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 Abstract – Overlay networks provide base infrastructures for 
many areas including multimedia streaming and content 
distributions. Since most overlay networks are highly 
decentralized and self-organized, cut vertices may exist in 
such systems due to the lack of centralized management. A cut 
vertex is defined as a network node whose removal increases 
the number of network components. Failure of these nodes 
can break an overlay into a large number of disconnected 
components and greatly downgrade the upper layer services 
like media streaming. We propose here a distributed 
mechanism, CAM, which efficiently detects the cut vertices 
before they fail and neutralizes them into normal overlay 
nodes with slight overhead so that the possibility of network 
decomposition is minimized after they fail. We prove the 
correctness of this algorithm and evaluate the performance of 
our design through trace driven simulations.  

1 Introduction 
Features such as high flexibility and easy deployment enable 
overlay networks to provide support to a large variety of Internet 
applications, including multimedia streaming, online gaming, and 
publish/subscribe systems. Due to the lack of widespread IP 
multicast, multimedia streaming relies on the overlay 
infrastructure to implement the quick audio/video data distribution 
using overlay multicast [1-4]. In order to improve scalability and 
relieve the burden on servers, P2P overlay architectures are 
introduced in the media streaming (P2P streaming), the online 
gaming (P2P online gaming), and publish/subscribe services [5-
9]. In these systems, end hosts self-organize into an overlay 
structure and the services are deployed along the overlay.  

In order to provide qualified services, many applications 
require overlays to guarantee reliability and avoid network 
failures. For instance, the outgoing streaming may be disrupted 
when network failures occur [5]. In comparison with general 
nodes, the failure of “critical” nodes such as central servers is 
more likely to lead to network failures. Most overlay networks are 
highly decentralized. They remove the potential “critical” nodes 
caused by the service requirement since resources and services are 
provided by each node in the system. This, however, cannot 
remove “critical” nodes induced by the network topology. 
Overlay nodes are highly self-organized. They make connections 
either with some randomly selected nodes or via locally defined 
algorithms. In both cases, there is no centralized control to 
manage the network topology and thus the presence of topological 
“critical” nodes is unavoidable. S. Saroiu et al. [10] show that the 
failure of small amounts of high-degree nodes can efficiently 
“shatter” the overlay network, which makes the network highly 
vulnerable in the face of well-constructed, targeted attacks. In this 
paper, we discuss the influence of another type of “critical” nodes, 

cut vertices, in overlay networks. 
Consider a network as an undirected graph.  Cut vertices are 

such nodes whose deletion will create new components in the 
original graph. For a connected graph (component), removing cut 
vertices partitions the graph. In this paper, “graph”, “component”, 
and “vertex” are concepts defined in graph theory: a “graph” is 
used to represent a network; a “component” is a connected graph; 
and a “vertex” is another name for a node. Vertex and node will 
be used interchangeably in the remainder of this paper.  

Traditional methods of detecting cut vertices require the 
global information of the network topology. These approaches 
work well if the network topology is not changed frequently and 
the scale of the network is from small to medium. This is not the 
case in most of the overlay networks. The end systems that 
compose an overlay network come and go very frequently [5, 10, 
11]. This leads to high resilience of the overlay. Furthermore, the 
scale of an overlay network is expected to be huge, from several 
thousands to millions of nodes [2, 12]. A third factor is that most 
overlay networks lack the centralized control to maintain the 
global topology information due to their fully distributed feature. 

In this paper, we propose CAM (Connection Adjacency 
Matrix): a fully distributed mechanism to detect cut vertices. 
Based on the CAM algorithm, each node in the system 
periodically sends out probe messages and decides whether it is a 
cut vertex based on the received feedback. CAM is composed of 
three stages: cut vertex detection, cut vertex computation, and cut 
vertex neutralization. At detection stage, a cut vertex candidate 
sends out component detection messages for each of its 
connections. If any two detection messages of different 
connections meet with each other, an arrival message is sent back 
to the message issuer. At computation stage, the candidate 
constructs a CAM graph in which nodes represent the connections 
of the candidate. If it receives an arrival message of two 
connections, the candidate will add an edge to the corresponding 
nodes in the CAM graph. The candidate decides whether it is a cut 
vertex based on its CAM graph. At the neutralization stage, CAM 
normalizes the detected cut vertex to a non-cut vertex. 

The rest of the paper is organized as follows. In the next 
section, we review the related work. Section 3 describes the CAM 
algorithm. This is followed by the proof of the correctness of the 
algorithm in Section 4. Section 5 discusses the simulation 
methodology and the performance of CAM. We conclude the 
work in Section 6. 

