
AMTrac: Adaptive Meta-caching for Transcoding

Dongyu Liu1, Songqing Chen1, and Bo Shen2

1Dept. of Computer Science 2 Mobile and Media Systems Lab
George Mason University Hewlett-Packard Laboratory

Fairfax, VA 22030 Palo Alto, CA 94304
{dliu1, sqchen}@cs.gmu.edu boshen@hpl.hp.com

ABSTRACT
The increase of aggregate Internet bandwidth and the rapid devel-
opment of 3G wireless networks demand efficient delivery of mul-
timedia objects to all types of wireless devices. To handle requests
from wireless devices at runtime, the transcode-enabled caching
proxy has been proposed and a lot of research has been conducted
to study online transcoding. Since transcoding is a CPU-intensive
task, the transcoded versions can be saved to reduce the CPU load
for future requests. However, extensively caching all transcoded
results can quickly exhaust cache space. Constrained by available
CPU and storage, existing transcode-enabled caching schemes al-
ways selectively cache certain transcoded versions, expecting that
many future requests can be served from the cache while leaving
CPU cycles for online transcoding for other requests. But such
schemes treat the transcoder as a black box, leaving little room for
flexible control of joint resource management between CPU and
storage. In this paper, we first introduce the idea of meta-caching
by looking into a transcoding procedure. Instead of caching certain
selected transcoded versions in full, meta-caching identifies inter-
mediate transcoding steps from which certain intermediate results
(calledmetadata) can be cached so that a fully transcoded version
can be easily produced from the metadata with a small amount of
CPU cycles. Achieving big saving in caching space with possibly
small sacrifice on CPU load, the proposed meta-caching scheme
provides a unique method to balance the utilization of CPU and
storage resources at the proxy. We further construct a model to
analyze the meta-caching scheme. Based on modeling results, we
proposeAMTrac, AdaptiveMeta-caching forTranscoding, which
adaptively applies meta-caching based on the client request pat-
tern and available resources. Experimental results show that our
proposed AMTrac can significantly improve the system throughput
over existing approaches.

Categories and Subject Descriptors
H.4.m [Information System]: Miscellaneous

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’06 Newport, Rhode Island USA
Copyright 2006 ACM 1-59593-285-2/06/0005 ...$5.00.

General Terms
Algorithms, Experimentation

Keywords
CPU Intensive Computing, Adaptation, Meta-caching, Transcod-
ing

1. INTRODUCTION
With the increase of aggregate Internet bandwidth and the rapid

development of wireless networks, Internet accesses from portable
devices, such as PDAs and cell-phones, are also growing rapidly.
It is not uncommon that users listen to the digital music or watch
a football match through their portable devices. However, the in-
crease of these applications [1] also challenges the existing Internet
infrastructure, particularly the existing Internet media delivery sys-
tems.

Since portable devices generally have different screen sizes, color
depths or connection bandwidth from traditional desktop comput-
ers, a media object (e.g. a movie) that is good for desktop comput-
ers cannot be directly displayed on a PDA. It must be customized
appropriately beforehand or at runtime. This type of customization
for typical QoS support is often referred to ascontent adaptation.

Two approaches are typically used for providing this type of QoS
support in the context of multimedia content delivery. The first ap-
proach is calledprecoding. Given any content object, this approach
either creates multiple provisioned versions or scalablely encodes
the object with multiple layers or descriptions. All the object ver-
sions/layers/descriptions are created before they are ever delivered.
For example, many content hosts encode their video clips at differ-
ent bit rate versions, for example, 28/56 Kbps for dial-up clients
and 100-plus Kbps for broadband clients [11]. If considering all
possible requirements of client devices (not limited to various net-
work speeds), precode demands a huge amount of storage for dif-
ferent versions. The relative advantages of caching precoded ver-
sions versus layers are evaluated in [6, 7, 10]. Scalablely-coded
content requires less space than multiple individual versions, but it
is still not efficient in compression. In addition, content created by
this way can only satisfy certain coarse granular QoS requests. It
is less flexible when finer granular QoS is required. More impor-
tantly, precoding does not scale to the vast variety of media adapta-
tion applications. It may be easy to prevision possible bit rate ver-
sions that are required for a streaming application, but it would be
difficult to precode content for more generic adaptation tasks such
as personalization. In the case of overlaying an end user’s logo on a
video stream, the hosting server is not likely to have the end user’s
logo available. Thus precoding in this case is impossible.

