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Abstract

The diversity of network applications over the Internet has propelled researchers to re-

think the strategies in the transport layer protocols. Current applications either use UDP

without end-to-end congestion control mechanisms or, more commonly, use TCP. TCP

continuously probes for bandwidth even at network steady state and thereby causes varia-

tion in the transmission rate and losses. This thesis proposes TCP Carson, a modification

of the window-scaling approach of TCP Reno to suit long-lived flows using loss-events as

indicators of congestion. We analyzed and evaluated TCP Carson using NS-2 over a wide

range of test conditions. We show that TCP Carson reduces loss, improves throughput

and reduces window-size variance. We believe that this adaptive approach will improve

both network and application performance.
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Chapter 1

Introduction

Carson City: State capital of Nevada, USA. Founded as a community in

1858, seven years after the first settlement of Eagle Station.

In the past thirty years the Internet has been transformed from an experimental system

that provided email and news messaging services, into a gigantic, decentralized ware-

house of information and entertainment. The current Internet has a multitude of network

applications which differ both in terms of transport layer requirements and services pro-

vided to the users. These applications maybe broadly classified as:

� Short and bursty Web transfers. Almost 50-70% of the flows in the Internet today

are HTTP transfers which are short-lived and bursty [CJOS00].

� Streaming media applications. Streaming audio and video flows typically last much

longer than HTTP transfers. Audio streaming applications last for 78 minutes on

an average [MH00].

� Real-time applications. Voice over IP (VOIP) and Internet Telephony applications

are being marketed as next generation “killer” Internet applications. According

1



to an estimate from Jeff Pulver, an independent analyst of the Web-based voice

communication industry, “Roughly 15 million people in the United States use voice

communication over the Internet.”1 Typical voice conferences over the Internet are

long lived flows.

� Long lived data flows. Most traffic in the Internet today (nearly 80%), is still carried

by a small number of flows [Mat01]. These flows are typically long lived file or

object transfers.

While Web transfers constitute the majority of flows on the Internet, the majority of

the bandwidth consumption comes from long lived flows [Mat01]. Long lived multimedia

applications require a steady transmission rate, while, long lived data flows require a high

throughput.

1.1 Transport Protocols

The application’s network requirements are handled by the transport layer protocols. The

Internet today is driven primarily by two transport layer protocols: UDP and TCP.

The User Datagram Protocol (UDP) is a light-weight transport layer protocol with-

out connection setup delays, flow control or error control, providing applications with a

flexible interface to the network. For these reasons, UDP has been used for delay-bound,

real-time applications and multimedia applications. However, UDP does not respond to

network congestion. Hence, applications sitting on top of UDP need to perform their own

flow-control and retransmission mechanisms.

The Transmission Control Protocol (TCP), on the other hand, is a heavy-weight trans-

port layer protocol. Currently, more than 80% of the Internet bandwidth usage is from

1http://www.pulver.com
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TCP-based applications [SHS97]. TCP establishes an end-to-end connection before trans-

mitting data. It is an acknowledged datagram service which retransmits on detecting

packet losses. At the same time, TCP considers packet drops as an implicit indication of

congestion and modifies its transmission rate (window-size) based on packet drops. TCP,

therefore, has been the choice of most network applications.

There are two distinct phases in TCP - slow-start and congestion avoidance. The

goals and behavior of TCP are very different in each of these phases.

During slow-start, TCP attempts to estimate of the available bandwidth by probing

aggressively for bandwidth (a window-size (W) increase of one packet, W+1, for every

packet successfully transmitted) until it reaches a threshold value. However, during this

exponential growth period, the probable loss is also correspondingly high. If the network

conditions do not change, up to W/2 packets could be lost in a round-trip time. Traditional

TCP shrinks back its window-size to 1 on the loss of one or more packets in the slow-start

phase and sets the threshold to W/2. It then starts the probing process again. Slow-start

continues until during a particular probing the window-size reaches the threshold without

the loss of a packet. At that time, the second phase is entered.

The second phase is referred to as congestion avoidance. Congestion avoidance at-

tempts to optimize the window-size and reacts to congestion in the network. During con-

gestion avoidance, increase in window size is linear (window size increases by a packet

for every round trip time worth of successful transmission, called additive increase). Also

in this phase, for each packet loss the window size is reduced to half of its current size,

called multiplicative decrease. This is further illustrated in Figure 1.1 where we plot the

congestion window over time for a particular flow. In this case, the congestion window

size gradually increases from 8 to 16. This is the additive increase phase. When the con-

gestion window size is 16, the flow experiences loss and the window size is decreased to

8. This is multiplicative decrease. During congestion avoidance a fixed pattern of additive

3



increase, packet loss, multiplicative decrease, additive increase is followed.

While TCP’s probing pattern is suited for flows under network congestion, it is not

beneficial for long lived flows under a steady network state. In a steady-state network,

packet losses during congestion avoidance are due to TCP’s continuous probing for band-

width. Again, in Figure 1.1, we observe an unnecessary oscillation in the congestion

window size, thereby, a variation in the transmission rate. TCP Carson is an enhancement

to the TCP protocol in the congestion avoidance phase to suit long lived flows in a steady

network state.

1.2 TCP Carson

TCP Carson is a modification of TCP Reno and shares the same characteristics as tra-

ditional TCP. It uses a window-based approach to monitor its transmission rate, is an

end-to-end, fully reliable, acknowledged datagram service, and uses loss as an indicator

of network congestion.
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Figure 1.1: Traditional TCP congestion win-
dow at steady-state

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90

C
w

nd

Time

Figure 1.2: TCP Carson congestion window at
steady-state

TCP Carson detects the network state using a history of loss-intervals (interval in

packets between two consecutive loss events). On detecting steady state, TCP Carson

adapts the change in the transmission rate in the congestion avoidance phase. During

steady state, it gradually probes less aggressively for bandwidth. Conversely, it also re-
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duces its decrease in transmission rate in response to a packet drop, as depicted in Fig-

ure 1.2. Initially the TCP Carson flow’s congestion window oscillates between 8 and 16.

However, on detecting steady state, TCP Carson changes its additive increase and mul-

tiplicative decrease factors. Thus, on a packet drop instead of reducing its window size

to 8, it reduces it to 12. Again, its rate of increase in window size is reduced, taking it

longer to reach the window size of 16. On detecting steady state again, instead of re-

ducing its window size to 12, it reduces it to 14 and so on. TCP Carson thus achieves

a steadier transmission rate, a higher average congestion window and experiences fewer

packet drops as compared to traditional TCP algorithms.

The motivation for TCP Carson stems from the following key observations:

� The justification to improving TCP, rather than UDP, is that the principle threat to

the stability of the Internet is from protocols that do not adopt any kind of conges-

tion control mechanisms [FHPW00].

� Long lived TCP flows typically spend more time in the congestion avoidance phase

than in the slow-start phase. Hence, modification in the congestion avoidance phase

has a greater impact on the performance of long lived flows.

� An important characteristic of the current Internet is its inherent dynamic nature. A

protocol which adapts to the changing network conditions may be more conducive

to application performance as well as the performance of the network itself.

We implemented the TCP Carson protocol in NS-2 [oCB]. We evaluated TCP Carson

on a range of test conditions. Our findings indicate that TCP Carson achieves a higher

throughput, lower loss-rate and reduced window size variance in comparison with TCP

Reno for long lived flows. On a 1 Mb bottleneck link, 8 TCP Carson flows achieved

nearly 20% higher average throughput, 15% higher average congestion window size and

5



30% lower average loss rate as compared to 8 TCP Reno flows.

