
NSYNC: Network Synchronization for Peer-to-Peer
Streaming Overlay Construction

Hongbo Jiang
Division of Computer Science

Case Western Reserve University, Cleveland,
OH 44106-7071

hongbo.jiang@case.edu

Shudong Jin
Division of Computer Science

Case Western Reserve University, Cleveland,
OH 44106-7071

shudong.jin@case.edu

ABSTRACT
In peer-to-peer streaming applications such as IP television and live
shows, a key problem is how to construct an overlay network to
provide high-quality, almost real-time media relay in an efficient
and scalable manner. Much work has focused on the construction
of tree and graph network topology, often based on the inference of
network characteristics such as delay and bandwidth. Less atten-
tion has been paid to improving the liveness of media delivery, and
to exploiting the flexibility of applications to construct better over-
lay networks. We propose the NSYNC, an ongoing work on con-
structing low-latency overlay networks for live streaming. It aims
at solving the following problems. In typical applications, peers
must buffer a portion of a real-time event, e.g., for at least a few
seconds, to limit the impact of adversary network conditions. Thus,
it introduces both (1) delay, especially long delay for peers that are
many hops away from the origin servers, and (2) partial ordering
between the peers. With NSYNC, the application media players
can slightly increase or decrease the speed of playing media. Thus,
the peers in a network can be synchronized to achieve two effects.
First, late peers can catch early peers and the origin server such that
the entire peer networks improve liveness. Second, the client/server
roles between a pair of neighboring peers can be reversed, allow-
ing opportunities for constructing more efficient overlay networks.
NSYNC can be used in various peer-to-peer streaming systems.

1. INTRODUCTION
Peer-to-peer computing paradigm has provided scalable solu-

tions to many network applications, and a large portion of Internet
traffic is from peer-to-peer applications [14]. One of them is peer-
to-peer streaming, i.e., the delivery of continuous media to a large
number of users simultaneously. The media objects can be live
or stored media, for example, Internet television and movies, live
shows, and conference broadcasting. With peer-to-peer streaming,
the peers (usually end hosts) in the network can relay media data
to other peers. This computing paradigm capitalizes on the up-link
bandwidth of the peers, and effectively alleviates the potential bot-
tleneck problem at the origin servers of the media objects. One

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV ’06 Newport, Rhode Island USA
Copyright 2006 ACM 1-59593-285-2/06/0005 ...$5.00.

key problem in peer-to-peer streaming is how to construct an over-
lay network to provide high-quality, low-latency media relay, in
particular for live streaming applications [15]. Early peer-to-peer
streaming systems and techniques [3, 1] were focused on construct-
ing application layer multicast trees. For example, the construction
of multicast trees is often based on the inference of network char-
acteristics such as end-to-end delay, loss rate, and bandwidth, and
based on the relative proximity between peers [12]. Such prac-
tices are very beneficial to providing high-quality, real-time media
stream in an efficient manner.

The limitations of tree overlay topology have been addressed in
several recent studies [5, 13, 18, 10, 7]. It is vulnerable to peer
failures and prone to disrupted services. In particular, if the peers
are more dynamic and they leave/join the network more frequently,
many other peers in the subtrees could be affected. To overcome
these limitations, new multi-parent approaches were proposed. A
peer can fetch media data from multiple peers (i.e., multiple par-
ents). This method usually improves the quality of media stream.
If one of the parents fails, the peer can still retrieve media data from
other parents, as long as the aggregate rate is roughly equal to the
stream playback rate.

However, this approach also introduces new problems, for exam-
ple, how to choose multiple parents for a peer. While many of these
problems have been addressed, we find one key problem is largely
neglected. In many streaming media applications, a receiver often
buffers a portion of a media stream, say for a few seconds, before
the application continuously plays it. This is necessary in order to
limit the impacts of packet losses, end-to-end delays and delay jit-
ter. In peer-to-peer streaming, a peer’s startup latency is decided by
the latency of its parent(s), plus the latency necessary to buffer a
portion of the media stream. If the overlay network becomes large
and there are many hops between a peer and the origin server, then
the peer may observe a huge latency. It has been observed, in real
peer-to-peer streaming systems such as CoolStreaming and PPLive,
the latency can be up to several minutes. While a long latency rarely
reduces a user’s interests in watching a movie, it does cause user
dissatisfactions if for a live sports event, a peer-to-peer streaming
system lags well behind a Web-based score reporting system.