The second approach, referred here astranscoding, offers on-

line real-time adaptation support. Overall, transcoding is not re-
stricted to customization of content for QoS support. Being real-
time and on-line, this approach offers more flexibility and scales
well with the variety of the applications. However, transcoding is
often computing intensive, especially for multimedia content. Re-
search on developing efficient real-time transcoding algorithms has
received much attention [2, 3, 8, 9]. From the system perspective,
caching is also a viable technique to achieve computing load re-
duction [12]. The transcoded result for a request can be cached
so that future identical requests can be served without transcoding.
This kind of transcode-enabled caching designs has been investi-
gated and the focus has been on efficient utilization of different
resources (e.g., CPU, storage, bandwidth) to improve the through-
put of the transcoding proxy [13, 15]. All of the existing designs
treat the transcoding unit as a black box. The cached data is ei-
ther the input and/or the output of the transcoder. Specifically, if a
transcoded version is fully cached (full-cachingscheme), identical
future requests can be directly served without additional transcod-
ing. However, to cache each transcoded version may quickly ex-
haust the cache space. On the other hand, if a transcoded version
is not cached (no-cachingscheme), identical requests will result in
repetitive transcoding, consuming extensive CPU cycles.

In this paper, we propose a meta-caching scheme in which, inter-
mediate transcoding steps are studied and identified so that appro-
priate intermediate results (calledmetadata) can be cached. With
the cached metadata, the fully transcoded object can be easily pro-
duced with a small amount of CPU cycles. Since only metadata
is cached, the required cache space is greatly reduced. The saved
cache space can be used to store metadata for other transcoding ses-
sions so that, in certain conditions, overall computing load can be
reduced. Note that the meta-caching scheme allows the system to
achieve a joint control of the CPU and storage resources. It offers a
tradeoff point in between what can be achieved by the full-caching
and no-caching schemes.

To precisely characterize the meta-caching scheme, we construct
an analytical model to investigate the conditional advantages of
meta-caching over full- or no-caching quantitatively (modeling de-
tails are omitted due to page limit in this submission). Based on
the model-driven analysis, we propose a system called AMTrac,
which stands forAdaptiveMeta-caching forTranscoding. In AM-
Trac, the meta-caching scheme is adaptively used upon dynamic
client accesses and available resources. After capturing real pa-
rameters through an implemented prototype, we perform extensive
simulation-based experiments to evaluate our proposed scheme. The
results show that AMTrac can effectively improve system through-
put over existing schemes.

The reminder of the paper is organized as follows. We intro-
duce the generalized meta-caching concept in Section 2, and briefly
present modeling results in Section 3. An adaptive meta-caching
design based on the model is provided in Section 4 and its perfor-
mance is evaluated in Section 5. We make concluding remarks in
Section 6.

2. PRINCIPLE OF META-CACHING
To illustrate the principle of meta-caching, we first define a stor-

age versus computing space followed by discussions on some prac-
tical applications taking advantage from this principle.

