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Most streaming rate selection and buffer optimization algorithms are developed for wired networks and can perform poorly over
wireless networks. Wireless MAC layer behavior, such as rate adaptation, retransmissions, and medium sharing, can significantly
degrade the effectiveness of current streaming algorithms. This article presents the Buffer and Rate Optimization for Streaming
(BROS) algorithm to improve streaming performance. BROS uses a bandwidth estimation tool designed specifically for wireless
networks and models the relationship between buffer size, streaming data rate, and available bandwidth distribution. BROS
optimizes the streaming data rate and initial buffer size, resulting in a high data rate but with few frame losses and buffer
underflow events, while still keeping a small initial buffer delay. BROS is implemented in the Emulated Streaming (EmuS)
client-server system and evaluated on an IEEE 802.11 wireless testbed with various wireless conditions. The evaluation shows
that BROS can effectively optimize the streaming rate and initial buffer size based on wireless network bandwidth conditions,
thus achieving better performance than static rate or buffer selection and jitter removal buffers.

Categories and Subject Descriptors: C.2.m [Computer-Communication Networks] Miscellaneous

General Terms: Algorithms, Design, Performance
Additional Key Words and Phrases: Multimedia networking, playout buffer, streaming rate, wireless networks

ACM Reference Format:
Li, M., Claypool, M., and Kinicki, R. 2009. Playout buffer and rate optimization for streaming over IEEE 802.11 wireless networks.
ACM Trans. Multimedia Comput. Commun. Appl. 5, 3, Article 26 (August 2009), 25 pages.
DOI = 10.1145/1556134.1556143 http://doi.acm.org/10.1145/1556134.1556143

1. INTRODUCTION

In best-effort networks, streaming media applications use streaming rate selection and playout buffers
to reduce degradations in performance caused by changes in the available bandwidth along the path
of the streaming flow. However, most streaming rate selection and buffer optimization algorithms are
developed for wired networks and can perform poorly over wireless networks. Wireless networks of-
ten introduce rate adaptation, retransmissions, Forward Error Correction (FEC), and channel access
control, and other behaviors not normally found in wired networks. This mismatch in design leads to
significant degradation in the effectiveness of rate selection and playout buffer techniques.

Typical streaming rate selection for media scaling [Delgrossi et al. 1993] is based on loss rate, round-
trip time, or a bandwidth estimate to adjust the streaming data rate to reduce the network impact on
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media performance. However, these measurements do not always provide clear indications of wireless
network conditions and target rates for adaptation. For example, retransmissions and rate adaptation
at the wireless MAC layer may reduce the loss rate while increasing the round-trip times measured by
the applications. Thus, wireless network conditions hidden from the application can cause bad media
scaling decisions. Moreover, media scaling action is usually taken during degraded performance and
therefore is not effective in avoiding performance degradation. Recent research [Kuang and Williamson
2004; Bai and Williamson 2004; Li et al. 2005a, 2005c] shows that media scaling performance is limited
when the optimal streaming rate is not correctly selected over wireless networks.

Similarly, widely deployed client-side playout buffer techniques adapt infrequently to network char-
acterizations in wireless networks [Jacobs and Eleftheriadis 1996]. Generally, client-side buffering
provides the essential functionality of removing delay jitter and reducing playback disruption caused
by oscillations in the transmission rate at the cost of initial startup delay [Birney 2004; Li et al. 2001].
The oscillations in transmission rate may be caused by the transport protocol, such as with TCP or
TFRC [Floyd et al. 2000], or by the rate adaptation in a wireless network. Most current playout buffer
techniques use either a fixed-sized buffer or choose the minimum buffer size necessary to remove delay
jitter. However, for wireless networks with dynamic capacity changes, insufficient buffer sizes decided
by jitter removal or static buffer size can produce an increased number of rebuffer events or substantial
delays [Kuang and Williamson 2004; Li et al. 2005a, 2005c].

This article presents the Buffer and Rate Optimization for Streaming (BROS) algorithm to improve
streaming multimedia application performance by reducing frame loss, buffer underflow events, and
buffer delay in wireless networks. BROS applies a low-cost bandwidth estimation approach, the Wireless
Bandwidth Estimation tool (WBest) [Li et al. 2008], at the application layer to provide information on
the effective capacity, available bandwidth, and variance in bandwidth for the bottleneck wireless link.
BROS uses a Markov chain model of the buffer size, streaming data rate, and available bandwidth
distribution to concurrently optimize the streaming rate selection and the playout buffer size.

BROS is incorporated into the Emulated Streaming (EmuS) client-server system in Linux and eval-
uated on an IEEE 802.11 wireless testbed over a variety of wireless conditions that include an idle
channel, channels with contending and crossing traffic, and rate adaptation during poor connection
conditions. The evaluation shows that BROS can effectively optimize the streaming rate and initial
buffer size based on wireless network bandwidth conditions, thus achieving better performance than
static rate selection and static or jitter removal buffers. Analysis indicates that BROS can reduce buffer
underflow probability by nearly 100%, frame lost rate by about 97%, and the total buffer delay from
78% to 87%, compared with typical static and jitter removal approaches.

The article is organized as follows: Section 2 presents select related work; Section 3 explains the buffer
model based on the available bandwidth distribution; Section 4 discusses BROS and related issues;
Section 5 describes the experimental setup; Section 6 analyzes the experimental results; Section 7
provides conclusions; and Section 8 suggests possible future work.

2. RELATED WORK

This section reviews related work in the areas of rate selection and playout buffer optimization for
streaming media over wireless networks.

2.1 Streaming Rate Selection

Typical techniques to improve the rate selection for streaming media in wireless networks include novel
transport layer approaches [Cen et al. 2003; Feng and Sechrest 1995; Floyd et al. 2000; Yang et al. 2004],
cross-layer approaches [Hsu et al. 1999; Kazantzidis and Gerla 2003; Li and van der Schaar 2004], and
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 3, Article 26, Publication date: August 2009.
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bandwidth estimation approaches [van Beek et al. 2004; Bolot and Turletti 1994; Demircin and van
Beek 2005; van Beek and Demircin 2005].

2.1.1 Transport Protocols. Novel transport protocols for streaming media often seek to mimic the
congestion response of TCP, the de facto Internet transport protocol. TCP Friendly Rate Control (TFRC)
[Floyd et al. 2000], used in the Datagram Congestion Control Protocol (DCCP) [Kohler et al. 2006], pro-
vides for rate-based streaming for smooth, low delay, and TCP-friendly packet transmission. However,
TCP (and TCP-friendly protocols) can perform poorly over 802.11 wireless networks because many of
the TCP mechanisms assume a wired network infrastructure. Performance can be improved by using
wireless loss differentiation techniques, such as in Cen et al. [2003], allowing streaming applications
to select rates according to the TCP-friendly rate for the observed wireless network conditions. Using
similar techniques, Chen and Zakhor [2005] and Yang et al. [2004] propose new transport protocols that
use a TCP-friendly rate in a wireless network to control the streaming rate. However, as discussed by
Kazantzidis and Gerla [2003], using a TCP-friendly rate control provides only “trial-and-error” scaling,
which is unreliable, converges slowly, and cannot be used for initial streaming rate selection. In gen-
eral, our work can complement transport protocol enhancements by providing a much faster estimate
of available bandwidth as well as an estimate of variance that can be used for sizing playout buffers.

