
Revisiting multimedia streaming in mobile ad hoc
networks∗

Peng Xue Surendar Chandra
University of Notre Dame, Notre Dame, IN 46556, USA

(pxue,surendar)@cse.nd.edu

ABSTRACT
Mobile ad hoc networks have been the subject of active re-
search for a number of years. This paper investigates the
feasibility of using such networks for transmitting multime-
dia streams. We observe that wireless network IO operations
can be expensive (e.g., programmed IO cost, energy to op-
erate wireless). Moreover, compared to nodes in infrastruc-
ture networks that either read or write network traffic, ad
hoc traffic requires the intermediate node to perform many
expensive network operations twice (read and then resend)
and on behalf of other nodes. This observation raises an im-
portant question for the ad hoc community, should they a)
demand that ad hoc routers support some minimum hard-
ware resources (for example, full DMA support, twice the
battery capacity)?, b) force an end-to-end resource manage-
ment scheme that cooperatively reduces the network flow
to half of what can be serviced by the weakest link? This
would ensure that no intermediate node would see enough
traffic to overwhelm them? or c) require that the local nodes
protect themselves from transit traffic? This paper explores
the last mechanism in order to provide some control over
the resource consumed without a major revamp of existing
operating systems or requiring special hardware. We im-
plement our mechanism in the network driver and present
encouraging preliminary results.

Keywords
MANET, multimedia streaming, resource management

1. MOTIVATION - OBSERVED SYSTEM BE-
HAVIOR

Mobile ad hoc networking (MANET) community provides
us with a wealth of technologies that enable the source and
the destination nodes to route the data through a number
of intermediate forwarding nodes. There has been extensive

∗This work was supported in part by the U.S. National Sci-
ence Foundation (IIS-0515674 and CNS-0447671)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV ’06 Newport, Rhode Island USA
Copyright 2006 ACM 1-59593-285-2/06/0005 ...$5.00.

research results in experiences with MANET [10], routing
algorithms [19], capacity issues [13], energy aware routing
and streaming mechanisms [8, 21, 2, 5] etc. Liu et. al. [14]
are attempting to provide a single system image for ad hoc
scenarios in MagnetOS.

Our primary goal in this work is to investigate the suitability
of ad hoc networks for streaming multimedia contents. First
we experiment with a wide variety of operating systems and
hardware setups to show that there is a mis-match between
expectations of the local system designers and the demands
placed by ad hoc traffic. Decisions such as the choice of pro-
grammed IO and available battery capacity can make the
system unable to transmit even modest multimedia streams.
Building a system is an exercise in trading off device capabil-
ities for cost and other constraints. Compromises in system
resources (such as lack of DMA and battery power that are
made for cost and weight reasons) are exacerbated by ad hoc
networks which force these operations to be performed twice
for each forwarding operation. There are three alternatives
to solving this problem:

• Decree that intermediate ad hoc routers should have
better resources than what is required for end hosts

• Develop a global resource management policy that man-
ages the resource consumption of the entire ad hoc net-
work as a single schedulable entity

• Develop mechanisms that work with existing hardware
and operating system mechanisms to provide better re-
source control

These questions need to be addressed in order to make mul-
timedia streaming a viable option in wireless ad hoc sce-
narios. In this paper, we choose mechanisms that can work
with existing hardware and operating system limitations.
In our system, the intermediate nodes manage their local
resources by selectively dropping forwarding packets. The
challenge is to choose the right set of packets. We show
that kernel based policies for rejecting packets may not pro-
vide adequate resource control. We then describe our driver
based approaches that can allow the intermediate router to
control the transit flows without completely revamping the
operating system. We present some encouraging preliminary
results.

The rest of the paper is organized as follows: Section 2 shows
our experimental quantification of the effects of ad hoc traffic

on the routing node as well as the effects on the end-to-end
traffic. Section 3 discusses different mechanisms to attack
the problems. Section 4 describes our approach. We place
our work in context of related work in Section 5 and conclude
in Section 6.