2.1 Storage-Computing (SC) Space
Given any media adaptation process, meta-caching is defined

as the caching of intermediate results that are created during the
course of the adaptation process. As an example, Figure 1(left)
defines the flow graph of a certain media adaptation process com-

posed of four computing sub-modules. Caching the intermediate
result from each of the four sub-modules leads to skipping that sub-
module in the next identical session so that the computing of that
sub-module is saved. However, some storage space is required to
store the intermediate result. In general, caching the output of each
sub-module maps to one point in a space, calledStorage vs. Com-
puting space. Suppose Figure 1 (right) illustrates such a mapping
for this particular process. The vertical axis indicates the amount
of storage required to store the intermediate results from any of the
sub-modules, relative to storing the final processed results. The
horizontal axis indicates the amount of computing load required
to create the final result with the help of the intermediate results
from any of the sub-modules. This computing load is relative to the
computing load when the intermediate result is not available, i.e.,
the computing load of the full adaptation process. Clearly, if the
intermediate result of any sub-module is directly available (from
a cache, for example) instead of computing it from the input, the
computing load required to create the final output is smaller.

A B D

C

A

B

C

D

I

storage

full cache

computing

no cache

Figure 1: an example processing flow and the corresponding
mapping in the SC space

Now we discuss some of the specific points within the SC space.
If nothing from the flow is cached, the point I (no cache) indicates
no storage requirement. But 100% of the CPU is required when
a final adapted output is requested. On the other hand, if the final
output is cached (full cache), 100% of the storage is required while
no computing is needed. Note that point D and point I define a
shaded area in this SC space. In general, any point that falls outside
the shaded area has no advantage over either D or I. For example,
point A is outside the shaded area, which indicates that storing the
intermediate result from A would cost more storage than storing the
result from D. Obviously, this is not as efficient as simply storing
the final result.

Point B and C can introduce certain advantages since both points
indicate reduced storage requirement at a cost of some computing
load. In general, a point closer to the origin of the SC space presents
better advantage since it indicates less computing and less storage
requirement to obtain the final results. In this example, point C is a
better choice. In other words, point C indicates that sub-module C
is more computing intensive yet its intermediate result requires less
storage. In MPEG transcoding, they can be mapped to the caching
of sequence-level and pixel-level metadata, as the former requires
less storage space and more computing than the latter.

Although we illustrate this principle through an arbitrary exam-
ple, it is clear that the principle is general. Once any media adap-
tation process is defined, a map in the SC space that reflects the
storage and computing tradeoff is uniquely obtainable. We will
next discuss some real applications in this context.

2.2 Applications
The principle outlined above has many practical applications. In

particular, video transcoding is the most common type of media
adaptation application.

Figure 2 illustrates the processing flow of the bit rate reduction

input

stream
entropy
decoder quantization

re entropy
encoder stream

output

Mq

controller
rate

metacache

Figure 2: Bit Rate Reduction

of a MPEG video, a case of transcoding. With careful selection of
the intermediate points within a transcoding process pipeline, meta-
caching can be very useful in reducing the aggregated computing
load of an adapting server servicing a ground client requests with
different access patterns. In this case, caching of the requantization
scale factor (Mq) could achieve a good tradeoff between storage
and computing resource utilization.

The meta-caching principle is not just restricted to video transcod-
ing applications. To name a few other types of media adaptation
applications that can benefit from this principle, we consider the
following examples.

• Video to keyframe conversion. Instead of a full length video,
a sequence of representative keyframes from the video can
be delivered in situations when a client does not have a video
player available. This conversion consists of a keyframe anal-
ysis process followed by the assembling of the keyframes.
Keyframe analysis detects scene changes within a video se-
quence and identifies frames that are representative of the
scene. This can be very computing intensive. However, if the
intermediate result (e.g., the frame index of the keyframes)
of the keyframe analysis module can be stored, which costs
very little storage, the computing load can be significantly
reduced for future sessions.

• Personalized logo insertion. With a customized logo inserted
into each frame of a video, a client can personalize his/her
own content. In this process, the compressed video is first
adapted with the logo insertion area to be independently coded.
Then a logo is inserted. The adaptation from dependently
coded original video to independently coded area can be com-
puting intensive. If the converted independent area can be
stored, future sessions can be free of significant computing
load. On the other hand, an independently coded area (for
example, four significantly smaller corner areas) costs less
storage than the full logo inserted video.