Such undesirable characteristics are mainly due to one key as-
sumption: the startup latency of a peer (the lag behind the origin
server) cannot be simply reduced once introduced. There are sev-
eral consequences. First, the entire network may observe a longer
and longer average latency. To elaborate on this, just imagine that
some early peers can leave and late peers (with long latency) will
become the parents of new arriving peers. Second, there is a fixed
partial ordering within the set of peers in the system. This lim-
its the design space for overlay construction, and the network may

not be optimized. We will also elaborate on this in the next sec-
tion. On the other hand, if we can break this above assumption,
we may greatly improve the overlay network construction and pro-
vide good liveness of events to the peers. In this paper, we show
this is possible and is beneficial to do so. We propose NSYNC in
which, peers can alternate their playback speeds slightly to reduce
the lag behind the origin server, and multiple neighboring peers
can be synchronized before the client/server roles are reversed. In
this way, NSYNC can help reduce the average latency of peers and
can result in more efficient overlay network construction. While
this paper shows only NSYNC’s two operations, catching and re-
versal, based on alternating playback speeds, it is possible to build
more complex operations to further improve overlay construction.
Our preliminary results reveal that NSYNC can be effective. The
remainder of the paper is organized as follows. In the next sec-
tion, we first illustrate motivations behind NSYNC. In section 3
we describe the algorithms in NSYNC. In Section 4 we provide an
evaluation and the preliminary results. Section 5 briefly describes
related work before we conclude this paper with open questions.

2. MOTIVATION
Consider in a peer-to-peer streaming system, peer B receives

media stream from its parent, peer A. If a peer can have multiple
parents, our arguments can be generalized too. To tolerate network
delays and delay jitter, a peer first prefetches a portion of the media
stream before continuously playing it. Thus, both peers maintain
buffers to keep prefetched media data, as shown in Figure 1. The
shaded area indicates the prefetched and buffered media data. Let
T denote the current time. Let TA < T be the latest portion of the
media stream that has been prefetched by A, and let TB < T be
the latest portion of the media stream that has been prefetched by
B. Since A is the parent of B, we have also TB < TA. Let δA be
A’s lag behind the origin server, and let δB be B’s lag behind the
origin server.

T−δ

T

Peer A

Peer B

TB

T−δA A

B

prefetch buffer

prefetch buffer

 time
T = current

Figure 1: In peer-to-peer streaming, peers need to buffer a por-
tion of the media stream and this introduces startup latency.

2.1 Long Latencies
Initially, B will prefetch data from A and buffer it. For the sim-

plicity of discussion, assume both peers need to buffer the same
amount of data. Often the prefetching and buffering can introduce
additional delay to B no matter what strategy is used. Let us con-
sider two cases: (1) peer A starts to relay the bytes to B immedi-
ately when they are played, and (2) peer A starts to relay the bytes
to B immediately when they are received.

In the first case, the difference between δA and δB depends on
how fast B can receive data from A at the time. For example, in
order to buffer a 5-second segment and the available bandwidth

between the two peers is equal to the nominal media rate, then
δB ≥ δA +5 seconds. Once peer B starts to play the media stream
while peer A continues to play it, the difference between δA and δB

will remain constant. However, assume before peer B joins, peer A
had two other child peers who consumed most of A’s up-link band-
width. When B joins, network bandwidth is so scarce that a long
latency is introduced by B. At some time later, A’s other children
have left the system, but B still lags way behind A.