2.1.2 Cross-Layer. Cross-layer approaches take advantage of MAC and physical layer information,
such as the rate adaptation, amount of forward error correction, and retransmissions, to control the
selection of the streaming rate. For example, Kazantzidis and Gerla [2003] propose a link-network
feedback architecture to provide cross-layer information for the streaming media applications to adapt
their streaming rates. In addition, Yang et al. [2004] combine the cross-layer and TCP-friendly rate
control approach to propose a new protocol that utilizes link layer loss information to improve the
TCP-friendly rate control. However, cross-layer approaches are difficult to deploy because they require
modifications to end hosts and protocol stacks, and can involve multiple vendor implementations.

2.1.3 Bandwidth Estimation. Bandwidth estimation approaches use application measurements to
guide rate selection. A survey by Prasad et al. [2003] provides a review of bandwidth estimation liter-
ature focusing on underlying techniques and methodologies. Early work by Bolot and Turletti [1994]
adjusts streaming rates based on loss rate information fed back from the receiver, but without actually
estimating available bandwidth. Commercial streaming media applications, such as Windows Media
Service, use packet pair techniques to estimate the capacity and choose an appropriate streaming
rate [Birney 2004]. Most recent research from van Beek et al. [2004], Demircin and van Beek [2005],
and van Beek and Demircin [2005] applies packet pairs/trains and receiver-side statistical bandwidth
estimation techniques to guide the rate selection in wireless networks. The advantage of the bandwidth
estimation approach is that it usually does not depend upon lower-layer information or new protocol
stacks, thus it can be relatively easy to deploy. In addition, with careful design, bandwidth estimation
can avoid the “trial-and-error” problem caused by a TCP-friendly approach to rate selection. However,
Li et al. [2008], Lakshminarayanan et al. [2004], and Angrisani et al. [2006] show that traditional
bandwidth techniques designed for wired networks cannot accurately estimate the bandwidth in wire-
less networks. Moreover, these techniques usually provide capacity estimation, while streaming rate
selection needs a broader range of bandwidth information, such as the available bandwidth and the
variance in available bandwidth, when dealing with contending and crossing traffic over the WLAN.

2.2 Playout Buffer Optimization

There are a variety of strategies proposed to improve the effectiveness of client-side buffering that
include optimizing the buffer size based on jitter removal [Mundur et al. 1999; Ramjee et al. 1994;
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Fig. 1. Buffer model.

Moon et al. 1998; Fujimoto et al. 2002], slowing down the media playout rate at the client to reduce
the consumption rate and help prevent buffer underflow [Yuang et al. 1996; Steinbach et al. 2001;
Laoutaris and Stavrakakis 2001; Kalman et al. 2004], and mitigating the buffer size required by VBR
media codecs [Yuang et al. 1997; Feng and Sechrest 1995]. Since VBR streaming smoothers usually
have a static size based on the media codec, and the adaptive playout rate can be used as an additive for
reducing the buffer underflow events in most streaming systems, most buffer optimization algorithms
are primarily for jitter removal.

To study the buffer size required for removing the jitter in networks, Yuang et al. [1996, 1997],
Steinbach et al. [2001], Kalman et al. [2004], and Laoutaris and Stavrakakis [2001] present Markov
chain models based on Poisson arrivals. However, in wireless networks, the arrival of streaming traffic
cannot be simply modeled as a Poisson distribution because the capacity changes due to wireless rate
adaptation algorithms produces variance in the streaming traffic arrival rate. Therefore, jitter removal
buffer algorithms are not sufficient to avoid buffer underflow in wireless networks.

Stockhammer et al. [2004] provide a model for setting a delay buffer based on a deterministic VBR
channel. However, they provide an example specific to wide-area wireless networks only and solely
validate their findings through simulation.

3. MODEL

3.1 Bandwidth Estimation

Our previous research developed a low-cost technique, called Wireless Bandwidth Estimation (WBest)
[Li et al. 2008], to measure available bandwidth in a wireless network. Based on a model of packet
dispersion in 802.11 networks, WBest first uses packet pairs to estimate the effective capacity, followed
by a packet train to estimate the overall available bandwidth in the wireless network. For output,
WBest provides a Cumulative Distribution Function (CDF), FÂ(·), of the available bandwidth which
can be used to estimate the overall available bandwidth (to assist in choosing a streaming rate) and to
estimate the variance in available bandwidth (to assist in choosing a buffer size). While the temporal
properties of successive available bandwidth measurements are not necessarily captured in the CDF,
the intent is to provide a quick snapshot of the network and not necessarily to provide an accurate
network model. WBest adds only modest delay to the start of a streaming session, taking less than 0.5
seconds to complete in all typical wireless environments.

While BROS currently employs WBest only once, prior to starting the video streaming, to capture the
time-varying nature of the current wireless conditions within a CDF estimate, if the volatility of the
WLAN (Wireless Local Area Network) is high, WBest could be event-triggered during the streaming
process to allow a subsequent BROS adjustment to significant changes in the wireless conditions. This
enhancement is left as future work.

3.2 Model Definitions and Assumptions

Figure 1 depicts a typical client-side playout buffer system with a buffer size of N frames, arrival rate
λ, and playout rate μ. Based on buffer occupancy, we create a Markov model of N + 1 states as shown
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 3, Article 26, Publication date: August 2009.
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Fig. 2. States of the buffer model.

in Figure 2. State N is defined as having a buffer with N frames, where state 0 is a buffer underflow.1

The matrix P in Eq. (1) presents the transition probability of states i and j , where 0 ≤ i, j ≤ N .

Pi, j = [pi, j ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

p0,0 p0,1 p0,2 · · · p0,N

p1,0 p1,1 p1,2 · · · p1,N

p2,0 p2,1 p2,2 · · · p2,N

...
...

...
. . .