2. QUANTIFYING THE OVERHEAD FOR
AD HOC TRAFFIC

2.1 CPU overhead for ad hoc traffic
We conducted experiments to quantify the effects of the for-
warding traffic on a wide variety of hardware and software
setups. Our setup is designed to represent a typical deploy-
ment using laptop class hardware. Our goal is not to stress
the network; we experiment with network traffic that should
be well within the capabilities of these class of machines. For
our experiments, we investigated Microsoft media, Real and
Quicktime multimedia formats. We streamed the 1:59 min-
utes long reference Wall (movie) theatrical trailer (also used
in [4]) for our media stream. We used Pentium 4 Mobile
(2 GHz) and Pentium M (1.6 GHz) laptops with 512 MB
memory and 800 MHz Powerbook G4 (running Mac OSX
10.3.4) with 1 GB memory. The Powerbook routers ran Mac
OSX 10.3.4 while the Pentium routers ran FreeBSD 4.9/5.x,
Redhat 9.0 and Windows XP. We ran Windows XP for the
browsers and Windows 2000 Server running Windows Media
service, Realserver 8.01 and Apple Darwin Server 4.0 for the
servers. Wireless access was provided by Apple airport for
the Powerbook and Orinoco Silver, Dell TrueMobile 1150
mini-PCI and Linksys WPC11 v3 for the Pentium laptops
on dedicated wireless channels. We use a 11 Mbps wireless
network which supports throughput of around 5 Mbps. All
the routers were running the native windowing system and
other system processes (e.g. virus scanners). The systems
were not running any other interactive applications; any of
which would demand the use the CPU resources. We only
show few representative results from these various experi-
mental setups.

We tabulated the percentage CPU load placed on the in-
termediate routers for different streams, operating systems
and device setups in Table 1. From Table 1, we note that
the transit traffic consumes a significant amount of CPU re-
sources across the various experimental setups. The load
placed is not a function of spurious interaction between in-
expensive wireless network interfaces (WNICs) and drivers;
the load was high across vendor supplied drivers as well as
open source drivers, operating systems, architectures (Mac
and PC) and WNIC cards and interfaces (PCMCIA and
mini-PCI). We note that high quality MS media streams
can consume about 60% of the CPU cycles for interrupt
processing. For the same stream bandwidth, formats such
as Real and Quicktime, with more number of network pack-
ets can consume relatively higher CPU resources (e.g., a 256
kbps stream, MS media, Quicktime and Real transmit 2362,
3551 and 4383 packets respectively [4]).

We also note that local energy management policies that
use dynamic voltage scaling and reduce the CPU clock fre-
quency [3] further exacerbate this problem. Reducing the
clock frequency for Windows XP has the effect of dropping
network packets without much saving in processor load. On
the other hand, FreeBSD saturates the CPU as the CPU

clock is lowered (WinXP and FreeBSD at 1.2 GHz). Stream
bandwidths of more than 500 kbps can consume more than
80% of the CPU resources. In fact, a 2000 Mbps stream (or
two independent 500 kbps streams) can spend 100% CPU
cycles for processing ad hoc traffic. Energy conservation
mechanisms for the end nodes that shape the traffic to be
transmitted in bursts [20, 5, 9] are expected to exacerbate
this problem with high router CPU load spikes during these
bursts.

2.1.1 Understanding the poor CPU load behavior of
ad hoc traffic

In order to fully understand the effects of transit traffic,
we profile the FreeBSD 4.9 operating system on the router.
The laptop was running at 2 GHz. We measured the time
it takes for a packet to be read from the wireless NIC card
into the kernel and then resent back into the NIC card using
the microtime() kernel function. We repeated the experi-
ment for the Dell TrueMobile 1150 mini-PCI card and Cisco
Aironet 350. We analyzed the system for a 1500 byte UDP
packet. The UDP packet took 2830µsec to transit from the
network card back to the network card. The forwarding
process consumed about 118µsec for preparing to read the
packet and 1314µsec in programmed IO routines to read
the data off the cards. It spent 32µsec for route processing
within the kernel before spending another 1386µsec to write
the packet to the network card.