Things could be even worse if the peers can join and leave the
system dynamically. Assume another peer C joins the system and
chooses B as its parent. This new peer will observe an even longer
latency, δC > δB . Furthermore, if A leaves and joins the system
later again, this new A may choose C as its parent. In this way,
early peers leave the system, and new peers introduce longer laten-
cies. This process may repeat, and to the worst case, may cause
the average latency of the entire system to increase without being
bounded. Finally, one may argue that, in practice a new peer may
choose other peers with low latency as the parents. Although the
problem of unbounded latency can be alleviated, low-latency peers
are more likely to be overloaded.

In the second case, peer A starts to relay the bytes that are just
received. If the network conditions are perfect, i.e., there is no
packet loss and the available bandwidth is always higher than the
nominal media rate, then the two peers observe only a slight differ-
ence between their latencies, the propagation delay from A to B.
This would provide good liveness, although theoretically dynamic
joining/departure of peers may still cause an unbounded latency.
However, there are at least two more reasons why additional delay
must be introduced. First, packet losses exist. If the peers relay
the packets immediately when they are received, packet losses are
cumulative. A peer far from the origin server might observe an
extremely high loss rate and the quality of media would degrade
significantly. Therefore, retransmission (and the delay introduced
by retransmission) should be considered. Buffering and repairing a
media segment (i.e., adding delay) before relaying it seems to be a
reasonable design choice. Second, available bandwidth is limited.
When peer A relays the media to B, peer A’s up-link bandwidth
might be limited at the moment such that longer time is required
to relay a fixed-length segment. For example, assume both A and
B buffer a 5-second segment. While A is downloading the media
from its own parents, it must also relay it to B at the nominal rate.
However, it is likely that there is not enough up-link bandwidth,
noticing that A could be downloading the media at its full link ca-
pacity and now a new connection is created. Let us say, it takes 10
seconds to fill peer B’s 5-second buffer. When B can eventually
start to play the media, it is already 5 seconds behind A.

2.2 Inefficient Overlay Construction
While long latencies are not desirable for users in some applica-

tions, e.g., streaming of live sports events, the partial ordering for
the set of all peers are not good for efficient overlay network con-
struction. By partial ordering, we mean for any pair of peers, one
of them always precedes the other. It is possible for the later peer
to fetch data from the earlier peer, but not the other way around.
Consider the scenario shown in Figure 2. Assume peer S joins the
system first and peer A chooses S as its parent. At a later time,
peer B also joins the system. Although B is very close S, e.g., in
term of peer-to-peer delay, for some reason B chooses A as its par-
ent. This could happen for various reasons. For example, B was
not able to discover S, or S has no abundant bandwidth to serve
another peer in addition to A. As the result, the media stream may
be transmitted coast-to-coast from S to A, and then coast-to-coast
back from A to B. Clearly there is a more cost-efficient overlay

construction: S can send the media stream to B, who relays the
stream to A. This second construction not only reduces the average
latency observed by the peers, but also will likely reduce network
resource consumption. However, the partial ordering among the
peers makes this impossible.

long delay

A

short delay

lo
ng

 d
el

ay

Peer S has data
up to time T

Peer B has data
up to time T < TB

S

S A

Peer A has data up to time T < T

Figure 2: Due to the partial ordering among the peers, TB <
TA < TS , they cannot have a more efficient overlay construc-
tion as shown by the dashed line.

Above weaknesses of typical peer-to-peer streaming systems are
due to the following assumption: the startup latency introduced by
a peer can be increased but cannot be decreased. Adversary net-
work conditions may cause the latency to be increased, e.g., when
there is a sudden network congestion and the buffer is drained.
However, a user wants to continuously and smoothly play a me-
dia stream, so the latency cannot be simply reduced, for example,
by skipping a segment of the media stream. Therefore, providing
some mechanisms to reduce the startup latency while allowing the
user to smoothly play the media stream is a challenge. If this prob-
lem is solved, we can explore new design space for constructing
more efficient overlay network and designing better peer-to-peer
streaming systems.

