A Hybrid Thin-Client protocol for Multimedia Streaming
and Interactive Gaming Applications

D. De Winter

P. Simoens

L. Deboosere

davy.dewinter@hogent.be psimoens@intec.ugent.be |deboosere@intec.ugent.be

F. De Turck, J. Moreau,

B. Dhoedt,

P. Demeester

Ghent University - Hogeschool Gent INWE - IBBT - IMEC, Department of Information Technology
Gaston Crommenlaan 8 bus 201, 9050 Gent, Belgium
Tel: +3293314900, Fax: +3293314899

ABSTRACT

Despite the growing popularity and advantages of thin-client
systems, they still have some important shortcomings. Cur-
rent thin-client systems are ideally suited to be used with
classic office-applications but as soon as multimedia and 3D
gaming applications are used they require a large amount
of bandwidth and processing power. Furthermore, most of
these applications heavily rely on the Graphical Processing
Unit (GPU). Due to the architectural design of thin-client
systems, they cannot profit from the GPU resulting in slow
performance and bad image quality. In this paper, we pro-
pose a thin-client system which addresses these problems:
we introduce a realtime desktopstreamer using a videocodec
to stream the graphical output of applications after GPU-
processing to a thin-client device, capable of decoding a
videostream. We compare this approach to a number of
popular classic thin-client systems in terms of bandwidth,
delay and image quality. The outcome is an architecture for
a hybrid protocol, which can dynamically switch between a
classic thin-client protocol and realtime desktopstreaming.

1. INTRODUCTION

The centralized computer model has evolved to a more
distributed model where almost every home or office user
has his own PC, mostly connected to a network. Such a de-
centralized model has a lot of problems: due to the lack of
knowledge, users in a home-environment are vulnerable to
security-related attacks, to data-losses etc. Also in corpo-
rate environments, costs of maintaining the infrastructure
can become very high. Current trends show an new evolu-
tion to a centralized model; examples are the new emerg-
ing web-services of Google and Windows Live of Microsoft
(both using AJAX (acronym for Asynchronous JavaScript
And XML) to build web-services with a look-and-feel of

normal applications). Portable devices can improve user
mobility but as soon as resource intensive applications are
used, battery lifetime will be too limited. Important data
can also be lost due to theft or laptop damage. Thin-client
systems can offer an all-round solution to tackle these prob-
lems. A typical thin-client system consists of a client and a
server communicating with each other using a remote dis-
play protocol over a network connection. The application
is executed on the server, and only the graphical output is
sent to the client. Classic thin-client systems however suffer
from a number of problems: they cannot be used for ap-
plications relying heavily on GPU-acceleration or having a
lot of non-related screen updates. The remainder of this pa-
per is structured as follows. After a short overview of related
work, a high-level architecture for a hybrid thin-client proto-
col at the server is introduced. Furthermore, we will describe
the implementation of our realtime desktop streamer. We
will determine the optimal parameter settings of the used
videocodec. Next, a comparison of classic thin-client proto-
cols with realtime desktopstreaming is given, motivating our
choice for a hybrid thin-client protocol. Finally, a conclusion
is drawn.

2. RELATED WORK

Figure 1 gives an overview of commonly used thin-client
systems. An evaluation has been given in [2] and [5]. Graph-
ical output from the applications can be sent at different lay-
ers: the highest layer is a high-level graphical library such
as the Gtk-toolkit (3). Commands to draw comboboxes,
buttons, etc. are sent to the thin-client. An alternative is
to use a low-level graphics library such as the X-Window
protocol. The high-level graphics library (3) translates the
complex commands to simpler ones understood by the X-
Window protocol (2). These commands are sent to the X-
server over a network (4), which translates the commands
to low-level commands the graphic driver understands. To
support remote X-sessions over low bandwidth connections,
powerful optimisations such as the NX-protocol have been

Permission to make digital or hard copies of all or part of this work for Proposed: an nxagent (5) and an nxproxy (6) are placed be-
personal or classroom use is granted without fee provided that copies aretween the Xlib-library and the X-server to cache and com-
not made or distributed for profit or commercial advantage and that copies press the commands. THiNC [2} only sends low-level video-
bear this notice and the full citation on the first page. To copy otherwise, t0 ¢4rd driver(7) commands over the network to the thin-client

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
NOSSDAV06 Newport, Rhode Island USA
Copyright 2006 ACM 1-59593-285-2/06/00055.00.

