . . . . . . . . . . . 24

3.1.4 TCP Client and Server . . . . . . . . . . . . . . . . . . . . . . 24

3.1.5 Test Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Emulating Congestion . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Control Parameters . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Impact of Delay . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Impact of Packet Loss . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Impact of Competing Flows . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Internet-based Tests . . . . . . . . . . . . . . . . . . . . . . . 28

4 Results and Analysis 30

4.1 Data Analyzed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Impact of Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Impact of Packet Loss . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Impact of Competing Flows . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Internet-based Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Conclusions 41

6 Future Work 43

6.1 QUIC with Competing Flows . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Connection Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iii



6.3 QUIC Streams - Request Multiplexing . . . . . . . . . . . . . . . . . 44

6.4 QUIC over a Wireless Network . . . . . . . . . . . . . . . . . . . . . 44

7 Appendix 46

iv



List of Figures

2.1 TCP Connection Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 QUIC Packet Header . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 QUIC Connection Setup . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Testbed for offline tests . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Testbed for Internet-based tests . . . . . . . . . . . . . . . . . . . . . 28

4.1 These graphs show throughput versus time data from three iterations

of tests conducted for QUIC and TCP at 4 and 16 Mbps link capac-

ities with an added delay of 25ms. There is little difference in the

performance of TCP and QUIC at low network latencies. . . . . . . . 33

4.2 Four throughput versus time graphs at two link capacities and 200ms

of added delay and 2% packet loss . . . . . . . . . . . . . . . . . . . . 34

4.3 Average throughput from QUIC and competing TCP flows plotted

against the number of competing TCP flows. Each vertical set of

dots represents the share of QUIC throughput, the combined TCP

throughput, the average TCP throughput and the overall throughput

when a single QUIC flow runs simultaneously with TCP flows indicated

by the on X axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Jain’s fairness index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



4.5 Throughput from multiple iterations of experiments with QUIC and

TCP on a 16 Mbps bottleneck, 200ms of added delay and 2% loss

setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.1 Throughput from experiments at various bottleneck capacities and

200ms added delay and 0% loss . . . . . . . . . . . . . . . . . . . . . 47

7.2 Throughput from experiments at various bottleneck capacities, 25ms

added delay and 0.5% loss . . . . . . . . . . . . . . . . . . . . . . . . 48

7.3 Throughput from multiple experiments with a 4Mbps bottleneck,

200ms added delay and 0.5% loss . . . . . . . . . . . . . . . . . . . . 49

7.4 Throughput from experiments at various bottleneck capacities, 200ms

added delay and 0.5% loss . . . . . . . . . . . . . . . . . . . . . . . . 49

7.5 Throughput from experiments at various bottleneck capacities, 25ms

added delay and 1.0% loss . . . . . . . . . . . . . . . . . . . . . . . . 50

7.6 Throughput from experiments at various bottleneck capacities, 200ms

added delay and 1.0% loss . . . . . . . . . . . . . . . . . . . . . . . . 51

7.7 Throughput from experiments at various bottleneck capacities, 25ms

added delay and 2.0% loss . . . . . . . . . . . . . . . . . . . . . . . . 52

7.8 Throughput from experiments at various bottleneck capacities, 200ms

added delay and 2.0% loss . . . . . . . . . . . . . . . . . . . . . . . . 53

vi



List of Tables

2.1 QUIC Frame Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Parameters with values used in our experiments . . . . . . . . . . . . 26

4.1 Average value, standard deviation and standard error for throughput

from QUIC and TCP at two bottleneck bandwidths - 4 and 8 Mbps

and two latency values - 25 and 50ms . . . . . . . . . . . . . . . . . 31

4.2 Average value, standard deviation and standard error for throughput

from QUIC and TCP at two bottleneck bandwidths - 12 and 16 Mbps

and two latency values - 25 and 50ms . . . . . . . . . . . . . . . . . . 32

4.3 Average value, standard deviation and standard error for throughput

from QUIC and TCP at two bottleneck bandwidths - 4 and 8 Mbps

and two latency values - 100 and 200ms . . . . . . . . . . . . . . . . 35

4.4 Average value, standard deviation and standard error for throughput

from QUIC and TCP at two bottleneck bandwidths - 12 and 16 Mbps

and two latency values - 100 and 200ms . . . . . . . . . . . . . . . . . 36

4.5 Average throughput from QUIC and TCP with Standard Deviation

and Standard Error from experiments with two bottleneck bandwidths

- 4 Mbps and 8 Mbps . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



Chapter 1

Introduction

The Internet is a shared resource used by people across the world as a medium for

exchanging data. It is essential that the links of the Internet do not fail due to

excessive traffic and that Internet flows get full allocation of the capacity. Internet

Service Providers (ISPs) implement network management policies at devices such as

routers to throttle traffic to match the available link capacity. Since traffic on the

Internet varies with time, it is difficult to ensure fair sharing among the numerous con-

nections on a given link at any given point of time. Thus, individual machines have to

manage their communication and make sure their data does not overload the network.

One such means to use the network efficiently and fairly is to use TCP (Transport

Control Protocol), a network protocol that allows applications to communicate

reliably on the Internet. TCP comes built-in on most popular operating systems

such as Windows, Linux and MAC OS and it implements a distributed congestion

control mechanism where the endpoints manage the sending rates. Thus, TCP

prevents congestion collapse on the Internet by allowing dynamic adjustment to

sending rates based on network congestion. Any protocol that is an alternative

1



to TCP must provide acceptable congestion control for wider use on the Internet,

including co-operating with existing TCP flows.

With the increase in capacity of wide area networks, web traffic has increased,

changing from static HTML content to include high resolution images, streaming

media and interactive applications. The needs of the such traffic are quite different

from the traditional static pages. Users experience relatively greater page load times

if a web page contains streaming media compared to pages without it. Moreover,

with increase in the use of HTTP over SSL (HTTPS) to encrypt web traffic, servers

now spend additional time setting up a secure channel over a TCP connection to

send traffic.

To load web pages faster at end-user browsers, major content-hosting companies

move the content geographically closer to users by means of Content Distribution

Networks (CDNs) and distribute the content to multiple domain names or servers,

allowing multiple connections to these servers to load the content concurrently. An-

other means to speed up the page load is to re-utilize an open TCP connection to

get more content by pipelining requests. This approach has some limitations, which

result from the way TCP works, that impede the performance of certain applications.

TCP’s congestion control mechanisms, such as retransmission of packets and

reduction of the sending rate after packet loss, are designed to add reliability and

help prevent unfair sharing of network resources. But these mechanisms can prevent

applications such as web browser from performing optimally under network conges-

tion. Google developed SPDY [spd16], a protocol that behaves similar to HTTP1.1

and later became the basis for HTTP2.0 [htt16], in order to address some issues in

2



the browser to speed up web page loading. In 2013, Google introduced Quick UDP

Internet Connections (QUIC) [qui17] as part of its Chrome browser. QUIC operates

in the application layer and uses User Datagram Protocol (UDP) from the network

stack of the underlying operating system.

Since the deployment of QUIC has been Google-wide, any user accessing Google

services from a Chrome or Chromium browser defaults to QUIC. There have to be

thousands, if not millions, of QUIC connections on the Internet everyday sharing net-

work links with TCP. There is, however, no data available on how QUIC behaves in

congested networks. The few studies which explore QUIC, Carlucci et al. [CDCM15]

and Megyesi et al. [MKM16] focus on the page load times over QUIC to HTTP1.1

over TCP under lab conditions. Lychev et al. [LJBNR15] focused on cryptographic

mechanisms used in QUIC. But there is an absence of publicly available data on

QUIC’s congestion response and behavior when compared to TCP. This topic can

yield useful data for understanding QUIC’s impact of TCP traffic. We assume the

number of QUIC based applications will continue to grow.

Our experiments explore QUIC’s performance from a network congestion stand-

point. Our goal was to design and conduct experiments to analyze and compare

the performance of QUIC to TCP under emulated network congestion on a wired

testbed. A wired testbed limits the unknowns that can impact the experiments.

This allows us to explore essentially the congestion control alone under controlled

conditions on a wired testbed. This study conducted the experiments in Fuller Labs

at Worcester Polytechnic Institute (WPI) in Worcester, MA. We use the QUIC server

from the Chromium project and download files using it. We add delay, packet loss

and competing flows to study the behavior of QUIC.