On further investigation of the network driver source code
and specifications of the network cards used in our study, we
note that these cards require the kernel to use programmed
IO to read and write data from the wireless card. Essen-
tially, the bottleneck is the CPU used for programmed IO.
The limitations of programmed IO are well studied and un-
derstood [18]. Previous work [15] has addressed some of
the limitations of programmed IO in the context of servers.
However, in an ad hoc scenario, the increased load is created
by transit traffic. Unlike servers, the system can choose to
not spend resources on ad hoc traffic and drop the transit
traffic. Note that programmed IO operations are charged as
a kernel resource and are not preemptible.

2.2 Energy overhead for ad hoc traffic
Also, in [5], we investigated the energy overhead for forward-
ing ad hoc traffic. We showed that the routers consume more
energy than the browser or the server nodes. The power
consumption of the router nodes are higher as the packets
are processed twice. The routers receive traffic and resend
them; while the servers and browsers only send and receive
data, respectively.

2.3 End to end network behavior for ad hoc
routing

The end to end behavior of the ad hoc traffic also suffer in
our setup. We plot the normalized time delay between the
packet leaving the server and the time it was received at the
browser (using tcpdump traces at the server and browsers)
as a cumulative distribution in Figure 1. We normalize with
respect to the delay experienced by the first packet in the
stream; we are concerned with the variance rather than the
actual delay through the network. The router was running

System setup
MS media Real Quicktime

2000 768 256 128 512 256 128 256 128
kbps kbps kbps kbps kbps 2kbps kbps kbps kbps

MacOSX 39% 20% 13% 9% 57% 31% 11% 17% 13%
WinXP (2GHz) 62% 21% 13% 13% 83% 80% 28% 28% 23%
WinXP (1.2GHz) 69% 21% 8% 5% 55% 35% 20% 27% 14%
Win XP (WNIC2, 1.2 GHz) 64% 20% 11% 6% 35% 35% 18% 21% 10%
FreeBSD 4.9 (2GHz) 59% 20% 6% 4% 21% 20% 11% 22% 11%
FreeBSD 4.9 (1.2GHz) 100% 77% 24% 10% 83% 73% 43% 65% 24%

Table 1: CPU load on intermediate routers for forwarding multimedia streams

FreeBSD 4.9 at 1.2 GHz speed. We repeat experiments un-
der three scenarios: text console with no graphical front end,
idle X front end and X front end with continuous MP3 play-
back using XMMS reach with no normalized delays. Figure
1(a) plots the normalized delay for a 56 kbps Microsoft me-
dia traffic. We note that the routing adds a variance of
about 10 msec; easily buffered and adapted by the multime-
dia browser. Figure 1(b) plots the normalized delay for a
single 768 kbps MS media traffic while Figure 1(c) plots the
normalized delay for two 768 kbps MS media traffic travers-
ing the router nodes to two different clients. We note that
as the stream bandwidth increases, there is more variance in
the delays. The effect is further pronounced by the router
running GUI applications for their local consumption. The
routing completely breaks down for routers handling two
high quality streams (Figure 1(c)). Since the streams are
variable bit rate in nature [5], the load on the router changes
and the multimedia system is not able to effectively adapt
to the streams. Also, the router node becomes completely
incapacitated during peak activity. Note that we use a 11
Mbps wireless network which supports throughput of around
5 Mbps; network capacity itself is not the bottleneck.