(8). The RFB protocol also uses a pseudo videocard driver
(9) invoked by the X-server and writes the graphical output
to a software-framebuffer. The content of this framebuffer

‘ Application (1)

Nxagent Xlib (2) Gtk (3)

X11
Protucol Protocol

Nx;()g)oxy m X-Server (4) f S°ﬂware
THINC Pseuo
Videodriver (7

THINC
Protocol

THINC
Client (8]

VNCViewer
(10

Figure 1: Components of classic thin-clients

is sent to the thin-client.

All current thin-client systems have two common problems:
first, the graphic commands are intercepted at a software-
level before GPU-processing takes place. An example is 3D-
applications using an OpenGL API. The OpenGL-libraries
can interact directly with the video-card driver. Complex
calculations are performed by the GPU and the result is di-
rectly written to a hardware framebuffer not accessible by
the thin-client system. THiNC offers a solution to this prob-
lem by implementing in the virtual video driver also the 3D-
commands called by e.g. OpenGL, and sending them to the
thin-client. The thin-client must then perform the GPU cal-
culations, and we can no longer call it a real thin-client. If a
thin-client has its own CPU, GPU, memory, etc., a lot of the
advantages of “real” thin-clients are lost: the end-user has
to upgrade and maintain his system again. Second, classic
thin-client protocols are ideally suited for programs produc-
ing low-motion graphical output, but not for e.g. video. We
have already mentioned the use of web-services to replace
normal desktop-applications. The main drawback there is
that applications have to be rewritten, and there is no sup-
port for GPU-intensive applications. A first suggestion to
use video streaming to encode the graphical output of an ap-
plication and send it that way to a thin-client has been pro-
posed in [3]. This paper describes a hybrid protocol which
implements this solution efficiently.

3. REALTIME DESKTOP-STREAMING
3.1 A hybrid architecture

‘We propose a hybrid thin-client protocol using a combina-
tion of a classic thin-client protocol and videostreaming to
send the graphical output of an application to a thin-client
device. Figure 2 gives a schematic overview of such an archi-
tecture at the server. An extra driver decision abstraction
layer is inserted between the graphical libraries and the de-
vice driver layer. This layer will decide if commands coming
for the graphical libraries are directly passed to a native
videocard device driver, or a pseudo device driver imple-
menting e.g. the VNC RFB-protocol. If an application calls
functions from a library requiring GPU support, the ab-
straction layer can inspect the complexity of the commands
and pass them to the native device driver or the pseudo de-
vice driver (and let them process by the GPU resp. CPU).
If they are passed to the native device driver, frames will

Application |

\\/ /‘\ \L T High level
3DAPI | [OpenGLAPI | | graphic library

Low level
graphic library

ﬁ Extra “Driver Decision” Abstraction Layer F
Native Pseudo
Motion Device Device Motion
Feedback Driver Driver Feedback
Graphic Card
hardware
framebuffer Software
Framebuffer
J/ “Motion Detection”
Realtime
Video
Encoder

Figure 2: Architecture of a hybrid thin-client pro-
tocol at the server

be encoded by a realtime video encoder after GPU process-
ing and streamed to the thin-client device. The decision to
which driver the calls will be passed, can also be based on the
amount of motion in the images. If the amount of motion in
the software framebuffer exceeds a particular treshold, the
abstraction layer will decide to use the native device driver
and stream the output. The realtime video encoder should
also give motion feedback to the abstraction layer. If the
amount of motion is below a certain treshold, the pseudo de-
vice driver will be used again. Instead of a VNC-like pseudo
device driver, other systems can be used (e.g. by sending
the low level graphic commands directly to the thin-client
after compression in an NX-way). A switch should hap-
pen transparant for the end-user (e.g. by using the latest
frame of the video-encoder as the first frame for the software
framebuffer and vice versa). Applications must not be mod-
ified to be used in this thin-client architecture. The actual
protocol will use a combination of e.g. the RTP / RTCP
protocol family to send the videostream and a classic thin-
client protocol such as FreeNX if no streaming is required.
Furthermore, the protocol will also need some enhancements
to send a e.g. a trigger to the thin client if or before an ac-
tual switch happens.