3



The results from our experiments show that QUIC performs similarly to TCP

in the absence of competing traffic for a range of values for added delay. However,

QUIC delivers better throughput than TCP at high random packet loss. In the tests

designed to explore fairness towards competing flows, QUIC fails to reduce its share

of the available bandwidth with an increase in the number of competing TCP flows.

Our real world test show QUIC’s throughput being capped and rather conservative

in comparison to TCP, but the share of bandwidth does not change with increase

in number of flows. Thus, the presence of higher number of competing TCP flows

may allow a QUIC flow to get a greater share of available bandwidth than does

conforming TCP flow.

Chapter two describes how TCP works and some of the significant changes

suggested or made to TCP’s congestion control algorithms, followed by an intro-

duction to QUIC, its packet structure and features. Chapter three introduces the

methodology, the testbed and our choice of parameters. Chapter four presents the

results, chapter five the conclusions and in chapter six, the future work. The results

section has a small subset of our tests results, a much larger set of results have been

included in the appendix.

4



Chapter 2

Background

This chapter describes, in brief, TCP connection setup and flow control mechanism

followed by a brief description of some of the important updates suggested for TCP’s

congestion control. In the later part of the chapter, we describe packet and frame

structure of QUIC along with connection setup process. A brief description QUIC’s

response to congestion control and packet loss is part of the last section.

2.1 Transport Control Protocol (TCP)

All versions of TCP perform connection setup, data exchange and connection shut-

down in almost the same manner. This section describes these basic operations of

TCP Reno. We describe Reno because most TCP versions since Reno have made

small modifications to the sender side congestion control parameters rather than

changing the entire flow control logic of TCP.

5



Figure 2.1: TCP Connection Setup

2.1.1 Connection Setup

The TCP connection begins with a three-way handshake. The host which initiates

the connection sends a packet with SYN request to a remote host. The remote host

responds with SYN-ACK packet acknowledging receipt of the SYN and agreeing to

the connection. The initiator of the connection then sends an ACK acknowledging

the receipt of SYN-ACK. The two end points can now exchange data.

2.1.2 Sliding Window

TCP implements a sliding window algorithm at the sender. A window refers to the

amount of data, in bytes or packet count, that can be sent before an acknowledgment is

received. The sender sends a window’s worth of data and waits for an acknowledgment

from the receiver of data before sliding the window forward and sending more data.

This prevents the receiver and the network from getting overwhelmed by data. This

window also allows the sender to keep track of the data successfully received by the

6



client.

2.1.3 Additive Increase Multiplicative Decrease (AIMD)

AIMD is the main algorithm for governing the sending rate on a TCP connection

where the sender increases the size of the window by a constant linear value for every

acknowledgment received and reduces the congestion window by a multiplicative

factor in response to packet loss. This strategy may appear conservative but the

actual behavior is modified by the choice of values for these two parameters.

TCP assumes a packet is lost if it is not acknowledged within a certain time

frame, and the sender resends the packet after adjusting the congestion window to

account for packet loss. We next describe TCP Reno and the New Reno update on

handling retransmissions. Generally, all versions of TCP use similar mechanism for

retransmissions and only vary in the AIMD parameters or the mechanism to react

to congestion which could be loss-based, delay-based or a combination of both.

2.1.4 Slow Start (SS)

Slow start is a mechanism employed by TCP to prevent a connection from taking away

bandwidth from other connections on the network. In slow start, the sliding window

increases exponentially in size as well as moves forward with each acknowledgment

received.

2.1.5 Congestion Avoidance

When the sender’s congestion window (cwnd) grows beyond a value called ssthresh

then the connection switches from the Slow Start to the Congestion Avoidance phase.

7



During congestion avoidance, the congestion window increases by an additive factor

expressed in segment size and gets reduced to half the current size (in bytes or

segments), if a packet loss is detected.

2.1.6 Fast Retransmit

If a packet is lost and the subsequent packets reach the receiver, then for each out of

order packet received, the receiver sends an ACK with the next expected sequence

number which did not arrive. The Fast Retransmit mechanism allows the sender to

send the missing packet when three duplicate ACKs are received, rather than wait

for the timeout to occur. Additionally, the ssthresh is reset set (cwnd/2) + 3 before

the retransmission occurs as per RFC5681 [MAB09].

2.1.7 Fast Recovery

Sally Floyd et al. describe the Fast Recovery update to TCP Reno based on sugges-

tions from Janey Hoe’s [Hoe95] work and call it the New Reno update. Fast Recovery

allows the cwnd to expand by one segment size for every duplicate ACK after the

third received until we get a non-duplicate ACK. At this point the inflated cwnd

is reset to a smaller value to represent the packet loss and the subsequent window

decrease.

2.1.8 Evolution of Congestion Control in TCP

The way TCP responds to congestion on the network has undergone changes for

over 25 years. The increase in the capacity of physical medium has forced TCP to

update its congestion control mechanism to take advantage of high capacity on wide

area networks and to share links with other TCP connections in a fair manner.

8



L. Brakmo et al. [BP06] proposed TCP Vegas, which aims to make a TCP

connection more sensitive to the transient changes in the bandwidth by maintaining

a ’correct’ amount of packets on the wire, with the aim of not keeping packets

queued at a bottleneck buffer along the path. TCP Vegas employs three techniques

to improve throughput and reduce loss- one results in timely retransmits, another

allows congestion detection and adjusts transmission rate, and the last technique

modifies the slow start. For timely retransmissions the time elapsed since a packet

was sent is calculated using ACKs and duplicate ACKs. Thus, even if less than three

duplicate ACKs are received, a re-transmission can occur using the timeout. To

detect congestion, Vegas uses the difference between the actual and expected band-

width. This difference (Diff) if larger than a certain threshold. For this calculation

Vegas defines a BaseRTT or the smallest RTT over the lifetime of the connection.

Vegas defines alpha and beta as thresholds. If the Diff < α or Diff < β, the

congestion window is increases linearly. If α < Diff < β, the congestion window

remains unchanged.

Sally Floyd et al. [Flo03] proposed HighSpeed TCP (HSTCP). HSTCP does not

modify TCP’s response under heavy congestion. It is a sender side modification to

allow large congestion windows (cwnd) and prevent loss from shrinking cwnd on

high capacity links. The congestion window is related to loss rate by the formula
√
cwnd = 2/2p, where p is the loss rate. HSTCP defines three new variables, two for

congestion window and one for loss rate. These are, High_Window, Low_Window and

High_P. The value for the variables can be set based on the maximum throughout

desired. The authors chose 83,000 as High_Window and High_P to be 10-7, which

meant throughput of 10 Gbps at a packet loss rate of 10-7. The authors opine that for

9



compatibility with TCP the response of the new function should be similar to TCP

Reno at loss rates between 10-3 − 10-1. For lower loss rates, such as 10-7, HSTCP

can deviate from Reno [Flo03].

Tom Kelly proposed Scalable TCP [Kel03] to improve TCP’s performance on high

capacity links. Scalable TCP updates the sender side congestion control algorithm

such that the resulting TCP connection is compatible with TCP Reno flows on

the network. The STCP adds a new parameter called the Legacy Window (lwnd).

Legacy window denotes the congestion window size needed to achieve a given sending

rate under given loss rate (called the legacy loss rate) by TCP Reno. The congestion

control algorithm uses TCP Reno when cwnd ≤ lwnd, and switches to scalable

congestion window when cwnd ≥ lwnd. With the value chosen for lwnd being 16

packets at a 1500 byte segment size. The AIMD parameter for window increase

increments the window size by 1% for every acknowledgment when no congestion is

detected and reduces the window size by 12.5% in the event of a congestion. Scalable

TCP uses Legacy window to be fair to TCP at lower throughputs while allowing

faster scaling of the window at higher link capacities.

FAST TCP [WJLH06] was developed to allow TCP to perform well at large

window sizes. FAST TCP uses estimation of queuing delay and average RTT to

adjust the congestion window. FAST TCP defines an equilibrium point and the

congestion window growth is slower near the equilibrium and faster away from it.

Here all the senders sharing a bottleneck try to maintain an equal number of packets

in the queue. However, results from experiments show that FAST TCP connections

with higher RTT experience higher queuing delays than connections with lower RTTs.