1.3 Organization

The rest of the thesis report is organized as follows. Chapter 2 explores the related work

in the area of TCP congestion avoidance. Chapter 3 explains the methodology adopted for

building, evaluating and analyzing TCP Carson. Chapter 4 explores traditional TCP be-

havior in terms of congestion window and loss characteristics, and develops a mechanism

to detect steadiness in the network. Chapter 5 discusses the algorithm for the TCP Carson

adaptive AIMD protocol. Chapter 6 presents the evaluation and analysis of the protocol

under different network conditions. Finally, Chapter 7 concludes with our findings and

future work.
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Chapter 2

Related Work

The men of experiment are like the ant, they only collect and use; the

reasoners resemble spiders, who make cobwebs out of their own substance.

But the bee takes the middle course: it gathers its material from the flowers

of the garden and field, but transforms and digests it by a power of its own.

–Francis Bacon, 1561-1626

Congestion control at the end-host has been a topic of active research. Various en-

hancements to the traditional TCP algorithm have been proposed. These may be broadly

classified as window-based approaches, rate-based approaches and application specific

approaches. In this chapter we explore end-to-end congestion control protocols and their

impact on applications and the network itself.

2.1 TCP

Congestion control at the end-host is controlled by the transport protocols which govern

the transmission rate on a particular flow. Transport Control Protocol (TCP) is the primary

protocol used by majority of the applications on the Internet to provide congestion and
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flow control. Hence, the robustness of TCP congestion control plays a critical factor

in the stability of the Internet. TCP transmits a window of packets in every round trip

time (RTT). Packet drops are considered as an implicit indication of network congestion;

thereby, TCP modifies the window size based on packet drops. As discussed in Chapter

1, TCP has two distinct phases: slow-start and congestion avoidance. Much research has

gone into studying and enhancing the behavior of TCP in both these phases.

2.1.1 Slow-Start

During slow-start, TCP attempts to estimate the bandwidth available for a particular flow.

In this phase, there is an exponential increase in the window size on successful packet

delivery. On a loss, TCP sets its window size back to 1. Slow-start continues until it

reaches a threshold on the window-size. [AFP98] investigates the drawbacks of setting

the window size to 1 and proposes other initial window sizes.

Enhancements suggested to the slow-start algorithm fall in two categories, those that

involve the network in choosing the initial window size, and, those that use the threshold

parameter to adjust the window size. Congestion Manager (CM) [BRS99], presents a

framework for managing network congestion at the end-hosts. CM exposes a API to

enable transport protocols to learn about network characteristics. Thus, a new flow can

learn about the available bandwidth on a particular link using the CM API instead of

performing slow-start. TCP Fast-start [PK98] is another proposed mechanism for short-

lived web transfers, that suggests reusing network information cached in the recent past

and reducing the overhead due to slow-start. TCP smooth-start [WS00], on the other

hand, is a variant of the slow-start algorithm, that provides a smooth transition between

the exponential and linear growth phases of TCP congestion window.

TCP Carson uses the traditional TCP slow-start algorithm.

8



2.1.2 Congestion Avoidance

During congestion avoidance, TCP attempts to optimize the window size and react to

network congestion. In this phase, there is a linear additive increase to the window size

(window size increment of 1) on successful packet deliveries for a round trip time and

a multiplicative decrease (window size decrement to half current size) on encouuntering

packet loss.

The additive increase parameter is represented by a and the multiplicative decrease

parameter is represented by b. That is on a loss event, the congestion window is decreased

from W to (1-b)W, and otherwise the congestion window is increased from W to W + a

each round-trip time [FHP00]. In the rest of the paper, we refer to traditional TCP as

TCP(1, 0.5) where the 1 is the increment value, a, and 0.5 is the decrement factor, b.

There are many variations to the traditional TCP algorithm. The more well-known

variants include: Tahoe, Reno, Vegas, and more recently, New-Reno and SACK [FF96].

All these variants of TCP have slow-start and congestion avoidance algorithms in com-

mon.

2.1.3 TCP Variants

Tahoe was among the first implementations of TCP and was introduced in version 4.3

of BSD in 1988 and implements the Fast-Retransmit [APS99] algorithm. The Fast Re-

transmit algorithm uses the arrival of three duplicate acknowledgments (ACKs) as an

indication of loss of a segment and retransmits the segment without waiting for the re-

transmission timer to expire. In 1990, TCP Reno was introduced in version 4.3 of the

BSD TCP suite. In addition to the Fast-Retransmit algorithm, TCP Reno implements the

Fast-Recovery [APS99] algorithm. The Fast-Recovery algorithm suggests that follow-

ing a Fast-Retransmit, the transmission may remain in the congestion avoidance phase
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instead of entering slow-start. New-Reno is an enhancement of TCP Reno which avoids

many of the retransmit timeouts that occur in Reno when multiple packets are lost from

a window. In TCP SACK, the receiver reports back to the sender the reception of any

non-contiguous set of packets in a single acknowledgment. Thus, the sender can retrans-

mit non-contiguous lost packets. TCP Vegas [LPW01] is an alternative source-based

congestion control mechanism. It anticipates the onset of congestion by monitoring the

difference between the rate it is expecting and the rate it is realizing, given its congestion

window.

TCP Carson is an enhancement to the congestion avoidance phase of TCP Reno. It

is a variant of TCP to suit long lived flows and implements the steady-state detection al-

gorithm and the adaptive AIMD algorithm in addition to slow start and congestion avoid-

ance.

2.2 Window-Based And Rate-Based Approaches

Many algorithms have been suggested as an alternative to the TCP congestion control

algorithm. Some of these require network participation, such as Rate Adaptive TCP

(RATCP). RATCP [And00] is a modification of TCP congestion control in which the

congestion window is adapted to explicit bottleneck rate feedback. The other algorithms

can be broadly sub-classified as either rate-based or window-based.

The Additive Increase Multiplicative Decrease (AIMD) [FF99, FHP00] is a window

based approach that has its basis on the deterministic response function of TCP. [FHP00]

indicates that the (1, 0.5) approach of TCP may be unnecessarily severe and suggests other

values for a and b which behave like TCP over a long duration. This family of protocols

still exhibit the same probing-loss pattern as exhibited by traditional TCP, even though it

is not as accented. The speed to use available bandwidth is slower than TCP [YKXL00].
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In addition, because of their small fixed decrease factors, their reduction in bandwidth to

an actual congestion event is small. Different relationships have been suggested between

a and b. [FHP00] suggests using:

a � 3b
2 � b

while [YL00] suggests the following.

a � 4
�
1 � b2 �

3

Chapter 5 discusses some of the issues of using the AIMD approach.

Rate based protocols, such as TCP-friendly rate control (TFRC), Rate Adaptive Pro-

tocol (RAP) and TCP Emulation At Receiver (TEAR) try to maintain a relatively steady

sending rate while still being responsive to congestion. RAP [RHE99] is a rate adaptive

protocol specific to pre-encoded real time streams in which the congestion control and

the error control mechanisms work separately. TEAR [ROY00] suggests a flow-control

approach for multimedia streams where the receiver determines the rate of transmission

based on the congestion signals in their forward paths. TFRC [FHPW00] suggests using

a control equation that relies on the loss event rate1 to determine the transmission rate. In

TFRC, an upper bound on the sending rate is determined as a function of the packet size,

round-trip time, steady-state loss event rate, and the TCP retransmit time-out value. In its

simplified form, the TCP response function is given by [FHPW00]:

T �
�

1 � 5s
R

�
p

1A loss event is defined as a loss of one or more packets in the same RTT. The concept of loss event has
its basis in TCP-SACK, which can indicate multiple packets lost in a single round trip time.
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where, T is the transmission rate in Mbps, s is the packet size in bits, R is the round trip

time in seconds and p is the loss event rate.