To summarize, we analyzed the effects of multimedia streams
on the ad hoc routers. We noted that multimedia traffic
can place tremendous demands on the intermediate routers.
Even for moderate streams (< 500 kbps), the offered load
can incapacitate the routers. The routing traffic interferes
with local energy resource management policies. The CPU
load on the intermediate node also increases the variance
of the streams, changes which are too quick for commodity
streams to adapt and lower their quality requirements. Es-
sentially, the stream was not acceptable for the end nodes
or the intermediate router because it forces the intermediate
nodes to perform operations which are known to be expen-
sive (e.g. programmed IO, wireless operation), twice. These
expensive operations are also performed on behalf of other
nodes.

3. NATURE OF THE SOLUTION
Ad hoc networking technologies essentially benefit other nodes
with the hope that the other nodes will eventually help the
current node for its future network demands. The previous
section paints a grim picture; it suggests that ad hoc network
scenarios might not be appropriate for multimedia stream-
ing. Building a system is an exercise in trading off device ca-
pabilities for cost and other constraints. These compromises
are exacerbated by ad hoc networks which force expensive
operations to be performed twice for each forwarding oper-
ation. There are three alternatives to solving this problem:

• Decree that intermediate ad hoc routers should have
good resources: Perhaps, the solution to the woes pointed
out in the previous section is to demand that the ad
hoc routers be resource rich. We can demand that the
ad hoc routers should have higher battery capacity in
order to read and resend traffic. Such demands add to
the weight and cost of the ad hoc routers.

Previous work on servers had noted the fundamen-
tal limitations of programmed IO and recommended
DMA as the solution. DMA offloads IO processing
to a separate DMA controller, freeing the main pro-
cessor for other tasks. One possible solution for our
ad hoc scenario is to demand that ad hoc routers use
DMA based IO. For mobile devices, we argue against
this solution. As noted by [7], programmed IO has
better cache behavior for packets that will be imme-
diately forwarded. Also, DMA controllers essentially
require more hardware resources to solve the IO prob-
lem. Using DMA also requires further complexity of
the OS; DMA scatter-gather operation requires more
interrupt processing. For a mobile device, we argue
that a better place to invest in hardware resources is in
the CPU where the additional resources can be used by
local processing rather than in dedicated I/O process-
ing. Moores law gains in hardware do not necessarily
invalidate this argument.

Besides, these mobile devices were functioning accept-
ably for the local non ad hoc user. Ad hoc traffic
should not require that the intermediate router in fact
provide server like resources. The promise of ad hoc
networking is to use mobile devices in an ad hoc fash-
ion, not to require certain capabilities which are typi-
cally not found in commodity mobile devices (this ob-
servation was based on our experiments with a wide
range of hardware).

• Develop a global resource management policy that man-
ages the resource consumption of the entire ad hoc net-
work as a single schedulable entity: Another tempting
alternative is to address this problem as a global re-
source management issue. We can unify the resource
accounting and management across the entire ad hoc
deployment. As the load on the intermediate router in-
creases, it can explicitly control the source data rate in
order to manage the resources on all the participating
nodes. MagnetOS takes this design philosophy. This
approach changes the flavor of ad hoc networks from
a collection of nodes cooperating to provide useful ser-
vices to a combined entity that services a particular
application.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Duration (in msec)

Console - 56 kbps
X - 56 kbps
XMMS - 56 kbps

(a) 56 kbps MS media

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Duration (in msec)

Console - 768 kbps
X - 768 kbps
XMMS - 768 kbps

(b) 768 kbps MS media

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
um

ul
at

iv
e

di
st

rib
ut

io
n

Duration (in msec)

Console - 768 kbps
X - 768 kbps
XMMS - 768 kbps

(c) Two clients - 768 kbps MS media each

Figure 1: Cumulative distribution of normalized delays

introduced by the router running FreeBSD 4.9. The

routers were running with no windowing system (Con-

sole), with X windows as well as X windows + xmms

playing a locally available MP3 song

• Develop mechanisms that work with existing hardware
and operating system mechanisms in order to provide
better relief: In this research, we take a more modest
approach and analyze how we can make OS software
work better on existing hardware for ad hoc scenarios.