...
pN ,0 pN ,1 pN ,2 · · · pN ,N

⎤
⎥⎥⎥⎥⎥⎥⎦

. (1)

Most of the previously developed playout buffer models use a Poisson arrival process [Yuang et al.
1997, 1996; Steinbach et al. 2001]. Poisson arrivals can be used as a lower bound on system per-
formance when analyzing the buffer behavior [Laoutaris and Stavrakakis 2001]. However, for real
streaming applications over wireless networks, the buffer space used to smooth interarrival time vari-
ance is small relative to the buffer space needed to smooth the variance in available bandwidth. In
networks with a large available bandwidth variance, the expected arrival rate of the streaming pack-
ets is impacted by the available bandwidth. For example, if the available bandwidth is less than the
streaming rate, the expected arrival rate at the playout buffer will also be less than the streaming rate.
Therefore, the transition probability model is based on both the available bandwidth and the streaming
rate.

To define the probability matrix, the following assumptions are made. First, as discussed in Kalman
et al. [2004]; Lin et al. [1984], packet loss is modeled as a reduction in available bandwidth. Given a
playout buffer of a few seconds, a lost packet will have multiple retransmission opportunities. For typical
interpacket loss rates of less than 20% [Conklin et al. 2001], the probability that a packet is received
after a few retransmission attempts is nearly one [Kalman et al. 2004]. Thus, as shown in Figure 3, lost
packets are treated as delayed due to insufficient bandwidth. When bandwidth does become available,
delayed packets are sent in bursts at a rate equal to the available bandwidth until the buffer is filled
again. Second, once a streaming rate is selected, we can model the multimedia content as a constant
data rate R and a constant frame rate μ for both streaming and decoding. While frame sizes do depend
upon the encoding and type of encoded frame, such as I, B, and P frames in MPEG encoding, a constant
frame size S = R/μ is used to simplify our model. For real streaming systems, the constant frame size
assumption can be accommodated by applying an additional buffer, at the sender or receiver, to smooth
out the variable frame sizes due to I, B, and P frame size differences.

1Client-side playout buffers can be quite large, often big enough to buffer an entire video clip. Thus, a buffer overflow is extremely
unlikely and is not considered further.
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Fig. 3. Streaming rate and available bandwidth.

Therefore, assuming an available bandwidth constraint on the streaming traffic, the frame arrival
rate λi in frame per seconds is

λi =

⎧⎪⎨
⎪⎩

Ai/S, Ai ≤ R;
Ai/S, Ai > R, i < N ;
μ, Ai > R, i = N ;

(2)

where Ai is the available bandwidth in bits per seconds at state i. Assuming a constant arrival rate
λi within each frame time t = 1/μ, the expected number of frames ni that arrive in each frame slot
can be approximated by ni = λi/μ. This facilitates a model of the transition probability between states
based on the distribution of the available bandwidth A. For example, given the Cumulative Distribution
Function (CDF) FA(·) of the available bandwidth, the probability of 1 < ni ≤ 2 can be determined by
FA(Ai = 2R)−FA(Ai = R), which is the transition probability from state i to i+1, where Ai > R, i < N .
Similarly, the transition probability matrix can be defined for the buffer model, henceforth referred to
as the full model.

pi, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FA[( j − i + 1)R] − FA[( j − i)R], 0 ≤ i < j < N ,
j − i ≤ Ai/R;

1 − FA[( j − i)R], 0 ≤ i < j , j = N ,
j − i ≤ Ai/R;

1 − ∑N
j=0, j �=i pi, j , 0 ≤ i ≤ N , j = i;

FA(R), 0 < i ≤ N ,
j = i − 1;

0, elsewhere.

(3)

The steady state probability distribution of the buffer occupancies, � = [π0, π1, . . . , πN ] can be directly
computed by solving the stationary equation � = �P and

∑N
k=0 πk = 1. The probability of 0 buffer

occupancy is the expected buffer underflow probability. However, since the full model characterization
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 3, Article 26, Publication date: August 2009.
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does not lend itself to a closed-form solution, it is cumbersome to use for real systems due to the required
massive matrix computations.

As shown in the right side of Figure 3, lowering the streaming rate below the average available band-
width reduces the buffer requirement to avoid buffer underflow. Therefore, by focusing on situations
where the multimedia streaming rate is close to the average available bandwidth, the full model can
be simplified to yield a closed-form solution for the buffer underflow probability. When Ai/R ≈ 1, then
pi,i+1 � pi,i+2, . . . , pi,N , the transition matrix P can be further reduced to a simplified buffer model.

pi, j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − FA(R) , 0 ≤ i < N , j = i + 1
j − i ≤ Ai/R;

1 − ∑N
j=0, j �=i pi, j , 0 ≤ i ≤ N , j = i;

FA(R) , 0 < i ≤ N , j = i − 1;
0 , elsewhere.

(4)

Therefore, the closed-form solution for the simplified buffer model becomes

πi = γ iπ0, (5)

where γ = (1 − FA(R))/FA(R). The buffer underflow probability π0 for a given buffer size of N frames
is

π0 = 1 − γ

1 − γ 1+N
, γ �= 1. (6)

A streaming system with γ ≤ 1 means streaming at a rate greater than the average available bandwidth
and usually results in a high buffer underflow probability. Therefore, the streaming rate selection
algorithm selects the initial streaming rate such that γ > 1. Moreover, if a streaming application
demands an upper bound on the buffer underflow in terms of π0, γ can be computed from π0 using
Eq. (6), and the streaming data rate can be looked up from the inverse CDF of the available bandwidth
F −1

A (·) by

R = F −1
A

(
1

γ + 1

)
. (7)

As discussed in Kalman et al. [2004], the Mean Time Between Buffer Underflows (MTBBU) can be
used as a measure of performance for playout buffering. Each discrete frame slot can be treated as an
independent Bernoulli trial with the outcome being either underflow with probability π0 or no underflow
with probability 1−π0. Thus, the MTBBU, MU , is distributed geometrically over the succession of frame
slots as

MU =
(

1
π0

)
·
(

1
μ · 60

)
, (8)

where μ is the playout rate in frames per second and 60 is the number of seconds in a minute. Given
MU and the CDF of the available bandwidth, Eq. (9) is the required buffer size N in frames.

N =
⌈

log (1 + (γ − 1)(MU · μ · 60))
log γ

− 1
⌉

(9)

In practice, the minimum client-side buffer, N ′, may also include extra buffer space required for video
decoding or playback. For example, an extra buffer Bmin may be needed for handling VBR video or
encoding dependencies. This research assumes Bmin = 1, which means only the frame that is currently
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being played out is considered. Eq. (10) shows the expression that can be used to predict the minimum
buffer size in practice.

N ′ = N + Bmin = N + 1 (10)

3.3 Model Validation

To study the impact of the simplifications to the full buffer model, outputs from both the full model and
simplified model are compared. Figure 4 depicts the MTBBU of the full model, which is computed using
numerical matrix computation based on Eq. (3), and the MTBBU of the simplified model based on Eq. (4).
The CDF of the available bandwidth is based on the trace of 900 samples of bandwidth estimations
using WBest in a wireless testbed with dynamic rate adaptation. It is not possible to consistently send
data at a rate above the median of the available bandwidth distribution (0.5 in the CDF), as doing so
represents an offered load greater than the service rate of the network link. However, in general, the
more bits used for streaming the better the quality. Hence, a general guideline for a streaming rate is
close to, but less than, the median of FA(R).