3.2 Minimal buffering

In regime
@ 2 6B {1 2] B {1 2] [[
Framel Frame2 Frame3
Gap Gap
Disturbed
Bl 1] Kl
Framel Frame2 Frame3

Figure 3: Packets of the videostream as they arrive
at the thin-client

To guarantee decent user responsiveness, the interaction
delay (the time between clicking a button and seeing the re-
sult of that click-operation) must be kept below 80ms. If we

use videostreaming to send the graphical output of an appli-
cation buffering at thin-client side must be avoided. If there
is enough bandwidth, the thin-client sees the in regime sce-
nario (figure 3): per frame, a burst of packets arrives in the
videostream, with gaps between 2 frames (the time needed
to read out a new frame and encoding it). The in regime
scenario is optimal, minimizing interaction delay. The thin-
client can read out the packets for exactly one frame, and
during the gap, it has enough time to decode and display
the frame. In that way, no buffering is needed. When the
network runs out of capacity, the disturbed scenario will be
seen: due to buffering and/or shaping at routers, gaps can
be larger or smaller and bursts can contain packets of dif-
ferent frames. Packets can also be dropped. If the disturbed
scenario is observed by the thin-client, a feedback message
is sent to the streamer to reduce bitrate by lowering quality
or resolution of the videostream until packets arrive back in
regime. If there is more than 1 frame in the buffer, only
the most recent frame should be decoded and the others
discarded (the principle of circular buffer).

3.3 Implementation details

LAN
network

Streamer Thinclient

(1) Frame-grabbing layer using video4linux

(2) Encoding layer using x264 AVC codec

(3) NAL-(de-)packetization using JRTPLib (RFC 3984)
(4) Buffering and reordering layer (ringbuffer)

(5) Decoding layer using ffmpeg

(6) Display layer using SDL

Figure 4: The different software components of our
desktop streamer

We developed a realtime desktop streamer for our tests
to compare desktop streaming with classic thin-client pro-
tocols. The desktop streamer streams the graphical out-
put of an application after GPU-processing via a separate
videostreamer to a thin-client. Figure 4 shows the high-level
components of our software: at the streamer, frames (com-
ing from the server after GPU processing) are read out of a
frame-grabber, using video for linux. The frames are in re-
altime encoded by the x264 [1] H264/AVC videocodec. The
encoded data is packetized in Network Abstraction Layer
(NAL) units. The large NAL-units are split up in smaller
fragmentation units (FUs), to reduce image-quality degra-
dation in lossy networks. The FUs are sent over the network
in RTP-packets. The RTP-packetization, session setup and
RTCP feedback channels are handled by the JRTP-lib [4].
The encoder is implemented as one loop, sending out an en-
coded frame every 40 ms. User interaction is guaranteed by
the XTest extension library of the X-server. If a user clicks
a particular point at the videoscreen on his thin-client, co-
ordinates are translated to the X-server (the same goes for
other events such as keyboard-events). To minimize interac-

tion delay, the buffering , decoding , and display-processes
at the thin-client side are also implemented as one loop (ex-
cept one extra thread for tracking user-actions). A buffering
algorithm to detect the disturbed scenario (see previous sec-
tion) is also implemented. For our tests, packets always
arrive in regime (on the high speed LAN network).