3. NSYNC
NSYNC uses a simple idea to break the assumption of fixed

playback latency for a peer. It assumes the applications such as
media players have flexibilities. The user associated with NSYNC-
enabled peer can slightly increase the speed of playing the media
stream. This increased speed is (1 + ε) times the nominal media
playback rate, where ε is usually a small fraction. For example we
may set ε = 5%, such that the user will hardly perceive any dif-
ference. The feasibility of this idea is as follows. First, technically
it is easy to increase or decrease the playback speed. For example,
commercial media players such as Windows Media Player allow
users to configure/modify the software to achieve this goal. Sec-
ond, the slight change in speed will unlikely affect the quality of
media stream. For example, in the context of video-on-demand
application, piggybacking techniques [4] also slightly increase the
playback speed (see also ample evidence therein)

When a peer is playing the media stream in this higher speed, we
say it is in the accelerated mode. The peer can stay in this mode for
a while to reduce the latency between itself and other peers (e.g.,
its parents). Although the increased speed is only slightly higher,
after a while the peer can effectively reduce the playback latency.
Eventually the peer will resume the normal operation with a smaller
latency.

NSYNC provides a set of primitives to the peers such that they
can simply call the primitives to enter or leave the accelerated mode.

To make NSYNC useful, we need to consider in what scenarios,
NSYNC should be used to improve overlay network construction.
Furthermore, once a scenario is identified, there still remain many
other questions. For example, first, when and how should the peers
enter and leave the accelerated mode? Second, how can a set of
peers coordinate with each other if they are in the accelerated mode?
For example, the buffer can be drained quickly in the accelerated
mode. Third, what if one of multiple cooperating peers in the ac-
celerated mode leaves the system? To answer these questions, let
us consider two simple scenarios where NSYNC is useful, and we
consider how the peers cooperate with each other to achieve the
goals.

3.1 NSYNC for Catching
In the simpler scenario, a peer will enter the accelerated mode

to reduce its lag behind its parent(s). Figure 3 intuitively shows
how it works with two peers A and B. Peer B receives media
stream from peer A. Initially, the difference between their playback
latencies δA and δB is large enough to guarantee a smooth play
by peer B. However, at some later time the peers discover that
this difference (and the buffer) is too large, and peer B likes to
have better liveness. Therefore, B will enter the accelerated mode.
Assume B is still receiving media data from A at the nominal rate.
At some time later, B finds the buffer contains only a small portion
of the media stream. Further decreasing it would risk a low-quality
playout the media stream. Hence, B cancels the accelerated mode,
see Figure 3(b).

This catching process is easy for implementation. From above
description, peer B does not request any assistance from A. It
needs only to decide by itself if a portion of media stream has
arrived in time for playout. Even if this scenario becomes more
complex, this caching process still works well. Consider two more
complex cases. First, assume B is the parent of another peer C,
and B has reduced its playback latency after catching. C can still
receive media data from B as long as B keeps the played portion
of media stream in its local memory (which is inexpensive). This
works well even if both B and C are in the accelerated mode. Sec-
ond, assume B has multiple parents. B will see if it can receive
media data from all parents in time for playout. The potential of
the caching process is therefore dependent on the slowest parent.

By slightly modifying this catching process, we can achieve even
better results. We have assumed that B always receives media data
from A at the nominal rate. In the catching process, B can receive
data at (1+ε) times the nominal rate. Thus, the buffer of B will not
be drained, but it will contain more up-to-date media data. After a
while, δB will be closer to δA and TB will be closer to TA too. See
Figure 3(c). This second catching process will ensure B always
has abundant media data in the buffer, but it requires there is also
higher bandwidth between A and B.

3.2 NSYNC for Reversal
In the second scenario, two peers will reverse their client/server

roles using NSYNC operations. Figure 2 shows two peers A and B
to perform this reversal. Assume at time T = 0, A has media data
up to time TA and its playback latency is δA. B has media data up
to time TB and its playback latency is δB . Figure 4(a) shows the
initial state. At time 0, although it is impossible for S to send media
data to both A and B, the peers discover there is a better overlay
construction: S sends media data to B and then B relays it to A.