4. LOCAL RESOURCE MANAGEMENT FOR
EXISTING HARDWARE

This paper focuses on resource management policies that
are appropriate for the existing hardware. In general, the
resource management components for forwarding network
packets is illustrated in Figure 2(a). The intermediate router
spends resources to read the packet off of the network card,
performs some in-kernel processing and then sends the packet
back to the wireless network card. Application level prox-
ies might also read the packets from the kernel to perform
further processing. The key to controlling the resources con-
sumed by the forwarding process is to measure the amount
of resources consumed in each phase and develop software
strategies for saving those resources.

4.1 Local CPU resource management
We analyze the software changes required in order to bet-
ter control the CPU resources consumed by ad hoc traffic.
Earlier, we measured the time to forward a packet through
the kernel at 2830µsec for a 1500 byte packet. We explore
mechanisms to reduce this overhead. The bulk of the over-
head was in the programmed IO routines with about 32µsec
spent in kernel forwarding. For these hardware, the only
viable option for resource control is to develop techniques
to reduce the PIO overhead by dropping packets. Dropping
packets would eventually force the source to reduce its trans-
mission rate. The challenge is to drop packets that are the
least disruptive. For example, dropping a frame that is part
of a fragmented datagram would force the entire packet to
be dropped, even though the system already paid the cost
to transmit the other fragments. The end user can influ-
ence any policy by dropping packets using kernel firewalls.
Dropping a packet using such firewalls would still take at
least 1444µsec. We desire a mechanism that can let the
network driver itself drop this packet. The network driver
should drop the packet after performing the least amount of
programmed IO.

First we analyze the performance of policies that drop pack-
ets in the kernel (using firewalls) as well in the network
driver. The system is configured using kernel firewall (ipfw)
to reject any transit traffic but allow any legitimate local
traffic. To achieve the same effect inside the network driver,
we modified the driver to only read the first 34 bytes (14
and 20 bytes of Ethernet and IP headers, respectively) and
reject any transit traffic: the next read operation flushes the
remaining packet data in the card. Local traffic is forwarded
to the kernel as usual. For our experiments, we use three
Pentium laptops running at 2 GHz and measured the CPU
load using top. We modified FreeBSD 4.9 kernel for our
experiments (FastForward option was enabled). The server
generated UDP streams of fixed size at a constant rate using
iptraffic for our experiments. We plot the percentage CPU
load for various rates of network traffic and packet sizes in
Figure 3. From Figure 3, we note that the CPU overhead for
dropping packets in the kernel depends on the packet arrival

Wireless
Network card

IN OUT

Kernel

tcp_input()

ip_input()

ether_input()

Application level proxy

tcp_output()

ip_output()

ether_output()

(a) Resource management for forwarding traffic

Wireless
Network card

N
et

w
o
r
k

d
r
iv

e
r

OS
kernel

IN
OUT

2: Tag packets
to learn kernel

behavior

1: Drop packets
quickly

3: Check for
tagged packets

0: Trigger
packet dropping

(b) CPU resource management

Figure 2: Resource management for forwarding network traffic

rate and size. Dropping the packets at the driver can allow
for better resource management. The overhead of dropping
packets in the driver is not dependent on the packet size.
Dropping packets in the network driver can save significant
amounts of CPU load for all the packet sizes.

4.2 Design of our modified network driver
In the previous section, we showed that the network driver
can be a good place to drop network packets in order to
manage the overall CPU load induced by forwarding traffic.
A wide variety of network packets are destined for transit
nodes, including local unicast, broadcast and multicast mes-
sages. In this work, we are only interested in the behavior
of transit traffic. The challenge is to drop packets that can
quickly force the end hosts to adapt to a lower resource
requirement level. Ideally, the driver would require multi-
media stream semantics (e.g., Quicktime, Microsoft media)
in order to choose to drop the right set of packets. However,
the network driver does not possess all the network proto-
col stack information. Moving this functionality into the
driver will not only violate the network layering principles,
but will also slow down network processing for other local
traffic. So, we are designing a network driver that learns the
firewall rules (and kernel behavior) by watching the behavior
of transit packets. Our driver does not depend on whether
the user implements mechanisms to drop packets inside ker-
nel firewalls or in application level proxies. Typically, kernel
firewalls are a good place to perform packet filtration with
policy decisions themselves made in application level prox-
ies. Our solution is illustrated in Figure 2(b)).