10



Kun Tan et al. proposed Compound TCP [TSZS06] as an improvement over

TCP Reno so that TCP flows can utilize the higher capacity links on long distance

connections such as optical fiber cables. The authors state that loss-based algorithms

are aggressive as they fill up queues at network devices, only to slow down when

packet drops occur at the bottleneck queue. The delay-based algorithms, however,

respond to the increase in RTT when packets get queued by decreasing the sending

rate. When used together, delay-based TCP flows lose bandwidth to loss-based TCP

flows. In their opinion, the solution was to combine both by adding a delay window

to the congestion window at the sender. The addition of the delay window allows

more packets to be in flight. The delay window is added when the difference between

actual and expected throughput is greater than a threshold value. At such a time

the network is more congested.

E. Kohler et al. proposed Datagram Congestion Control Protocol (DCCP) [EKF06]

as a UDP-based protocol designed primarily for applications that require timeliness

over reliability. Examples of such applications include telephony and streaming

media and other Internet-based applications. DCCP does not add reliability, only

congestion control. It offers two mechanisms for congestion control denoted by Con-

gest Control IDs (CCID). The first is called TCP-like congestion control or CCID-2

and second mechanism is the TCP Friendly Rate Control (TFRC) or CCID-3. The

acknowledgments used in DCCP use packet numbers and not data offset as used by

TCP Reno.

H. Sangtae et al. [HRX08] proposed CUBIC, the current default congestion

control algorithm on Linux. CUBIC is named because of a cubic function used to

grow the congestion windows during congestion avoidance phase. This function

11



allows faster increments to the congestion window compared to New Reno when the

difference between cwnd size and ssthresh is large and smaller increments when cwnd

size is closer to ssthresh. This behavior reduces sudden changes in sending rate close

to a previous maximum rate but allows bigger increments to cwnd if more capacity

is available. CUBIC compares current cwnd to TCP Reno’s WTCP to determine the

current operating region. If cwnd < WTCP then the protocol is in the TCP region.

A CUBIC connection is in concave region when cwnd < Wmax and convex region if

cwnd > Wmax. Concave region signifies window growth towards a maximum window

size prior to a loss event, while convex region signifies probing for new maximum

cwnd in the absence of packet loss. In both concave and convex regions, the window

increments depend on the RTT value along with absence of packet loss. For packet

loss the window reduction uses β = 0.2 rather than 0.5 used in TCP Reno.

2.2 Fairness

Jain et al. [JCH84] proposed the Index of Fairness that was independent of the

population size and the unit of measurement. The index would show small change

in the the resource allocation.

f(x) =
[
∑N

n=1 xi]
2∑N

n=1 x
2
i

(2.1)

2.3 Quick UDP Internet Connections

QUIC stands for QUIC UDP Internet Connections [qui17b]. This is a new protocol

in the application space that uses the UDP from the operating system below and

adds its own set of features on top. These features mainly include reliability similar

to TCP and congestion control where QUIC uses CUBIC similar TCP but also

12



supports other mechanisms.

This chapter describes the format of QUIC packet, components of the packet

header with their purpose and how a QUIC connection is setup, used and torn down.

QUIC has both regular and special packets. The special packets are used during the

initial negotiation between a client and server on the version of QUIC that will be

used on the connection and the encryption that will be used.

QUIC adds its own header to the QUIC payload and then encapsulated it inside

a UDP datagram before sending it. The payload is encrypted thus it is not possible

for anyone tracking the packets to know the contents of the payload.

QUIC is a multiplexed protocol which means that multiple requests can be sent

over the same QUIC connection. To differentiate the payload based on the sender

receiver pair QUIC adds frames. These frames have a unique stream-id that helps

the receiver determine to which endpoint is the data in a QUIC frame is headed.

Our interest in QUIC stems from the desire to understand the implementation of

QUIC’s congestion control mechanism, which by default is said to be CUBIC, same

as TCP’s default mechanism on current Linux distributions. Since the only research

work and publicly available data on QUIC comes from Carlucci et al. [CDCM15]

and Megyesi et al. [MKM16] both of whom primarily analyzed web page load times.

13



2.3.1 Features

Some important features of QUIC include:

Connection Establishment Latency

QUIC combines the cryptographic and transport handshakes to reduce the number

of round trips needed to setup a connection. QUIC introduces a client cached token

that can be re-used to communicate with a server that has been seen before. This

reduces the need for a new handshake.

Multiplexing

A QUIC connection consists of streams carrying data independent of one another.

The data for each stream is sent in a frame identified by a stream ID. A QUIC packet

can thus be composed of one or more frames.

Forward Error Correction (FEC)

QUIC supports FEC, where a FEC packet would contain parity of the packet that

form the FEC group. This feature can be turned ON or OFF as necessary. This

allows recovering contents of a lost packet in a FEC group.

Connection Migration

A QUIC connection is identified by a 64 bit connection ID rather than a 4-tuple

of source and destination IP address and port numbers of the underlying connec-

tion. Thus, a QUIC connection can be reused if IP addresses or Network Address

Translation (NAT) bindings change when, for example, a device changes its Internet

connection. QUIC allows cryptographic verification of a migrating client and thus

the client continues to use a session key for encrypting and decrypting packets

14



Figure 2.2: QUIC Packet Header

2.3.2 Packet Header

Figure 2.2 shows the public header of a QUIC packet. The header contains Public

Flags of size 8 bits. The bits can be set to allow QUIC version negotiation between

the two end-points, indicate the presence of Connection ID and indicate a Public

Reset packet. The Connection ID is an unsigned 64 bit random number selected

by the client. Its value does not change for the duration of a single connection.

Connection ID can be omitted from the packet header when the underlying 4-tuple

of IP address and port numbers for client and server do not change.

The sender assigns each regular packet a packet number, starting from 1. Each

subsequent packet gets a number that is one greater than the previous packet. The 64

bit packet number is part of a cryptographic nonce. But the QUIC sender only sends

at most the lower 48 bits of the packet number. To allow unambiguous reconstruction

of the packet a QUIC end point must not transmit a packet whose number is larger

by 2bitlength-2 than the largest packet acknowledged by the receiver. Therefore,

there can be no more than 248-2 packets in flight.

15



Regular Special
PADDING

RST STREAM
CONNECTION CLOSE

GOAWAY STREAM
WINDOW UPDATE ACK

BLOCKED CONGESTION FEEDBACK
STOP WAITING

PING

Table 2.1: QUIC Frame Types

2.3.3 QUIC Packet Types

Here we describe the QUIC packet and types.

Special Packets

1. Version Negotiation Packet: The version negotiation packet begins with 8 bit

public flags and 64 bit Connection ID. The rest of the packet is a list of 4 byte

versions that a server supports.

2. Public Reset Packet: A public reset packet begins with 8 bit public flags and

64-bit Connection ID. The rest of the packet is encoded and contains tags

Regular Packets

Beyond the public header, all regular packets are authenticated and encrypted, and

referred to as Authenticated and Encrypted Associated Data (AEAD). This data

when decrypted consists of frames.

1. Frame Packet : It contains the application data in the form of frames that

contain type information and payload.

16



2. FEC Packet : It contains the parity bits from XOR of null-padded payload

from the Frame packets in a FEC group. QUIC frames are of two types- special

frames and regular frames. We describe some important frames types that will

help the reader to understand how a QUIC connection is setup and how data

is sent from one end-point to another.

2.3.4 QUIC Frame Types

Here we describe the QUIC frames and types.

Stream Frame

This frame is used to initiate a new stream on an existing connection and also to

send data for an existing stream. The header consists of 1 byte type field, stream

id (1, 2, 3 or 4 byte long) a variable length offset stream of up to 8 bytes and data

length of non-zero value.

ACK Frame

This packet is sent to inform the peer of the packets that have been received and

those which are still considered missing. This is different from TCP’s SACK in that

it reports the largest packet number received followed by the a list of missing packet,

or NACK, ranges.

Stop Waiting Frame

This frame is used to inform the peer that it should not wait for packet numbers

lower than a specified value. This packet number can be encoded using 1, 2, 4 or 6

bytes.

17



Window Update Frame

This frame is used to inform the peer about increase in the flow control receive

window size. The stream ID can be 0 for this frame indicating that the update is

applicable for the entire connection rather than a particular stream. The header

Window Update frame consists of a 1 byte Frame Type field and a up to 4 bytes of

stream ID.