Peer B will enter the accelerated mode to catch A first. It re-
ceives media data from A at a rate equal to (1+ε) times the nominal
rate. In the meanwhile, peer A will run at usual. Assume there is a
propagation delay d between A and B, and for the simplicity of de-

T−δA

T B

T = current
time

T = current
time

Peer A

Peer B

T = current
time

T−δB

T A

Peer A

Peer B

OR

Peer A

Peer B

(c) After catching with higher receiving rate(b) After catching with regular receiving rate(a) Initial state

Figure 3: Peer B catches its parent, peer A by entering the accelerated mode. B may either receive data at the nominal rate to reach
the state shown in (b), or receive data at a higher rate to reach the state shown in (c).

T−δA

T B

time
T = current

time
T = current

time
T = current

T−δB

T A

Peer A

Peer B

Peer A

Peer B

d

Peer B

d

Peer A

(a) Initial state (b) Peer B almost catches A (c) Afer reversal

Figure 4: Peer A and peer B reverse their client/server roles. Peer B first enters the accelerated mode to catch A.

scription, we assume path symmetry. At time (TB−TA−d)/(εR),
where R is the nominal media rate, peer B almost catches A ex-
cept there is a propagation delay d. See Figure 4(b). At this point
of time, A stops fetching data from S. B also stops fetching data
from A, but instead it resorts to A for the next portion of the media
stream. Assume B receives data from S at the nominal media rate.
At time d later, B virtually catches A. Within another delay d, A
will be able to receive new media data from B. The client/server
roles are reversed. Both A and B resume their normal operations.
See Figure 4(c).

The above reversal process assumes that peer A buffers a portion
of media stream whose duration is much larger than 2d. With this
assumption, peer A will be able to play the buffered media data
while switching from S to B as its parent. In many peer-to-peer
systems, a peer usually keeps a segment whose duration is at least
a few seconds, i.e., it is long enough. However, if A has not kept
enough data, we can still solve the problem. The idea is, A can
enter a decelerated mode: it plays the media stream at a slightly
lower speed. For example, the speed can be (1− ε) times the nom-
inal rate. If necessary, A can enter the decelerated mode before the
reversal process starts, so that the duration of the buffered media
stream will be long enough.

Several other problems remain and here we briefly discuss how
to solve them. (1) First, we need to decide when to start the reversal
process and who will initiate it. This can be done periodically, and
decided by the peers locally. A peer can send queries to its neigh-
bors to check if any two neighbors should be connected directly
(if that is more efficient). Peer-to-peer delay is a possible metric
in deciding the peering relationships. The neighbors can exchange
probe packets to estimate the delay. The peer who sends out the
initial queries will collect the delay information and initiate the re-
versal process if applicable. (2) Second, if some peers are already
involved in the reversal process, we need ensure the correctness of

this process. To simplify it, we can lock the involved peers so that
one peer can participate in only one reversal process at the same
time. If any peer leaves during this process, the process is imme-
diately aborted and all other peers resume the normal operations.
(3) Third, when peers leave and join the systems frequently, the re-
versal process may have to be canceled often. Thus, it incurs some
unnecessary overhead for no good. For this reason, we can start the
reversal process only after the peers have stayed online for some
reasonably long period. This method will likely reduce the chance
of aborted reversal. For example, characterization of live streaming
workload has revealed that the users tend to stick to the live events
when their interests have grown [17]. Therefore, if the peers have
stayed online for a longer period, they are increasingly unlikely to
leave the system soon.

4. PRELIMINARY EVALUATION
In this section we focus on the preliminary evaluation of us-

ing NSYNC for constructing locality-aware peer-to-peer streaming
systems, and demonstrate the effectiveness of NSYNC. We have
implemented a simulator of NSYNC. For comparison, in the sim-
ulator we also implement other peer selection techniques without
using NSYNC. We compare the performance of various techniques
in terms of the average parent-child delay, which indicates on av-
erage how far a peer is from its parents. In this preliminary eval-
uation, NSYNC uses only the reversal of client/server roles to let
peers receive media stream preferably from close parents.

