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Game Input with Delay—Moving Target Selection
with a Game Controller Thumbstick

MARK CLAYPOOL, Worcester Polytechnic Institute

Hosting interactive video-based services, such as computer games, in the Cloud poses particular challenges

given user sensitivity to delay. A better understanding of the impact of delay on player-game interactions

can help design cloud systems and games that accommodate delays inherent in cloud systems. Previous top-

down studies of delay using full-featured games have helped understand the impact of delay, but often do

not generalize or lend themselves to analytic modeling. Bottom-up studies isolating user input and delay

can better generalize and be used in models, but have yet to be applied to cloud-hosted computer games. In

order to better understand delay impact in cloud-hosted computer games, we conduct a large bottom-up user

study centered on a fundamental game interaction—selecting a moving target with user input impeded by

delay. Our work builds a custom game that controls both the target speed and input delay and has players

select the target using a game controller analog thumbstick. Analysis of data from over 50 users shows target

selection time exponentially increases with delay and target speed and is well-fit by an exponential model

that includes a delay and target speed interaction term. A comparison with two previous studies, both using

a mouse instead of a thumbstick, suggests the model’s relationship between selection time, delay, and target

speed holds more broadly, providing a foundation for a potential law explaining moving target selection with

delay encountered in cloud-hosted games.
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1 INTRODUCTION

Cloud technologies that provide video-based services allow end-user devices to access full graphi-
cal content despite not having high-end graphics capabilities. While increasing network capacities
may solve the substantive bitrate requirements, interactive cloud-based services have the addi-
tional challenge of needing to overcome delays that are inherent in cloud systems—most notably
the round-trip delay required to send user actions to the server, process them, and send changes
back to the client as video.

A promising type of interactive video-based service in the cloud is the computer game. Instead
of distributing games through traditional media such as DVDs or electronic download, cloud-based
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Fig. 1. Research in games and delay. Two approaches—top-down from existing games and bottom-up from

user input.

games manage the game content itself on servers, sending down the game images as video to the
client where the player reacts, then sends up the input to the servers [32]. Compared to traditional
games, cloud-based systems give game providers more control over the content, while allowing
users access to a large game library of graphics-intensive games using only a single, lightweight
client.

Unlike for traditional network games where a client can potentially act on user input imme-
diately, cloud-based games delay all user input by at least a round-trip time to the server [8].
Real-time games require players to make many time-sensitive actions that can suffer when the
computer responses lag behind player input. Even delays as small as milliseconds can hamper the
interplay between players’ actions and intended results. For example, delay when aiming a virtual
weapon can make it difficult for a player to hit a moving target in a shooting game, hurting the
player’s score and degrading the quality of experience.

While there are established methods to compensate for delays [5, 20], including system-level
treatments (e.g., real-time priorities), delay compensation algorithms (e.g., dead reckoning, sticky
targets, aim dragging), and even game designs to mitigate delay (e.g., delayed avatar response),
an understanding of how delay affects fundamental player actions in games is needed in order to
choose the most effective delay compensation techniques and, if possible, to develop and apply
new techniques.

Broadly, there two different approaches to research in understanding the impact of delay on
computer games, depicted in Figure 1. Studies using specific games are a top-down approach,
extending knowledge of delay and games one game at a time. Such studies may try to generalize
to game genres (e.g., first-person shooters) [2–4, 7, 9, 10], but game design and game engines may
obfuscate important system details, making it difficult for measured results to pertain to other
games and to analytic modeling. Moreover, most prior top-down studies have dealt with traditional
computer games where user input may not always be delayed by the round-trip time to the server,
unlike in cloud games where all input is delayed by the client-server round-trip time.

An alternate approach is bottom-up, studying fundamental game input (e.g., target selection),
refined (e.g., moving target selection) and differentiated by hardware (e.g., mouse). Research con-
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tributions to user input and delay has the potential to generalize to many games and even other
interactive applications and allows for building analytic models that can explain and predict the
effects of delay for a wide range of games and delay conditions.

While foundational studies of user input [15, 17, 22, 25] have shown promise in modeling user
interaction for computer systems, including games [30], such studies have not focused on game
actions (e.g., moving target selection with a game controller) nor have they focused on delay ranges
present in cloud-based games. Ideally, game designers and system developers would have a model
as far reaching and robust as Fitts’ Law [15]—an ergonomic model for the time it takes for a user
to select a target of a given size at a certain distance—but accurate for fundamental game actions
in the presence of delays such as might be encountered in cloud-based video services. Our work
takes a step toward developing such a law.

We design and implement a game that isolates the fundamental action of selecting a moving
target with an analog thumbstick (such as is common on most game controllers) and controls the
target speed and the delay between the user input and the rendered action. The game records the
time it takes the user to select the target and gathers quality of experience ratings from the user.
Applying a previously used methodology [12] to allow for data comparison, we deploy our custom
game in a user study with over 50 participants, using delays ranging from 0 to 400 milliseconds
and target speeds ranging from 150 to 450 pixels/second.

Analysis of the results shows the time to select a moving target with a thumbstick increases
exponentially with delay—this is in contrast to earlier work [19] that showed a linear relationship
when using a mouse. The time to select the target does not vary much with target speed for low
delays, but there are significant interaction effects between added delays and target speeds for
high delays—in other words, the time to select a fast target at high delay is larger than either pa-
rameter alone would suggest. User opinions on the quality of experience (responsiveness) show a
pronounced linear decrease even for modest delay increases, confirming results in earlier work [6]
and suggests even high-performance cloud gaming systems need to consider the impact of delays.

We derive an accurate analytic model for the average time to select a moving target with a
thumbstick based on delay and target speed. The model is exponential with delay and includes an
interaction term for delay and target speed. As a step toward a law describing moving target selec-
tion with delayed input, we compare the model with alternate models derived from two previous
studies [11, 12] that had players use a mouse instead of a thumbstick. In doing so, we affirm that
the generalized model produced for the thumbstick also holds for both mouse studies, albeit with
different constants.

The rest of this article is organized as follows: Section 2 describes work on user input modeling
related to our work; Section 3 describes our methodology, including developing our game and con-
ducting a user study; Section 4 analyzes the user study results for overall trends and presents our
model; Section 5 relates our results to earlier work and other systems; and Section 6 summarizes
our conclusions and outlines possible future work.

2 RELATED WORK

This section presents related research in user input for target selection and delay.