4. PERFORMANCE EVALUATION
4.1 Testscenarios

Framegrabber
Server + streamer

VGA-Cable

Network
Analyzer

Videostream

Thin-client

Figure 5: Testbed for streaming desktop evaluation

Figure 5 shows our testbed. The testmachines are PCs
connected by a 100 Mbit LAN-network. All machines have
an AMD Athlon64 3500+ CPU with 512 MByte of memory
and run Gentoo Linux with a 2.6.14 kernel. The VGA-cable
of the server is connected to a framegrabber capable of cap-
turing 25 frames per second. These frames are in realtime
encoded and sent over a network analyzer to another PC
functioning as thin-client and capable of decoding and dis-
playing the videostream. We use four distinguished scenar-
ios as indicated in Table 1. The gaming scenario could only
be tested with realtime desktopstreaming as such an appli-
cation depends on the GPU (due to the use of OpenGL).
To determine the optimal videocodec settings for stream-
ingdesktop, we have prerecorded a frame-sequence (25 fps)
for each scenario on harddisk, instead of reading directly
from the framegrabber. In that way we have identical frames
for each test. All applications, except the video-sequence
(640 x 480) run at a resolution of 1024 x 768, but are scaled
down by the framegrabber to 640 x 480 (the technical limit).

4.2 Desktop streaming evaluation

We evaluate the performance of our desktop streamer and
determine the optimal codec settings in terms of bandwidth
and delay (also implying processingoverhead). This is not a
classic evaluation of a videocodec: we are especially inter-
ested in the suitability of such a codec for desktopstreaming
and the influence of the different parameters on delay and
bandwidth (both must be minimal). We only mention the
most influencing parameters. For each test, we have varied
one parameter while keeping the others constant. All tested
parameters have almost no influence on image quality (for-
mally confirmed by the PSNR-ratio). For the reference set-
tings of the codec, we do not use B-frames or extra reference
frames, a variable GOP-size between 25 and 250, a diamond
motion estimation search algorithm and a motion estima-
tion range of 16 pixels. Furthermore, CABAC and subpixel
motion estimation are disabled, and no direct motion vec-
tors are used.

The total delay between reading a frame at the server and
displaying at thin-client side for the most influencing param-
eters is shown in figure 6 for the gaming-scenario. Delay-
trends are similar for the other scenarios, but the overall

Table 1: Overview of our 4 test scenarios

Scenario Description

Office A sequence of actions in openoffice (e.g.
cut and paste of images, typing, scrolling,
creating tables, etc.) recorded with and
played back with Xnee. time: 180sec. -
res.: 1024 x 768

A typical game-sequence in Unreal Tour-
nament 2004 where robots play with
each other, from the spectator view-
point. OpenGL GPU-acceleration is
used (GeForce 6800 video-card). time:
240sec. - res.: 1024 x 768

A H264/AVC pre-recorded fragment of
a football match at 25 fps, played with
mplayer. (without GPU-acceleration, to
be usable on classic thin-clients). time:
140sec. - res.: 640 x 480

A sequence of 20 webpages is shown au-
tomatically (with Javascript) in Mozilla-
Firefox with a gap of 5 seconds. The web-
pages are saved on a local webserver and
include fixed images but also flash anima-
tions.time: 100sec. - res.: 1024 x 768

Gaming

Video

Browsing

delay is 10% higher for the video scenario and 20% lower for
the office and browsing-scenarios (due to higher resp. lower
complexity).

Gaming Sequence - Influence Delay
— T

300 T T

Il Encoding
[l Decoding 4
[IPacketization
[IFramereadtime
[Displaytime
B Extratime

2501

200

Delay (ms)

Figure 6: Influence on delay for the most determin-
ing parameters.

Nevertheless, the delay is still too high (the minimum
measured delay is 100 ms) but advances in hardware will
be able to reduce encoding and decoding time significantly.
Also, the first lines of the next frame are already buffered in
the framegrabber during the encoding of the current frame.
As a result the interaction delay as experienced by the users
will be around 40ms higher for each scenario than shown
by figure 6. By reading out frames in blocks and encod-
ing them piece by piece, the extra delay-overhead can be
avoided. This will give similar encoding results, because
a motion estimation search range of only 4 pixels gives in
all scenarios optimal results. The optimal encoding can be
performed only by taking neighbourhood macroblocks into
account.