2.3.5 Setting up a Connection

A QUIC connection begins with a client sending a handshake request using a CHLO

packet to the server. If the client and server have not previously communicated with

one another, the server creates a cryptographic token for the client. This token is

opaque to the client but, for the server, the token contains the IP address used by

the client to send this initial request. The token is sent to the client in a REJ or

reject packet. The client now uses the token to encrypt the HTTP request to the

server and the server sends an encrypted response to the HTTP request of the client.

The next time the client contacts the same server it uses the token provided

by the server to send an encrypted HTTP request. This saves time in setting up

connections. The transport layer and encryption handshake are combined into one

process. Reusing the key or token minimizes the need for a handshake to a given

server. Further details about the token and QUIC crypto is available at [qui17c].

Loss Recovery And Congestion Control

The sequence numbers used in TCP increase the data offset in each direction. The

sequence number for QUIC increases monotonically. When the packets are lost

18



Figure 2.3: QUIC Connection Setup

for a TCP connection, keeping track of sequence numbers requires a non-trivial

implementation. In case of QUIC, the sequence numbers are not repeated and the

data is sent with new a sequence number. This allows easy loss detection.

After sending a packet a timer may be set based on:

• if handshake is incomplete, start handshake timer

• if there are packets that are NACKed, set loss timer

• if fewer than two Tail Loss Probes (TLP) have been sent, start TLP timer

On receiving an ACK the following steps are performed:

• Validate the ACK

• Update RTT measurements

• Mark NACK listed packets with sequence number smaller than the largest

ACKed sequence number as missing

19



• Set a counter with threshold value 3 for each NACK listed packet

• NACKed packets with counter > threshold are set for retransmission

20



Chapter 3

Experiments

This chapter describes the testbed and the experiments designed to study the

congestion response of the QUIC protocol and to compare it with TCP. We first

define the testbed used for our experiments. We then discuss the parameters used in

the experiments in the following chapters. After an overview of the network topology

and the parameters used, we describe the performance metrics. We then describe

how to read the graphs.

3.1 Testbed

For experiments, we use the test setup shown in Figure 3.1. For experiments that

require Internet access we use a part of the same testbed, shown in Figure 3.2. The

topology consist of two Ethernet switches capable of gigabit speeds and five desktop

PCs running Ubuntu 14.04 LTS. The desktop in the middle labeled as emulator

has two network interfaces. The interface B is where we add delay and packet loss.

Interface B is also the interface we use for traffic capture.

21



Figure 3.1: Testbed for offline tests

3.1.1 Network Topology and Components

The testbed has a dumbbell-shaped topology. This testbed simulates traffic arriving

at a network device, such as a router, from different interfaces and leaving from one

interface. Before running experiments on the testbed, we setup network addresses

and routes on the desktop PCs to allow transfer of data from the servers to the

clients via the emulator. We also setup the network parameters for each test.

3.1.2 Software Tools

This section describes the tools that we used to setup the routes, capacity on the

bottleneck link and traffic capture.

Netem [net16] provides network emulation for testing purposes on Linux. Netem

can add delay, drop packets, change order of packets and send duplicate packets. We

use Netem to add delay and induce random packet loss.

Tcpdump [tcp16] is a Linux utility that monitors or records traffic passing through

4an interface. Tcpdump allows filtering of traffic based on network layer protocol, IP

address or port number among many other features. We use tcpdump to capture

22



traffic and we do so using the verbose mode where the IP address is not resolved to

a url. An example of the command we use is:

$tcpdump -c 80000 -nnvv ‘((tcp) or (udp))’ -i eth7 -w capture.pcap

The command above captures only the first 80,000 packets of TCP or UDP traffic

on interface eth7 and stores it in a pcap file format. ‘nnvv’ allows more details to be

captured and prevents resolution of IP addresses.

Iperf [ipe16] is a tool for measuring the maximum achievable bandwidth on the

networks. Iperf allows tuning the parameters such as timing, protocol and buffers.

In our experiments, we use iperf to measure the achievable bandwidth that can be

achieved after a bottleneck bandwidth has been set. We use iperf3, the latest version

of iperf. We ran the iperf client on server1 and server2 and iperf server on client 1

and client2 desktops. By default, the iperf server listens on port 5001. An example

of the commands we use:

$iperf3 -c 192.168.2.20

$iperf3 -s

Route [rou16] manipulates the Linux kernel’s IP routing table. We use route com-

mand to add routes on the desktops to send data through the emulator interfaces.

The route has been obsoleted by the new ip route. An example of the route command

to set default routes is:

$route add default gw 192.168.1.1 eth0

Tc [ipe16] is used to configure traffic control in the Linux kernel. Tc is capable

of traffic shaping, scheduling and policing. Tc uses queuing disciplines associated

with network interfaces that hold packets before sending them out. Thus, most

23



modifications can only be done on outgoing traffic. For our experiments, tc helps to

set the bottleneck capacity on the interface B. An example of tc command used to

set maximum link capacity is:

$ tc qdisc add dev eth7 root handle 1: tbf rate 4mbit burst 1600 limit

50000b

3.1.3 QUIC Client and Server

The QUIC server and client application are part of the Chromium Project. This

code is different from the code used on the Google servers and the Chrome browser.

Further, [qui17a] adds a caveat that the code is for integration testing and not meant

perform at scale. Since we analyze congestion control, we assume that the algorithm

and its parameters will not differ significantly from any real world implementation.

Carlucci et al. [CDCM15] also instrumented the same code base in their study of

QUIC, thus we consider it to be useful to derive insights into QUIC’s performance

in the absence of a open-source implementation.

3.1.4 TCP Client and Server

The client and server application for TCP flows are written in C. The server listens

on hard coded port number and the client connects to the same port.

3.1.5 Test Script

Manually running the tests can be time consuming and sometimes introduce errors

and inaccuracies, Therefore, a Python script was used to set the network parameters

and record traffic at the emulator and initiate file download at the two client desktops.

The script initiates and terminates tests along with cleanup after each test run. This

24



script resides on the client-1 machine.

3.2 Performance Metrics

The focus of this study is to explore the response of QUIC to congestion on the

network. We use throughput to measure the performance of QUIC when compared

to TCP. We do not compare the congestion window size of QUIC and TCP in our

experiments because the test code is different from the QUIC implementation on

Google production servers and the congestion window is limited in the test code.

Thus, using throughput of a flow at a middle box allows us to compare how QUIC

and TCP flows differ under same network conditions.

3.2.1 Emulating Congestion

Network congestion is created when the amount of incoming packets on a network

device is more than the rate at which packets can be sent out. This causes the

buffers associated with network interfaces to fill up with packets waiting to be sent

out. These buffers are limited in size and beyond a certain incoming packet rate at

an interface, all packets get dropped. We emulate congestion by using a queue size

equal to the bandwidth delay product using the bottleneck capacity and a delay of

100 milliseconds. Table 3.1 provides information about the values we chose for delay,

loss, bottleneck link capacity and competing flows. The bottleneck link capacity,

delay and loss values are similar to those used by Carlucci et al. [CDCM15] in their

evaluation of QUIC.

While our experimental results may not be the same as an actual enterprise

router, they provide an insight into QUIC’s congestion response. The results can be

25



Delay (ms) 25 50 100 200
Loss (%) 0.0 0.5 1 2

Capacity (Mbps) 4 8 12 16
TCP Flows 1 2 4 8

Table 3.1: Parameters with values used in our experiments

used to infer QUIC’s performance in the real world.

3.2.2 Control Parameters

To create congestion we vary the following parameters on our testbed.

• Latency : Add one-way delay to packets that are going from a server to client.

• Packet Loss : Drop packets that are going from a server to client.

• Bottleneck Capacity : Limiting the maximum link bitrate.

• Competing flows : Adding additional flows in the same direction as a QUIC

flow.

3.3 Experiments

A Python script on Client-1 executes the test cases while the Internet based tests

were not automated.

3.3.1 Impact of Delay

To understand the impact of queuing delay on QUIC we add one-way delay to the

traffic from the server to the client machines. Since delay is added in one direction,

we only add a buffer or queue of size B = T × C at the bottleneck interface rather

26



than 2× T , where B is the buffer size in bytes, C is capacity of the link and T is the

delay in seconds, needed to send packet one way. Thus, traffic from client to server

takes an average time of about 350 micro seconds.