4.2.1 Step 1: Drop packets early
Whenever a packet arrives at the network driver (wi rexof()),
we analyze the packet to identify whether this packet be-
longs to a transit flow which the kernel is likely to drop.
The information about what packet to drop is collected in
Step 3. Note that the driver will not implement complex
policies that is aware of the streaming mechanisms to drop
the appropriate packet. Such policies will be implemented
at the kernel or application level. The driver packet rules are
far simpler than kernel firewalls; operating on packet byte
offsets.

Programmed IO costs are directly proportional to the amounts
of bytes read from the WNIC card. Hence, we make the de-
cision by reading as few bytes of the packet as possible. If
the packet was not likely to be dropped, then the entire
packet is read and forwarded on to Step 2 (programmed
IO duration does not depend on CPU frequency. Hence we
can potentially reduce the CPU clock frequency to save en-
ergy). Note that in general, multimedia network packets are
best-effort traffic. False positives lead to end-to-end service
disruption while false negatives reduce the ability of local
node to manage its resources. Hence, false-positives where
packets are wrongly identified (and dropped) are more tol-
erable than false-negatives where packets that should have
been dropped are transmitted to the kernel (consuming un-
necessary CPU resources).

4.2.2 Step 2 and 3: Learn what packets to drop
The network driver should learn the behavior of kernel fire-
wall. Note that the driver itself does not understand the
packet format. For new transit flows, the driver notes some
identifying markers of the packets and starts a timer to see
if this packet reappears on the OUT side (in wi start()).
If the marked packet reappears, then the driver learns that
this particular flow is being forwarded and so continues to
forward packets for this flow in the future. If the packet was
not resent by the kernel within a certain duration, then the
driver learns that this flow is potentially being dropped by
a kernel firewall (being best-effort traffic, the packet might
have been dropped without explicit firewalls). After n such
drops, the driver will itself drop subsequent packets for this
flow (in Step 1). The choice of n is a tradeoff between the
false negative rates and false positive rates? Good values
for n for a particular hardware setup will be experimentally
measured. Also, the duration between Steps 2 and 3 depend
on a number of factors that are unknown to the driver. It de-
pends on the system load as well as any CPU clock frequency
changes for potential energy savings. The kernel driver also
does not have access to interruptible timers. Keeping track
of a large number of packets adds to the overhead for packet
matching in Step 3. Preliminary results indicate that keep-
ing track of one or two packets was enough for practical
media streaming for a single transit traffic. Also, the ker-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300 350

C
P

U
 lo

ad
 (

in
 p

er
ce

nt
ag

e)

Network packets per second

Full transit
Kernel

Network Driver

(a) 1500 byte packets

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700

C
P

U
 lo

ad
 (

in
 p

er
ce

nt
ag

e)

Network packets per second

Full transit
Kernel

Network Driver

(b) 500 byte packets

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700

C
P

U
 lo

ad
 (

in
 p

er
ce

nt
ag

e)

Network packets per second

Full transit
Kernel

Network Driver

(c) 100 byte packets

Figure 3: CPU load for varying packet size and forward-

ing rate

nel firewall rule changes are not notified to the driver; the
driver will periodically forward (duration will be experimen-
tally measured) a matching flow to probe the kernel firewall.
This period is chosen as a compromise between unnecessary
(and resource intensive) probes and a latency between user-
initiated change in firewall rules and any noticeable effects
of the new rules.