4.1 Simulation Setup
We use the BRITE topology generator [8] to generate a set of one

level network topologies with between 500 and 2000 nodes. The
default setting of the topology generator is used. We have found
on average each node can have 4 to 10 neighbors at any scale. In
each topology we use all-pairs shortest path algorithm to compute

the end-to-end delay between the peers, and normalize the delay
to a maximum of 1000ms. In addition, we set a delay threshold
of 600ms. If the delay between two peers is larger than this value,
the system presumes it is unlikely to have the desired QoS charac-
teristics. As a result, these two peers will not establish a peering
relationship.

The peer behavior in our simulation is modeled as a birth-death
process, although this may not the most accurate. Initially, no peer
is turned on and connected to the origin server. A peer may be
turned on and off by its user. A non-operational peer is turned on
with probability 1% on every time tick, and, an operational peer is
turned off with probability 0.2% on every tick. The length of time
tick in the system is 10 seconds. The average duration of a peer
is therefore over one hour. In order to obtain accurate results, the
simulator ran for longer than 1000 time ticks, or about three hours.

When a peer joins the overlay network, it obtains 10 connec-
tions information received from the server or by other means, any
of which may or may not satisfy the QoS in terms of delay. In
addition, we set each peer can have up to 5 parents and can sup-
port up to 5 children. Without overlay reorganization, peers only
select nearby up to 5 parents from the first 10 possible connections
with the lowest delay. With NSYNC, peers can reverse client/server
roles and improve the overlay connectivity periodically as described
in Section 3. The message overhead is neglected.

4.2 Simulation Results
We begin by examining the effects of different techniques in

building locality-aware overlay networks. Figure 5(a) shows that
first, compared with random parent selection, the reorganization
can noticeably improve the locality of the result overlay. In this
1000-peer scenario, NSYNC reversal achieves more than 10% im-
provement compared with random selection. This is because after
each reversal process, the new neighbors of a peer likely become
closer neighbors. We should note here that while this improve-
ment is still limited, it is mainly due to that we only attempt to
reverse the client/server roles of immediate peers. If NSYNC im-
plements more complicated overlay construction, we expect the im-
provement will be more obvious.

In the next experiments, we investigate the performance in over-
lay networks with different scales. Here we use averages of 500
simulation runs after the 500th time tick where the system perfor-
mance becomes stable. Figure 5(b) shows that even with differ-
ent scales, the relative improvement of NSYNC reversal technique
is consistent. One might notice that the absolute performance of
the two techniques are different when the network size varies, e.g.,
the average delay is the lowest with 1000 nodes. This is due to
the randomness of the simulation, for example, the BRITE topol-
ogy generator may generate links with lower parent-child delay. In
summary, we suspect if the network further scales up and the delay
becomes more heterogeneous as in the Internet, then the advan-
tages of using NSYNC reversal will be much more obvious. We
will exploit this in the future.

Finally, we study the impact of the delay threshold on the perfor-
mance of the techniques. When a peer joins the overlay network,
it selects its parents using a delay threshold to decide whether link
can be established. Figure 6 shows the effect of the delay threshold
on the average parent-child delay. Again, the figure shows the av-
erage quantities of 500 simulation runs. We can see that in general,
when the delay threshold is larger, the peers will observe long ini-
tial delay. Therefore, NSYNC will potentially reduce the average
parent-child delay more drastically.

To summarize, the use of NSYNC can be effective in provid-
ing low-latency peer-to-peer streaming. Our preliminary results

show some improvement, although we we have exploited only the
NSYNC reversal operations. It is important to notice that, NSYNC
primitives do not conflict with the techniques in current peer-to-
peer streaming techniques and systems. Hence, NSYNC can be
adopted together with them.