Each delay-based experiment begins by setting link capacity and one-way delay

at the emulator interface B. After that, traffic capture is initiated using tcpdump

followed by the file download. After the file transfer is complete, the script waits

for five seconds and resets the parameters at the emulator. The traffic capture does

not include all the packets that are part of the file transfer; we stop after about 90%

of packets going from server to client have been captured. QUIC and TCP send a

different number of packets, with QUIC sending more packets than TCP.

3.3.2 Impact of Packet Loss

Just as is the case with induced delay, each test with induced loss begins by setting

the parameters for link capacity, delay and loss at the emulator. The packet loss is

expressed as a probability in netem, such that every outgoing packet at interface B

has a N% chance of being dropped, where N is the value selected using netem. We

consider packet loss at all latency values we selected for the delay based tests.

3.4 Impact of Competing Flows

The use of competing TCP flows is of particular interest, since QUIC will need to

coexist with TCP in the real world. Since most of our tests emulate congestion for a

single flow they may be limited in their application to a larger and more diverse set

of network conditions. Testing with competing flows allows us to study the response

of congestion control in QUIC to TCP traffic under varied network load. In this

27



scenario TCP will also influence QUIC’s perception of available bandwidth, the

resulting bandwidth share will determine the fairness of QUIC towards TCP.

Figure 3.2: Testbed for Internet-based tests

3.4.1 Internet-based Tests

We want to test the QUIC protocol available on the Internet and to determine

QUIC’s response to competing TCP flows. For this purpose, we download files from

Google Drive. Thus, both the end-points use the latest version of QUIC (version 36)

which is much more recent than the version we were using previously (version 25).

When using TCP to download files we ensure the that delay experienced by TCP

flow is same as that of QUIC flow. This ensures that the RTT value used by CUBIC

in both TCP and QUIC is similar during bandwidth estimation. The only difference

would be the packet loss rates. The bottleneck bandwidth was set to 16 Mbps and

no packet loss was added at the emulator.

We modify the testbed by removing the Servers 1 and 2 and connect the re-

28



maining setup to the WPI wired network for Internet access as shown in Figure 3.2.

Three different browsers are used in these experiments - Chrome, FireFox and Opera.

Chrome provides a single QUIC flow between Google Drive and Client-1. And the

other two browsers provide one TCP flow each to Google Drive.

We have to use different browsers in order to generate multiple TCP flows,

otherwise, HTTP multiplexes multiple file download requests over a single TCP

connection. In these test we could not achieve four or eight competing flows for this

reason.

Only one or two competing TCP flows were used against a QUIC flow. Again,

we emphasize that the scale of this experiment is not similar to an enterprise router

running thousands of flows, but the underlying logic at the protocol level is the

same. The browsers were downloaded from their respective websites. The same file is

downloaded from all the browsers, no script was used to automate this experiment.

29



Chapter 4

Results and Analysis

This chapter provides results from our experimental evaluation of QUIC. The graphs

depict the results that show major deviation from TCP-like behavior. This allows

the reader to gain useful insight in QUIC’s congestion response. The data from all

the tests are summarized by the tables in this chapter.

The sections in this chapter follow the same sequence as their description in

Chapter 3. We begin by describing the results from experiments with added delay,

then added loss, competing flows and finally the results from Internet-based tests.

4.1 Data Analyzed

The graphs presented in this chapter are throughput versus time graphs. All ex-

periments were repeated five times, but for readability, the graphs included in the

results only show data from three runs under the same set of parameters. The X-axis

represents time in seconds, with the data at least 20 seconds into a file transfer where

possible. This is done in order to study the results at steady state. This helps to

remove variability in the behavior of TCP or QUIC during the initial few seconds

30



when TCP or QUIC expand the congestion window to the maximum possible value

permitted by the network conditions or the congestion control algorithms.

The complete information from the experiments such as average throughput,

standard deviation and standard error of mean for throughput is available in the

form of tables. The throughput values in Tables 4.1 through 4.4 are calculated 30

seconds after the start of file transfer and for a 20 second interval. Therefore, we do

not include the start nor end of any file transfer in the graphs.

Bottleneck
Bandwidth

Mbps

One way
Delay
ms

Packet
Loss
%

QUIC
Throughput

Bits/s

Standard
Deviation
Mbps

Standard
Error

of Mean

TCP
Throughput

Bits/s

Standard
Deviation
Mbps

Standard
Error

of Mean

4 25ms

0 3,879,096 47.68 15.08 3,825,464 12.85 4.86
0.5 3,878,496 52.13 15.05 3,773,696 2,443.81 736.84
1.0 3,878,536 65.76 18.98 3,517,576 7,366.91 2,221.21
2.0 3,866,544 1,299.27 391.74 2,697,104 9,788.43 3,095.37

8 25ms

0 7,758,360 55.90 18.63 7,650,944 24.33 8.60
0.5 7,754,824 755.27 209.47 5,542,352 34,650.91 8,946.83
1.0 7,670,056 14,735.02 4,086.76 3,961,408 25,873.86 8,624.62
2.0 6,596,272 107,426.67 31,011.41 2,817,920 11,004.30 3,479.87

4 50ms

0 3,859,072 7,098.35 2,366.12 3,825,408 12.90 4.56
0.5 3,878,640 61.79 17.14 2,850,752 8,668.31 3,876.59
1.0 3,871,112 1,105.36 333.28 2,079,584 14,139.02 4,713.01
2.0 3,573,936 39,897.73 12,029.62 1,725,344 99,259.85 35,093.66

8 50ms

0 7,758,256 56.60 21.39 7,651,080 9.07 4.05
0.5 7,710,728 19,503.30 5,630.12 2,882,568 16,029.88 6,544.17
1.0 7,054,712 107,708.44 28,786.29 2,048,808 5,104.05 1,929.15
2.0 5,211,256 209,321.01 60,425.77 1,496,152 9,393.27 3,131.09

Table 4.1: Average value, standard deviation and standard error for throughput
from QUIC and TCP at two bottleneck bandwidths - 4 and 8 Mbps and two latency
values - 25 and 50ms

31



Bottleneck
Bandwidth

Mbps

One way
Delay
ms

Packet
Loss
%

QUIC
Throughput

Bits/s

Standard
Deviation
Mbps

Standard
Error

of Mean

TCP
Throughput

Bits/s

Standard
Deviation
Mbps

Standard
Error

of Mean

12 25ms

0 11,637,664 54.00 19.09 11,476,680 29.06 11.86
0.5 10,982,328 277,611.83 71,679.07 5,517,464 24,667.91 8,721.42
1.0 11,169,384 111,782.29 29,875.07 3,979,040 19,857.92 8,880.73
2.0 10,414,520 286,574.33 95,524.78 2,753,000 10,853.31 4,853.75

16 25ms

0 15,516,808 26.65 8.43 15,302,168 15.28 6.84
0.5 15,360,648 59,970.22 17,311.91 5,815,536 51,609.90 25,804.95
1.0 14,547,232 236,119.23 71,192.63 3,949,176 21,747.74 8,219.87
2.0 12,730,592 486,936.33 140,566.41 2,739,704 7,183.25 2,932.55

12 50ms

0 11,637,496 69.78 26.37 11,476,496 11.71 5.24
0.5 11,637,040 46.84 15.61 2,936,712 22,170.67 9,051.14
1.0 10,208,680 272,519.02 86,178.08 2,114,544 6,038.02 2,134.76
2.0 9,380,888 422,656.21 127,435.64 1,465,448 6,494.80 2,454.80

16 50ms

0 15,516,976 64.61 22.84 15,302,344 24.18 12.09
0.5 15,090,864 150,824.41 41,831.16 3,047,072 21,015.97 7,430.27
1.0 13,200,880 527,822.70 175,940.90 2,153,712 9,698.57 3,428.96
2.0 13,448,920 456,912.71 144,488.49 1,488,560 4,493.49 1,420.97

Table 4.2: Average value, standard deviation and standard error for throughput from
QUIC and TCP at two bottleneck bandwidths - 12 and 16 Mbps and two latency
values - 25 and 50ms

4.2 Impact of Delay

Figure 4.1 consists of four throughput versus time graphs that show the throughput

achieved by TCP and QUIC flows at steady state for two bottleneck capacities of 4

and 16 Mbps with a fixed one-way delay of 25ms. Each line on the graph represents

one iteration of the test. Figures 4.1(a) and 4.1(c) show an overlap throughput

achieved at steady state by QUIC in multiple iteration of our delay-based tests.