2.1 Fitts’ Law

Paul Fitts pioneered early seminal work in the area of human-computer interaction and er-
gonomics in the form of creating Fitts’ Law [15]. With some simplification,1 Fitts’ Law describes

1To provide comparative clarity among proposed models, some constants and minor terms are ignored in this and subse-

quent models. The interested reader is encouraged to refer to the original sources for the full models.
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the time (T ) to select a stationary target based on an index of difficulty (I ):

T = k · I , (1)

where k is a constant specific to the task at hand. The index of difficulty (I ) is proportional to (1)
the gap distance (G) from the source to the target, and (2) the width of the target (W ):

I = log2

( G
W

)
. (2)

It has been suggested that target selection consists of a succession of discrete moves, each sub-
dividing the distance to the target until the selector is within the target, similar to a binary search.
In this light, the index of difficulty (I ) can be interpreted as the average number of moves required.

Combining Equations (1) and (2), the time to select a target based on Fitts’ Law is approximately

T = k · log2

( G
W

)
, (3)

whereG andW are known based on the task and the constant k is determined empirically through
user study.

While Fitts developed and validated his law based on hand movements with a stylus, Fitts’ Law
has been shown to be applicable to a variety of other conditions (e.g., underwater [23]) and input
devices (e.g., eye tracking [36]). And although subsequent adjustments to the model have shown a
bit more predictive power by, for example, separating the width (W ) and the gap distance (G) into
separate terms with different constants [37], many newer models lose some of their intuition.

2.2 Fitts’ Law with Two+ Dimensions

Fitts’ Law only includes one dimension—the distance from the source to the target. To apply Fitts’
Law to computer users selecting virtual targets with a mouse, subsequent enhancements examined
the applicability of Fitts’ Law to two dimensions [25], requiring a modest change in the “effective”
width. For example, theW in Equation (3) is replaced by the smaller of the width and height for a
rectangular target, although target shape was found to be largely irrelevant.

Since many modern uses of Fitts’ Law are for computer devices with two dimensional displays,
MacKenzie and Buxton’s [34] investigation of Fitts’ Law provided guidelines for use of the law in
evaluating pointing devices.

For higher dimensions, such as for 3d target selection in a virtual environment, Murata and
Iwase [27] found that conventional Fitts’ did not match user performance well owing to a missing
directional component, and So and Chung [33] found target width and target distance interacted
differently with display delay (i.e., in the virtual headset) and controller delay.

2.3 Fitts’ Law with Moving Targets

Fitts’ Law also only applies to stationary targets. This is entirely appropriate when used for, say, a
typical PC application where a user is selecting a stationary user interface button with the mouse.
However, stationary targets are less appropriate for a real-time dynamic interface, such as a com-
puter game, where targets are often changing positions on the screen.

Jagacinski et al. [21] extended Fitts’ Law with a revised index of difficulty (I , see Equation (2))
that explicitly incorporates target velocity and which predicts the overall pattern of target selection
times better than the original index of difficulty. Their revised model for the time (T ) to select a
moving target at gap distance (G) based on the target’s speed (S) and width (W ) is

T = k1 ·G + k2 ·
S

W
, (4)
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where k1 and k2 are constants determined empirically.2 Note, Jagacinski’s model suggests target
selection time increases linearly with target speed.

User study experiments were done with an oscilloscope, where eight users moved a center line
to be between two horizontal lines. There were two different kinds of joystick controls—positional
and mouse. Target velocities were 0, 30, and 60 millimeters/second, always toward the center.

Hoffmann [18] refined Jagacinski’s model:

T = k · log2

( G + S
W − S

)
, (5)

where S ,G, andW are as for Jagacinski andk is an empirically derived constant. Note, although it is
not immediately obvious, Hoffman’s model suggests target selection time increases exponentially
with target speed, effectively loд2 ( 1

1−S
). While Hoffman showed his new model fit the data from

Jagacinski’s experiments somewhat better, the model loses some intuition and simplicity when
compared to Jagacinski’s model.

Hajri et al. [17] refined Hoffmann’s model by separating the index of difficulty from Fitts’ (I , see
Equation (2)) into one that accounts for target speed:

I = log2

(
G ± S

k

W

2 −
S

k

)
, (6)

where k is, again, an empirically derived constant. Note, the ± generalizes from + in Hoffmann’s
model since the target may be moving toward (i.e., −) or away from (i.e., +) the source. A user
study showed Hajri’s model fit the experimental data well.

2.4 Fitts’ Law with Delay

The above models have assumed a constant, low delay—i.e., a system with only the delay inher-
ent in the local electronics and software. However, in many modern systems (e.g., client-server
systems) there are not only delays from the local computer system but also from network trans-
missions and processing on a remote computer system (e.g., a server). This is particularly true for
cloud-hosted games where a cloud-based server must receive and process all player actions before
rendering the scene and sending it back to the client to be displayed.

Suitable for this environment, Hoffman [19] revised Fitts’ Law with delay:

T = k1 + k2 · D · log2

( G
W

)
, (7)

where D is the delay, G andW are the target gap distance and width, respectively, and k1 and k2

are empirically derived constants. Hoffmann’s model shows a multiplicative effect between the
index of difficulty and the delay and suggests target selection time increases linearly with delay.

Hoffman’s experiments using one-dimensional input (a knob to move a pen from the source
to the target) shows users have two types of responses in the presence of delay: (1) move-and-

wait where a user provides input, then stops and waits for it to occur, repeating as necessary;
and (2) continuous where a user provides continuous input in the presence of delay, adjusting as
necessary without stopping. For low delays, users generally provide continuous input while for
high delays, users provide move-and-wait input. Hoffman’s experiments found the delay inflection
point between continuous and move and wait to be around 700 milliseconds.

MacKenzie and Ware [26] proposed the same model as Hoffman, and did an eight-person user
study that measured the effects of delay on target selection time using a computer mouse for added

2Jagacinski separated the gap distance (G ) from the target width (W ), much as did other early enhancements to Fitts’ Law.
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delays up to 225 milliseconds. Their experiments explained up to 94% of the variation in average
selection times.

Ware and Balakrishnan [35] applied Hoffman’s model to a 3d selection task (a virtual fish tank),
noting that the delay (D in Equation (7)) is both from the device lag (e.g., the time between the
user moving the mouse and the application recording this movement) and the display lag (e.g., the
time between updating a mouse location and the change being displayed on the screen).

Jota et al. [22] studied the impact of delay on selection and then dragging with touch devices,
comparing experimental results to MacKenzie and Ware’s [26] Fitts’ Law with delay. User study
results with 20 participants confirmed that Fitts’ Law holds when determining different constants
for each level of delay.

Brady [6] experimented with target selection and delay, considering index of difficulty as in
Equation (2) for delay (including frame rate delays), but not deriving experimental parameters
for Hoffman’s model (Equation (7)). Brady also analyzed the subjective user experience, finding a
strong inverse linear relationship over the range of delays studied (from 0 to about 200 millisec-
onds).

2.5 Missing—Fitts’ Law with Transmission Delay and Moving Targets

What is missing is analysis and, where appropriate, models that explain and predict the time to
select a moving target with delay, specifically with an analog game controller thumbstick. Our
work takes a step to address this deficiency.