The driver requires mechanisms to identify whether a packet
belongs to a particular transit flow in order to drop pack-
ets quickly. Our mechanism should not depend on the driver
understanding the semantics of IP datagrams. For our work,
we are investigating IP identification (IDENT) field [17] as
the potential differentiator. IDENT is a two byte field start-
ing from the fifth byte of an IP datagram. This field was
designed for fragmented packets. Our preliminary analy-
sis of a large number of flows showed us that in practice,
the IDENT field is a monotonically increasing number for a
given source node. Based on this property, we can differen-
tiate different flows from a single host within a small target
window. Potentially, we only need to read 20 bytes (14 for
Ethernet header and 6 to reach the IDENT field) of a frame
in order to identify a network flow.

Presently we are building our driver that uses the IDENT
field to tag potential packets as well as identify flows to be
dropped. We will report our experiences with this driver in
time for the conference.

4.2.3 Least interference for the rest of the packets:
Our driver should cause the least interference to legitimate
traffic. This might require that the drive be explicitly trig-
gered by the kernel (Step 0) or that the driver always looks
out to drop certain packets based on its understanding of
the kernel resource management needs. The contribution
of false-positives and false-negatives will be measured and
their contribution reduced.

5. RELATED WORK
Managing router resources have been well studied in the con-
text of software routers [16, 15, 11, 22] and active networks
[12]. The Click modular router [11] assembled a software
IP router using programmable elements for various config-
urable network processing. nanoProtean [6] investigated ac-
tive networking mechanisms in a gigabit router by reduc-
ing the OS system overhead for processing packets. Scout
[16] introduces the notion of paths for resource management.
Banga et al. [1] proposed the generalized resource container
mechanism to account for resource consumption outside the
traditional process boundary. The CROSS software router
work [22] investigated the OS isolation and packet classifi-
cation mechanisms necessary for a programmable software
router. Ad hoc scenarios differ from these systems in that
the primary function of these routers are to perform inter-
active user tasks; the forwarding operation is basically an
service to other peers. Hence, rejecting traffic earlier on is
preferable to ensuring that packets are forwarded.

6. DISCUSSION
This paper argues that wireless ad hoc routers need to ef-
fectively manage the transit traffic; account for the resource
consumption as well as reject unsustainable flows quickly.

Without such mechanisms, the transit traffic can place in-
ordinate resource demands, sometimes incapacitating the
nodes completely. We develop a driver-based mechanism
that enables the driver to learn the behavior of kernel fire-
walls and application proxies, and ultimately to save re-
sources by dropping unsustainable packets. Such mecha-
nisms can also potentially benefit the system defend against
denial of service attacks.

7. REFERENCES
[1] G. Banga, P. Druschel, and J. C. Mogul. Resource

containers: A new facility for resource management in
server systems. In Proceedings of the Third Symposium
on Operating Systems Design and Implementation,
pages 45–58, New Orleans, LA, Feb. 1999. USENIX
Association, ACM SIGOPS.

[2] A. Bestavros and S. Jin. Osmosis: Scalable delivery of
real-time streaming media in ad-hoc overlay networks.
In Proceedings of Workshop on Data Distribution in
Real-Time Systems, pages 214–219, Providence, RI,
May 2003.

[3] T. D. Burd and R. W. Brodersen. Design issues for
dynamic voltage scaling. In Proceedings of the 2000
International Symposium on Low Power Electronics
and Design, July 2000.

[4] S. Chandra. Wireless network interface energy
consumption implications of popular streaming
formats. In M. Kienzle and P. Shenoy, editors,
Multimedia Computing and Networking (MMCN’02),
volume 4673, pages 85–99, San Jose, CA, Jan. 2002.
SPIE - The International Society of Optical
Engineering.

[5] S. Chandra. Energy conservation in ad hoc multimedia
networks using traffic-shaping mechanisms. In
N. Venkatasubramanian, editor, Multimedia
Computing and Networking 2004 (MMCN ’04),
volume 5305 of Proceedings of SPIE-IS&T Electronic
Imaging, pages 40–54, San Jose, CA, Jan. 2004.