Thus, QUIC is consistent in its bandwidth estimation and similar to TCP in this case.

When we add delay to the traffic from the server to the client, both TCP and

QUIC are able to utilize the available bandwidth. The payload for QUIC packets

is smaller than the payload of TCP. Thus, in Figures 4.1(c) and 4.1(d), we observe

that TCP flows terminate faster than QUIC flows.

32



0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3

(a) 4 Mbps, 25ms delay

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3

(b) 4 Mbps, 25ms delay

0

2

4

6

8

10

12

14

16

 10  15  20  25  30

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3

(c) 16 Mbps, 25ms delay

0

2

4

6

8

10

12

14

16

 10  15  20  25  30

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)
Time (seconds)

TCP-1
TCP-2
TCP-3

(d) 16 Mbps, 25ms delay

Figure 4.1: These graphs show throughput versus time data from three iterations of
tests conducted for QUIC and TCP at 4 and 16 Mbps link capacities with an added
delay of 25ms. There is little difference in the performance of TCP and QUIC at low
network latencies.

From Figures 4.1(a) and 4.1(b), QUIC and TCP achieve similar throughput over

small bandwidth links with low latencies such as 25ms. But QUIC delivers a higher

throughput by a small fraction. Figures 4.1(c) and 4.1(d) have similar result, but at

a higher bandwidth of 16 Mbps. Figures 4.1(c) and 4.1(c) also show a longer time

to taken by QUIC to download a file compared to TCP. Our analysis is primarily

concerned with the response to congestion alone.

From the data in Tables 4.1 and 4.2, we observe that QUIC achieves a greater

throughput than TCP by about 1.4% across all bottleneck capacities with added

delay of 50ms or less in the absence of induced packet loss on the testbed. The

average packet size for a QUIC packet is smaller than a TCP packet. This implies

33



that the congestion window for QUIC would contain a higher packet count for the

same window size in bytes as TCP. That is more packets in the queue at a bottleneck

buffer and potentially higher packet loss rates.

Table 4.1 provides the results from experiments conducted using bottleneck

bandwidths of 4 Mbps and 8 Mbps at various values for one way delay. As mentioned

earlier, the queue size at the bottleneck buffer was kept at 1x times the bandwidth

delay product, with delay being 100ms. McKeown et al. [BGG+08] show that a much

smaller buffer size can be used even on enterprise devices but we set the bottleneck

queue to B = T × C based on RFC 3439 [BM02].

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3

(a) 4 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3

(b) 4 Mbps

0

2

4

6

8

10

12

14

16

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3

(c) 16 Mbps

0

2

4

6

8

10

12

14

16

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3

(d) 16 Mbps

Figure 4.2: Four throughput versus time graphs at two link capacities and 200ms of
added delay and 2% packet loss

34



Bottleneck
Bandwidth

Mbps

One way
Delay
ms

Packet
Loss
%

QUIC
Throughput

Bits/s

Standard
Deviation
Mbps

Standard
Error

of Mean

TCP
Throughput

Bits/s

Standard
Deviation
Mbps

Standard
Error

of Mean

4 100ms

0 3,879,016 67.15 25.38 3,825,504 12.27 7.09
0.5 3,878,640 62.09 17.22 1,816,864 90,610.70 28,653.62
1.0 3,759,264 49,404.83 14,261.95 1,160,784 6,443.06 1,942.66
2.0 2,768,840 123,761.84 37,315.60 796,240 2,935.47 757.94

8 100ms

0 7,758,344 56.70 20.05 7,651,120 15.38 7.69
0.5 6,023,072 228,616.12 61,100.23 1,586,200 12,306.70 3,177.58
1.0 4,697,968 323,391.44 93,355.07 1,167,936 5,722.03 1,651.81
2.0 3,363,360 310,265.75 98,114.64 1,292,088 220,502.31 58,931.72

4 200ms

0 3,879,016 61.02 23.06 3,825,464 13.07 5.34
0.5 3,878,640 62.95 17.46 1,180,160 14,810.17 3,958.18
1.0 3,279,112 110,400.79 31,869.96 730,976 4,526.84 1,255.52
2.0 3,562,424 111,704.53 37,234.84 479,264 2,337.44 674.76

8 200ms

0 7,758,008 132.96 47.01 7,630,184 5,215.63 2,332.50
0.5 6,218,776 257,683.68 71,468.59 1,191,760 16,463.83 4,250.94
1.0 4,593,960 390,808.17 112,816.60 778,128 10,551.71 2,820.06
2.0 3,855,760 388,395.16 112,120.03 464,976 1,614.94 466.19

Table 4.3: Average value, standard deviation and standard error for throughput
from QUIC and TCP at two bottleneck bandwidths - 4 and 8 Mbps and two latency
values - 100 and 200ms

4.3 Impact of Packet Loss

In Figure 4.2(c), QUIC throughput shown in red, falls after what seem to be a

multiple loss events within a single RTT. This response is not consistent. In Figure

4.2(c), the flows shown in blue and black at the bottom of the graph initially achieved

a throughput value closer to the bottleneck bandwidth. However, for these two flows,

the congestion window reduction happened much earlier and hence the reduced

sending rates. TCP flows were more consistent in the observed throughput across

tests for a given packet loss rate. QUIC flows ignored packet loss and used a greater

share of uncontested bandwidth available despite the packet loss. This was true even

for tests with high packet loss probabilities of 1 or 2% per packet.

Tables 4.1 through 4.4 shows the average throughput at steady for TCP and

QUIC flows from all loss based tests. The data in Tables 4.1 and 4.3 shows that

with increase in packet loss on a smaller link capacities (4 and 8 Mbps) at all values

for delay, the decrease in the observed TCP throughput is greater than decrease for

35



Bottleneck
Bandwidth

Mbps

One way
Delay
ms

Packet
Loss
%

QUIC
Throughput

Bits/s

Standard
Deviation
Mbps

Standard
Error

of Mean

TCP
Throughput

Bits/s

Standard
Deviation
Mbps

Standard
Error

of Mean

12 100ms

0 11,637,496 69.78 26.37 11,281,896 48,662.80 21,762.67
0.5 11,602,376 12,970.30 4,101.57 1,734,016 9,337.29 3,529.16
1.0 11,288,888 129,656.30 41,000.92 1,143,208 8,318.51 2,941.04
2.0 4,181,096 445,555.11 123,574.75 815,064 3,965.19 1,401.91

16 100ms

0 15,516,928 55.64 18.55 15,301,472 79.40 39.70
0.5 14,060,168 413,702.72 124,736.06 1,678,544 19,506.34 6,896.53
1.0 10,492,608 715,324.04 215,678.31 1,170,136 7349.23 2,598.35
2.0 8,320,072 779,537.08 201,275.61 833,640 1,197.50 846.76

12 200ms

0 11,602,608 3,752.62 1,418.36 11,476,296 26.90 13.45
0.5 8,679,672 407,857.21 113,119.24 1,155,672 15,360.85 5,430.88
1.0 5,918,960 539,938.66 155,866.87 764,496 3,142.76 1,283.03
2.0 3,679,272 498,810.93 143,994.31 480,352 3,409.88 1,392.08

16 200ms

0 12,705,400 222,211.69 83,988.12 14,628,904 188,161.02 76,816.42
0.5 9,642,320 513,089.28 162,253.08 1280,312 16,449.94 5,815.93
1.0 6,145,568 683,775.33 189,645.15 746,344 6,346.94 2,115.65
2.0 4,931,296 672,731.75 186,582.22 482,136 2,664.30 1,087.69

Table 4.4: Average value, standard deviation and standard error for throughput from
QUIC and TCP at two bottleneck bandwidths - 12 and 16 Mbps and two latency
values - 100 and 200ms

QUIC which, in some cases, is negligible. The variation in the observed throughput

is high in the case of QUIC as can bee seen from the standard deviation values

associated with QUIC throughput in Tables 4.1 through 4.4.

The increase in delay on the testbed for a given bottleneck capacity and loss

results in lower throughput for TCP but the same is not always the case with QUIC,

as seen in Tables 4.1 through 4.4 for 1% and 2% packet loss values. We observed

this result from multiple iteration of the experiment for the same parameters. Each

QUIC flow responds to congestion at different times, giving higher standard deviation

values from the average throughput calculated at steady state and influences the

average throughput figures. QUIC’s throughput in the presence of induced packet loss

becomes similar to TCP throughput under similar loss rates at high bandwidth delay

product values. Tables 4.3 and 4.4 show this reduction in the observed throughput

for QUIC at 12 Mbps and 16 Mbps with 200ms delay and 2% packet loss rate.