3 METHODOLOGY

To model moving target selection and delay, we (1) develop a game (Puck Hunt) that enables study
of user input with controlled delay (Section 3.1); (2) conduct a user study to evaluate the impact of
a single user action with delay (Section 3.2), (3) analyze the core results of the user study through
graphs (Section 4), (4) derive an explanatory model (Section 4.3) and compare it to previous stud-
ies (Section 4.4), and (5) analyze other results from the user study, particularly as compared to
traditional and cloud-based games (Sections 4.5 to Section 4.9).

3.1 Game

In order to avoid the monotony that often occurs during behavioral experiments, we designed the
target selection task as a simple game. Our custom game is called Puck Hunt, named after and
based on the classic game Duck Hunt (Nintendo, 1984), depicted in Figure 2. Puck Hunt allows
study of a single user action with controlled amounts of delay. In Puck Hunt, depicted in Figure 3,
the user proceeds through a series of short rounds, where each round has a large black ball, the
puck/target, that bounces around the screen using predictable physics. The user moves the thumb-
stick to control the small red ball (a.k.a., the cursor) and attempts to select the target by moving
the ball over the target and pulling the controller trigger. Once the user has successfully selected
the target, the target disappears and a notification pops up telling the user to prepare for the next
round. Thereupon pressing the controller “A” button, a new round starts, with the target at a new
starting location with a new direction and new speed. The user is scored via a timer that counts
up from zero at the beginning of each round, stopping when the target is selected.

The action chosen—selection of a 2d moving target—is common to many game genres, such as
first-person shooters (FPS) (e.g., Call of Duty, Activision, 2003) and multiplayer online battle arenas
(MOBAs) (e.g., League of Legends, Riot Games, 2009).
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Fig. 2. Duck Hunt (Nintendo, 1984)

screenshot. Users move the cursor

(circle with the line through it) using

the game controller and click on the

moving duck.

Fig. 3. Puck Hunt. Users move

the cursor (red ball) with

a thumbstick and click on

the moving target (puck). The

game adds delay to user input

(both movement and clicking)

and varies target speeds be-

tween each round.

Table 1. Target Speeds and Added Input Delays Used in User

Study

Speed (pixels/second)

Slow 150

Medium 300

Fast 450

(a) Target speeds.

Delay (milliseconds)

0, 25, 50, 75

100, 125, 150, 175

200, 300, 400

(b) Added input delays.

Puck Hunt is written in C++ using OpenGL to minimize inherent software delay, with sup-
port from the Angel 2d game engine.3 Puck Hunt runs in fullscreen mode at 1080p resolution
(1920×1080 pixels) and 60f/s. The target is 100 pixels in diameter and the cursor (the red ball) is
25 pixels in diameter.

Each round, the target moves with one of three possible speeds listed in Table 1(a). Effectively,
these speeds create levels of difficulty that might be experienced in 2d shooting games (e.g., Duck

Hunt (Nintendo, 1984)) or third-person combat games (e.g., League of Legends (Riot, 2009)). The
game adds a controlled amount of delay selected from the set in Table 1(b). The delay is added
to all user input (thumbstick movement and trigger pulls) for the duration of the round. The set
of delays is chosen so as to explore in detail delays up to 200 ms (common in many broadband
networks and systems), while allowing some exposure to larger delays (common in some wireless
and wide-area networks). Each delay and speed combination appears five times, but the entire set
of combinations is shuffled into a different random order for each user.

Exactly once for each combination of delay and speed, the user is asked to rate the quality of
experience (QoE) based on the responsiveness during the round, shown in Figure 4. The game
pauses until the user selects a choice, 1 (low) to 5 (high).

3http://angel2d.com/.
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Fig. 4. Quality of experience prompt to player.

Fig. 5. Lab for user study.

Every 30 rounds, the game stops for a minimum of 20 seconds to allow the user to rest/regain
concentration, with a countdown timer shown to the user via a popup window.

3.2 User Study

Our user study was conducted in a windowless computer lab with bright, fluorescent lighting, with
the layout shown in Figure 5. The computers were Dell PCs with Intel i7-4790 4GHz processors,
4GB NVidia GeForce GTX 960 graphics cards, and 16GB of RAM, running Microsoft Windows
7. The monitors were 24” Dell U2412M LCDs with a native resolution of 1920×1200 pixels and a
refresh rate of 59p Hz.

Participants were volunteers solicited through WPI email lists and the Social Science Research
Participation System http://wpi.sona-systems.com/, a system whereby Psychology students par-
ticipate in user studies to obtain class and major credit. Added incentives included a raffle for a $25
gift card for participating and a $25 gift card for the user with the highest score. Game development
students that participated also received one extra point on their final exams.

First, users heard a scripted brief about the study and signed an Institute Review Board (IRB)
consent form at the researcher’s position (noted in Figure 5). Next, users were asked to make
themselves comfortable at a computer by adjusting chair height and monitor angle/tilt so as to be
looking at the center of the screen. Users were encouraged to use the controller with whichever
hand they preferred.

Users logged into the computer using their WPI credentials and were asked to open a Web
browser with a survey coded using the Qualtrics survey tool.4 Users then completed a survey
about demographics and gaming experience. The game and incentive options were then described
followed by launching the game.

Play commenced immediately, but the first two rounds with no added delay and slow targets
were used for practice only and the results were not recorded. Play then proceeded through all 5×
shuffled combinations of delay and speed (Table 1(a) and Table 1(b)), with one QoE question for

4https://www.qualtrics.com/.
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Fig. 6. Measuring base delay.

each delay and speed combination and a forced pause every 30 rounds. In total, users played 165
recorded rounds each, which took about 15 minutes including answering questions and pausing.

3.3 Local System (Base) Delay

Note, the delays in Table 1(b) added by Puck Hunt are in addition to any delays inherent in the
base computer system. Since such base delays have been shown to be significant [20, 31], we
measured the base delay for game controller actions on our lab computers using a Blur-busters
type technique.5

A breadboard with an LED was connected via a wire soldered to a game controller so that the
LED lit up when the controller trigger was clicked (user pulled the controller trigger). A high frame
rate camera (a Casio EX-ZR200) filmed the player selecting the QoE prompt using the trigger,
recording the action at 1,000f/s. By manually examining the individual video frames, the frame
number when the light appeared when the trigger was clicked is subtracted from the frame number
when the QoE prompt showed the input, giving the base delay.

Figure 6 depicts an example of the measurement method. The cursor is poised over the QoE
prompt in frame 3,124. In frame 3,125, the trigger has been clicked indicated by the lit LED on the
breadboard. The input is not displayed on the QoE prompt until frame 3,174. Since there is one
video frame each millisecond, subtracting 3,125 from 3,174 gives a base delay of 49 milliseconds.