• Privacy protection. In this scenario, certain features from
content (e.g., certain faces in a video) are automatically blocked
to protect privacy. The intermediate results from face detec-
tion (e.g., face location on each frame) can be stored so that
future sessions can be relieved from the computing intensive
face detection process.

The meta-caching principle is often useful for adapting multime-
dia content since this kind of process tends to be computing inten-
sive. However, for any real-time content processing service, if we
can identify from its processing flow a point in the SC space that
can benefit from the meta-caching principle, it is possible to im-
prove the overall system performance by balancing the use of stor-
age and computing resources. Since overall system performance
depends on aggregated client access behavior, certain points in the
SC space can be more advantageous than others, given available
computing and storage resources. In the next section, we will model
further details to determine the performance of meta-caching.

3. PERFORMANCE MODELING
We model the performance of the meta-caching scheme and com-

pare it with full-caching and no-caching schemes. Our model-
ing quantitatively characterizes the conditional advantage of full-,
meta- and no-caching schemes over the other two under different
conditions of available resources and client access patterns.

0 2000 4000 6000 8000
0

1000

2000

3000

4000

5000

6000

7000
θ=0.60,α=0.3,β=0.3, v=10, N=2000, M=50, S=50

S
ys

te
m

 T
hr

ou
gh

pu
t

Available CPU Unit

full caching
meta caching
no caching

Figure 3: Comparisons between three methods: available
CPU ranges up to 8000

Due to page limit, we omit the modeling details. Figure 3 shows
the comparison results with some typical values for different pa-
rameters when the available CPU varies. In these figures, we set
θ to be 0.6, and setα and β as 0.3 (refer to Table 1). We as-
sume that there is a total of 50 objects and a total of 2000 accesses.
Each object has 10 versions. The total available CPU unit is vary-
ing. The figure indicates that under certain conditions, one of the
three schemes may outperform the other two. A system aiming to
maximize system throughput should thus adapt to the best scheme
upon dynamic client access behaviors and resource availability. To
achieve this goal, in the next section, we present theAdaptiveMeta-
caching design forTranscode-enabled proxy, called AMTrac.

4. DESIGN OF AMTRAC
As aforementioned, AMTrac should work adaptively perform

transcoding based on the client access pattern and available re-
sources dynamically. Thus, it is important to monitor the dynam-
ically changing system resource availability and the client access
pattern. In this section,Resource-driven Replacement Policyand
Reactive Cache Adjustmentare designed to work withProgressive
Request Admissionfor these purposes.

Assume the proxy providesv different versions of an object to
client requests in AMTrac. Each object version is either cached
with its metadata only or cached with its fully transcoded result.
Thus, in AMTrac, the cache space is logically split into two parts.
One is for caching metadata of different object versions, and the
other is to cache the fully transcoded object versions. The size
of each part changes dynamically. AMTrac keeps track of the re-
quested object version, even after an object version is evicted. We
use the following data structure for each object to record impor-
tant runtime information to assist the implementation of a proposed
strategy.

In this structure,Ps is calculated as the ratio of theactive disk
sizeover thetotal disk size. The active disk sizeis the sum of
the size of all active (requested) cached objects at present. The
total disk sizeis the total available cache size. Based on these, the
following policies work together to implement AMTrac.

4.1 Progressive Request Admission

Table 1: Fields of Data Structure
field information
α storage for caching metadata (relative to full result)
β CPU for producing the fully-transcoded object

from metadata (relative to no cache)
v the total number of versions of each object

ms[1..v] an array to record the metadata size of each version
fs[1..v] an array to record the full data size of each version
r[1..v] an array to record the references to each version
s[1..v] object status with 0 for being replaced, 1 for cached
U [1..v] the utility value of the object version

Ps current storage utilization (%)
Pc current CPU utilization (%)

Upon a client request for thejth version of an object, there are
three cases as follows.

• If the requested object versionj is fully cached, the request
is directly served and the corresponding data item,r[j], is
increased by1.