2 Related Work 
Cut vertex is an important concept that has been introduced in 
graph theory and studied extensively. Existing algorithms to 
detect cut vertices in graph theory need to collect overall topology 
information of the network and construct a depth first search 



 
 
 
 

(DFS) tree including all the network nodes. One category of such 
algorithms detects cut vertices by checking the sub-tree of each 
node in the DFS tree [13]. These algorithms are composed of the 
following operations. First, construct a DFS tree from any node. 
Then, for each node v in the DFS tree except the root, check the 
neighbors that v’s descendents connect with. If none of the 
neighbors of v’s descendents are v’s ancestors, v is a cut vertex. 
The root is a cut vertex if and only if it has more than one 
neighbor. 

Another approach is to group the graph nodes into several bi-
connected components [13]. A bi-connected component is a 
component that cannot be disconnected by deleting any vertex 
within the component. For any two vertices in a bi-connected 
component, there exist at least two disjointed paths between them. 
It is obvious that all the edge vertices that connect any two bi-
connected components are cut vertices. In this approach, 
distinguishing disjointed paths and forming the bi-connected 
components require the traversal over the whole network. For 
instance, Sharir’s algorithm for finding the bi-connected 
component builds a DFS tree involving all nodes in the graph 
[14]. 

Node failures caused by network resilience are widely noticed 
by the research community.  Most recently proposed algorithms 
for overlay networks have addressed the problems [5, 15-19]. 
However, these algorithms treat all nodes the same way and do 
not pay special attention to “critical” nodes, whose failure may 
create more serious problems in the network than what these 
algorithms are able to handle. 

High degree nodes can also be “critical” with respect to 
network topology. P. Keyani et al. [20] proposed a mechanism to 
modify the P2P overlay topology and reduce the number of high 
degree nodes. Their method focuses on how to reduce but not 
detect high degree nodes and is invoked when an attack occurs. 
The long convergence time of this method may make it 
impractical in a large-scale overlay network. 

3 CAM: Distributed Cut Vertex Discovery 
Consider an overlay network as a graph. The basic idea of CAM 
is to check whether this graph is still connected after a node is 
removed. If the graph is partitioned, the node is a cut vertex; 
otherwise, it is not a cut vertex. Recall that CAM is composed of 
three stages: cut vertex detection, cut vertex computation, and cut 
vertex neutralization. We present details of each stage in the rest 
of this section. 

3.1 Cut vertex detection 
A node in the system cannot be a cut vertex if it has zero or one 
connection. Otherwise, the node considers itself as a cut vertex 
candidate and initializes a cut vertex detection process. Before the 

detection, the candidate assigns a unique numerical identifier, 
starting with 1, to each of its connections/edges (we use the terms 
“connection” and “edge” interchangeably in the rest of this 
paper). This identifier is called the connection number of the 
connection. For example, if a candidate has n connections, it will 
label them from 1 to n. 

At the beginning of the detection, the candidate sends a 
component probe message to each of its neighbors. The message 
contains the candidate’s IP address, a timestamp, a TTL threshold, 
and the connection number of the edge that connects this neighbor 
with the candidate. Each node in the system has a connection list. 
There is one entry for each candidate in the connection list with 
the format of <candidate IP address, timestamp, connection 
number 1, connection number 2, …>. The node deals with the 
received message based on the information stored in the 
connection list. Upon receiving a message, one of the following 
situations may arise: 
• The node has already received the message, or the message is 

old. The node simply just drops the message.  
• There is no entry for the candidate that issues this message. 

The node creates an entry for it.  
• The timestamp in the received message is newer than the one 

stored in the corresponding connection list entry. The 
candidate replaces the old time stamp and connection 
numbers stored in the connection list with the new ones. 

• The timestamp of a recently received message is the same as 
the one stored in the corresponding connection list entry but 
the connection number of the message is not the same. The 
node adds the new connection number to the corresponding 
entry and sends an arrival message back to the candidate. 
Each arrival message contains two or more connection 
numbers and a timestamp. A node does not send any arrival 
messages until it receives probe messages from at least two 
different connection numbers.  
A node forwards the message to all its neighbors except the 

message sender if the following conditions are met: this is a 
“new” message with the latest timestamp; the node did not issue 
any arrival message for the cut vertex candidate who issued this 
message; and the message’s TTL has not expired. 
Here we illustrate cut vertex detection shown in Figure 1. The 
candidate is a cut vertex. The initial CAM TTL value equals 3. 
Nodes reduce the TTL value by 1 each time right before they 
forward the probe messages to their neighbors. The connections to 
the candidate are labeled 1,2,3, and 4, respectively. In Figure 1(b), 
the candidate sends a probe message for each connection to nodes 
B, D, E, and G. Note that the TTL value has already been reduced 
by one by the candidate before it sends the probe messages to its 
neighbors. In Figure 1(c), nodes B, D, E, and G forward the 
received probe messages to other neighbors.  