The measurement method was repeated four times, resulting in base delay values of 46, 54, 50,
and 49 milliseconds. Hence, 50 milliseconds is added to all delay analysis.

4 ANALYSIS

This section starts with demographics (Section 4.1), then presents the core results of target selec-
tion time measurements (Section 4.2) and target selection time models (Section 4.3 and Section 4.4).
Further analysis breaks down target selection times by player skill (Section 4.5), analyzes trigger
pull (click) measurements (Section 4.6), and compares the results with traditional network games
(Section 4.7) and other cloud game studies (Section 4.8). The section ends with a brief QoE analysis
(Section 4.9).

5http://www.blurbusters.com/gsync/preview2/.
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Fig. 7. Mean selection time versus delay; data

grouped by target speed.

Fig. 8. Mean selection time versus target speed;

data grouped by delay.

4.1 Demographics

Fifty-one users participated in the study. Ages ranged from 18 to 25 years with a mean and me-
dian of 20 years. Thirty-two identified as male, 16 as female, and 3 did not specify. Forty-four
indicated they were right-handed, 6 left-handed, and 1 ambidextrous.6 The mean self-rating as a
PC gamer (scale 1–5) was about 3.5, showing a slight skew to having “high ability.” About half
the users played 6+ hours of computer games per week. Most studied Computer Science, Game
Development, or Engineering.

4.2 Target Selection Time—Measurement

We first assess the time it takes for the player to select a moving target with a thumbstick in the
presence of delay.

Users were able to select the target at all speeds and all delays within 30 seconds (the maximum
time allowed) with the exception of the fastest targets and highest delays, where 5% of the time
users were unable to select the target within the time limit. In order to obtain a representative
average not skewed by the time ceiling, we model the select time cumulative distribution functions
(CDFs) of the fastest target and highest delay using only scores below 30 seconds. This way, the
model can be extended past the 30 second time limit to provide for a full distribution range and
allowing for derivation of a mean selection time. Because CDFs naturally trend to 1, we fit7 a
logarithmic regression model to data points below 30 seconds and then integrated to yield the
means. Doing so provides an analytic model of y = 0.36 · ln(x ) − 0.20 (R2 0.98) and a mean of 9.80
milliseconds. This mean value is used in all subsequent analyses for the fastest targets and highest
delays.

Figure 7 depicts selection time versus delay, grouped by target speed. The x-axis is the total
input delay (added delay+base delay) and the y-axis is the time to select the moving target. There
are three trendlines, one for each target speed tested. Each point is the mean time for all users
for that delay and speed combination, shown with a 95% confidence interval. Overall, there is
an increase in mean selection time as delay increases. This increase appears exponential over
the range of delays tested. For delays under 200 milliseconds, the speed of the target does not
significantly impact mean selection time. However, starting at delays of 250 milliseconds, the faster
speed targets become significantly harder to select than the slowest speed targets. At the extreme

6We did not observe which thumb users used to manipulate the thumbstick.
7Using R, https://www.r-project.org/.
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Table 2. User Study Data Values Used

for Standardization

Factor Mean Std. Dev.
Delay 191 milliseconds 115
Speed 300 pixels/second 122

delay (450 milliseconds), the fastest targets take 2.5× longer to select than when there is minimal
delay (100 milliseconds) and even the slowest targets take over 2× longer to select.

Figure 8 graphs the same data as in Figure 7, but grouped by delay and analyzed by speed. They-
axis is the same, but the x-axis is target speed in pixels per second. There are five trendlines, one for
each of the total input delays (added delay+base delay).8 Each point is the mean time for all users
for that delay and speed combination, shown with a 95% confidence interval. Overall, there is an
increase in selection time as the target speed increases. This increase appears mostly linear for the
range of target speeds tested, but is somewhat non-linear (perhaps exponential) for delays above
300 milliseconds. Delay impacts the selection time for all target speeds, but is most pronounced for
the highest target speeds as seen by the diverging lines. For delays of 200 milliseconds and under,
the lines in Figure 8 are flat—the speed of the target does not impact mean target selection time.

4.3 Target Selection Time—Model

While trends in user performance with delay provide valuable insights, an analytic model illustrat-
ing the relationships can be used by developers and researchers for designing and implementing
more effective interactive systems and applications in the presence of delay. Hence, we model the
mean time to select a moving target with a thumbstick with delayed input.

Based on the previous analysis (e.g., see Figure 8), (1) there is a clear upward trend in mean
time to select a moving target with increased delay and with increased speed, and (2) the greater
increase in time to select a moving target at fast speeds and high delays suggests considering
the interactions between speed and delay. Thus, we explore models of the time to select a moving
target with a thumbstick (T ) with possible terms for delay (D), speed (S), and combined interaction
terms.

To build our models, we standardized our user study data9 using the values in Table 2. This
allowed us to fit regression models using R.10

There are many possible models that fit our experimental data. In order to compare different
regression models, the coefficient of determination (R2) can be used as a measure of how well
observed outcomes are replicated by the model based on the proportion of total variation of out-
comes explained by the model. In doing such a comparison, it might be tempting to choose the
model with the maximum R2, but this can over-fit the model to the data (i.e., the R2 value can be
increased by adding more terms). However, the adjusted R2 modifies the R2 based on the number
of predictors in the model, increasing if the new term improves the model more than would be
expected by chance and decreasing it otherwise. Overall, we want a parsimonious model—one that
provides the desired prediction with as few terms as possible.

Table 3 summarizes the models explored, ordered in increasing adjusted R2 (higher is better).
For the equations, the k parameters (e.g., k1) are constants, e is the exponential function, d is delay,
and s is speed.

8The other delays tested are not shown to keep the graph readable.
9Subtracting the mean and dividing by the standard deviation.
10https://www.r-project.org/.
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Table 3. Models Predicting Selection Time of a Moving

Target With Delay (d) and Speed (s)

Model Adj. R2

1. k1 + k2s 0.035
2. k1 + k2e

s 0.038
3. k1 + k2d 0.696
4. k1 + k2d + k3s 0.745

5. k1 + k2e
d 0.781

6. k1 + k2e
d + k3e

s 0.835
7. k1 + k2d + k3d

2 + k4s + k5s
2 0.840

8. k1 + k2d + k3s + k4ds 0.844

9. k1 + k2e
d + k3e

s + k4e
d
e

s 0.981

10. k1 + k2d + k3d
2 + k4s + k5s

2 + k6ds + k7d
2s + k8ds

2 + k9d
2s2 0.996

The letter e is the exponential function, and letters with k are constants (different for each

model), derived from data gathered through users study experiments.