• If the requested object version is cached with its metadata,
the request is served with the online meta-transcoding (transcod-
ing based on metadata). The transcoded result is sent to the
client. The corresponding data item,r[j], is increased by
1. The reactive cache adjustment (see section 4.3) is acti-
vated to determine whether this fully transcoded object ver-
sion should be cached or not.

• If the requested object version does not exist in the cache:

– If the object version is being accessed for the first time,
the proxy performs online transcoding to produce the
object versionj. Correspondingly, the metadata is cached.
The corresponding data item,r[j], is increased by1.
ms[j] gets updated. The status of this object version
s[j] is set to 1. If there is insufficient cache space,
the replacement policy (see section 4.2) is activated to
make room for its caching.

– If the object version has been accessed and its status is
replaced (s[j] = 0), the object version is transcoded
again and sent to the client.r[j], is increased by1.
The reactive cache adjustment (see section 4.3) is acti-
vated to determine whether the corresponding metadata
should get cached.

4.2 Resource-driven Replacement Policy
When there is not enough cache space, replacement is activated.

To maximize cache performance, clearly, it is important to select
the right victim.

In our design, a utility based policy is used to select the right
victim. The utility function is designed as follows:

U(ij) =

(rj

Sj
× αj

αj+βj
if Pc ≥ Ps,

rj

Sj
× βj

αj+βj
if Pc < Ps.

(1)

In equation 1,Sj indicates the occupied cache space of this
object version, whereSj = max(ms[j], fs[j]); rj is the reference
number to this object version;αj is the storage unit (in percentage)
used for caching the metadata of versionj, while βj is the CPU
unit to transcode to the final versionj; Pc represents the current
CPU utilization, andPs indicates the current storage utilization.

Thus, in this equation,
rj

Sj
considers that if an object version is more

popular with a unit storage, the object version should have a high
utility value and has higher chance to be cached. IfPc > Ps, the
current system is CPU constrained, so the utilization of the storage
is encouraged. IfPc < Ps, the system is storage constrained, and
the utilization of the CPU is encouraged.

Thus, the utility of an object version considers both the object
popularity and the current available resources to find the least valu-
able object version. Each time the replacement policy is activated,
all cached object versions must refresh their utility. Based on the
utility function, we design the replacement policy as follows.

When the replacement policy is activated, it compares all the
object versions in the cache based on their utility values. The one
with the minimum value is selected as the victim and the following
procedure loops until sufficient space is found.

• If the selected victim has its fully transcoded data cached in
the proxy, the system selects to evict its fully cached data
and caches its meta data (it consumes a bit more CPU and
it is done when the next time a request is received for this
object version). fs[j] is set to0, while ms[j] is updated
accordingly.

• If the selected victim has only metadata cached, the metadata
is evicted,ms[j] is set to0. r[j] is set to0. The correspond-
ing object version status,s[j], is also set to be replaced.

4.3 Reactive Cache Adjustment
According to our design, for each object version, there could be

three possible cases, namely replaced, with metadata cached, or
with fully transcoded result cached. To accommodate the dynamic
client accesses and thus to maximize the system performance, we
design the reactive cache adjustment policy upon different situa-
tions. This adjustment is passive since it is always invoked due to
new client requests.

• If a currently replaced object version is accessed, the system
starts to evaluate whether the current utility of this object ver-
sion is increased and is large enough to get cached. The new
utility is calculated assuming the object version consumes
ms[j] for storage. If the utility is larger than the utility of any
cached one, the metadata of this object version gets cached
and ms[j] and u[j] are set accordingly. The replacement
policy is activated if needed.

• If an object version is cached with metadata, the system starts
to evaluate whether the fully transcoded data of this object
version should be cached or not. Assuming the fully transcoded
object version is cached using spacefs[j], its corresponding
utility value is compared with the current cached object ver-
sions. If the new utility of this object version is higher than
that of any cached one, the fully transcoded object version
gets cached. Itsfs[j] andu[j] are updated accordingly. Cor-
respondingly, its metadata gets evicted andms[j] is set to
0. Additional space is reclaimed with the assistance of the
replacement policy when necessary.