Rate-based protocols are less responsive to congestion events, primarily because the

sending rates are calculated at discrete intervals of time, during which they transmit at a

fixed rate. The transmission rate (window size) of TCP Carson, on the other hand, is a

continuous function of the current network state and observed loss events. Hence, TCP

Carson is highly responsive to bandwidth changes and network congestion.

2.3 Application Specific Transport Protocols

The unsuitability of TCP or UDP for all applications has led to research in the area of

application specific transport protocols. Various alternatives to TCP and UDP have been

proposed to suit audio and video streaming applications on the Internet. SCP [CPW98]

is another proposed media streaming transmission protocol that detects state of a flow

using variations in the RTT, and modifies its transmission rate accordingly. MM-Flow

[CC00] is a transport protocol built on top of UDP that provides better performance for

multimedia applications.
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Chapter 3

Methodology

The fundamental principle of science, the definition almost, is this: the sole

test of the validity of any idea is experiment.

–Richard P. Feynman, 1918-1988

In this chapter we outline the methodology adopted for developing TCP Carson. We

also specify the simulation setup that was used in the development process. Development

of TCP Carson involved the following steps:

� Study TCP congestion avoidance behavior.

� Develop and evaluate algorithm to detect steady/unsteady network state.

� Study AIMD congestion avoidance behavior and drawbacks.

� Develop TCP Carson algorithm.

� Evaluate TCP Carson.

13



3.1 TCP Characteristics

Under steady network state, TCP continues to probe for bandwidth, thereby causing losses

and variation in transmission rate. TCP Carson attempts to reduce the losses and provide

a steadier transmission rate during congestion avoidance. Hence, the first step towards

building TCP Carson was characterizing the TCP congestion avoidance phase. Section

4.1 inspects the loss and loss-event patterns of TCP during the congestion avoidance phase

and correlates it to the congestion window oscillations of TCP. We define the terms steady

and unsteady and discuss the behavior of TCP in each state.

3.2 State Detection Mechanism

The next step involved developing an algorithm to detect the current state of the network.

Section 4.1 defines the terms steady and unsteady network state. Section 4.2 evaluates

metrics to detect steady state in a network and analyzes their advantages and drawbacks.

Section 4.3 discusses the probable causes of unsteadiness in the network and suggests

mechanisms to detect an unsteady state. Finally, Sections 4.4 and 4.5 presents and evalu-

ates the proposed state detection algorithm.

3.3 AIMD Characteristics

Section 5.1 reviews the behavior of the basic AIMD algorithm, discusses the issues in-

volved and lays the foundation for TCP Carson. The performance of the AIMD approach

is evaluated and the advantages and drawbacks of AIMD are discussed.
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3.4 TCP Carson Algorithm

TCP Carson uses an adaptive AIMD approach after detecting the state of the network.

It adapts its increase and decrease parameters, depending on the current network state

detected. Section 5.2 proposes TCP Carson’s extension to basic AIMD. It outlines the

features of the TCP Carson algorithm and present the algorithm of adapting AIMD based

on detected network state.

3.5 TCP Carson Evaluation

Chapter 6 presents the analysis and evaluation of the TCP Carson protocol under a wide

range of network conditions. We analyze the sensitivity of TCP Carson with respect to its

parameters. We also present a comparison of TCP Carson, AIMD and TCP Reno.

In Chapter 7 we summarize our thesis work and suggest areas of further development.

3.6 Simulation Testbed

We used Network Simulator-2 (ns-2) for our thesis work. ns-2 [oCB] is an event-driven

network simulator from the University of California, Berkeley useful for simulating local

and wide area networks. Numerous network protocols have been implemented in ns-2.

We used ns-2 for characterizing network behavior, analyzing TCP and AIMD protocols

and for developing and evaluating TCP Carson.

We use a dumb-bell topology (Figure 3.1) to conduct our experiments. R1 is the

bottleneck router to which the senders (s1, s2 ... sn) are connected on 2 Mb links with a

delay of 10 ms. R1 has a queue size of 15 and is a drop-tail router. The link R1—R2 has

a capacity of 1 Mb and a delay of 40 ms. Again, the receivers r1, r2 ... rn are connected

to R2 on 2 Mb links with a delay of 10ms. Depending on the test scenario, we changed
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Figure 3.1: Topology for the Simulation

the number of senders and receivers and also the transport protocol used by them. The

packets size is set to 1000 bytes in our experiments.
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Chapter 4

Network State

There are some enterprises in which a careful disorderliness is the true

method.

–Moby Dick, by Herman Melville, 1851

In this chapter we discuss the concept of network state. We define the terms steady

and unsteady and characterize the network behavior in these states. We analyze various

mechanisms to detect the current state of the network. Finally, we describe our proposed

algorithm to detect network state and evaluate it under different network conditions.

4.1 TCP Behavior

TCP works on the principle that when a flow is experiencing congestion in the network,

it has losses. Thereby, it modifies its transmission rate based on loss. The behavior of

TCP in the congestion avoidance phase can be characterized by the size of the congestion

window and the interval between successive losses.

Figure 4.1 is a plot of congestion window over time for a solo TCP Reno flow on a

network. Under such a condition the congestion window (cwnd) oscillates continously
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between fixed values, 16 and 32 in this case. This oscillating pattern of cwnd results in a

pattern for the loss interval, Figure 4.2 in this example. We observe that during this phase

the losses are occurring at regular intervals of packets, 450 packets in this case as depicted

in Figure 4.2

Figure 4.1: Congestion Window in packets :: Single Reno flow

Another, characteristic of the congestion avoidance phase is the number of RTTs be-

tween two successive loss events as illustrated in Figure 4.3. We define a round to be a

RTT worth of packets. Again, we observe that the number of rounds between two suc-

cessive loss events also follows a fixed pattern. In this case, a loss event is recorded every

28—32 rounds. We call such a state of predictable oscillation of congestion window as

steady state from the perspective of the flow. A steady network state is characterized by a

small variability in the loss intervals, both in terms of packets and in terms of rounds.

When the bandwidth available to a particular flow either decreases or increases sig-

nificantly, we define the transition period as being unsteady. This might happen either

because new flows have entered the network or because certain flows have left the net-

work. A period of high-congestion leading to retransmission timeouts is also considered
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Figure 4.2: Loss interval in packets :: Single Reno flow

Figure 4.3: Loss interval in RTTs :: Single Reno flow
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Figure 4.4: Congestion window in packets :: 1-16-1 TCP Reno

as an unsteady state.

Any significant change to the network condition resulting in an unpredictable vari-

ance in the congestion window is called an unsteady state. There are many causes of

unsteadiness in the network:

� New flows entering the network. When a number of new flows enter the network,

the bandwidth available to the existing flows suddenly decreases.

� Flows leaving the network. When flows leave the network, more bandwidth is

availble to the remaining flows.

� Retransmission timeouts. When a flow experiences a retransmission timeout, its

window size is set to 1 and it enters the slow start mode again. Usually this hap-

pens when there is a severe network congestion. Other causes include link failure,

routing changes and bursty traffic.

To illustrate this concept, we ran a single TCP Reno flow for a period of 500 seconds.

During this period, after 200 seconds, we introduced 15 new flows in the network. This

20



caused a sudden reduction to the bandwidth available for the flow, which is reflected in its

congestion window being reduced. (Figure 4.4) The 15 flows were stopped at time 300,

causing an increase in the bandwidth and thereby, an increase in the congestion window.