While model #10 has the highest adjusted R2, it is only slightly higher than model #9 while
having significantly more terms (nine versus four). Moreover, previous work has suggested an ex-
ponential relationship with speed in the time to select a moving target without delay [17, 18]. Thus,
we propose modeling the time to select a moving target with a thumbstick (T ) with exponential
functions for delay (d) and speed (s), as well as an interaction term:

T = k1 + k2e
d + k3e

s + k4e
des , (8)

where k1, k2, k3, and k4 are constants derived from data gathered through user study experiments.
Using our standardized user study data11 in Table 2 yields an adjusted R2 0.981, F-stat 547, and

p < 2.2 × 10−16. This simplified final model for the time to select a moving target with a delayed
thumbstick (T ) is

T = 2 + 0.3ed − 0.03es + 0.2edes , (9)

whered and s are standardized from the total delay (D) and target speed (S), respectively:d = D−191
115

and s = S−300
122 .

All terms are significant at p < 0.001, except the main effect of speed (0.03es with p < 0.38).

4.4 Target Selection Time—Model Comparison

As described in Section 1, a scientific law is a statement based on repeated experimental observa-
tions that accurately describes an aspect of the world. Specific to our context, a desired outcome
would be a law that explains the time for a user to select a moving object with a pointing device
(e.g., a thumbstick or a mouse) when the input is subject to delay.

With this in mind, we compare the model produced in Section 4.3 with models from two previous
studies, named WPI-M [11] and WO-M [12], that analyzed data on moving target selection with
delayed input. Both WPI-M and WO-M used a methodology similar to Section 3, but with the
significant difference of using a mouse instead of a game controller thumbstick for target selection.
The studies had completely different users and different sample sizes, with the users of WO-M
drawn from the population of students at Westerdals University in Olso, while users in WPI-M
and WPI-T (our study) were drawn from the population of Worcester Polytechnic Institute in the

11Subtracting the mean and dividing by the standard deviation.
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Table 4. Differences in Study Parameters for Three Studies

Sample Selection Speed (pixels/second) Base Delay

Name Pool Device Slow Med. Fast (msec.)

WO-M Norway Univ. mouse 550 1,100 1550 20
WPI-M U.S. Univ. mouse 150 300 450 100
WPI-T U.S. Univ. thumbstick 150 300 450 49

Any parameters not shown are the same across all studies.

Table 5. Summary of Key Demographics

Mean Self-Reported Mean

Name Age (yrs) Gender Device Hand Ability PC Game

WO-M 23.9 (3.5) 45 ♂, 8 ♀ 52 right, 1 left 3.8 (1.0)

WPI-M 20.9 (1.9) 23 ♂, 8 ♀, 1 ? 32 right 3.5 (1.3)

WPI-T 20.0 (1.6) 32 ♂, 16 ♀, 3 ? 44 right, 6 left, 1 ambi 3.5 (1.2)

Standard deviations for mean values are shown in parentheses. Mean ability is from 1 (low) to 5 (high).

Table 6. Comparison of the Three Models

Name Selection Time Model (seconds) d (msec.) s (pixels/s) Adj. R
2 F-stat

WO-M T = 1 − 0.08e
d − 0.6e

s + 2.3e
d

e
s (D-165)/115 (S-1067)/409 0.99 3,352

WPI-M T = 1 + 0.2e
d − 0.04e

s + 0.1e
d

e
s (D-245)/114 (S-300)/122 0.97 328

WPI-T T = 2 + 0.3e
d − 0.03e

s + 0.2e
d

e
s (D-191)/115 (S-300)/122 0.98 547

U.S. WO-M also had significantly different target speeds where all three target speeds were higher
than those in WPI-M and WPI-T. Lastly, all three studies had different base delays since they ran
on different computer systems. Table 4 summarizes the study parameters that differ across WPI-M,
WPI-T, and WO-M. Any parameters not listed are the same as in Section 3 for all three studies.

The user demographics differed somewhat for each study, across age, gender, and skill break-
down, as summarized by Table 5. Generally, each user sample consisted of mostly male, under-
graduate gamers.

Following similar reasoning as in Section 4, we proposed the general model in Equation (8) for
relating target selection time to speed and delay for WPI-M and WO-M. Table 6 compares the three
models. For all models, p < 2.2 · 10−16 and all terms are significant at p < 0.001, except the main
effect of speed (the third term, k3e

s ). Overall, the proposed general equation fits every study well
based on the high adjusted R2 values.

Figure 9 depicts the models for a speed of 550 pixels/second versus delay, each charted over
the domain of delays tested. From the figure, the models agree in shape, with a marked increase
in selection times with an increase in delay, particularly for delays above 300 milliseconds. The
WPI-T and WPI-M curvatures are similar, with the WPI-T curve shifted higher by approximately
1 second—this “extra” second may be attributed to the average increase in difficulty of using a
thumbstick versus a mouse.

For illustration, Figure 10 depicts the models for a delay of 250 milliseconds, each charted over
the domain of speeds tested. From the figure, the curves for WPI-T and WPI-M are similar, only
increasing slightly over the range of speeds tested. As for the previous graph, WPI-T is shifted up
compared to WPI-M by about a second. In contrast, WO-M has a noticeable increase in selection
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Fig. 9. Model of mean selection time versus

delay; speed 500 pixels/s.

Fig. 10. Model of mean selection time versus

speed; delay 250 milliseconds.

Fig. 11. Mean selection time versus delay, grouped by skill.

time with the much higher speeds it models. The WPI-M and WO-M appear to be on a similar
trajectory from 450 to 525 milliseconds.

In summary, the accuracy of the same model construction for three independent studies suggests
(a) target selection time is exponential with delay, (b) target selection time may be exponential with
target speed, but such terms are not significant (at p < 0.001) for any model, and (c) there is an
interaction between delay and target speed that is not captured by either term alone.

4.5 Target Selection Time by Skill—Measurement

Rapid moving target selection requires dexterous hand-eye coordination. Thus, one confounding
effect to any model of target selection is the skill of the user. Users that are more skilled at computer
games (where moving target selection is common) are likely more skilled in our target selection
task.

For our study, users provided a self-rating of gamer skill, from 1 (low) to 5 (high). Based on our
user sample, we triaged users into low skill (12 users with rating 1–2), medium skill (26 users with
rating 3–4), and high skill (13 users with rating 5).

Figure 11 depicts selection time versus delay for the fast targets only,12 analyzed by self-reported
skill. The axes are as for Figure 7. There are three trendlines, one for each skill group. Each point
is the mean selection time for all users with that skill, analyzing only fast speed targets for that

12Slower targets showed the same trends, albeit with less of a distinction between trendlines.
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Fig. 12. Game controller clicks versus delay,

grouped by target speed.

Fig. 13. Hit fraction versus delay, grouped by

game/model.

delay. The means are shown with 95% confidence intervals. Overall, the increase in mean selection
time as delay increases holds for all skill groups. For delays under about 250 milliseconds, there is
only a slight separation between the medium and the high skill groups. However, there is clearer
separation of the skill trendlines for delays of 350 and 450 milliseconds. At these delays, the most
skilled users are affected by delays the least and the least skilled users the most. At the extreme
delay (450 milliseconds), the least skilled users take about 2× longer to select the target than the
most skilled users.