5. PERFORMANCE EVALUATION
In this section, we first perform real experiments on a rate re-

duction transcoding application to capture the practical values of
α andβ to set up simulations. Then, we run simulations to study
the performance of different strategies for rate reduction. To fur-
ther compare the different strategies when conditions vary, we also
evaluate different strategies in a general context, the result of which
is omitted due to page limit.

10 20 30 40 50 60
0

20

40

60

80

100

Cache Size (%)

Lo
ca

lly
 C

om
pl

et
ed

 S
es

si
on

 (
%

)

No
Full
Meta
AMTrac

Figure 4: Total completed sessions

10 20 30 40 50 60
0

10

20

30

40

50

60

70

Cache Size (%)Lo
ca

lly
 C

om
pl

et
ed

 S
es

si
on

 w
/ T

ra
ns

co
di

ng
 (

%
)

No
Full
Meta
AMTrac

Figure 5: Completed sessions with
transcoding

10 20 30 40 50 60
0

10

20

30

40

50

Cache Size (%)Lo
ca

lly
 C

om
pl

et
ed

 S
es

si
on

 w
/o

 T
ra

ns
co

di
ng

 (
%

)

No
Full
Meta
AMTrac

Figure 6: Completed sessions without
transcoding

2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

Access series

T
hr

ou
gh

pu
t

No
Full
Meta
AMTrac

Figure 7: Throughput along time (4%
cache size)

2000 4000 6000 8000 10000
0

20

40

60

80

100

Access series

C
P

U
 L

oa
d

(%
)

No
Full
Meta
AMTrac

Figure 8: CPU load along time (4% cache
size)

10 20 30 40 50 60
0

20

40

60

80

100

Cache Size (%)

A
ve

ra
ge

 C
P

U
 L

oa
d

(%
)

No
Full
Meta
AMTrac

Figure 9: Average CPU load when cache
size varies

5.1 Experimental Parameter Capturing and
Simulation Setup

As explained in section 2, bit rate reduction is a typical transcod-
ing process where meta-caching can be applied to cacheMq. To
capture the real setup for the storage usage (α) and CPU (β), we
implemented a full transcoder and a meta transcoder in C with no
special optimizations. Through transcoding trail runs on HP X4000
workstation with 2 GHz Intel Xeon CPU, we compare the CPU
time used by full transcoding and meta transcoding on MPEG test
sequences with spatial resolution 352x240 coded at 25 fps. The
original video contains I-, P- and B-pictures and is coded at 512
Kbps.

Considering the bit rate reduction transcoding, cachingMq costs
storage at 8250 byte/sec. However, bypassing the rate control sub-
module enables the transcoder to get the final result with only 45%
of the computing load comparing to a full session. With a target
bit rate at 128Kbps, the selection of this meta-caching point rep-
resents(α, β) as(0.5, 0.45). Note that in the rate reduction case,
the metadata size does not change with the bit rate reduction. Thus,
the correspondingα for version 1, 2, and 3 are 0.167, 0.25, and 0.5.
Theβ values for different versions are the same (this is unique to
rate reduction adaption).

Based on these parameters from a real transcoding application,
we conduct large scale simulation based experiments. In these sim-
ulations, we assume the total available CPU is 100 units, and object
popularity follows a Zipf-like distribution with a skew factor (θ) set
to 0.73 [4, 5]. We use MediSyn [14] to generate the initial work-
load. In the synthetic workload, there is a total of 1000 objects.
Each workload contains 20,000 client requests, the access duration

of which ranges from 5 to 40 minutes. For each object, there are 4
different versions, including the original best quality object – ver-
sion 0. Version 3 represents the lowest quality version. We assume
the storage for version 1, 2 and 3 is 3/4, 2/4, 1/4 of the original
object size (version 0). Their corresponding encoding rates are 512
Kbps, 384 Kbps, 256 Kbps, and 128 Kbps. The total unique origi-
nal object size amounts to 89.9 GB. The total traffic is 1205.8 GB
and the access duration lasts about 34 hours.