During the period from 200—300, we observe that the congestion window remains at one

for certain periods. These are retransmission timeouts experienced by the flow. We call

this scenario 1-16-1.

Figure 4.5: Loss interval in packets :: 1-16-1 TCP Reno

The loss interval follows the behavior of the congestion window closely. Figure 4.5

shows that when the congestion window drops at time 200, the losses experienced by the

flow arrive more closely; that is the interval between loss events reduces. At time 300,

when more bandwidth was available, the loss-interval increased. Thus, a change in the

loss interval pattern indicates a transition period (unsteadiness) in the network. Figure 4.6

explores the same concept on the basis of difference in rounds. Again, we observe that

the round interval pattern also follows the congestion window pattern closely.

The state of the network can be determined by the following observations:
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Figure 4.6: Loss interval in RTTs :: 1-16-1 TCP Reno

� if the variability in the loss intervals is small, such as during the period, 0 — 200 in

Figure 4.5, the flow is in a steady state.

� if the loss interval pattern changes, time 200 in Figure 4.5 for instance, it implies

that the flow is in an unsteady state.

� if the flow experiences retransmission timeouts, such as during the period 200 —

300 in Figure 4.4, the flow is in an unsteady state.

4.2 Steady State

Any metric to detect steady network state should be consistent with the above observa-

tions. The instantaneous loss interval pattern cannot be used for detecting the state. This

is because transient bandwidth changes have a large effect on the loss interval. Again, the

loss intervals may have a fixed oscillation pattern in steady state. While the metric should
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be able to detect transitions in available bandwidth, it should also be resilient to transient

spikes or valleys in bandwidth. We evaluated two different sets of metrics to detect steady

state based on loss-intervals.

� Exponentially Weighted Moving Average (EWMA)

� History Window

4.2.1 EWMA

Figure 4.7: Exponentially Weighted Moving Average of loss intervals :: 1-16-1

The Exponentially Weighted Moving Average(EWMA) uses the following formula:

ave � ���
1 � wt ��� ave �	� �

loss �
� int � wt �

where, ave is the the exponentially weighted moving average, wt is the weight and loss-int

is the instantaneous loss interval value.
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We evaluated the EWMA method for the weights — 0.01, 0.1 and 0.9 (Figure 4.7).

The EWMA-0.9 follows the loss-interval pattern very closely. While it is successful in

determining bandwidth changes, it also reacts considerably to transient spikes. EWMA-

0.01 on the other hand does not react fast enough to bandwidth changes. EWMA-0.1

suffers from the drawback that it takes a long time to converge to the loss-interval value.

Depending on the weights assigned, this method either puts too much weight on the the

most recent loss-interval, or takes too much history into account and is slow to respond to

changes. Determining the proper weight to be assigned is a difficult problem and hence,

the EWMA method is not suited for detecting the current state of the network. Similar

results were noted in [FHPW00].

4.2.2 History Window

In the history window method, we kept track of the most recent n loss intervals for dif-

ferent history sizes (n = 4, 8, 16, 32, 64). We then performed statistical operations on the

history window such as mean, median, standard deviation and weighted averages1 and

analyzed them in different scenarios.

Figure 4.8 to Figure 4.12 are plots of mean, median, standard deviation and weighted

average for the 1-16-1 scenario with different history sizes. This section analyzes the

effect of history size and choice of metric while detecting steady state.

Effect of History Size

As the history size increases, we observe the following effects:

� It takes longer to gather the history of loss intervals.

� The gap between two successive values in every metric decreases.

1The weighted average method was proposed in [FHPW00]. We explain it in detail in Section 4.4
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Figure 4.8: Loss interval history size = 4 :: 1-16-1 TCP Reno
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Figure 4.9: Loss interval history size = 8 :: 1-16-1 TCP Reno
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Figure 4.10: Loss interval history size = 16 :: 1-16-1 TCP Reno
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Figure 4.11: Loss interval history size = 32 :: 1-16-1 TCP Reno
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Figure 4.12: Loss interval history size = 64 :: 1-16-1 TCP Reno

� The metrics become more and more resilient to bandwidth changes.

Thus, there exists various trade-offs in choosing the right history size. A small his-

tory size has the advantages of a smaller initialization time, responds rapidly to band-

width changes and has sizeable difference between successive values, but suffers from

the drawback of not being resilient to transient congestion and temporary spikes or val-

leys in available bandwidth. A large history size, on the other hand, is resilient to transient

congestion, but is slower in detecting bandwidth changes and requires more initialization

time. Empirically, we found that a history of 32 loss intervals was well-suited in most of

our test cases, and we use this history size for all further evaluation. An optimal value of

the history size is a subject of future study.

Effect of Metric

In this section, we analyze the behavior of the mean, median, standard deviation and the

weighted average of the loss interval history. The weighted average loss interval (WALI)

27



to detect loss-rate was proposed in [FHPW00]. For a given history size, n, the weighted

average of the loss interval (WALI) is calculated using exponential weights (wi) given by:

wi
� 1 1

�
i

�
n � 2

wi
� 1 � i � n � 2

n � 2 � 1
n � 2

�
i

�
n

Analysis of Figure 4.11 suggests the following characteristics of the metrics:

� The standard deviation is the fastest to detect bandwidth changes. While this is

advantageous in the case of a change in bandwidth, transient spikes and valleys in

the bandwidth have a significant effect on the standard deviation.

� The median has a sharp transition to a change in bandwidth. It is also the most

resilient to transient spikes and valleys in available bandwidth since it ignores the

outliers. However it is the slowest in detecting bandwidth changes.

� The mean and the weighted average perform reasonably well, both, in detecting

network changes and in being resilient to transient changes in bandwidth. The dif-

ference between the mean and the weighed average is that the mean gives equal

weights to all values in the window, while the weighted average gives an exponen-

tially decreasing weight to older values. The weighted average, thereby, gives more

importance to the instantaneous network state than to older values. The advantage

of the weighted average over the mean is that a transient spike or valley will affect

its value for a shorter duration.

Taking into consideration the above observations, we chose the weighted average

method to detect the state of the network. We decide on the state of the network us-

ing the difference between two consecutive values of the weighted average. We explain

this method in further detail in Section 4.4.
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4.3 Unsteady State

There are three causes for an unsteady network state:

� Reduction in a flow’s share of bandwidth

� Retransmission timeout

� Increase in a flow’s share of bandwidth

In this section, we consider each cause, understand the resulting behavior and present

a mechanism to detect the unsteadiness.

4.3.1 Reduction In Bandwidth

When new flows enter a network, the bandwidth available to each flow reduces. This

results in a reduction in the cwnd size. The effect of such a change is observed in the

loss interval pattern. The losses occur more frequently during the reduction in bandwidth,

that is, the loss-interval and the WALI reduces. Such a transition results in a temporary

unsteadiness. The difference in the WALI values can be used to detect such a reduction

in bandwidth.