We first want to determine the minimum GOP-size for each

scenario. With lower GOP-sizes, video quality degredation
will be less in the case of packet loss for streaming video. As
expected, the number of I-frames has most influence on the
bandwidth per frame for the low motion scenarios (brows-
ing and office) due to large similarities between succeeding
frames (see figure 7 (a) and (b)). For the low motion sce-
nario, a GOP-size of 60 frames has almost no influence on
delay and bandwidth per frame; for high-motion scenarios
however, a GOP-size of 40 frames already gives optimal re-
sults (the rate distortion effects are overwhelmed due to fre-
quent scene changes).

For the streaming desktop, B-frames can only be used when
the server detects no user interaction for a certain time
(e.g. when the user is watching a video) because delay is
augmented by the number of B-frames multiplied by the
(framereadtime+1) due to buffering. Only for very low-
motion scenarios (office in our case), it is usefull to use 2 B-
frames (due to large similarities between succeeding frames).
For all other scenarios, 1 B-frame suffices. As soon as the
user interacts with his thin-client, the usage of B-frames
should be turned off immediatly.

The number of reference frames used for P and B-frame
encoding is important when there are a lot of repeating ele-
ments. When more than 4 reference frames are used, delay
increases by 10% or more and the bandwidth-gain is mini-
mal (see figure 6). Only in the video-scenario, there seem
to be enough repeating elements to profit from using 2 ex-
tra reference frames. For low-motion scenarios, the optimal
residu can be found only by looking at the previous frame,
and it is not necessary to keep extra reference frames (see
figures 8 (a) and (b)).

Bandwidth per frame for browsing and desktop (a)

= —&—I-Frames browsing
= —— |I-Frames desktop
E 0.1+ R
°
2
2 0.05f
©
o
0
Ref 2 4 6 8 10 20
GOP-Size
03 Bandwidth per frame video and gaming (b)
5 0.251 —v— |-Frames gaming
=
= 02t
=]
= 0.15¢
=}
3
&a 01r V/W\V\Wv
0.05 |
Ref 2 4 6 8 10 20
GOP-Size

Figure 7: Influence on the bandwidth per frame for
different GOP-sizes.

In addition to the results shown in figures 7 and 8 we
also measured a number of other parameters. The use of
CABAC can reduce the amount of bandwidth per frame up
to 20% for high-motion sequences and up to 10% for low-
motion sequences. However, there is a delay overhead of
10% and CABAC should only be used when there is enough
processing power. An exhaustive motion estimation search
algorithm only showed a bandwidth gain (up to 8%) in the
gaming scenario (due to the high amount of detail). Ex-

x 10° Bandwidth per frame for browsing and desktop (a)

-
N
T

—7— B-frames browsing
——B-frames desktop

—5— Refframes browsing | |
—<— Refframes desktop

=
o
T

|

Bandwidth (Mbit)
©

———y |
s S |
. AV v & & 3
1 2 3 4 5 6 7
Num of B-or reference frames
Bandwidth per frame for video and gaming (b)
0.25 T T T T

—v— B-frames video
—$—B-frames gaming

_g 0.2r —&— Refframes video
= —*— Refframes gaming
5 015} G—\i\\&\& ———
s
o
g 0.1f
o

0.05 : : ‘ ‘ ‘ : :

1 2 3 4 5 6 7

Num of B-or reference-frames

Figure 8: Influence on the bandwidth per frame for a
different number of B-frames and reference-frames.

haustive search is currently too slow to be used. Using
smaller macroblock partitions for motion estimation can re-
duce bandwidth with 10% for high motion sequences due to
a large amount of detail, but the delay overhead is too large
to be usefull.

Furthermore, we have also tested the influence of other mo-
tion estimation algorithms, subpixel motion estimation and
the motion estimation range but they did not show a sig-
nificant reduction in bandwidth. Adaptive and weigthed
bi-predicted B-frames showed only minor differences with
fixed B-frames.