5. RELATED WORK
Early work on peer-to-peer media streaming was based on a

single multicast tree. Representative systems include End-System
Multicast [3], NICE [1], and ZIGZAG [16]. In End-System Mul-
ticast, in order to build a multicast tree, a complete virtual graph
is constructed. This graph consists of all participants, with a vir-
tual link (with distance) between any pair of vertexes. A minimum
spanning tree is then constructed from this complete virtual graph.
In NICE, the peers are first organized into a hierarchy to support
a large large receiver sets. ZIGZAG also organizes the peers into
an appropriate tree. This tree has a height logarithmic with the
number of clients. However, when peers in the tree do not have
sufficient available capacities due to transient congestion, or when
they depart or fail, the streaming session is interrupted and requires
expensive reconciliation work. To address this problem, streaming
based on multiple multicast trees has been proposed [9, 2]. The
media can be split into multiple sub-streams, each delivered along
a multicast tree. As a result, it is more robust against peer depar-
tures and failures. An affected receiving peer may still be able to
continuously play the media stream at a degraded quality, while
waiting for the tree to be repaired. These advantages come with an
expensive cost, however, as all the trees need to be maintained in
highly dynamic peer-to-peer networks.

More recent systems such as DONet [18], PRO [13], Chain-
saw [10], and DagStream [7] construct networks with stronger con-
nectivity. Meshes and directed acyclic graphs are constructed to
for overlay networks. They allows a multi-parent approach to lim-
iting the impacts of peer dynamics and network dynamics. Sev-
eral new systems have taken this multi-parent approach. For ex-
ample, in CoolStreaming [18], each peer periodically exchanges
the availability (and timeliness) information of the media stream
with multiple neighbors. The media segments to be retrieved from
each neighbor are dependent upon the number of potential suppliers
for each segment and the available upload capacities of neighbors.
In PeerStreaming [6] and PPlive [11], the media workload is dis-
tributed among the set of supplying peers in proportion to their up-
load capacities. These heuristics fall short of achieving global opti-
mality, and thus may starve the peers with high download demands.
Furthermore, the construction and maintenance of an overlay net-
work (with multiple parents) require often much higher overhead.
It was also found that in both CoolStreaming and PPLive, peers
experience extremely long latency, presumably due to the buffer-
ing requirement. To the best of our knowledge, no prior peer-to-
peer streaming techniques or systems have attempted to use peer
synchronization to improve liveness of streaming and to improve
efficiency of overlay network.

6. CONCLUSION
We have illustrated the weaknesses of current peer-to-peer stream-

ing techniques and systems to support delivery of live stream me-
dia. We have proposed the NSYNC to construct low-latency over-
lay networks for live streaming. With NSYNC, the applications
(such as Windows media player) can slightly increase or decrease
the speed of playing media stream. Thus, the peers in a network
can be synchronized by calling our NSYNC primitives. We have
shown how to use NSYNC to construct more efficient overlay net-

 300

 350

 400

 450

 500

 0 200 400 600 800 1000

av
er

ag
e

pa
re

nt
-c

hi
ld

 d
el

ay
 (

m
s)

sequence number of runs

without reorganization
with reorganization

(a)

 300

 350

 400

 450

 500

 500 750 1000 1250 1500 1750 2000

av
er

ag
e

pa
re

nt
-c

hi
ld

 d
el

ay
 (

m
s)

number of nodes

without reorganization
with reorganization

(b)

Figure 5: Average parent-child delay in networks (a) with 1000 nodes, and (b) with
different numbers of nodes.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 200 300 400 500 600 700 800

av
er

ag
e

pa
re

nt
-c

hi
ld

 d
el

ay
 (

m
s)

delay threshold (ms)

n=500
n=1000
n=1500

Figure 6: Effect of delay threshold d on the
performance of NSYNC reversal.

works via two examples: catching and reversal. With catching,
a peer can accelerate its play-out to reduce its lag behind its par-
ent (as well the origin server). With reversal, a pair of peers can
reverse their client/server roles, if both increase and decrease the
play-out speed. The use of both catching and reversal can improve
the liveness of the entire peer-to-peer network, and make the over-
lay network more efficient. Our preliminary results show NSYNC
can be effective.