4.3.2 Retransmission Timeout

A period of high congestion leading to retransmission timeouts results in an unsteady

state. During this state, the cwnd is set to 1, the flow goes into slow-start mode and starts

probing for bandwidth again. The expiration of the retransmission timer signals such an

unsteady state.
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4.3.3 Increase In Bandwidth

When flows leave the network, there is an increase in the available bandwidth for the re-

maining flows. Under such a condition the congestion window size increases. The losses

start occurring more frequently and the loss interval and the WALI increases. Hence, the

WALI can be used to detect such a transition. The drawback of using this approach is

that the flow needs to report a loss before the WALI changes. In some cases this might

result in a significant lag, from the time the bandwidth transition occurs until the time it

is actually detected. Therefore, we use a RTT based timer to detect this transition. As

explained in Section 4.1, the difference in rounds between consecutive losses follows the

loss-interval pattern. We use the difference between consecutive round intervals to set a

timer for detecting this transition. If a particular flow does not experience a loss for x

number of rounds then we decide that it is an unsteady state. x is determined by mul-

tiplying a factor by the difference in rounds for the previous loss interval. There exists

a tradeoff in choosing the value of the multiplication factor. If x is set too large than it

will take longer to detect a transition in the network; if set too small than transient spikes

in bandwidth and variations in the loss intervals can be potentially detected as unsteady.

Again, a history can be used to further tune the value for x. In our evaluation we used the

following value for x.

x � 1 � 75 � r

where, r is the round interval corresponding to the previous loss-interval.

When a bandwidth transition occurs, the history of loss intervals is no longer reflective

of the current network state. When a flow has retransmission timeouts, it goes back into

slow-start mode, making the history obsolete. Hence, whenever an unsteady network state
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is detected, we reset the history window.

4.4 Weighted Average Loss Interval
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Figure 4.13: Steady state detection using WALI : Effect of allowed variance

For detecting the state of the network, we use the difference (in percentage) between

two successive WALI values. Figure 4.13 plots steady state detection and Figure 4.14

plots the unsteady state detection for a range (2%, 6%, 10% and 20%) of allowed differ-

ences.

As the allowed variation in WALI values increases, it takes less time to detect steady

state. As seen in Figure 4.13, after the 15 flows leave the network at time 300, for an

allowed variation of 2%, steady state is detected at time 420; for an allowed variation of

6%, steady state is detected at time 360; for an allowed variation of 10%, steady state

is detected at time 340; and for an allowed variation of 20%, steady state is detected at

time 320. Conversely, as the allowed variation in WALI values increases, it takes more

time to detect an unsteady state. A higher allowed variation is resilient to a larger spike or
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Figure 4.14: Unsteady state detection using WALI: Effect of allowed variance

valley in bandwidth; however, it takes longer to detect an increase or decrease in available

bandwidth. For our evaluation, we chose a 10% difference as the threshold for steadiness.

We evaluate the sensitivity of the allowed variation in Chapter 6.

4.5 State Detection

In this section we present the State Detection Algorithm that decides on the current state

of the network. We also present the evaluation of the steady state detection algorithm in

various scenarios.

4.5.1 Algorithm : WALI-32

There are two parts to the state detection algorithm:

� Receiver Functionality: The receiver detects a loss using a gap in sequence num-

bers. It considers all losses in the same round together as a single loss-event. It

calculates the loss interval and embeds it in the acknowledgment to the sender.
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� Sender Functionality: For every packet sent to the receiver, the sender includes the

round number in the header. The sender increments the round number using a RTT

timer. For every incoming packet, the receiver considers two cases:

– If a loss is reported, then the sender calculates the WALI using the loss interval

value sent by the receiver. It then detects the state of the network as described

in Section 4.4.

– If no loss is reported, then the sender checks whether it has been long enough

to indicate an increase in bandwidth. If so, it decides that it is an unsteady

network state.

If an unsteady state is detected the history window is reset.

The complete algorithm for detecting the state of the network is presented in Figure 4.15.

Figure 4.15: State Detection Algorithm : WALI-32
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4.5.2 Evaluation

In this section we evaluate the state detection algorithm in various scenarios.

10 TCP Reno flows

Figure 4.16: Congestion window for flow 7 among 10 competing TCP Reno flows

Figure 4.17: Loss interval and state detection for flow 7 among 10 competing TCP Reno flows

We ran a simple test case of 10 TCP Reno flows for 500 seconds. Figure 4.16 plots
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the congestion window versus time and Figure 4.17 plots the state detection for one flow.

We observe that the congestion window follows a fixed oscillation pattern between 2 and

6 packets for the entire duration. This oscillation is reflected in the loss interval pattern

which oscillates between 12 and 18 packets. The weighted average loss interval remains

close to 13 for the entire duration. As a result, the state detection algorithm detects the

entire period as steady state, as expected.

4-8-16-8-4 TCP Reno flows

To evaluate how the state detection algorithm performed under changing network condi-

tions we next evaluated it in the following scenario. 4 TCP Reno flows ran for a period

of 875 seconds. At time 175, we introduced 4 more flows into the network which ran

for 525 seconds. At time 350, 8 more flows were introduced into the network, making

the number of flows equal to 16. These 8 flows were stopped at time 525. We call this

scenario 4-8-16-8-4.

Figure 4.18: Congestion window for flow 1 :: 4-8-16-8-4 TCP Reno flows

Figure 4.18 is a plot of the cwnd versus time for Flow 1 which lasted the entire 875
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Figure 4.19: Loss interval and state detection for flow 1 :: 4-8-16-8-4 TCP Reno flows

seconds. Figure 4.19 is the corresponding plot of the loss interval and the state detection

algorithm. The weighted average values are plotted on top of the loss interval values.

We observe that the weighted average follows the trend of the loss interval values. The

series of marks corresponiding to 0 on the y-axis are instances of time when steady state

is detected and the marks corresponding to y-axis of -5 are instances when an unsteady

state is detected.

During the period from 30 to 175, when there are only 4 flows in the network, steady

state is detected. For instance, the mark at (50,0) indicates a steady state. We observe

that when the number of flows increases from 4 to 8, the weighted average loss interval

does not change significantly enough and an unsteady state is not detected. However,

when the number of flows increases to 16, an unsteady state is detected. The mark at

(350, -5) corresponds to this unsteadiness. During the period when there were 16 flows in

the network, Flow 1 experiences retransmission timeouts which are detected as unsteady

state. The mark at (375, -5) is an instance of this case. When the 16 flows leave the

network, Flow 1 detects a steady network state. The mark at (560, 0) indicates steadiness
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in the network. Again, when the number of flows reduced from 8 to 4, the state detection

algorithm detects a change in available bandwidth resulting in an unsteady state (700, -5).

Finally, when there are only 4 flows in the network, Flow 1 is able to detect a steady state

(750, 0).

4.6 Conclusion

The loss interval pattern follows the transition in available bandwidth closely. We use a

loss-interval history based approach to detect the state of the network. The state detection

algorithm uses the following parameters:

� The size of the history window required to detect state of the network.

� Number of rounds of no loss to detect transition in bandwidth.

� Allowed variance in loss interval.

Our results indicate that this algorithm is effective in detecting the current state of the

network.
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Chapter 5

TCP Carson

A capacity to change is indispensable. Equally indispensable is the capacity

to hold fast to that which is good.

– John Foster Dulles, 1888-1959

TCP Carson is a hybrid of the Additive Increase, Multiplicative Decrease (AIMD)

algorithm and the TCP Reno algorithm. In Chapter 1, we discussed the probing problem

of TCP, that is under a steady network state, TCP continues to probe for bandwidth ag-

gressively, thereby causing loss and variation in transmission rate. TCP Carson detects

the state of the network using the algorithm presented in Chapter 4. It adapts the increase

and the decrease parameters of AIMD according to the state of the network detected. In

the first part of this chapter we discuss the drawbacks of the AIMD algorithm. We then

present the TCP Carson adaptive AIMD algorithm.
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5.1 AIMD Behavior

[FHP00] indicates that the TCP(1,0.5) approach may be unnecessarily severe and suggests

other values for a and b governed by the equation,

a �
3b

2 � b

where a is the window increase on successful delivery of a round trip worth of packets,

and (1-b) is the multiplicative window decrease on encountering a packet loss1. By re-

ducing the value of a, AIMD probes less aggressively for available bandwidth. Also, by

decreasing b, AIMD responds less rapidly to packet loss.