In all cases, the simplified model is close to the full model, especially when the buffer size is small
or the streaming rate is close to the median available bandwidth. Moreover, for the FA(R) = 0.475
cases, the simplified model has a lower MTBBU than does the full model due the approximation of
pi,i+1 � pi,i+2, . . . , pi,N . However, this small error encourages a conservative estimate for selecting a
playout buffer size (e.g., to get the same MTBBU, the simplified model demands a slightly larger buffer
size). The simplified model greatly reduces the amount of matrix computation required over the full
model.2

The model is further validated with the EmuS system in an IEEE 802.11 wireless testbed using
the setup as discussed in Section 5. A 10-minute multilayer video is streamed with a one-second fixed
buffer at different streaming rates, and the MTBBUs (in minutes) are recorded. The wireless testbed
is configured with 802.11b and a poor reception signal strength of −89 dBm that causes MAC layer
retransmissions and frequent rate adaptation. The available bandwidth is monitored by WBest before
each run and the average available bandwidth is around 1.12Mbps. A wireless sniffer is used to capture

2Our numerical solution computation takes about 1.5 seconds on a typical PC to solve the full buffer model for 300 frames.
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the rate adaptation of the wireless network, as shown in Figure 5. The streaming rate, R, as a CDF of
available bandwidth, FA(R), is computed and the relationship between FA(R) and MTBBU is depicted
in Figure 6. The MTBBU for the one-second buffer is also computed based on the simplified buffer
model.

As seen in Figure 6, the measured results fit well with our buffer model, with the measured and
modeled curves having the same shape at nearly the same places. The measured curve shifted slightly
to the left indicates that for the same streaming rate, wireless uncertainties such as bursty loss and
black outs result in a small MTBBU, and thus a higher buffer underflow probability than in the model.
Moreover, the measured MTBBU for high streaming rates, such as for rates with FA(R) > 0.5, is slightly
larger than the modeled MTBBU. This is because in the streaming client-server system implemented,
when the buffer underflows, the rebuffer mechanism stops playback of the video until the buffer is filled
again, which effectively increases the buffer size for each buffer underflow and intentionally raises the
MTBBU for periods after the underflow.
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3.4 Model Results

The streaming buffer model can be used to estimate the minimum buffer required to achieve a MTBBU
with a given rate and known network conditions, such as the CDF of the available bandwidth FA(·).
Figure 7 shows the minimum buffer size required for various selections of the streaming rate as a
fraction of the available bandwidth. The available bandwidth distribution (FA(·)) was provided by WBest
on the same wireless setup with rate adaptation used in Section 3.3. From Figure 7, the higher the
streaming rate, the larger the buffer needed to achieve a desired MTBBU. Moreover, as the streaming
rate gets closer to the median of the available bandwidth, the benefits to MTBBU for an increasing
buffer size get smaller.

The buffer model can also be used to explore the relationship between MTBBU, buffer size, and
streaming rate from a different aspect. Figure 8 depicts the relationship of MTBBU and streaming rate
for 4 different fixed-sized buffers: 1, 3, 5, and 7 seconds. For a given buffer size, reducing the streaming
rate increases the MTBBU, thus providing fewer buffer underflow events. For a modest buffer size
(i.e., 5 seconds), a small decrease in the streaming rate selected results in a greatly increased MTBBU.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 3, Article 26, Publication date: August 2009.
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Fig. 9. Buffer size versus streaming rate.

Similarly, for a small buffer size (i.e., one second), a small decrease in the streaming rate has much less
effect on the MTBBU.

Figure 9 shows the relationship between buffer size and streaming rate for a given MTBBU, a value
that could be provided by the content service provider. The higher MTBBU values are more sensitive to
the buffer size as the streaming rate selected is increased, with dramatic increases in required buffer
size as the streaming rate approaches the median (0.5, on the far right). The “knee” for the curves occur
when the streaming rate selected is around 0.485 of the available bandwidth. Streaming rates higher
than this show a marked increase in the buffer size requirements. However, also note at the far left of
the graph that streaming rates only slightly lower, around 0.4 of the available bandwidth, can have a
marked decrease in the MTBBU for only a slight (around 1 second) increase in the buffer size.

4. BUFFER AND RATE OPTIMIZATION FOR STREAMING (BROS)

4.1 Algorithm

Current media servers such as Windows Media Services and Real Networks use a seemingly arbitrary
initial period fixed at several seconds to fill the client-side playout prior to starting the playout of the
video at the client. This strategy highlights the trade-off between how much initial delay the client will
tolerate and the desire to avoid a major loss in client satisfaction when the server stalls the video to
refill the playout buffer in response to a buffer underflow.

This section presents the BROS algorithm that takes a more formal quality-of-service approach to this
inherent trade-off. Starting from a user-specified maximum tolerable buffer size and target MTBBU,
the simplified buffer model of Section 3 and WBest are used to determine the optimum streaming rate
and the minimum buffer size needed to meet a client’s QoS requirements. WBest is employed by BROS
because it specifically estimates available bandwidth when the last hop to the client involves a wireless
network.

Algorithm 1 provides the details of the BROS (Buffer and Rate Optimization for Streaming) mecha-
nism. After the client specifies the two QoS constraints, BROS proceeds in four stages. At line 2, WBest
is run to estimate the average and variance of available bandwidth. As detailed in Section 4.2, these es-
timates are then used to create FÂ(·), an accurate estimate of the CDF of the available bandwidth when
the last hop is wireless. Line 3 provides shorthand for the second stage that determines the maximum
affordable streaming rate, ThR . Using the simplified model, MU is used in Eq. (8) to determine π0. π0
and Nmax are inserted into Eq. (6) to yield γ . With γ , FÂ(·) can be then used in Eq. (7) to provide ThR .
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Algorithm 1. Buffer and Rate Optimization for Streaming (BROS).