5.2 Experiments on Rate Reduction Applica-
tion

The three major evaluation metrics used in these experiments are
Locally Completed Session, Throughput, andAverage CPU Load.
Locally Completed Sessionrepresents overall system performance
and is the ratio of the number of accesses that are served locally (on
the proxy) over the total number of accesses.Locally Completed
Sessionconsists of two parts. One is theLocally Completed Session
without Transcoding, which corresponds to the scenario that the
requested version is cached. The other is theLocally Complete
Session with Transcoding, which indicates the scenario where the
transcoding (full or metadata-based) is necessary to serve the client
request.Throughputrepresents system throughput along the time
line. It is calculated as the number of sessions that the transcoding
proxy can handle per time unit.Average CPU Loadis defined as the
ratio of the sum of current CPU load and the total CPU capacity. It
can indicate whether the CPU is saturated due to transcoding load.

Figure 4, Figure 5, and Figure 6 show the Locally Completed
Session and its two components – with and without transcoding,
for four different methods when the cache size increases. In these
figures,No, Full, Metarepresents the no-caching, full-caching, and

meta-caching methods we have discussed.AMTrac represents our
proposed scheme.

As shown in Figure 4, when considering the total completed ses-
sions in the transcoding proxy, the performance of the four meth-
ods is ordered inAMTrac, Meta, Full, andNo. Figure 5 shows
that the Locally Completed Session with Transcoding for different
methods. The trend is similar to the Locally Complete Session in
total, indicating that the transcoding results for meta-caching and
AMTrac are dominant in the totally completed sessions. An inter-
esting variation is shown in Figure 6 when considering the Local
Completed Session without Transcoding. As indicated in the fig-
ure, when the cache size increases beyond 16%,Full outperforms
MetaandAMTrac. This is due to more cached objects inFull when
the cache size increases.

Having examined the overall performance in terms of the total
completed sessions in the transcoding proxy, now we examine the
proxy’s performance at each time unit. Figure 7 shows the system
throughput along the client accesses when the cache size is 4%.
Note in the figure, only the results between access 2000 and ac-
cess 10000 are shown. As indicated in the figure, AMTrac outper-
forms all other methods. Among all the four methods, no-caching
achieves the worst performance as expected and full-caching also
has worse performance compared to meta-caching and AMTrac.

Figure 8 shows the corresponding CPU load along the client
accesses (time). Apparently, besides full caching, the other three
methods always have a 100% CPU load or close to 100%. To full-
caching, since 4% cache space is far from sufficient, its CPU is
under utilized. Figure 9 further shows the average CPU load for
the four methods when the available cache size varies from 4%
to 60%. As expected, the CPU load of no-caching is not affected
when the cache size increases. Since full-caching is the mostly af-
fected by the available cache space, its average CPU load decreases
after the cache size increases beyond 28%. Before that, the limited
cache space results in frequent replacement upon new client re-
quests, some of which cannot happen because the selected victim
objects are being accessed. Thus, although there are spare CPU
cycles, they are not utilized. After the cache size is increased be-
yond 28%, this situation is relieved. Since full-caching is storage
constrained, with larger cache space, more client requests could
be served from cache without repetitive transcoding. This is evi-
denced by the decreasing order of CPU load of full-caching when
the cache size is beyond 28%. From another aspect, although meta-
caching and AMTrac have a higher CPU load with the increase of
cache size, throughput of these two approaches is higher than that
of full-caching.