While this is beneficial when in network steady state, under an unsteady network

condition, TCP is more fair then AIMD, since it reduces its transmission rate more than

AIMD on a packet loss. It is observed that AIMD blocks out new flows entering the

network. TCP probes for new bandwidth more aggressively than AIMD. Hence, when

flows leave the network TCP reaches the steady transmission rate faster than AIMD.

To illustrate the behavior of AIMD, we ran the 4-8-16-8-4 scenario with AIMD (0.148,

0.125)2 flows and TCP(1, 0.5) flows respectively. Figures 5.1 depicts comparative plots of

the congestion windows for flows 4, 5 and 9. (Flows 1—4 lasted the entire 875 seconds,

Flows 5—9 lasted for the middle 525 seconds and Flow 9—16 lasted the middle 175

seconds.) We make the following observations from the graphs:

� TCP responds rapidly to bandwidth changes. The congestion window of Flow 4

drops reduces substantially when new flows enter the network at time 175. Again,

when flows leave the network, congestion window of flow 4, rapidly increases at

time 700. TCP is fair in the sense that over extended periods of time, TCP flows

1Other equations between a and b have been also been suggested. We present a preliminary discussion
in Section 2.2

2The choice of these values is discussed in Section 5.2
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TCP AIMD

Figure 5.1: TCP vs AIMD : Congestion Windows for flows(4,5,9) :: 4-8-16-8-4
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share the bandwidth equally. As can be seen by the plots of the congestion windows

for flows 4 and 5, the congestion window of both the flows oscillate between 2 and

6 for the period 175—350 and 525—700.

� AIMD(0.148, 0.125) is slow in grabbing available bandwidth. Hence, AIMD flows

take much longer to reach steady transmission rate. In this experiment, flows 5—9

do not reach a steady transmission rate at all.

� AIMD(0.148, 0.125) flows do not reduce their transmission rate substantially to

packet drops. As a result of this, when new AIMD flows enter the network, the

existing flows do not give up their bandwidth, thus blocking out the new flows.

Here flows 5 and 9 are blocked out for substantial periods of time, while flow 4

continues to transmit at a high rate. This makes AIMD unfair in some cases.

5.2 Algorithm : Adaptive AIMD

TCP Carson tries to benefit from the behavior of both TCP and AIMD. While in unsteady

network state, it behaves like TCP - aggressively probing for available bandwidth and

responding rapidly to congestion. However, on detecting steady state it gradually de-

creases its probing and tries to attain a steady transmission rate with fewer drops. The

TCP Carson sender maintains a table (Table 5.1) of corresponding a and b values. We

evaluated the performance of various values of a and b and found out that these values

are TCP-friendly.

TCP Carson starts by behaving like TCP Reno, index 1 of the table, setting its a and b

values to 1 and 0.5 respectively. It uses the WALI-32 (Section 4.5) algorithm to detect the

state of the network. On detecting steady state, it sets a and b to the next index value in

the AIMD table, until it reaches the last index on the AIMD table. Once it reaches the last

index, it uses those values for a and b until it encounters an unsteady state. On detecting
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unsteadiness, the sender resets the a and b values to 1 and 0.5 respectively, thus behaving

like TCP. We call this algorithm Adaptive AIMD (AAIMD).

On detecting steady state, TCP Carson resets 16 of the least recent values in the history

window, thus requiring 16 more losses before it detects steady state again. This is because

the loss interval pattern changes for every pair of a and b values. TCP Carson waits to

gather enough history before it tries to detect steady state again. However, during this

period it continues to check for unsteadiness.

On detecting unsteady state, it is not necessary for the Adaptive AIMD algorithm to

reset the loss interval history, since the state detection algorithm resets the entire history

every time it detects an unsteady state. The Adaptive AIMD algorithm is presented in

Figure 5.2

Figure 5.2: TCP Carson Algorithm : Adaptive AIMD

In the next chapter we present the evaluation and analysis of TCP Carson under a

range of test conditions.

Index a b

1 1.000 0.500
2 0.750 0.400
3 0.250 0.250
4 0.148 0.125

Table 5.1: AIMD Table
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Chapter 6

Evaluation

Now, what I want is Facts.

–Hard Times, by Charles Dickens, 1854

In this chapter we present a detailed evaluation of TCP Carson. Section 6.1 shows the

behavior of TCP Carson under a range of network conditions. For detecting the state of

the network, TCP Carson uses the difference between two succesive weighted average

values, as discussed in Section 4.4. Section 6.2 presents the sensitivity of the TCP Carson

protocol to the percentage difference. Section 6.3 contrasts TCP Carson with TCP Reno

and AIMD.

6.1 TCP Carson Behavior

In this section we present the behavior of TCP Carson. We evaluated TCP Carson under

a range of test cases. Section 6.1.6 presents the comparison of throughput, loss-interval

and average congestion window size of TCP Carson and TCP Reno in our test cases.
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6.1.1 1 TCP Carson

A single TCP Carson flow was allowed to run for 500 seconds. Figure 6.1 is a plot of TCP

Carson’s congestion window across time and Figure 6.2 plots its loss interval pattern.
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Figure 6.1: Congestion Window for a Single TCP Carson Flow

As seen in Figure 6.2, steady state was first detected at time 120. TCP Carson reduced

its a and b values. This resulted in a reduced variance in the congestion window as seen

in Figure 6.1 between time 120—185. The loss interval increased from 450 to 500 at

time 125 corresponding to this reduced variance. Steady state is again detected at times

185, 325 and 440. As expected, there was no unsteady state detection during the entire

run. Every time it detected a steady state, TCP Carson waited to gather history before it

detected steady state again. We can observe that TCP Carson, on detecting steady state,

reduces its congestion window variance. The loss intervals are farther apart, indicating

that TCP Carson encounters fewer losses. (Table 6.1)
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Figure 6.2: Loss Interval (in packets) for a Single TCP Carson Flow

6.1.2 1 TCP Carson, 1 CBR

To illustrate the behavior of TCP Carson under unsteady state, we ran a TCP Carson flow

along with a constant bit rate (CBR) flow for 1500 seconds. The CBR flow was stopped

at time 500 and restarted at time 1000, thus forcing unsteadiness while the TCP Carson

flow lasted for the entire 1500 seconds. The CBR flow was sending data at the rate of 0.4

Mb. (The bottleneck link was 1 Mb.)

Figure 6.3 and Figure 6.4 are plots of the congestion window and loss interval pattern

for the TCP Carson flow. We observe that TCP Carson was able to detect unsteadiness

whenever there was a bandwidth transition due to the stopping and starting of the CBR

flows. TCP Carson reset its a and b values to 1 and 0.5 when it detected the unsteadiness

and behaved like TCP until it gathers enough history to detect steady state. On detecting

steady state, TCP Carson reduced its window size variance. Thus TCP Carson adapts its

increase and decrease parameters to the state of the network detected. We ran the same

test case with a TCP Reno flow instead of the TCP Carson flow. Table 6.2 compares the

throughput, loss interval and average congestion window size of TCP Carson with TCP
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Figure 6.3: Congestion Window for TCP Carson flow :: 1 TCP Carson with 1 CBR (0.4 Mb)
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Figure 6.4: Loss interval for TCP Carson flow :: 1 TCP Carson with 1 CBR (0.4 Mb)
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Reno.