Require: Encoding rates R1 to RMAX, ordered lowest to highest
Require: Client tolerable delay: Nmax > 0
Require: Target MTBBU: MU > 0

// Perform WBest Bandwidth Estimation
1: CDF of Available Bandwidth: FÂ(·) ⇐ WBest

// Select streaming rate (R)
2: Rate Threshold: ThR ⇐ (Nmax, FÂ(·), MU )
3: for i = 1, MAX do
4: if Ri < ThR ≤ Ri+1 then
5: R ⇐ Ri
6: end if
7: end for
8: if ThR ≤ R0 then
9: Stop {Not enough bandwidth for streaming}

10: else
11: // Optimize buffer (N ′)
12: N ′ ⇐ N (MU , FÂ(R)) + 1
13: end if

The third stage of BROS is described in lines 4–8. Assuming the streaming server has MAX distinct
encoding rates, this loop selects the highest available encoded streaming rate less than ThR . Once R is
chosen, the last stage at line 13 involves using R and FÂ(·) to determine a new value for γ which is then
used with MU to compute a new N and N ′ using Eqs. (9) and (10). If there is no encoded streaming
rate less than ThR , the algorithm exits.3

BROS is run at the streaming server. The streaming client typically provides the maximum tolerable
buffer size and target MTBBU when the initial connection to the server is made. WBest is run between
server and client, with the client returning the results to the server. When the server selects the
streaming rate and buffer size, this information is conveyed back to the client and then streaming
commences. The client buffers the streaming data until the playout buffer is full and then starts playout.

4.2 Approximate CDF of Available Bandwidth

Even though WBest provides the mean and standard deviation of the available bandwidth estimates,
it is difficult to get a closed-form equation for the CDF of the available bandwidth. To simplify the
algorithm and reduce the time of recording (and transmitting) multiple bandwidth estimate samples
that make up the CDF, the estimated mean μA and standard deviation σA of the available bandwidth
are used to approximate the CDF of the available bandwidth using a normal distribution. The ap-
proximate CDF of the available bandwidth is FÂ(·) = N (μA, σ 2

A). To validate this approximation with
measurements, four different setups in our IEEE 802.11 wireless testbed are used: an idle channel, a
channel with 5Mbps downstream crossing traffic, a channel with 5Mbps upstream contending traffic,
and a channel that experiences link rate adaptations. For each setup, WBest is repeated 30 times and
the CDF of the available bandwidth is recorded. The normal CDFs are then generated based on the
median of the mean and standard deviation of the estimated available bandwidth from the 30 WBest
runs. The CDF of the available bandwidth and the approximated available bandwidth CDF using the
normal distribution are compared by the relative error of the 10th, 25th, 50th, 75th, and 90th percentile
values. The relative error is computed as (F −1

A (x) − F −1
Â

(x))/F −1
A (x), where F −1

A (x) and F −1
Â

(x) are the

3Note, this case also occurs when there is no available bandwidth.
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Table I. Relative Error of Approximating Available
Bandwidth Using Normal Distribution

Percentile
Setup 10th 25th 50th 75th 90th
Idle channel 0.04 < 0.01 <0.01 −0.07 −0.17
Contending traffic 0.34 0.16 −0.06 −0.23 −0.30
Crossing traffic 0.14 0.14 −0.01 −0.17 −0.31
Rate adaptation 0.03 0.05 −0.01 −0.01 0.03
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Fig. 10. Approximating available bandwidth using normal distribution.

inverse CDFs of the available bandwidth and approximated available bandwidth, and x is the CDF
value, such as 0.25 and 0.75. Thus, a positive relative error denotes an underapproximation, while a
negative error denotes an overapproximation.

As shown in Table I, the results confirm that using a normal distribution can closely approximate the
available bandwidth. Moreover, the normal distribution tends to have a lower value than the available
bandwidth distribution for the same CDF value in the region from zero to the median. Since BROS sen-
sibly only selects a streaming rate lower than the median available bandwidth, this implies that using
a normal distribution instead of the sampled available bandwidth distribution results in a conservative
estimation of the rate selected, which is helpful to avoid buffer underflow.

Figure 10 provides a closer look at the effectiveness of using a normal distribution to approximate
the available bandwidth for the case of rate adaptation. Even though rate adaptation has link capacity
changes in fixed intervals, the interactions with the MAC layer retries causes the available bandwidth to
closely follow a normal distribution. Thus under conditions of low signal strength, it may take multiple
retries to transmit at a higher data rate, while taking fewer retries to transmit at a lower data rate,
thus “smoothing” the fixed-capacity steps to follow a normal distribution.

5. EVALUATION

5.1 Wireless Testbed

The Buffer and Rate Optimization for Streaming (BROS) algorithm is implemented and evaluated using
an IEEE 802.11 wireless testbed. As shown in Figure 11, the wireless testbed consists of a streaming
server (wbestserver) that performs bandwidth estimation and streams video to a client, a traffic server
(tgenserver) that generates crossing and contending traffic, a wireless AP, and three clients (Clients
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Fig. 11. Network path with last mile wireless network.

A, B, and C). The AP in the testbed is a Cisco Air-AP1121G4 supporting IEEE 802.11b/g. Both servers
are PCs with P4 3.0 GHz CPUs and 512MBytes RAM and the three clients are PCs with P4 2.8 GHz
CPUs and 512MBytes RAM. All the testbed PCs run SUSE5 9.3 Linux with kernel version 2.6.11. The
servers connect to the AP with a wired 100Mbps LAN, and the clients connect to the AP with a IEEE
802.11b/g WLAN using Allnet6 ALL0271 54Mbps wireless PCI card with a prism GT chipset.7

As labeled in Figure 11, Client A is configured as the streaming client to receive streaming traffic
(1) from the streaming server. Client B, Client C, and the traffic server generate crossing traffic (2) or
contending traffic (3) using the Multi-Generator Toolset8 (mgen) v4.2b6 over UDP. Client B or Client C
is also configured as a wireless sniffer9 to monitor the traffic in the testbed when not being used as a
traffic generator.

5.2 Emulated Streaming (EmuS) Client/Server System

To evaluate BROS, we developed an emulated streaming client-server system, called Emulated Stream-
ing (EmuS), with initial buffer and rate selection features. EmuS has features common to many com-
mercial streaming systems, including multiple encoded video layers, configurable initial buffer size,
and an RTSP-like communication mechanism. EmuS uses two channels, a control channel running
over TCP and a data channel running over UDP. Even without a real media codec, EmuS provides
framing and packetization functionalities to emulate a real streaming system. EmuS uses CBR en-
coding with equal-sized frames and a fixed-size smoothing buffer. While actual video is typically VBR,
smoothing buffers are often used at the sender to avoid packet bursts or at the receiver to aid decoding.
The client detects frame losses, based on out-of-order sequence numbered frames and sends NACK
messages back to the server asking for retransmission until the frame is too late to be played out. The
client also applies frame repair, which repeats the last good frame for each lost frame to mitigate the
impact of frames loss. When buffer underflow occurs, the client stops playback and starts rebuffering
frames from the server until the playout buffer has filled. Once the buffer is filled, video playback
resumes. The client records statistical information that includes buffer underflow counts, frame rate,
frame losses, and packet retransmission counts.