 

Figure 1 Cut vertex detection in CAM 



 
 
 
 

 

Figure 2 CAM and CAM graph  

At this point, nodes C and F received probe messages from 
two distinct connection numbers. In Figure 1(d), node C sends 
back to the candidate an arrival message with connection numbers 
1 and 2. Node F sends back to the candidate an arrival message 
with connection numbers 3 and 4. 

3.2 Cut vertex computation 
Each candidate maintains an arrival list and a |c|-by-|c| binary 
matrix, where |c| is the number of connections the candidate had 
when the CAM algorithm started. The format of the arrival list is 
similar to the connection list: <IP address, timestamp, connection 
number 1, connection number 2, …>. The IP address here is the 
IP address of the node that sends the arrival message back to the 
candidate. The binary matrix is called the candidate’s connection 
adjacency matrix or CAM, whose row/column numbers represent 
the connection numbers of the candidate’s connections. 

If an arrival message including connection number x is 
received by the candidate from a network node v, the candidate 
will add x to the corresponding entry of v in the arrival list. For an 
entry (x, y) in CAM, where x is the row number and y is the 
column number, if the corresponding connection number of x and 
y can be found in the same entry of the arrival list, the value of 
this CAM entry is set to 1. Otherwise, the value is set to 0. In 
other words, if any node has sent back to the candidate an arrival 
message containing connection numbers x and y, a 1 is placed in 
the (x, y) and (y, x) entry of the candidate’s CAM. After waiting 
an expected time out period, the candidate interprets its CAM as 
an adjacency matrix representation of an undirected graph, whose 
vertices are corresponding to the candidate’s connections. This 
graph is called the candidate’s CAM graph. An edge exists 
between node x and node y in the CAM graph if and only if the 
value of the CAM entry (x, y) is 1. If the candidate’s CAM graph 
has more than 1 component, the candidate is a cut vertex. The 
CAM and the CAM graph of the candidate nodes in the previous 
example are shown in Figure 2.  

3.3 Cut vertex neutralization 
The process by which a cut vertex normalizes itself to a non-cut 
vertex is called cut vertex neutralization. Cut vertex neutralization 
is relatively trivial after cut vertices are detected: all that needs to 
be done in this process is to merge the disconnected components 
of a node’s CAM graph into one connected component. Due to 
the page limitation of this paper, we illustrate the neutralization 
process by a simple neutralization mechanism. More sophisticated 
neutralization mechanisms can be constructed based on this basic 
one.  

Consider a detected cut vertex v that has n CAM graph 
components C1, C2, C3, … Cn. At the beginning of neutralization, 
v randomly chooses one node from each component. Assume v 
selects p1, p2, p3, … pn from C1, C2, C3, … Cn. Based on the arrival 
list, v chooses overlay network nodes o1, o2, o3, … on, which have 
sent to v arrival messages of connections p1, p2, p3, … pn 

respectively. Then v sends a connection message to o1, o2, o3, … 
on to indicate how the nodes should connect to each other, e.g., o1 
connects to o2; o2 connects to o3; and so on. After constructing the 
new connections, the candidate is normalized to a non-cut vertex. 

 
The network topologies of the aforementioned examples after cut 
vertex neutralization are shown in Figure 3. 

3.4 Traffic overhead analysis 
CAM improves the network reliability in two types of cost: the 
network traffic cost at the detection and the neutralization stages, 
and the computing cost at the cut vertex computation stage. 
Compared to the network traffic cost, the cost of the local 
computation based on a two-dimensional matrix is trivial for 
today’s powerful end systems. Therefore, we focus on the traffic 
cost of CAM. Given an overlay network with n nodes, let c be the 
average number of connections a node can have, and let t be the 
TTL threshold in the CAM algorithm. If we ignore the difference 
of logical link cost, the traffic cost of CAM can be evaluated as 
follows. 