In our final tests, we combine the optimal parameters. For
the low-motion scenarios, we use a GOP-size of 40, turn
CABAC on, the full range of macroblock partitions (up to 4
X 4 pixels) and one extra reference frame. We test the high-
motion scenarios with the same settings except the GOP-
size (60 instead of 40) and the number of extra reference
frames (2 instead of 1). We also test all four scenarios with
these settings and 1 extra B-frame. Figure 9 summarizes
the results. As our streamer PC was a little too slow to en-
code 25 frames per second, we multiplied the bandwidth per
frame with 25 to get an idea of the theoretical possibilities
of realtime desktopstreaming. The video-scenario shows a
reduction in average bandwidth of 30% if 25 fps are sent
using the optimal encoding settings without B-frames. For
the other scenarios, the bandwidth-gain is smaller, also indi-
cating the video encoder parameters are strongly correlated.
Figure 9 (b) shows bandwidth requirements are only moder-
ate for each scenario, even with the reference settings. Only
2 Mbit/s is needed to stream a recent 3D Game at a resolu-
tion of 640 x 480 to a thin-client. Video requires most band-
width (4 Mbit/s). As delay is much less important for video,
bandwidth can be reduced to 3 Mbit/s by using the opti-
mal settings. The office and browsing-scenarios only require
115 Kbit/s resp. 185 Kbit/s when the reference settings
are used. We expect that with future hardware encoders, it
will be possible to stream in realtime any possible desktop
scenario with only moderate bandwidth requirements. How-
ever, servers should be placed close enough to the end-user

to keep interaction delay within reasonable limits.

Total Delay (a)
250 T

Gaming Browsing Video Office

Il Reference settings
[Joptimal settings without B-frames
Avg. Bandwidth (25 fps) (b) Il Optimal settings with B-frames

T

5 T
Il Reference settings

[JOptimal settings without B-frames
Il Optimal settings with B-frames

Bandwidth (Mbit/s)

Gaming Browsing Video Office

Figure 9: Delay and bandwidth of desktopstreaming
with optimal encoder settings

4.3 Comparison with classic thin-client sys-
tems

To compare classic thin-client systems with realtime desk-
topstreaming, we measured the total amount of data trans-
ferred for both low-motion scenarios and the high-motion
video scenario. For FreeNX we used the ADSL compression
setting and for tight VNC all features were enabled. As only
an older version of THiNC was available, we only compared
the browsing and video-scenario. For the bandwidth- com-
parison of the video-scenario, the fragment was played back
with 1 frame per second (To make sure all data is trans-
ferred as e.g. VNC has a client-pull architecture). The total
amount of traffic for the office and browsing-scenario is low
enough to be sure no data is discarded.

With desktopstreaming, the low-motion scenarios originally
run at a resolution of 1024 x 768 were scaled down to 640
X 480 by the framegrabber, while the classic thin-client sys-
tems show a full-screen resolution of 1024 x 768. To com-
pare bandwidth, we multiplied the total amount with 2.56.
A small experiment showed this is indeed a good approach.
Figure 10 shows the total amount of data transferred for
the video scenario (in Mbit). It is clear desktopstreaming
outperforms the other approaches.

Both low-motion scenarios (also see 10) however use equal
or less bandwidth than desktopstreaming if FreeNX is used.
If we also look at the required processing power, FreeNX is
a better solution than desktopstreaming. Desktopstreaming
uses for low-motion sequences around 50% CPU on encoding
side and 30% CPU on decoding-side, while classic thin client
systems only use a maximum of 5% CPU on both encoding
and decoding-side. If we take processing-overhead for the
video scenario into account, classic thin-client systems are
in the same order of magnitude as desktop streaming. The
arrows in figure 10 show that with a hybrid thin-client pro-
tocol using a combination of FreeNX and videostreaming,
optimal results will be obtained in all scenarios.

To compare the image quality, we also played the video
fragment with 25 fps. We used the formula (4.1) proposed

Total amount of data transferred (Mbit)
60 T T T T T T T T T T

501

401

301

HYBRID HYBRID

20

10

Total amount of data in Mbit

0

d O O D J O N> F O L& A

& & q,’(’& S A Q;o&zé S8 e’éQ
& K & & & & N <
& & K K &

- Video scenario - (Total |:| Browsing scenario -
bandwidth) /1000 (Total bandwidth /100)

- Desktop scenario - (Total
bandwidth) /10

Figure 10: Comparison of the total amount of data
transferred for 3 scenarios for different architec-
tures.