4http://www.cisco.com/en/US/products/hw/wireless/ps4570/index.html
5http://www.novell.com/linux/
6http://www.allnet-usa.com/
7http://www.conexant.com/products/entry.jsp?id=885
8http://pf.itd.nrl.navy.mil/mgen/
9http://perform.wpi.edu/wsniffer/
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Figure 12 and Figure 13 depict the actual buffer occupancy, and arrival/playout frame rates, respec-
tively, recorded for a typical EmuS streaming session, shown for a 50-second time slice starting about
2.5 minutes after the session starts. Note that the buffer occupancy fluctuates in Figure 12 in response
to fluctuations in the available bandwidth, evidenced by the fluctuations in the arrival frame rate in
Figure 13. As long as the playout buffer remains above 0, the frame playout rate in Figure 13 remains
at 30 frames per second. However, at time 220 seconds, the buffer drops to zero (a buffer underflow
event) and frame playout stops until the buffer is filled at about time 227. At time 232, the buffer again
drops to zero and frame playout stops until the buffer fills at about time 239.

As discussed in Section 4, a proper MTBBU value needs to be indicated by a client in order to compute
the buffer size based on streaming rate and vice versa. As shown in Figure 9, as long as the streaming
rate is kept under 0.485 of the available bandwidth, a modest increase in buffer size can result in a
significantly increased MTBBU. In light of this, for all experiments, an extremely low target MTBBU of
of π0 = 1×10−16 is used based on the underflow probability in Eq. (8). In practice, for future experiments,
both BROS (and EmuS) allow configuration of the targeted MTBBU to fit the application requirements.
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Table II. Evaluation Setups
Case Configuration

No other traffic
1. Idle channel RSSI > −38dBm

mean = 6.4Mbps, stdev = 0.4Mbps
1.2 Mbps UDP: Client C to tgenserver

2. Contending traffic RSSI > −38dBm
mean = 4.7Mbps, stdev = 2.3Mbps
1.2 Mbps UDP: tgenserver to Client B

3. Crossing traffic RSSI > −38dBm
mean = 5.2Mbps, stdev = 1.9Mbps
No other traffic,

4. Rate adaptation −89dBm ≤ RSSI ≤ −85dBm
mean = 3.5Mbps, stdev = 1.6Mbps

5.3 Experiment Design

The time-variant behavior of the available bandwidth can be dramatically affected by other traffic on
the WLAN and the current wireless conditions. Thus, our specific experimental tests include contending
and crossing traffic situations and a situation specifically to yield significant rate adaptation changes by
the 802.11 layer. Running WBest first gathers the “macroscopic” nature of the current WLAN situation,
capturing the impact on available bandwidth due to contending traffic, crossing traffic, and rate adap-
tation. The premise is that these large, macroscopic effects on time variation in available bandwidth
outweigh any smaller, microscopic random time variation in wireless conditions.

Four test cases are executed to evaluate BROS running on EmuS in different wireless network setups.
BROS is compared with a fixed buffer size, fixed streaming rate, and jitter-removal buffer algorithms.

The encoded layers of the streaming media used in our experiments follow the default multilayer
encoding profile for Windows Media Encoder,10 which has 10 encoding layer rates from 28Kbps to
1.1Mbps, and 4 encoding rates for higher layers at 2.1, 3.6, 5.1, and 6.8Mbps. These encoding rates
are meant to represent a “typical” set of encoding rates, but other rates could easily be substituted. All
encoding layers have a frame rate of 30 frames per second. The video media length is 2 minutes, which is
the median length of streaming video available on the Web [Li et al. 2005b]. The wireless testbed is set to
802.11b with an average available bandwidth of 6.4Mbps as measured by WBest. The four distinct test
scenarios are: an idle channel (with good reception quality), a channel with crossing traffic, a channel
with contending traffic, and a channel with frequent rate adaptations (with poor reception quality). The
set up details are listed in Table II. For each test case, the streaming traffic is sent downstream from the
wbestserver to Client A. The rate adaptation case is set up by manually reducing the transmission power
of both the AP and Client A to generate rate adaptation events, as in Figure 5, and the accompanying
MAC layer retries. Table II provides a summary view of the network conditions in that case, with
the medians of the mean and standard deviation of the available bandwidth of all test runs for each
case.

For each test case, the streaming sessions listed in Table III are run 30 times in sequence. First, the
sessions with BROS are run with a maximum tolerable buffer size of 5 seconds. Second, the sessions
with a 5-second fixed11 buffer size12 are run, first with a streaming rate higher than the mean available
bandwidth (H), then with a streaming rate close to the mean available bandwidth (M), and lastly with

10http://www.microsoft.com/windows/windowsmedia/default.mspx
11As in most streaming systems, “fixed” does not refer to the amount of buffering time that elapses before streaming commences,
but rather refers to the temporal amount of video data that is buffered before streaming commences.
12The default buffer size chosen by Windows Streaming Media is 5 seconds [Birney 2004].
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Table III. Sessions for Each Case
Case 1,2,3 Case 4

Sessions Rate(Mbps) Buf(sec) Rate(Mbps) Buf(sec)
BROS Auto Auto Auto Auto

H 6.8 5 5.1 5
Fixed buffer M 5.1 5 3.6 5

L 3.6 5 2.1 5
H 6.8 Bjit 5.1 Bjit

Jitter buffer M 5.1 Bjit 3.6 Bjit
L 3.6 Bjit 2.1 Bjit

a streaming rate less than the mean available bandwidth (L). Third, traces for the fixed buffer tests
are used to determine the performance of the jitter-removal buffer algorithm.

The jitter removal buffer Bjit is computed using an approach similar to that discussed in Mundur
et al. [1999]. Most jitter-removal buffer algorithms propose variable sampling and averaging algorithms
to estimate the network jitter. However, since the frame arrival traces for the entire session are used,
no jitter prediction is actually needed. Instead, jitter is measured as the difference between the 95th
percentile and 5th percentile of frame interarrival times, denoted by D.95 − D.05. Therefore, the buffer
size for jitter removal Bjit is computed as

Bjit = 1
μ

[
D.95 − D.05

1/μ
+ 1

]
, (11)

where μ is the frame rate. With the traces of frame arrival data gathered from the fixed buffer sessions,
the jitter-removal buffer algorithm is applied to decide the buffer size needed to remove the jitter for
each session. Then the session is trace driven using the frame arrival data with Bjit.

5.4 Performance Metrics

To assess the quality of a streaming video system as perceived by a user, there are many factors
that need to be taken into consideration. Since determining perceived quality through subjective user
studies is often impractical, many objective video quality metrics have been developed to estimate
the quality of streaming video. Peak Signal to Noise Ratio (PSNR) is commonly used to assess the
visual quality of encoded video. However, PSNR does not effectively represent perceived quality during
frame loss and in no way represents perceived quality for network delay or for rebuffering events at
the client. Other metrics less commonly used include the Video Quality Metric (VQM) [Pinson and
Wolf 2004], Moving Pictures Quality Metric (MPQM) [van den Branden Lambrecht and Verscheure
1996], Structural Similarity Index Measurement (SSIM) [Wang et al. 2002], and Noise Quality Measure
(NQM) [Damera-Venkata et al. 2000]. Like PSNR, these quality metrics are primarily designed to assess
the visual quality of the encoding/decoding system and do not effectively represent degraded quality
due to startup delays or rebuffing events.