[6] D. Craig, H. Kim, R. Sivakumar, V. Bharghavan, and
C. Polychronopoulos. nanoprotean: scalable system
software for a gigabit active router. In Proceedings of
IEEE Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM
2001), volume 1, pages 51–59, Anchorage, AK USA,
Apr. 2001.

[7] P. Druschel, M. B. Abbott, M. A. Pagals, and L. L.
Peterson. Network subsystems design. IEEE Network,
7(4):8–17, 1993.

[8] L. M. Feeney. A QoS aware power save protocol for
wireless ad hoc networks. In Med-Hoc-Net 2002,
Sargegna, Italy, Sept. 2002.

[9] M. Gundlach, S. Doster, H. Yan, D. K. Lowenthal,
S. A. Watterson, and S. Chandra. Dynamic,
power-aware scheduling for mobile clients using a
transparent proxy. In International Conference on
Parallel Processing (ICPP ’04), pages 557–565,
Montreal, Canada, Aug. 2004.

[10] E. Huang, W. Hu, J. Crowcroft, and I. Wassell.
Towards commercial mobile ad hoc network
applications: a radio dispatch system. In MobiHoc ’05:
Proceedings of the 6th ACM international symposium
on Mobile ad hoc networking and computing, pages
355–365, New York, NY, USA, 2005. ACM Press.

[11] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM
Transactions on Computer Systems, 18(3):263–297,
August 2000.

[12] U. Legedza, D. J. Wetherall, and J. Guttag.
Improving the performance of distributed applications
using active networks. In IEEE Infocom, Mar. 1998.

[13] J. Li, C. Blake, D. S. J. De Couto, H. I. Lee, and
R. Morris. Capacity of ad hoc wireless networks. In
Proceedings of the 7th ACM International Conference
on Mobile Computing and Networking (MobiCom ’01),
pages 61–69, Rome, Italy, July 2001.

[14] H. Liu, T. Roeder, K. Walsh, R. Barr, and E. G. Sirer.
Design and implementation of a single system image
operating system for ad hoc networks. In International
Conference on Mobile Systems, Applications, and
Services (Mobisys05), pages 149–162, Seattle, WA,
June 2005.

[15] J. C. Mogul and K. K. Ramakrishnan. Eliminating
receive livelock in an interrupt-driven kernel. ACM
Trans. Comput. Syst., 15(3):217–252, 1997.

[16] D. Mosberger and L. L. Peterson. Making paths
explicit in the scout operating system. In Proceedings
of the second USENIX symposium on Operating
systems design and implementation, pages 153–167.
ACM Press, 1996.

[17] J. Postel. IP Protocol Specification. DARPA and
ISI-USC, RFC 791 edition, Sept. 1981.

[18] K. K. Ramakrishnan. Performance considerations in
designing network interfaces. IEEE Journal on
Selected Areas in Communications, 11(2):203–219,
1993.

[19] E. Royer and C.-K. Toh. A review of current routing
protocols for ad hoc mobile wireless networks. IEEE
PERSONAL COMMUNICATIONS, pages 46–55,
Apr. 1999.

[20] P. Shenoy and P. Radkov. Proxy-assisted
power-friendly streaming to mobile devices. In
Proceedings of the 2003 Multimedia Computing and
Networking (MMCN), Santa Clara, CA, Jan. 2003.

[21] Y.-C. Tseng, C.-S. Hsu, and T.-Y. Hsieh.
Power-saving protocols for ieee 802.11-based multi-hop
ad hoc networks. In Proceedings of IEEE INFOCOM
2002, New York, June 2002.

[22] D. K. Y. Yau and X. Chen. Resource management in
software-programmable router operating systems.
IEEE Journal on Selected Areas in Communications,
19(3):488–500, Mar. 2001.