4.6 Controller Clicks—Measurement

Another problem reported by some Fitts-type user studies is that an “aggressive” user repeatedly
clicking the selection button as rapidly as possible can select the target faster, albeit with more
clicks that “miss.” For many computer games, missing a target can have a cost (i.e., wasting virtual
ammunition) and so can also be used as a measure of performance. In our case, all clicks above
one per target have missed the target.

Figure 12 depicts clicks (users pulling the controller trigger) versus delay, analyzed by target
speed. The x-axis is the total input delay and they-axis is the number of clicks needed to select the
moving target. There are three trendlines, one for each target speed tested. Each point is the mean
number of clicks for all users for that delay and speed combination, shown with a 95% confidence
interval. Overall, there is an increase in mean number of clicks as delay increases. For fast targets,
clicks increase exponentially over the range of delays tested somewhat the same as does selection
time, but for slow and medium targets, the increase appears more linear over the range of delays
tested. For delays under 200 milliseconds, the speed of the target does not impact the number of
clicks. At the extreme delay (450 milliseconds), users miss about 250% more often for fast targets
as opposed to slow targets.

Since player performance in cloud-based games is a major focus of the proposed research, we
compare the clicking performance of the users in Puck Hunt to shooting performance in a com-
mercial first-person shooter game. A previous study [4] with Unreal Tournament (UT) 2003 (Atari,
2002) recorded the hit fraction versus delay, where users tried to hit a moving avatar with a high
precision weapon using a mouse as a selection device. Hits plus misses in UT 2003 is analogous
to total clicks in Puck Hunt, and the Puck Hunt hit fraction is 1 divided by the number of clicks.
Figure 13 compares the results of UT 2003 with Puck Hunt. The x-axis is the total input delay and
the y-axis is the hit fraction. There are four trendlines, one for UT 2003 and one for each Puck
Hunt study, with each point the average across all target speeds. Overall, the trendlines follow the
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same pattern, decreasing approximately linearly with an increase in delay. The WPI Puck Hunt
hit fractions are significantly higher than the UT 2003 hit fractions, while the WO-M Puck Hunt
hit fractions are significantly lower than the UT 2003 hit fractions. This trend may be entirely due
to target speed, but, in the case of the WPI studies, may also be because the UT 2003 avatar was
controlled by a human and moved unpredictably, while the Puck Hunt target moved with con-
stant velocity. The WPI-M hit fraction is slightly higher than the WPI-T fraction, which is perhaps
expected as the mean selection times with the mouse are slightly lower than the mean selection
times with the thumbstick.

4.7 Comparison with Traditional Computer Games

To better understand how the Puck Hunt measurements of selection time with delay relate to a
broader set of computer games, we turn to previous work on the effects of delay on computer
games [10]. In general, the impact of delay differs depending upon the game perspective—i.e., how
a user views the game world on a screen.

With an avatar-interaction perspective, the user interacts with the game through a single rep-
resentative character, called the avatar. Games with an avatar-interaction typically have either a
first-person perspective where the user sees the game world through the eyes of the avatar, or a
third-person perspective where the user follows an avatar in the virtual world. FPS games, role-
playing games (RPGs), sports games, and racing games are all examples of game genres that have
an avatar-interaction perspective. These game genres often differ in the perspective—for example,
FPS games have a first-person perspective while RPGs typically have a third-person perspective.

With an omnipresent perspective, the user has the ability to view and interact with different
aspects of the game world. The user is said to be omnipresent in that his/her actions have a more
global influence than actions in an avatar model. The perspective of games with the omnipresent
interaction model is often variable, giving users an aerial perspective to provide a bird’s eye view
of the virtual world, but also allowing users to zoom in to a third-person perspective to provide
fine grained control over individual resources. Real-time strategy (RTS) games and construction
and simulation games are examples of game genres with the omnipresent perspective.

In order to compare the effects of delay across games, objective user performance results are
normalized from 0 (worst) to 1 (best). Results from previous studies13 of delay and traditional
network games (first-person avatar [4, 29], third-person avatar [16, 28], and omnipresent [9]) are
similarly normalized and fit with an exponential curve [10]. The same is done for our user study
data, normalizing the selection time based on target speed. In order to make our data comparable
to the previously published results, the added base delay (50 milliseconds) is subtracted from our
user study data for this graph.

Figure 14 depicts the results, summarizing classes of traditional network games. The horizon-
tal gray rectangle is a visual indicator of user tolerance for delay. Gameplay quality is generally
acceptable above the gray area and unacceptable below it. The exact delay tolerance threshold de-
pends on the game and to some extent the user’s own perception and sense of immersion (hence
the gray color and the rectangle shape rather than a line). From the graph, the time to select a
moving target with a thumbstick most closely follows the first-person avatar perspective model.
This is likely because performance in such games is most closely attuned to specific actions by the
user (e.g., aiming a weapon) and so is severely impacted by delay, whereas in other game models
user performance is handled by virtual agents with some autonomy so the effects of delay are
mitigated.

13Providing details on these studies is too cumbersome for this article, but the interested reader is encouraged to follow

the references.
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Fig. 14. User performance versus delay for Puck

Hunt measurements and commercial game mod-

els.

Fig. 15. User performance versus delay for Puck

Hunt models and cloud game measurements.

4.8 Comparison with Cloud-Based Computer Games

In traditional network computer games, movement of the pointing device (e.g., the reticle) is not
delayed—only the selection action is delayed (e.g., firing). This is because the local system can
quickly render, say, a mouse cursor movement while the game action (e.g., clicking a button) needs
to go back and forth to the authoritative server before rendering. This is in contrast to Puck Hunt
which delays both the pointing and selection actions.

More appropriate is to compare Puck Hunt to user studies on cloud-based games where all user
input is delayed by local, network, and remote processing. Two users studies [13] measured the
impact of delay on cloud-based games using two different cloud game systems and two different
third-person avatar games. One study used the game Crazy Taxi14 on a commercial cloud-based
game system, OnLive,15 while the other study used the game Neverball16 on an academic cloud-
based game system, GamingAnywhere.17 Both studies each had over 30 users play short game
sessions with the users blind to controlled amounts of added delay. During each session, the system
measured and recorded user in-game performance, and after each session users provided subjective
opinions on the gameplay.