Within EmuS, video quality is evaluated using the following relevant metrics:

(1) Initial Buffer Delay: the number of seconds video frames are queued at the client before playout.
While the delay from the server to the client also includes latency plus queuing along the network
path, this network delay is not controllable by most streaming systems. Moreover, our experiments
are on a LAN with small (typically well under 10 milliseconds) of delay. Hence, delay is dominated
by the playout buffer on the client.

(2) Total Buffer Delay: the total number of seconds video frames are queued at the client during the
playout session. The total buffer delay includes the initial buffer delay and the delay caused by
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rebuffering after buffer underflow events. Total buffer delay defines the total time that playout
stops for the whole playout session.

(3) Buffer Underflow: the fraction of time the playout buffer reaches zero, causing the client to stop
playing frames. When a buffer underflow occurs, there is a significant interruption in the playback
since the frame playout stops until the playout buffer is completely refilled.

(4) Frame Loss: the percentage of frames that are not played by the client. Frame loss primarily happens
when frames are lost in the network and are not retransmitted before the following frame is ready
to be played.

(5) Streaming Rate: the rate the server sends data to the client. The streaming rate directly correlates to
the encoding bitrate used to compress the raw video frames. While PSNR could be used to assess the
quality of the encoded bitrate, since all comparisons in this work use the same codec, the streaming
rates used can be directly compared.

An adaptive streaming system tries to maximize the streaming rate, while minimizing frame loss,
initial, and total buffer delay, and buffer underflow. Thus, there are trade-offs in that a higher streaming
rate (resulting in better encoding quality) will have a higher delay (to remove jitter), more frame losses,
and/or more buffer underflows and vice versa. Unfortunately, to the best of our knowledge there is no way
to combine these individual metrics into a single, unified measure of quality. Instead, in our analysis,
for a fixed streaming rate, the frame loss rate, initial and total buffer delay, and buffer underflows are
compared, and for a given buffer size the frame loss rate, buffer underflows, and streaming rate are
compared.

6. RESULTS

BROS is evaluated in four different wireless LAN scenarios running 120 two-minute video sessions
and 90 trace-based sessions for each scenario. The total data collected includes more than 16 hours of
streaming, recording buffer underflow events, frame arrival and playout rates, frame loss and buffer
delays. BROS is evaluated by comparing the rate selection, buffer optimization results, and the related
streaming quality metrics [Wang et al. 2003]: streaming rate, buffer underflow events, frame losses,
and initial and total buffer delays.

Figure 14 depicts the rate selection results for the four test cases. The average streaming rate selected
for the 120 sessions for each case is shown along with the standard deviation. With the input of band-
width estimation information from WBest (shown in Table II), the BROS algorithm correctly selects
the maximum available encoding rate lower than the available bandwidth. Moreover, BROS also takes
into consideration the variance of the available bandwidth. For example, in the crossing traffic tests,
even though the median available bandwidth is on average higher than the encoding rate of 5.1Mbps,
BROS selects the next lower encoding rate, 3.6Mbps, because the variance in the available bandwidth
causes the rate of 5.1Mbps to have a higher buffer underflow probability.

Figure 15 depicts the buffer optimization results, in comparison with the size of the jitter-removal
buffer (the fixed-sized buffer can also be compared as always having a 5-second buffer size on the
y-axis). With BROS, the initial buffer size is greatly reduced from a fixed-size, 5-second buffer to about
1 or 2 seconds. The jitter-removal buffers are substantially smaller, consistently less than 0.5 seconds
even for the largest jitter-removal buffer. While a small buffer is attractive for reducing the startup
delay for playout, the quality is also impacted by the resulting impact on frame loss rate (see next).
In addition, BROS adjusts the buffer based on the variance in the available bandwidth (see Table II).
Comparing the contending and crossing cases, even though the available bandwidth and the selected
streaming are close to each other, the buffer sizes BROS chooses are different. The contending traffic
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 5, No. 3, Article 26, Publication date: August 2009.
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case has a higher average buffer size than the crossing traffic case because of the higher variance in
available bandwidth.

Figures 16 through 19 provide the results for the streaming quality metrics for each case, showing
the averages over all sessions of the fraction of buffer underflows, frame loss rates, and buffer delays. By
combining the optimization of the streaming rate selection and the initial buffer size, BROS performs
better than the manual rate selection and jitter buffer approaches in terms of buffer underflow, frame
loss, and buffer delays. As a quick visual summary, lower is better for all metrics depicted and BROS
is the lowest or nearly the lowest for all graphs shown.

The jitter buffer sessions always have a high fraction of buffer underflow events because of the
small buffer sizes chosen. The fixed buffer size sessions with high (H) and medium (M) streaming
rates also have high buffer underflow fractions since the streaming rates are generally too high to be
consistently sustained for the duration of the video session. While the buffer underflow fractions for
the low streaming rate sessions (L) with fixed buffer size have a buffer underflow fraction close to that
of BROS, BROS has a total buffer delay reduced by more than 50%.
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Fig. 16. Summary results for evaluation case 1 (Idle channel).
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Fig. 17. Summary results for evaluation case 2 (contending traffic).
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Fig. 18. Summary results for evaluation case 3 (crossing traffic).
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Fig. 19. Summary results for evaluation case 4 (rate adaptation).
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Table IV. Buffer Underflow (fraction)
Case 1 Case 2 Case 3 Case 4

BROS 0.07 0 0.03 0.03
H 0.83 0.47 0.67 0.80

Fixed buffer M 0.07 1.00 1.00 0.10
L 0.03 0 0 0
H 1.00 1.00 1.00 0.87

Jitter buffer M 0.73 1.00 1.00 0.90
L 0.60 0.63 0.26 0.56

Table V. Frame Loss Rate (percent)
Case 1 Case 2 Case 3 Case 4

BROS 0.39% 0.16% 1.06% 0.05%
H 53.9% 61.5% 56.0% 47.2%

Fixed buffer M 3.00% 36.8% 16.2% 3.57%
L 0.04% 0.32% 0.03% 0.01%
H 68.7% 81.0% 69.7% 75.7%

Jitter buffer M 4.66% 45.7% 19.1% 5.20%
L 0.14% 0.37% 0.14% 0.09%

Table VI. Buffer Delay (seconds)
Case 1 Case 2 Case 3 Case 4

Initial Total Initial Total Initial Total Initial Total
BROS 0.82 1.06 2.06 2.06 1.13 1.50 1.95 2.12

H 10.6 27.8 24.9 38.9 11.5 24.6 11.9 31.6
Fixed M 5.33 6.34 7.97 27.7 4.97 13.4 4.97 5.47
buffer L 4.85 5.02 4.85 4.85 4.84 4.84 4.79 4.79

H 0.31 26.4 1.99 26.7 0.26 24.9 0.32 25.7
Jitter M 0.05 2.89 0.31 18.6 0.07 7.31 0.05 1.81
buffer L 0.05 0.06 0.03 0.08 0.03 0.04 0.03 0.03

Moreover, BROS has much lower frame losses than all the sessions with high (H) and medium (M)
streaming rate with both-fixed size or jitter buffers. While the low (L) streaming rate sessions with
fixed or jitter buffer have frame loss rates similar to BROS, BROS has a lower initial buffer delay than
the fixed buffer size sessions and a lower buffer underflow than the jitter buffer sessions.