 At the cut vertex detection stage, a node will not forward any 
component probe message after it sends an arrival message back 
to the candidate. This means each node only forwards one 
component probe message for one specific connection during a 
CAM operation for one cut vertex candidate. We also know that, 
in CAM, component probe messages are not forwarded back to its 
(message) incoming neighbors. Therefore, if we name the set of 
nodes traversed by messages of the same connection number as 
the traversal area of that connection, the traversal area of 
different connections will not overlap. This suggests that the 
detection traffic cost of one candidate cannot be greater than nc/2. 
As the traversal area of each connection is also limited by t, the 
detection traffic cost should be min(O(nct), O(n2c/2)).  

Together with the fact that each node sends one arrival 
message in the worst case and every node in the system considers 
itself as a cut vertex candidate, the total traffic cost of the 
detection stage should be min(O(nct+n), O(n2c/2+n)). At the 
neutralization stage, since each candidate at most sends out c 
neutralization messages, the traffic cost is O(nc). The total traffic 
cost of CAM is min(O(n(ct+c+1)), O(n(nc+2c+2)/2). As c (in the 
order of ten) is generally much smaller than n (in the order of tens 
of thousands or millions), the total traffic cost of CAM can be 
simplified as min(O(nct), O(n2)). 

We need to adopt a small TTL value to reduce the cost of 
probing. In Section 5.2 , we will see that probe messages with a 
TTL value of two can achieve an accuracy rate of about 80% in a 
P2P system. In addition, as the average number of connections of 
most traces is from 3 to 4, ct is trivial compared with n. Therefore, 
the traffic cost that all nodes execute CAM once in a P2P system 
is O(n). 
 

 

 

Figure 3 Cut vertex neutralization 



 
 
 
 

4 Proof of Correctness 
In this section, we present the proof of correctness for the CAM 
algorithm, starting with the definition of the system model and 
followed by the proofs. 

4.1 System model and definitions 
Consider a connected undirected graph: G = (V, E) to represent an 
overlay network, where V is the set of overlay nodes and E is the 
set of the edges of the overlay network. Assume that the network 
topology is static and the network has unlimited resources. Thus, 
each node can issue the probe message with the TTL value set to 
infinity. In practice, we trade the accuracy for the traffic cost and 
set the TTL to a small value. 

 
Definition 4.1: Given a graph G (V, E), a cut vertex candidate vc 
refers to a vertex that tries to decide whether it is a cut vertex. The 
number of edges/connections that vc has is referred to as |c|. 
 
Definition 4.2: Given a graph G (V, E), a vertex vp, and one of its 
connections ec = (vp, vq), assuming connection number of ec is c. 
vq is the neighbor of vp that is connected by ec. Let us remove vp 
together with all its edges from G and get a new graph G' (V - vp, 
E - {(vp, vi) | vi ∈  V, (vp, vi) ∈  E}). The reachable set of ec, RS(ec), 
is the set of vertices that can be reached in G' by a breadth first 
search (BFS) initiated by vq. This search process is denoted as 
BFS(ec). In other words, RS(ec) contains the set of all vertices that 
can be reached by vq via connection ec. It is also important to note 
that there exists a vertex vq ∈  RS(ec) such that (vp, vq) ∈  E.  

4.2 Proofs 
Lemma 1: If there is an edge that connects two vertices in the 
candidate’s CAM graph that represent connections ea and eb of 
graph G, then RS(ea) = RS(eb). 
Proof:  The fact that there is an edge between the vertices 
representing connections ea and eb in the candidate’s CAM graph 
implies that the values of entry (a, b) and (b, a) must be 1 in the 
CAM. This implies that there must exist some node vp in the 
network that has received component probe messages for 
connections ea and eb. Since vp received component probe 
messages for connections ea and eb, it is obvious that node vp is 
traversed by both BFS(ea) and BFS(eb). According to the 
operation of BFS algorithm, after traversing node vp, BFS(ea) can 
reach all the nodes that BFS(eb) can reach and vice versa.  
Therefore, RS(ea) = RS(eb). 
 
Lemma 2:  If the vertices that represent connections ea and eb are 
in the same component of the candidate’s CAM graph, RS(ea) = 
RS(eb). 
Proof: This is trivial given Lemma 1. 
 
Lemma 3:  If the vertices that represent connections ea and eb are 
not in the same component of the candidate’s CAM graph, RS(ea) 
≠ RS(eb). 
Proof:  We prove this by contradiction.  Assume that the vertices 
that represent connections ea and eb are not in the same 
component of the candidate’s CAM graph, but RS(ea) = RS(eb). 
Then there must exist at least one node that has not been reached 
by probe messages containing connection numbers a and b but 
can be reached by both BFS(ea) and BFS(eb). According to the 
operation of BFS, this only happens when the TTL has expired 
before the probe message arrives at the specific node. This 
contradicts the earlier assumption that the TTL values of probe 
messages are infinite. Therefore, the lemma is true. 