In order to compare the effects of delay across games, user objective performance results are
normalized from 0 (worst) to 1 (best). For Puck Hunt, the models from Section 4.4 are similarly
normalized and the added base delay (50 milliseconds) subtracted from the data since the cloud-
based game measurements did not account for base delay. Figure 15 depicts the results. The x-axis
is the added input delay and the y-axis is the user performance. There are three trendlines, one
for each of the Puck Hunt models (WO-M, WPI-M, and WPI-T). The points are for the Crazy Taxi
on OnLive and Neverball on GamingAnywhere, respectively. The model trendlines all accompany
a similar space, suggesting they are indeed representing an inherent degradation in human per-
formance despite the differences in target speeds and selection devices across the studies. The
cloud-based games themselves are more varied, possibly owing to experimental noise, but they
generally follow similar degradation paths as the models.

14http://en.wikipedia.org/wiki/Crazy_Taxi.
15http://onlive.com/.
16http://neverball.org.
17http://gaminganywhere.org/.
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Fig. 16. Quality of experience versus delay.

4.9 Quality of Experience

While user opinion of delay often correlates with performance, subjective measures can ascertain
the QoE beyond just the target selection time (or clicks). For Puck Hunt, for each delay and speed
combination, users were asked to rate the responsiveness 1 (low) to 5 (high) (see Figure 4), with
similar data gathered for the WPI-M and WO-M studies.

Figure 16 depicts a graph of the QoE—here, the responsiveness—versus delay for each model,
using only data on targets with similar speeds (450 pixels/s for WPI-T and WPI-M and 550 pixels/s
for WO-M). The x-axis is the total input delay and the y-axis is the reported responsiveness of the
round. There are three trendlines, one for each user study. Each point is the mean rating for all
users for that delay, shown with a 95% confidence interval. From the graph, there is an observable
downward trend in QoE with an increase in delay, indicating users perceive the delays. However,
there is no noticeable separation of QoE for the different studies, suggesting the delay-based ex-
perience is similar regardless of the selection device (i.e., mouse or thumbstick).

5 DISCUSSION

The models presented in Section 4.3 may be of use to network game designers by illustrating a gen-
eral relationship between target speed and delay and by providing a specific equation for selection
time. For example, in a network game with target selection, the model in Equation (8) informs an
interaction between delay and target speed when balancing the game. The model in Equation (9)
may also be used to inform the use of delay compensation techniques. For example, when applying
delay compensation techniques that prioritize actions based on delay sensitivity [14], the change
in the time due to delay in Equation (9) is directly related to priority. Other latency compensation
techniques may be similarly tuned or selected.

Hoffman [19] suggests target selection time increases linearly with delay (see Equation (7)).
However, our observed curvature and model more likely corresponds to an exponential distribu-
tion (see Figure 7 and Table 3). The difference may be because Hoffmann’s model is over a broader
range of delays, from 30 to 1,000 milliseconds, and he notes that at the higher delay range (700+
milliseconds), users employ a “stop and wait” strategy in selecting the target, while a “continu-
ous” strategy dominates lower delays. This may make a linear relationship the best fit for his data
overall, but an exponential relationship a better fit for lower latencies, such as in our study.

Jagacinski [21] effectively suggests target selection time increases linearly with target speed (see
Equation (4)). On the other hand, Hoffman [18] suggests target selection time increases exponen-

tially with target speed (see Equation (5)). Based on Figure 8, they may both be right. For low delays
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(200 milliseconds or below), the increase in selection time due to target speed appears linear, while
for higher delays (300 milliseconds and above) the increase in selection time due to target speed
appears exponential. Thus, low delay systems, such as delays solely from base delays, can model
selection time with a linear component for target speed, while high delay systems, such as Internet
games, would better model selection time with an exponential component for target speed.

Brady [6] analyzed the subjective experience of users selecting moving targets with a delayed
mouse, finding a strong inverse linear relationship over the range of delays studied (from 0 to about
200 milliseconds). Our results (Figure 16) confirm Brady’s, showing a significant inverse linear
relationship (correlation −0.92) between the target selection time and the delay over a somewhat
broader range (from 50 to 450 milliseconds).

Our final models fit with specific constants as presented (the equations in Table 6) likely hold
primarily for the size of the target tested (100 pixels in diameter) and screen resolution (1,920×1,080
pixels), since target selection time is known to be affected by both target size and target distance
(see Equation (2)). While the distance from the source (the starting location of the red ball/cursor) to
the target varies in our study, the distance the ball travels averages about 1

2 the maximum distance
on the screen. Combining Fitts’ index of difficulty (Equation (2)) with our results may produce a
unified general model. Such modeling should consider both the absolute target size in pixels and
also the target size relative to the screen resolution.

An additional consideration for specific models for target selection with delay is the skill of the
user. Figure 11 shows high skill users are less impacted by delays from 250 to 450 milliseconds,
with high skill users having only a 2.5-fold increase in selection time while low skill users have
a 4-fold increase in selection time. Thus, for many practical delay ranges, the effects of skill may
dominate the effects of delay. In fact, high skill users select targets faster with 350 milliseconds of
delay than low skill users with 200 milliseconds of delay.

6 CONCLUSION

The growth in cloud technologies provides an opportunity for interactive cloud-based video ser-
vices, such as computer games. However, the delay-sensitivity of computer games demands that
the effects of delay on players be better understood in order to design cloud systems and software
that support them. Previous studies measuring the effects of delay using commercial games do not
generalize nor model well, and previous user input studies do not yet provide models unifying the
effects of delay on player-game actions. In particular, the effects of delay on moving target selec-
tion, a common player action, using a game controller thumbstick, a common game input device,
have not been explored.

Our work provides another step toward understanding the effects of delay on user input for
games. We present the results of a user study with a custom game wherein users selected targets
moving with different speeds using a thumbstick with delayed input. Over 50 users provided data
for delays from 50 to 450 milliseconds and three target speeds—in total, over 8,000 observations of
user performance and over 1,500 subjective quality assessments for the different delay and speed
combinations.

Analysis of the results shows a slight increase in the time required to select a moving target for
low delays (under 200 milliseconds), and a sharp increase in selection time for higher delays (over
250 milliseconds), especially for fast targets (450 pixels per second). Higher skilled users are less af-
fected by delays than lower skilled users. Comparing the results with commercial games (UT 2003)
and game genres (first person, third person, and omnipresent) shows the observed performance
trends with delay match commercial first-person games well. Comparing the results to previous
user studies with full-featured cloud games (Neverball and Crazy Taxi) on both commercial
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(OnLive) and academic (GamingAnywhere) systems shows similar degradations in user perfor-
mance with delay. Subjective opinions show users are perceptive of even modest delays.

A derived analytic model provides a good fit for the mean time to select a moving target, with
an exponential term for delay and an important interaction term that captures the effects of target
speed combined with delay. Comparing this model with two models from previous studies that
used a delayed mouse instead of a thumbstick shows strong agreement in their accuracy, suggest-
ing a basis for producing a scientific law that explains the time for a user to select a moving object
with a pointing device when the input is subject to delay.