4 Video Scenario - Total playbacktime
2 X 10
Il FreeNX
1.5- EEvNe 4
m I [CX11
2 Il Stream
@ 1r]
E
'_
0.5 B
0 | \

BW Unlimited 3000 Kbit/s

Figure 11: Playbacktime of the video scenario when
played with 25 FPS for different architectures.

and explained in [5] to calculate the video quality percent-
age. A first test was performed without bandwidth limi-
tation between client and server, a second test with a lim-
itation to 3 Mbit/s as a constant bitrate of 3 Mbit/s for
videostreaming is enough to get good video quality (also
formally confirmed by the PSNR-ratio, not included here).
To calculate the video quality percentage, we need the play-
backtime (see figure 11) and the amount of data transferred
when the fragment is played with 25 FPS (see figure 12).
For videostreaming, the amount of data transferred when
played with 1 fps is the same as when played with 25 fps.
The only penalty there is the playback-time (as we are play-
ing the videofragment with only 20 fps). Figure 13 shows
the results. A videoquality of 100% is the optimal quality,
the same as when a video is played back locally. We clearly
see the streamingdesktop has still a very high quality (even
with re-encoding) of 80% if bandwidth is unlimited and 70%
with limited bandwidth, proving desktop streaming is ide-
ally suited for multimedia applications.

Data(P)/PlaybackTime(P)
Ideal FPS(P)
Data(slowmo)/PlaybackTime(slowmo)
Ideal FPS(slowmo)

VQ(P) =

(4.1)

5. CONCLUSION AND FUTURE WORK

We developed a realtime desktopstreamer which uses a

10 Video Scenario - Total Bandwidth (25 FPS)
25X 10 ‘ ‘
Il FreeNX
= 2t [IVNC b
s [Cx1t
=15 Il Stream]
i}
s 1r b
©
e
©
m 0.5r m 1
0 I L — I L —
BW Unlimited 3000 Kbit/s

Figure 12: Total bandwidth for the video scenario
when played with 25 FPS for different architectures.

Video Quality Comparison Thin-Client Systems

HlBW Unlimited
| 3000 Kbit/s

'

X11 FreeNX VNC Stream

o
®

o
o

Quality Percentage
o o
[N N

(=]

Figure 13: Image quality comparison for the video
scenario using the video quality percentage formula
(4.1).

H264/AVC-based videocodec to stream the graphical out-
put of applications to a thin-client device. We compared
this approach to classic thin-client systems which are best
suited, especially if processing overhead is taken into ac-
count, for office programs and webbrowsing. When multi-
media or 3D games are used, the realtime desktopstreamer
outperforms classic thin-client systems and is the only vi-
able solution. Videostreaming can offer a solution for thin-
client systems, especially if fast low-power video-encoding
and-decoding chips will become available. We propose to
use a hybrid protocol using a combination of a classic thin-
client protocol and desktop streaming. In our future work,
we will perform an evaluation of the energy consumption
and do a processing power analysis of classic thin-client sys-
tems and desktop streaming, to validate their usability on
portable devices.

6. REFERENCES

[1] L. Aimar, L. Merritt, et al. 264 - A free H26//avc
encoder. http://developers.videolan.org/x264.html.

[2] R. Baratto et al. Thinc: A virtual display architecture
for thin-client computing. In Twentieth ACM
symposium on operating system principles, 2005.

[3] J. M. Danskin et al. Fast higher bandwidth x.
Multimedia and Network, pages 192-199, 1995.

[4] J. Liesenborgs. JRTPLib, an object-oriented
RTP-library written in C++, 2006.
http://research.edm.luc.ac.be/jori/jrtplib/jrtplib.html.

[5] J. Nieh, S. J. Yang, N. Novik, et al. Measuring
thin-client performance using slow-motion
benchmarking. ACM Transactions on computer
systems, 21:87-115, 2003.