6. CONCLUSION
The Internet has witnessed the rapid increase of Internet me-

dia contents and widespread use of portable devices in the past a
few years. While transcoding proxy has been proposed and re-
searched extensively, existing strategies generally aim at reducing
server load and server traffic. Little attention has been paid to
transcoding procedure itself and that leads to less flexibility in ad-
dressing the tradeoffs between computing and storage constraints.
By proposing to study inside a transcoding process itself, we out-
line a new approach of caching strategy design with the main focus
on computing load reduction. A meta-caching scheme is proposed
that offers a new point of control in the computing and storage
space. With model-based analysis on the meta-caching scheme, we
propose an adaptive meta-caching system, called AMTrac, which
can adaptively use the meta-caching scheme based on client ac-
cesses and available resources in the system. Experiments show
that it significantly outperforms existing strategies.

7. ACKNOWLEDGMENT
We would like to thank William L. Bynum, Xiaodong Zhang,

and anonymous reviewers for their helpful comments on this paper.
The work is supported by NSF grant CNS-0509061 and a grant
from Hewlett-Packard Laboratories.

8. REFERENCES
[1] Support nationwide delivery of mobile multimedia.

http://www.qualcomm.com/press/releases/2004/
041101mediaflo700mhz.html.

[2] S. Acharya and B. C. Smith. Middleman: A video caching
proxy server. InProceedings of ACM NOSSDAV, Chapel
Hill, NC, 2000.

[3] E. Amir, S. McCanne, and H. Zhang. An application level
video gateway. InProceedings of ACM Multimedia, San
Francisco, CA, November 1995.

[4] L. Cherkasova and M. Gupta. Characterizing locality,
evolution, and life span of accesses in enterprise media
server workloads. InProceedings of ACM NOSSDAV,
Miami, FL, May 2002.

[5] M. Chesire, A. Wolman, G. Voelker, and H. Levy.
Measurement and analysis of a streaming media workload.
In Proceedings of the 3rd USENIX Symposium on Internet
Technologies and Systems, San Francisco, CA, March 2001.

[6] P. D. Cuetos, D. Saparilla, and K. W. Ross. Adaptive
streaming of stored video in a tcp-friendly context: Multiple
versions or multiple layers? InProceedings of Packet Video
Workshop, Kyongju, Korea, April 2001.

[7] F. Hartanto, J. Kangasharju, M. Reisslein, and K. W. Ross.
Caching video objects: layers vs versions? InIEEE
International. Conf. on Multimedia and Expo, Lausanne,
Switzerland, August 2002.

[8] C. K. Hess, D. Raila, R. H. Campbell, and D. Mickunas.
Design and performance of mpeg video streaming to
palmtop computers. InProceedings of SPIE/ACM MMCN,
San Jose, CA, January 2000.

[9] C-W. Lin J. Xin and M-T. Sun. Digital video transcoding. In
Proceedings of IEEE, volume 93(1), pages 84–97, Jan. 2005.

[10] T. Kim and M. H. Ammar. A comparison of layering and
stream replication video multicast schemes. InProceedings
of ACM NOSSDAV, Port Jefferson, NY, June 2001.

[11] R. Mohan, J.R. Smith, and C.S. Li. Adapting multimedia
internet content for universal access. InIEEE Transactions
on Multimedia, volume 1 (1), March 1999.

[12] R.Rejaie and J. Kangasharju. Mocha: A quality adaptive
multimedia proxy cache for internet streaming. In
Proceedings of ACM NOSSDAV, Port Jefferson, NY, June
2001.

[13] B. Shen, S. Lee, and S. Basu. Caching strategies in
transcoding-enabled proxy systems for streaming media
distribution networks. InIEEE Transactions on Multimedia,
volume 6, pages 375–386, April 2004.

[14] W. Tang, Y. Fu, and L. Cherkasova. Medisyn: A synthetic
streaming media service workload generator. InProceedings
of ACM NOSSDAV, Monterey, CA, June 2003.

[15] X. Tang, F. Zhang, and S. T. Chanson. Streaming media
caching algorithms for transcoding proxies. InProceedings
of the 31st International Conference on Parallel Processing
(ICPP), Vancouver, Canada, August 2002.