NSYNC is generally useful for two reasons. First, NSYNC pro-
vides a set of primitives to build more complex operations. Catch-
ing and reversal are two example operations, and we believe peer
synchronization can be useful for other purposes. Second, NSYNC
can be used together with various peer-to-peer streaming techniques,
and can be adopted by various systems.

NSYNC is an effort to explore the new design space for peer-to-
peer streaming systems. There are many open questions related to
the algorithms, implementation, and deployment of NSYNC which
we would like to further exploit and discuss. From the algorithm
perspective, for example, given an overlay network, how can we
use NSYNC operations (such as catching and reversal) to reorga-
nize the overlay network? What is the complexity of the optimal so-
lutions and are there good heuristics for approximation? From the
implementation perspective, what primitives should be provided by
NSYNC, and what operations can be developed from the primi-
tives? From the deployment perspective, are there any incentives
for the users to enable NSYNC, and are there any technical/non-
technical barriers for its deployment?

7. REFERENCES
[1] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable

application layer multicast. In Proceedings of ACM
SIGCOMM, August 2002.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. I. T.
Rowstron, and A. Singh. SplitStream: high-bandwidth
multicast in cooperative environments. In Proceedings of
ACM SOSP, October 2003.

[3] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. In Proceedings of ACM SIGMETRICS, June 2000.

[4] L. Golubchik, J. C. S. Liu, and R. R. Muntz. Adaptive
piggybacking: A novel technique for data sharing in
video-on-demand storage servers. ACM Multimedia Systems
Journal, 4(3):140–155, 1996.

[5] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava.
PROMISE: Peer to peer media streaming using collectcast.
In Proceedings of ACM MULTIMEDIA, 2003.

[6] J. Li. PeerStreaming: A practical receiver-driven peer-to-peer

media streaming system. Technical Report
MSR-TR-2004-101, Microsoft Research, September 2004.

[7] J. Liang and K. Nahrstedt. Dagstream: Locaity aware and
failure resilient peer-to-peer streaming. In Proceedings of
S&T/SPIE Conference on Multimedia Computing and
Networking (MMCN), January 2006.

[8] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An
approach to universal topology generation. In Proceedings of
IEEE/ACM International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication
Systems (MASCOTS), August 2001.

[9] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and
K. Sripanidkulchai. Distributing streaming media content
using cooperative networking. In Proceedings of
International Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV), May 2002.

[10] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E.
Mohr. Chainsaw: Eliminating trees from overlay multicast.
In Proceedings of International Workshop on Peer-to-Peer
Systems (IPTPS), February 2005.

[11] PPLive. http://www.pplive.com/en/index.shtml.
[12] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.

Topologically-aware overlay construction and server
selection. In Proceedings of IEEE INFOCOM, June 2002.

[13] R. Rejaie and S. Stafford. A framework for architecting
peer-to-peer receiver-driven overlays. In Proceedings of
International Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV), June 2004.

[14] S. Saroiu, P. K. Gummadi, and S. D. Gribble. Measuring and
analyzing the characteristics of Napster and Gnutella hosts.
ACM Multimedia Systems Journal, 8(5), 2002.

[15] K. Sripanidkulchai, A. Ganjam, B. Maggs, , and H. Zhang.
The feasibility of supporting large-scale live streaming
applications with dynamic application end-points. In
Proceedings of ACM SIGCOMM, August 2004.

[16] D. A. Tran, K. A. Hua, and T. T. Do. ZIGZAG: An efficient
peer-to-peer scheme for media streaming. In Proceedings of
IEEE INFOCOM, April 2003.

[17] E. Veloso, V. Almeida, W. Meira, A. Bestavros, and S. Jin. A
hierarchical characterization of a live streaming media
workload. In Proceedings of ACM SIGCOMM Internet
Measurement Workshop (IMW), November 2002.

[18] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum. Coolstreaming /
DONet: A data-driven overlay network for live media
streaming. In Proceedings of IEEE INFOCOM, March 2005.