36



The results show a marked difference in how QUIC and TCP react to random

packet loss. TCP treats these losses as an indication of congestion at a network

device and decreases the congestion windows and hence the sending rate. QUIC,

however, differs from TCP in its reaction to random packet loss.

0

1

2

3

4

5

6

 0  1  2  3  4  5  6  7  8  9

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Competing TCP Flow Count

QUIC
All TCP

Avg. TCP
Overall

(a) 4 Mbps with 25ms delay

0

1

2

3

4

5

6

7

8

9

 0  1  2  3  4  5  6  7  8  9

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)
Competing TCP Flow Count

QUIC
All TCP

Avg. TCP
Overall

(b) 8 Mbps with 25ms delay

0

1

2

3

4

5

6

 0  1  2  3  4  5  6  7  8  9

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Competing TCP Flow Count

QUIC
All TCP

Avg. TCP
Overall

(c) 4 Mbps with 100ms delay

0

1

2

3

4

5

6

7

8

9

 0  1  2  3  4  5  6  7  8  9

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Competing TCP Flow Count

QUIC
All TCP

Avg. TCP
Overall

(d) 8 Mbps with 100ms delay

Figure 4.3: Average throughput from QUIC and competing TCP flows plotted against
the number of competing TCP flows. Each vertical set of dots represents the share
of QUIC throughput, the combined TCP throughput, the average TCP throughput
and the overall throughput when a single QUIC flow runs simultaneously with TCP
flows indicated by the on X axis.

37



0.70

0.80

0.90

1.00

 1  2  4  8

Ja
in

’s
 F

ai
rn

es
s 

In
de

x

TCP Flows

4 Mbps 25ms
4 Mbps 100ms

8 Mbps 25ms
8 Mbps 100ms

Figure 4.4: Jain’s fairness index

4.4 Impact of Competing Flows

The results from experiments with competing TCP flows sending data in the same

direction as a single QUIC flow can be seen in Figure 4.3 and Table 4.5. When a

single TCP flow competes again a QUIC flow, the overall share of the bandwidth

of QUIC is rather conservative at 25% of the link capacity. The TCP flow takes a

larger share of the bandwidth. As the number of competing flows increases, QUIC’s

share of bandwidth becomes greater than any individual TCP flow. This indicates

that against a higher flow count, QUIC can be unfair to TCP connections sharing a

bottleneck with it.

Figure 4.4 contains the plot of Jain’s fairness index calculated using the data from

these tests. The straight horizontal black at the top indicated the maximum fairness

that can be achieved using this scale, one. As can be seen from Figure 4.3 the

throughput for QUIC and TCP is most similar when one QUIC flow shares the link

with four TCP links, the fairness of this experiment is highest. In case of two TCP

38



Bottleneck
Capacity
Mbps

Competing
Flow
Count

One way
Delay
ms

Average
QUIC

Throughput
Bits/s

Average
TCP

Throughput
Bits/s

Cumulative
TCP

Throughput
Bits/s

4

1 25 119840 359863.0 359863.00
1 100 170098 309585.0 309585.00
2 25 148931 330523.0 165261.50
2 100 105371 374122.0 187061.00
4 25 131935 349984.0 87496.00
4 100 105895 373623.0 93405.75
8 25 81309 398121.0 49765.12
8 100 97287 382221.0 47777.62

8

1 25 221088 738202.0 738202.00
1 100 223036 736251.0 736251.00
2 25 256956 702226.0 351113.00
2 100 211875 747338.0 373669.00
4 25 182050 657221.0 164305.25
4 100 211385 747782.0 186945.50
8 25 211192 748035.0 93504.38
8 100 209482 749718.0 93714.75

Table 4.5: Average throughput from QUIC and TCP with Standard Deviation and
Standard Error from experiments with two bottleneck bandwidths - 4 Mbps and 8
Mbps

sharing the link with one QUIC at a bottleneck capacity of 4 Mbps at 25ms of added

delay we saw fair sharing of the bandwidth and that result is visible in the fairness

of that flow.

4.5 Internet-based Tests

Figure 4.5 shows the throughput from multiple iterations of experiments with QUIC

and TCP on a 16 Mbps bottleneck, 200ms of added delay and 2% loss setting. The

results from our Internet-based tests look different from the tests we conducted with

emulated congestion. The QUIC connection to the Google Drive was conservative

with an average throughput of roughly 1 Mbps on a bottleneck link with a maximum

39



0

2

4

6

8

10

12

14

16

 25  30  35  40  45

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC
TCP-1

(a) 4 Mbps with 25ms delay

0

2

4

6

8

10

12

14

16

 25  30  35  40  45

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC
TCP-1
TCP-2

(b) 8 Mbps with 25ms delay

Figure 4.5: Throughput from multiple iterations of experiments with QUIC and
TCP on a 16 Mbps bottleneck, 200ms of added delay and 2% loss setting

bandwidth of 16 Mbps. The TCP connection from the same server dominated the

available link capacity. This is observed by the straight line for QUIC throughput in

Figures 4.5(a) and 4.5(b). It shows that the sending rate for the QUIC connection

could possibly be capped at the server.

40



Chapter 5

Conclusions

QUIC is a new network protocol that resides in the application layer over UDP.

Google developed QUIC as an alternative to TCP. Two browsers (Chrome and Opera)

and Google servers are the only entities that support QUIC. When a user accesses

Google’s services such as Gmail over the aforementioned browsers, the data transfer

will use UDP-based QUIC. This generates thousands of QUIC connections on a daily

basis that share the links on the Internet with TCP.

Our goal is to study QUIC’s performance vis-a-vis TCP under network congestion

and its response to competing TCP flows. Given the scale at which QUIC is used

by Google services on the Internet it is important to understand QUIC’s congestion

response to determine how QUIC impacts competing traffic. Our experiments are

mainly conducted by controlling congestion on a wired testbed at Worcester Poly-

technic Institute in Worcester, MA.

Our experiments show that QUIC and TCP achieve similar throughput values

with for all values of added delay with QUIC doing slightly better than TCP by less

41



than 0.1%. However, with induced packet loss along with added delay, QUIC delivers

higher throughput than TCP. QUIC flows also show a high standard deviation from

mean values for throughput with increasing packet loss rates. TCP flows on the

other hand had relatively lower standard deviations across experiments since TCP

had a more consistent throughput for a given set of network parameters.

QUIC flows take a fixed share of the available bandwidth in the presence of

competing TCP flows. The results show this fraction to be roughly 25% of the

available bandwidth on our testbed. Irrespective of the bottleneck bandwidth, we

get the same result with up to eight TCP flows. The bandwidth share of individual

TCP connections goes falls below the throughput of the QUIC flow with 4 competing

flows. This result demonstrates that QUIC flows can be unfair to TCP flows.

We conducted our Internet-based tests with the goal of verifying some of the

results from our tests where QUIC and TCP compete for bandwidth on our wired

testbed without Internet access. We used the latest available version of QUIC at

both ends of the connection for the Internet-based tests. We find that QUIC takes a

fixed but small share of the available bandwidth in the presence of competing TCP

flows. This share of the overall link capacity does not change with increase in the

number of competing TCP flows. Hence, we can postulate that if sufficiently high

number of TCP flows would share a given link, they may receive a lower share of the

bandwidth than a QUIC flow.

42



Chapter 6

Future Work

In this chapter, we briefly describe work that can be done using our current lab

setup to further study QUIC. We can explore features such as Connection Migration,

Multiplexing requests over QUIC Streams and QUIC’s performance over wireless

networks.

6.1 QUIC with Competing Flows

We found that a single QUIC connection can take unfair share of bandwidth from

TCP flows sharing the same link. To further explore this behavior of QUIC in a real

world setting, we need multiple flows of each protocol and a higher link capacity. We

propose running our competing flows test with 10 or 20 parallel TCP connections on

a 100 Mbps link sharing the network with up to 10 QUIC connections. We could

also use a more recent version of QUIC, revision 36, which came out in late 2016.

The goal would be to study QUIC flows react to other QUIC flows in the presence

of TCP flows. The throughput at steady state for each flow would allow us to learn

more about the current state of QUIC’s congestion response fairness to competing

flows.