 
Lemma 4: If RS(ea) = RS(eb) for any 1 ≤ a, b ≤ |c| of a cut vertex 
candidate vc, then vc is not a cut vertex. 
Proof: RS(ea) = RS(eb) suggests that any node vi ∈ RS (ea) must 
∈  RS(eb). RS(ea) = RS(eb) for all 1 ≤ a, b ≤ |c| suggests this 
happens in any two reachable sets of vc. In addition, for any nodes 
vi and vj ∈ RS(ea), there exists a path from vi to vj that does not 
include vc. Therefore, removing vc from G leaves one connected 
component.  By definition, vc is not a cut vertex. 
 
Lemma 5:  If RS(ea) ≠ RS(eb) for any 1 ≤ a, b ≤ |c|, then vc is a 
cut vertex. 
Proof:  Let G’ be the graph that is formed by removing vc and all 
its edges in G. RS(ea) ≠ RS(eb) implies that there does not exist an 
edge (vi, vj) ∈ G' where vi ∈ RS(ea) and vj ∈ RS(eb). This implies 
that RS(ea) and RS(eb) are separate components of G'. By the 
definition of RS, the removal of vc from G results in the number 
of components of G increasing by at least 1.  Therefore, vc is a cut 
vertex. 
 
Theorem 1:  If the candidate’s CAM graph has more than one 
component, it is a cut vertex. 
Proof:  The candidate’s CAM graph has more than one 
component. According to Lemma 3, we know that the RSs 
associated with the connection numbers whose vertex 
representations belong to different components in the CAM graph 
are not equal.  Due to Lemma 5, we can easily conclude vc is a cut 
vertex. 
 
Theorem 2:  If the candidate’s CAM graph has one component, it 
is not a cut vertex. 
Proof:  From Lemma 2, we can deduce that RS(ea) = RS(eb) for 
any 1 ≤ a, b ≤ |c| when the candidate’s CAM graph has one 
component.  From Lemma 4, we can conclude vc is not a cut 
vertex.  

5 Performance Evaluation 
We deployed a series of trace-driven simulations to evaluate 

the performance of CAM. Note that cut vertices exist in most 
overlay networks. We evaluate CAM based on P2P systems for 
two reasons. First, P2P systems are very popular today. Many 
applications including multimedia streaming and online gaming 
may be either based on P2P system or adopt a P2P based 
architecture. P2P traffic overwhelms web traffic on the Internet 
and has become the major consumer of Internet Bandwidth [21]. 
Second, the P2P system is a representative of the overlay 
networks: it is composed of self-governed end systems; it is 
autonomous and open; there is no central control server in a P2P 
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Figure 4 Cut vertex ratio of the traces 



 
 
 
 

system; nodes can join and leave the system at any time; and 
collecting and maintaining overall topology information in a P2P 
system is hard, if not impossible. 

5.1 Simulation setup 
We used the DSS Clip2 traces that were collected from Dec. 7th 
2000 to June 15th 2001 in our simulation. DSS Clip2 traces were 
available on http://dss.clip2.com, but are not available now. We 
can provide the traces to those who are interested upon request. 
There are 48 traces in this collection. The network sizes of the 
traces range from 225 to 47245. The average connections per 
node (node degree) of the traces are from less than 1 to 5. The cut 
vertex ratio for each trace ranges from about 1% of trace 7 to 17% 
of trace 17 as shown in Figure 4. It is obvious that the cut vertex 
ratio of traces collected after March 19th 2001 are more stable 
compared to previous ones, when the largest change in P2P 
software happened. 

We have evaluated in the simulation the accuracy of CAM 
and its influence in the overlay topology. We checked the cut 
vertices in each trace using both traditional DFS based algorithm 
and CAM algorithm to check the accuracy of CAM. We then 
gradually removed the cut vertices and measured the overlay 
topology at the same time to check the influence of CAM in the 
overlay topology. 