In general, BROS significantly reduces the average buffer delays for the fixed buffer size and jitter
buffers, for both the initial buffer delay and total buffer delay. For instance, even though the jitter
buffer sessions with high (H) and medium (M) streaming rates usually have a small initial delay due to
the small buffer size, the total buffer delays are high because of the large number of buffer underflow
events in each session. The jitter buffer sessions with low (L) streaming rate have the lowest buffer
delay. However, the buffer underflow fraction is unacceptable for most streaming media applications.

Tables IV, V, and VI summarize the streaming quality results by comparing the averages for all the
sessions in each case in terms of the buffer underflow fraction, frame loss percent, and buffer delays.
BROS shows the best overall performance for the quality metrics.

Tables VII summarizes the streaming rate selected by BROS in comparison with the streaming rates
used for evaluating fixed and jitter buffer sessions. The streaming rates selected by BROS are usually
higher than the low streaming rate (cases 1, 3, and 4). This demonstrates that BROS preserves a
reasonable streaming rate and a good image quality, while significantly reducing the buffer underflow
fraction, frame loss percent, and buffer delays at the same time.

BROS significantly reduces the buffer underflow event, frame loss, and total buffer delay by select-
ing the appropriate initial streaming rate and buffer size corresponding to the available bandwidth
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Table VII. Streaming Rate (Mbps)
Case 1 Case 2 Case 3 Case 4

BROS 4.9 3.5 3.7 2.2
H 6.8 6.8 6.8 5.1

Fixed and Jitter M 5.1 5.1 5.1 3.6
Buffer L 3.6 3.6 3.6 2.1

information gathered. For example, BROS effectively selects proper streaming rates in between the
medium (M) and low (L) streaming rates and adjusts the buffer sizes to achieve a better streaming
quality than fixed and jitter buffer cases. Comparing BROS with the medium (M) streaming rate for
fixed and jitter-removal buffers, BROS effectively reduces the average buffer underflow fraction by
99% and 100%, frame loss rates by 97% and 98%, and total buffer delay by 87% and 78%, respectively.
Comparing BROS with the low (L) streaming rate for a fixed buffer, BROS effectively reduces the total
buffer delay by 55% to 83%, while maintaining a comparable low buffer underflow fraction and frame
loss rate. Comparing BROS with the low (L) streaming rate for jitter buffer, even though BROS has
slightly higher total buffer delays, BROS effectively reduces the buffer underflow fraction by 88% to
100%, and maintains comparable low frame loss rates.

7. CONCLUSION

This article proposes BROS, an algorithm designed to select the proper streaming rate and initial
buffer size based on the available bandwidth estimations using WBest to reduce the buffer underflow
events and initial and total buffer delays, and improve the frame loss rate for multimedia streaming
application over wireless networks. A core contribution is a model of the client-side initial buffer size
for streaming multimedia applications, as a function of streaming rate and the distribution of available
bandwidth in the wireless networks. One advantage of the buffer model over existing jitter or Poisson
arrival models is that it considers changes in available bandwidth which typically have a larger impact
on streaming performance than interarrival jitter. For evaluation purposes, BROS is implemented in
a streaming system (EmuS) and compared against streaming systems with a fixed streaming rate and
buffer sizes, and jitter-removal buffers. EmuS involves a wireless testbed that facilitated evaluation
under four distinct WLAN scenarios. The following conclusions can be drawn.

(1) Existing buffer models that consider only the impact of jitter are not adequate to remove the ef-
fects of changes in available bandwidth in IEEE 802.11 networks. Moreover, the assumption of
constant average arrival rate in previous research is not applicable in environments with volatility
in available bandwidth such as IEEE 802.11 WLANs. This causes the current jitter buffer models
to underpredict the buffer size needed to avoid buffer underflow in wireless networks.

(2) Multimedia streaming application performance is significantly impacted by the initial streaming
rate and buffer size. By selecting the streaming rate and playout buffer size based on current
available bandwidth conditions, BROS provides better performance.

(3) BROS currently uses the WBest algorithm to estimate the mean and standard deviations of avail-
able bandwidth to infer the available bandwidth distribution. However, BROS is flexible enough
to be used with other bandwidth estimation tools that provide similar bandwidth information.
This makes it easy to improve the bandwidth estimation techniques independently of the BROS
algorithm.

Overall, BROS can significantly reduce buffer underflows, frame losses, and buffer delays by opti-
mizing the initial streaming rate and buffer size.
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8. FUTURE WORK

Strong interference or mobility may still impact the available bandwidth during streaming sessions,
thus resulting in unexpected buffer underflow events. Therefore, to further improve streaming rate
selection and buffer optimization for the entire streaming sessions in an unsteady environment, BROS
can be applied periodically during playback or triggered by each rebuffer event. However, adjustments
to streaming rates and buffer sizes would need to be done with care since such changes have negative
effects on perceived quality [Zink et al. 2003]. One possible area of future work would be to use the
streaming multimedia data to estimate available bandwidth during the session. This can reduce the
traffic overhead caused by WBest probing.

BROS can be further improved to optimize application-layer media repair approaches, such as For-
ward Error Correction (FEC) and packet retransmissions. For example, the available bandwidth infor-
mation can be used to decide the level of FEC or number of streaming packet retries. For the streaming
sessions that are constrained by available bandwidth, limiting the amount of FEC and retransmission
traffic can reduce the packet delay or loss caused by media repair procedures.

Currently, BROS suggests not to stream when WBest reports no available bandwidth in the wireless
networks. However, since the wireless network is a contention domain, streaming applications can
still get the throughput of a fair share of the effective capacity. Therefore, instead of suggesting not
to stream, BROS could be further improved to decide the streaming rate inferred as a function of the
fair share of the effective capacity, perhaps utilizing cross-layer knowledge of the number of contending
nodes in the wireless network.
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