6.1.3 1 TCP Carson, 1 TCP Reno

Next, we ran TCP Carson along with TCP Reno for 400 seconds to understand the mutual

effect of TCP Reno’s congestion window variance and TCP Carson’s adaptive window

variance.
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Figure 6.5: Congestion Window for TCP Reno Flow :: 1 TCP Carson with 1 TCP Reno
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Figure 6.6: Congestion Window for TCP Carson Flow :: 1 TCP Carson with 1 TCP Reno

Figure 6.5 and Figure 6.6 plot the congestion window for the TCP Reno and the TCP

Carson flow respectively. Figure 6.7 plots the loss interval pattern of TCP Carson. We

observe that both TCP Reno and TCP Carson continue their default behavior. While

TCP Reno oscillates its congestion window for the entire duration, TCP Carson gradually
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Figure 6.7: Loss interval for TCP Carson Flow :: 1 TCP Carson with 1 TCP Reno

decreases its congestion window variance. TCP Carson thus achieves a higher average

transmission rate as compared to TCP Reno, while reducing its loss rate and window size

variance as seen from Table 6.3.

6.1.4 4 TCP Carsons, 4 TCP Renos
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Figure 6.8: Congestion Window for TCP Reno flow :: 4 TCP Carson with 4 TCP Reno

To evaluate the performance of TCP Carson and TCP Reno in a mix of flows, we

ran 4 TCP Carson flows with 4 TCP Reno flows for 400 seconds. Figure 6.9 plots the
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Figure 6.9: Congestion Window for TCP Carson flow :: 4 TCP Carson with 4 TCP Reno

congestion window for a TCP Carson flow and Figure 6.8 plots the congestion window

for a TCP Reno flow. The bottleneck bandwidth was 1.5Mb in this case. We observe that

while TCP Carson is able to detect steady state, once it changes its a and b values, the

congestion window no longer oscillates in a fixed pattern. This is because TCP Carson

and TCP Reno do not respond equally to a packet loss in steady state. As a result, TCP

Carson detects this as an unsteady state and reverts back its a and b values to 1 and 0.5

respectively. Thus, unlike AIMD, which would cause unfairness in this scenario, TCP

Carson starts behaving like TCP Reno sharing bandwidth equally with the other flows.

Table 6.4 compares the throughput, the average loss interval and the average congestion

window size of the TCP Carson flows with the TCP Reno flows.

6.1.5 8 TCP Carsons

We ran 8 TCP Carson flows for a period of 400 seconds in this experiment to study

the performance of multiple TCP Carson flows. All the flows detected steady state for

the entire period and reduced their congestion window variance. Figure 6.10 plots the
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Figure 6.10: Congestion Window for TCP Carson flow :: 8 TCP Carson
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TCP Carson TCP Reno

Avg. Cwnd. (packets) 27.78 24.80
Avg. Throughput (Mb) 0.948 0.944

Avg. Loss Interval (packets) 647.25 455.29
TCP Response Function (Mb) 1.078 0.950

Table 6.1: 1 TCP Carson flow vs 1 TCP Reno flow

congestion window for a particular flow and Figure 6.10 plots the corresponding loss

interval pattern. We ran the same test with 8 TCP Reno flows instead of TCP Carson

flows. Table 6.5 compares the performance of TCP Carson with TCP Reno. TCP Carson

has a marked improvement over TCP Reno in terms of overall throughput and loss.

6.1.6 Summary Results

The TCP response function[FHPW00] (TRF) gives an upper bound on the transmission

rate of a transport protocol for a given loss interval. In its simplified form,

T �

�
1 � 5s

R
�

p

where T is the transmission rate in megabits/second, s is the packet size in bits, emphR

is the round trip time in seconds and p is the loss event rate. R is the average round trip

for all the packets over the entire run. All losses that occur in the same round trip time

are together considered as one loss event. The loss interval is calculated as the difference

between two consecutive loss events. The loss event rate (p) is the reciprocal of the

average loss interval for the entire run.

Table 6.1 to Table 6.5 contrasts the average congestion window size, average trans-

mission rate, average loss interval and the TCP friendly throughput for TCP Carson with

TCP Reno for the above experiments. We observe that:

� The average congestion window of TCP Carson is higher than that of TCP Reno in
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TCP Carson TCP Reno

Avg. Cwnd (packets) 21.16 18.56
Avg. Throughput (Mb) 0.706 0.655

Avg. Loss Interval (packets) 418.01 320.23
TCP Response Function (Mb) 0.866 0.758

Table 6.2: TCP Carson in combination with CBR(0.4Mb) vs TCP Reno in combination with CBR(0.4Mb)

TCP Carson TCP Reno

Avg. Cwnd (packets) 14.64 12.68
Avg. Throughput (Mb) 0.518 0.437

Avg. Loss Interval (packets) 240.23 140.33
TCP Response Function (Mb) 0.657 0.502

Table 6.3: 1 TCP Carson flow along with 1 TCP Reno flow

TCP Carson TCP Reno

Avg. Cwnd (packets) 8.7 7.7
Avg. Throughput (Mb) 0.189 0.167

Avg. Loss Interval (packets) 60.00 50.54
TCP Response Function(Mb) 0.328 0.301

Table 6.4: 4 TCP Carson flows along with 4 TCP Reno flows

TCP Carson TCP Reno

Avg. Cwnd (packets) 8.1 7.0
Avg. Throughput (Mb) 0.121 0.109

Avg. Loss Interval(packets) 73.38 49.47
TCP Response Function (Mb) 0.363 0.298

Table 6.5: 8 TCP Carson flows vs 8 TCP Reno flows
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all the cases. For instance, when one TCP Carson flow was run along with one TCP

Reno flow (Table 6.3), the TCP Carson flow had an average congestion window

size of 14.64 packets as compared to 12.68 packets for the TCP Reno flow.

� The average transmission rate is affected by the average congestion window size.

We observe that TCP Carson achieves a higher average transmission rate, thereby

a higher throughput in all cases. For instance, when one TCP Carson flow was run

along with one TCP Reno flow (Table 6.3), the TCP Carson flow had an average

throughput of 0.518 Mb/s as compared to 0.437 Mb/s for the TCP Reno flow.

� The average loss interval for TCP Carson is higher than that of TCP Reno in all

the test cases. This implies that TCP Carson reduces the losses that occur in the

congestion avoidance phase. Table 6.3 shows that the average loss interval for the

TCP Carson flow was 240.23 packets as compared to 140.33 packets for the TCP

Reno flow.

� TCP Carson is TCP-friendly in all cases. TCP-friendly implies that in steady state,

it uses no more bandwidth than that suggested by the TCP response function. In

all the test cases, the average transmission rate achieved by TCP Carson was less

than the suggested transmission rate by the TCP response function. TCP response

function suggests that for the observed average loss interval of 240.33 packets, a

transmission rate up to 0.657 Mb/s may be achieved. TCP Carson achieves 0.518

Mb/s. (Table 6.3)

� The combination of higher throughput and lower loss rate implies that TCP Carson

achieves better goodput than TCP Reno.
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6.2 Sensitivity To Allowed Variance

For detecting the state of the network, TCP Carson uses the difference between two suc-

cesive weighted average values, as discussed in Section 4.4. This percentage difference is

a parameter which is called allowed variance. In this section we evaluate the sensitivity of

the allowed variance between consecutive values of the WALI. As mentioned in Section

4.4, as the allowed variance increases, it takes less time to detect steady state. Conversely,

as the allowed variance increases, it takes longer to detect an unsteadiness in the network.