5.2 Accuracy of CAM detection 
Three metrics are introduced for evaluating the accuracy of CAM: 
CAM accuracy rate (CAR), CAM false positive rate (CFPR), and 
CAM false negative rate (CFNR). CAR shows how many vertices 
detected by CAM as cut vertices are cut vertices. CFPR and 
CFNR show the error types made by CAM. CFPR shows how 
many nodes that are not cut vertices but are identified as cut 
vertices. CFNR shows how many nodes that are cut vertices are 
not detected as cut vertices. Assume that V is the set of all the 
vertices in a network, C is the set of all the cut vertices, and K is 
the set of all the vertices that are identified by CAM as cut 
vertices. The definitions of aforementioned metrics are given as 
follows: 

 CAR  =  
K

CK I
   (1) 

 CFPR  = ( )
CV

KCV

−
− I   (2) 

 CFNR  = ( )
C

KVC −I    (3) 

We have checked the accuracy of all 48 traces and shown the 
average values of these three parameters in Figure 5. From these 
results, we can observe that the accuracy rate is over 70% even 
when the TTL value of CAM is 1. The accuracy rate is almost 
100% when the CAM TTL value is set to 4. With the increase of 
the CAM TTL value, the CFPR keeps reducing and drops to 
almost zero when the TTL equals 4. At the same time, the CFNR 
remains as zero in all cases. This suggests that CAM can always 
successfully identify all the cut vertices, and CAM errors mainly 
result from the false alarms CAM reports when it considers non-
cut vertices as cut vertices if the TTL is not large enough. 

5.3 Influence on the overlay topology 
We present here how CAM can affect the network topology. The 
metrics used for evaluating the influence of CAM in the overlay 
topology include the number of components and ratio of new cut 
vertices. The ratio of the new cut vertices refer to the cut vertices 
induced by the failure of nodes in the system. Due to the page 
limitation, we only representatively present the simulation results 
of trace 30, which has a relative large network size of 41,589, a 
typical average node degree of 3, and was collected after March 
19th, 2001. 

We compare the number of components in Figure 6. It shows 
that CAM greatly decreases the number of components induced 
by cut vertex failure. The ex-cut vertices here refer to the cut 
vertices in the overlay before cut vertex failures occur. The largest 
reduction is observed when CAM TTL equals 1. The reduction is 
rather close when CAM TTL is 2, 3 or 4. From Figure 5, we know 
CAM achieves the lowest CAR when TTL is set to 1. In fact, 
almost all nodes would be reported as cut vertices by CAM when 
TTL is set to 1, and thus after executing neutralization, the entire 
overlay topology would become a mesh. With the results shown 
in Figure 5 and aimed at reducing the detection cost, we 
recommend to set CAM TTL as 2 or 3. 

Figure 7 shows how many new cut vertices might be 
produced when cut vertex failures occur. Note that CAM 
normalizes all the cut vertices to normal overlay nodes, and thus 
all the cut vertices in the network after CAM are the “new” cut 
vertices. When the TTL value is increased from 1 to 3, the 
generation rate of “new” cut vertices is also increased. However, 
the generation rates of TTL of 3 and TTL of 4 are very close. We 
also noticed that CAM with a TTL larger than 1 induces more 
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Figure 7 New cut vertices after ex-cut vertex failures 

new cut vertices than in an overlay without deploying CAM. One 
possible reason is that the nodes connected with the new 
connections made by CAM, which prevent networks from 
partitioning, became new cut vertices. 

6 Conclusion 
In this paper, we have investigated the cut vertex failure problem 
and proposed a fully distributed mechanism, CAM, to detect cut 
vertices in overlay topology and improve the overlay reliability. 
As many applications, such as media streaming, rely on overlay 
networks, improving reliability can provide better service 
qualities of these applications. CAM can be applied to each node 
locally in an overlay networks. To our knowledge, we are the first 
to introduce a fully distributed cut vertex detection algorithm for 
nodes to detect whether they are cut vertex locally.  

We prove the correctness of the algorithm and also evaluate 
its accuracy and influence in the overlay topology by trace-driven 
simulations. CAM can always successfully identify all the cut 
vertices. The detection traffic overhead can be restricted by 
setting a small CAM TTL value, which may mistake a small 
number of non-cut vertices as cut vertices. Our simulation shows 
that with a TTL threshold value as small as 2, CAM can obtain a 
fairly good accuracy rate of 80%. The accuracy rate increases to 
96% when the TTL equals 3, and 99% when TTL equals 4. After 
being detected, the cut vertices can be normalized to non-cut 
vertices. We propose a basic neutralization mechanism to 
normalize cut vertices to non-cut vertices in this paper. In the 
future, we will propose optimized mechanism to neutralize cut 
vertices. We also plan to demonstrate the effectiveness of CAM in 
other overlay network systems. 
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