43



6.2 Connection Migration

Connection Migration allows re-use of an existing QUIC connection when a device

such as laptop or mobile phone changes its mode of network access. For example,

a device is assigned a new IP address when it switches between wireless and wired

networks. Our testbed can be supplemented with a pair of wireless routers to provide

wireless connectivity between the emulator and the rest of the devices. We use a

script to disable the Ethernet interfaces and enables wireless interfaces on the server

and client devices. In this scenario, an application will detect the loss of connectivity

when it fails to use an existing TCP connection and subsequently tries to re-connect

to the remote server. The goal of this test is to understand how QUIC implements

connection migration and how applications can benefit from it.

6.3 QUIC Streams - Request Multiplexing

QUIC is currently deployed inside a browser, but many other network-driven appli-

cations may appreciate an alternative to TCP. These include streaming and video

chat applications that send audio and video components over a TCP connection

via multiplexing. Such an application can use different QUIC streams for audio

and video delivery. Our goal is to explore QUIC streams, and impact of stream

throughput on the overall connection and the application using it. This test uses file

downloads to study stream performance in the presence of delay and loss.

6.4 QUIC over a Wireless Network

Another useful test case would be to evaluate QUIC’s performance over a wireless

connection. This test would help study QUIC where losses occur in the wireless

44



(physical) layer and impact the upper layers in the form of timeouts as opposed to

congestion-based loss.

45



Chapter 7

Appendix

This chapter contains some of the graphs from the experiments we conducted.

46



0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(a) QUIC Flows at 4 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(b) TCP Flows at 4 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(c) QUIC Flows at 8 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(d) TCP Flows at 8 Mbps

0

2

4

6

8

10

12

14

16

 10  15  20  25  30

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(e) QUIC Flows at 16 Mbps

0

2

4

6

8

10

12

14

16

 10  15  20  25  30

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(f) TCP Flows at 16 Mbps

Figure 7.1: Throughput from experiments at various bottleneck capacities and 200ms
added delay and 0% loss

47



0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(a) QUIC Flows at 4 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-2
TCP-3
TCP-4
TCP-5

(b) TCP Flows at 4 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(c) QUIC Flows at 8 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(d) TCP Flows at 8 Mbps

0

2

4

6

8

10

12

14

16

 10  15  20  25  30

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(e) QUIC Flows at 16 Mbps

0

2

4

6

8

10

12

14

16

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4

(f) TCP Flows at 16 Mbps

Figure 7.2: Throughput from experiments at various bottleneck capacities, 25ms
added delay and 0.5% loss

48



0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(a) QUIC Flows at 4 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(b) TCP Flows at 4 Mbps

Figure 7.3: Throughput from multiple experiments with a 4Mbps bottleneck, 200ms
added delay and 0.5% loss

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(a) QUIC Flows at 8 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(b) TCP Flows at 8 Mbps

0

2

4

6

8

10

12

14

16

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(c) QUIC Flows at 16 Mbps

0

2

4

6

8

10

12

14

16

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(d) TCP Flows at 16 Mbps

Figure 7.4: Throughput from experiments at various bottleneck capacities, 200ms
added delay and 0.5% loss

49



0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(a) QUIC Flows at 4 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(b) TCP Flows at 4 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(c) QUIC Flows at 8 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(d) TCP Flows at 8 Mbps

0

2

4

6

8

10

12

14

16

 10  15  20  25  30

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(e) QUIC Flows at 16 Mbps

0

2

4

6

8

10

12

14

16

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(f) TCP Flows at 16 Mbps

Figure 7.5: Throughput from experiments at various bottleneck capacities, 25ms
added delay and 1.0% loss

50



0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(a) QUIC Flows at 4 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(b) TCP Flows at 4 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(c) QUIC Flows at 8 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(d) TCP Flows at 8 Mbps

0

2

4

6

8

10

12

14

16

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(e) QUIC Flows at 16 Mbps

0

2

4

6

8

10

12

14

16

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(f) TCP Flows at 16 Mbps

Figure 7.6: Throughput from experiments at various bottleneck capacities, 200ms
added delay and 1.0% loss

51



0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(a) QUIC Flows at 4 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(b) TCP Flows at 4 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(c) QUIC Flows at 8 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(d) TCP Flows at 8 Mbps

0

2

4

6

8

10

12

14

16

 10  15  20  25  30

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(e) QUIC Flows at 16 Mbps

0

2

4

6

8

10

12

14

16

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(f) TCP Flows at 16 Mbps

Figure 7.7: Throughput from experiments at various bottleneck capacities, 25ms
added delay and 2.0% loss

52



0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(a) QUIC Flows at 4 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(b) TCP Flows at 4 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(c) QUIC Flows at 8 Mbps

0

2

4

6

8

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(d) TCP Flows at 8 Mbps

0

2

4

6

8

10

12

14

16

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

QUIC-1
QUIC-2
QUIC-3
QUIC-4
QUIC-5

(e) QUIC Flows at 16 Mbps

0

2

4

6

8

10

12

14

16

 20  25  30  35  40

T
hr

ou
gh

pu
t (

M
bi

ts
/s

)

Time (seconds)

TCP-1
TCP-2
TCP-3
TCP-4
TCP-5

(f) TCP Flows at 16 Mbps

Figure 7.8: Throughput from experiments at various bottleneck capacities, 200ms
added delay and 2.0% loss

53



Bibliography

[BGG+08] Neda Beheshti, Yashar Ganjali, Monia Ghobadi, Nick McKeown, and
Geoff Salmon. Experimental Study of Router Buffer Sizing. In Proceed-
ings of the 8th ACM SIGCOMM Conference on Internet Measurement,
IMC ’08, pages 197–210, New York, NY, USA, 2008. ACM.

[BM02] R. Bush and D. Meyer. Some Internet Architectural Guidelines and
Philosophy. RFC 3439, RFC Editor, December 2002.

[CDCM15] Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. HTTP over
UDP: an Experimental Investigation of QUIC. In Proceedings of the
30th Annual ACM Symposium on Applied Computing, pages 609–614.
ACM, 2015.

[Flo03] Sally Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649,
RFC Editor, December 2003.

[ipe16] iPerf - The TCP, UDP and SCTP network bandwidth measurement
tool. https://iperf.fr/, 2016. [Online; accessed 01-January-2017].

[Kel03] Tom Kelly. Scalable tcp: Improving performance in highspeed wide area
networks. SIGCOMM Comput. Commun. Rev., 33(2):83–91, April 2003.

[LJBNR15] Robert Lychev, Samuel Jero, Alexandra Boldyreva, and Cristina Nita-
Rotaru. How secure and quick is QUIC? Provable security and perfor-
mance analyses. In Security and Privacy (SP), 2015 IEEE Symposium
on, pages 214–231. IEEE, 2015.

[MAB09] V. Paxson M. Allmanr and E. Blanton. TCP Congestion Control. RFC
5681, RFC Editor, September 2009.

[MKM16] Péter Megyesi, Zsolt Krämer, and Sándor Molnár. How quick is quic? In
Communications (ICC), 2016 IEEE International Conference on, pages
1–6. IEEE, 2016.

[net16] networking:netem Linux Foundation Wiki. https://wiki.
linuxfoundation.org/networking/netem/, 2016. [Online; accessed
01-January-2017].

54



[qui17a] Playing with QUIC. https://www.chromium.org/quic/
playing-with-quic/, 2017. [Online; accessed 01-January-2017].

[qui17b] QUIC, a multiplexed stream transport over UDP - The Chromium
Projects. https://www.chromium.org/quic/, 2017. [Online; accessed
01-January-2017].

[qui17c] QUIC Crypto. https://docs.google.com/document/d/1g5nIXAIkN_
Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/, 2017. [Online; accessed 01-
January-2017].

[tcp16] Tcpdump. http://www.tcpdump.org/, 2016. [Online; accessed 01-
January-2017].

[TSZS06] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A compound tcp ap-
proach for high-speed and long distance networks. In Proceedings IEEE
INFOCOM 2006. 25TH IEEE International Conference on Computer
Communications, pages 1–12, April 2006.

[WJLH06] David X Wei, Cheng Jin, Steven H Low, and Sanjay Hegde. FAST
TCP: motivation, architecture, algorithms, performance. IEEE/ACM
Transactions on Networking (ToN), 14(6):1246–1259, 2006.

55