To understand the effect of the allowed variance, we ran the 4-8-16-8-4 scenario with

1 TCP Carson flow and 15 TCP Reno flows. The TCP Carson flow lasted the entire 875

seconds. Figure 6.2 plots the congestion window over time for TCP Carson for a range of

values for the allowed variance. (0.02, 0.06, 0.10, 0.20) We observe that even under such

continously changing network conditions, TCP Carson detects and adapts the increase

and decrease values.
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Figure 6.12: TCP Carson Sensitivity to Allowed Variance :: 4-8-16-8-4 TCP Carson
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Allowed Variance Throughput (Mb)

2% 0.172
6% 0.174

10% 0.177
20% 0.172

Table 6.6: Sensitivity to Allowed Variance

Table 6.6 compares the throughput of the TCP Carson flow in each case. We observe

that as the allowed variance increases from 2% to 10%, the throughput achieved by the

TCP Carson flow increases; but as the allowed variance goes up to 20% the throughput

decreases. However, the difference between the throughput achieved is marginal, which

suggests that over a long duration, the allowed variance does not have a significant effect

on the throughput. We observed such a bell curve in the achieved throughput in other

scenarios as well. While a 10% allowed variance was found to be suitable in most of

our test cases, a history based approach can be used to further tune the value of allowed

variance.

6.3 TCP Carson, TCP Reno and AIMD

TCP Carson is a combination of TCP Reno and AIMD. In this section, we compare the

relative performance of TCP Carson, TCP Reno and AIMD (0.148, 0.125). For the first

300 seconds of the experiment we varied the number of flows between 4 and 8 in intervals

of 50 seconds. For the remaining 300 seconds we kept the number of flows fixed at 4.

Flows 1—4 lasted the entire 600 seconds, while flows 5—8 lasted for only 150 seconds.

The congestion window of TCP Reno, TCP Carson and AIMD(0.148, 0.125) for flows 1

and 5 are plotted in Figures 6.13.

Table 6.3 gives a tabular comparison of the average throughput in each case. We

observe the following:
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Figure 6.13: TCP Reno vs AIMD(0.148, 0.125) vs TCP Carson : Congestion Windows for Flows 1 and 5
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Avg. Throughput (Mb)
Flows 1–4 Flows 5—8

TCP Reno 0.198 0.100
TCP Carson 0.212 0.100

AIMD(0.148, 0.125) 0.228 0.038

Table 6.7: TCP Reno vs AIMD vs TCP Carson

� The average throughput achieved by flows 1—4 is highest for AIMD (0.228 Mb/s)

and lowest for TCP Reno (0.198 Mb/s). For these flows, TCP Carson achieves a

higher throughput than TCP Reno (0.212 Mb/s).

� The average throughput achieved by flows 5—8 is the same for TCP Carson and

TCP Reno (0.100 Mb/s). During the periods when all the flows are in the network,

both TCP Reno and TCP Carson, have comparable congestion window sizes for all

the flows. However, AIMD blocks out flows 5—8 for considerable periods of time,

thus being unfair. These AIMD flows achieve an average throughput of only 0.038

Mb/s.

Thus, by adapting the window increase and the decrease parameters to the current state of

the network, TCP Carson achieves a higher throughput than TCP Reno and still remains

fair.

On evaluation of TCP Carson in a range of network conditions and flow mixes, we

observe that TCP Carson achieves a higher throughput than TCP Reno in all the test cases,

remains TCP friendly, has fewer drops and is more fair than AIMD.
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Chapter 7

Conclusions

... and I conclude ...

Majority of data transferred on the Internet is by long lived flows. While TCP is the

most popular transport protocol, in a steady state network, TCP continues to probe for

bandwidth, causing unnecessary losses and variation in the transmission rate.

TCP Carson is an enhancement to TCP Reno and shares the same characteristics as

traditional TCP. TCP Carson uses a window-based approach to modify its transmission

rate, is an end-to-end, fully reliable, acknowledged datagram service, and uses loss as an

indicator of network congestion.

TCP Carson works on the principle that the window increase and decrease parameters

of TCP can be adapted to suit the current network state. The state detection algorithm

decides on the current state of the network. Any period of predictable oscillations in the

transmission rate is considered network steady state. Conversely, varying transmission

rates and periods of high congestion are considered network unsteady state.

We evaluated and analyzed mechanisms to detect the state of the network using the

loss interval pattern. After understanding the advantages and drawbacks of these mecha-

nisms, we chose a loss interval history based approach to detect the state of the network.
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The state detection algorithm decides on the state of the network by monitoring the differ-

ence between two successive values of a Weighted Average Loss Interval(WALI). Other

events such as a retransmission timeout or a long period of no loss for a flow marked

an unsteady state. We evaluated our state detection algorithm over a range of network

conditions and observed that the state detection mechanism performs reasonably well in

most network conditions.

The Adaptive AIMD algorithm is an enhancement to the AIMD approach. AIMD sug-

gests that the (1, 0.5) values for the window increase and decrease parameters of TCP are

unnecessarily severe and suggests other values. However, unlike AIMD, which suggests

fixed values for the window increase and decrease parameters, adaptive AIMD modifies

these parameters depending on the state of the network detected.

TCP Carson starts by using (1, 0.5) for the window increase and decrease parameters.

The adaptive AIMD algorithm uses the state detection algorithm to decide on the current

state of the network. On detecting a steady state, it reduces the variance in the transmis-

sion rate by reducing the increase and decrease parameters. Thus, in a steady state, TCP

Carson probes less aggressively for bandwidth and also responds less to a loss event. On

detecting an unsteady state, TCP Carson changes back its increase and decrease parame-

ters to (1, 0.5). TCP Carson thus adapts the increase and decrease parameters to suit the

current network state.

We implemented the TCP Carson protocol in NS-2 [oCB]. We evaluated TCP Carson

on a range of network conditions. Our findings indicate that TCP Carson achieves a higher

throughput, lower loss-rate and a reduced window size variance in comparison with TCP

Reno for long lived flows. Our evaluation also indicates that TCP Carson is more fair than

the simple AIMD approach.

59



7.1 Future Work

In this section we propose possible extensions and enhancements to TCP Carson.

7.1.1 Steady State Detection Algorithm

Empirically, we found that a history of 32 loss intervals was well-suited in most of our

test cases, and we used this history size for our evaluation. However, the history size can

be tuned to suit the application and the observed network pattern. On a network that does

not show a high degree of variance to available bandwidth per flow, smaller history sizes

can reduce the history initialization period substantially.

7.1.2 Adaptive AIMD Algorithm

The values in the AIMD table are a result of empirical evaluation. Further research needs

to be done for the proper choice of these values. Again, an equation based approach can

be used instead of a tabular approach for the adaptive AIMD algorithm.

7.1.3 Router Support

We used a drop-tail router in all our evaluations. The effect of Active Queue Management

techniques, such as Random Early Detection [FJ93] and Explicit Congestion Notification

[Flo94], employed at the router on TCP Carson needs to be evaluated. Also, explicit bot-

tleneck feedback from the router may improve the state detection algorithm and thereby

improve the performance of TCP Carson.
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7.1.4 Application Performance

Much research needs to be done to measure the relative benefits of TCP Carson over

other transport protocols from the applications perspective. This would require the in-

corporation of the TCP Carson algorithm into an operating system and measuring the

performance gain due to TCP Carson for long lived network applications. Again, the

performance of TCP Carson for web traffic need to be further studied.
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