The results presented are relevant to system delays (e.g., local computer only) as well as network
delays. In particular, the results pertain to cloud systems where all user input is sent to the cloud
for rendering, meaning controller movements and clicks are delayed by the local system, network,
and server.

However, traditional network games—where controller movement is processed and rendered by
the local client—have only local delay for cursor/mouse movement, but incur additional delays for
clicking since the latter have network and server processing delays, too. Modeling the effects of
delays in such situations may be a fruitful area of future work.

In first-person games, target acquisition is often done by rotating the virtual world to pan the
target to the reticle in the center of the screen. Future work studying whether the results in this
article hold for first-person games, as suggested by Looser et al. [24], may be a useful confirmation.

The steering law [1] is a predictive model of human movement that describes the time required
to navigate, or steer, through a two-dimensional tunnel derived from Fitts’ Law. Since another
common game action is steering—navigating an avatar/vehicle down a virtual pathway—future
work might extend the steering law to incorporate delay (and perhaps moving paths).

Since clicking and missing a target has a cost in many games (i.e., using up virtual bullets), tasks
that force users to consider number of clicks in addition to time may yield different models. In
addition, there are many kinds of target movement in games, such as AI- or human-controlled so
models that consider a richer set of avatar behaviors, not just speed, may be warranted.

Last, but not least, the 50 users sampled have an age range typical of university students. Future
work could be to conduct user studies over a broader age range, perhaps considering additional
demographic breadth as well.

ACKNOWLEDGMENTS

Thanks to Robyn Domanico and Linh Hoang for conducting the thumbstick user studies and mea-
suring base system delays for the experiments in this article, Marco Duran and Matthew Thompson
for conducting the earlier mouse user studies, and to Ragnhild Eg and Kjetil Raeen for collaboration
on the initial approach.

REFERENCES

[1] Johnny Accot and Shumin Zhai. 1997. Beyond Fitts’ law: Models for trajectory-based HCI tasks. In Proceedings of the

ACM SIGCHI Conference on Human Factors in Computing Systems. 295–302.

[2] Rahul Amin, France Jackson, Juan E. Gilbert, Jim Martin, and Terry Shaw. 2013. Assessing the impact of latency and

jitter on the perceived quality of Call of Duty Modern Warfare 2. In Proceedings of HCI – Users and Contexts of Use.

97–106.

[3] Grenville Armitage. 2003. An experimental estimation of latency sensitivity in multiplayer Quake 3. In Proceedings

of the 11th IEEE International Conference on Networks (ICON’03).

[4] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel Agu, and Mark Claypool. 2004. The effects

of loss and latency on user performance in Unreal Tournament 2003. In Proceedings of ACM Network and System

Support for Games Workshop (NetGames’03).

[5] Yahn W. Bernier. 2001. Latency compensating methods in client/server in-game protocol design and optimization. In

Proceedings of the Game Developers Conference. [Online] http://www.gdconf.com/archives/2001/bernier.doc.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 14, No. 3s, Article 57. Publication date: June 2018.

http://www.gdconf.com/archives/2001/bernier.doc


Game Input with Delay 57:21

[6] Kyle J. Brady. 2015. Taking Fitts Slow: The Effects of Delayed Visual Feedback on Human Motor Performance and User

Experience. Master’s thesis. Arizona State University.

[7] K. Chen, P. Haung, G. Wang, C. Huang, and C. Lee. 2006. On the sensitivity of online game playing time to network

QoS. In Proceedings of IEEE Infocom.

[8] Kuan-Ta Chen, Yu-Chun Chang, Hwai-Jung Hsu, De-Yu Chen, Chun-Ying Huang, and Cheng-Hsin Hsu. 2014. On the

quality of service of cloud gaming systems. IEEE Transactions on Multimedia 26, 2 (Feb. 2014).

[9] Mark Claypool. 2005. The effect of latency on user performance in real-time strategy games. Elsevier Computer Net-

works, Special Issue on Networking Issues in Entertainment Computing 49, 1 (Sept. 2005), 52–70.

[10] Mark Claypool and Kajal Claypool. 2006. Latency and player actions in online games. Commun ications of the ACM

49, 11 (Nov. 2006).

[11] Mark Claypool, Ragnhild Eg, and Kjetil Raaen. 2016. The effects of delay on game actions: Moving target selection

with a mouse. In Proceedings of the ACM Annual Symposium on Computer-Human Interaction in Play (CHI PLAY).

Extended Abstract.

[12] Mark Claypool, Ragnhild Eg, and Kjetil Raaen. 2017. Modeling user performance for moving target selection with a

delayed mouse. In Proceedings of the 23rd International Conference on MultiMedia Modeling (MMM’17).

[13] Mark Claypool and David Finkel. 2014. The effects of latency on player performance in cloud-based games. In Pro-

ceedings of the 13th ACM Network and System Support for Games (NetGames’14).

[14] Mark Claypool, Tianhe Wang, and McIntyre Watts. 2015. A taxonomy for player actions with latency in network

games. In Proceedings of the 25th ACM International Workshop on Network and Operating Systems Support for Digital

Audio and Video (NOSSDAV’15).

[15] Paul M. Fitts. 1954. The information capacity of the human motor system in controlling the amplitude of movement.

Journal of Experimental Psychology 47, 6 (June 1954), 381–391.

[16] Tobias Fritsch, Hartmut Ritter, and Jochen H. Schiller. 2005. The effect of latency and network limitations on

MMORPGs: A field study of Everquest 2. In Proceedings of the 4th ACM Network and System Support for Games

(NetGames’05).

[17] Abir Al Hajri, Sidney Fels, Gregor Miller, and Michael Ilich. 2011. Moving target selection in 2D graphical user

interfaces. In Proceedings of IFIP TC Human-Computer Interaction (INTERACT’11).

[18] Errol Hoffmann. 1991. Capture of moving targets: A modification of Fitts’ law. Ergonomics 34, 2 (1991), 211–220.

[19] Errol Hoffmann. 1992. Fitts’ law with transmission delay. Ergonomics 35, 1 (1992), 37–48.

[20] Zenja Ivkovic, Ian Stavness, Carl Gutwin, and Steven Sutcliffe. 2015. Quantifying and mitigating the negative effects

of local latencies on aiming in 3D shooter games. In Proceedings of the ACM SIGCHI Conference on Human Factors in

Computing Systems. 135–144.

[21] R. Jagacinski, D. Repperger, S. Ward, and M. Moran. 1980. A test of Fitts’ law with moving targets. The Journal of

Human Factors and Ergonomics Society 22, 2 (April 1980), 225–233.

[22] Ricardo Jota, Albert Ng, Paul Dietz, and Daniel Wigdor. 2013. How fast is fast enough?: A study of the effects of

latency in direct-touch pointing tasks. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing

Systems.

[23] R. Kerr. 1973. Movement time in an underwater environment. Journal of Motor Behavior 5, 3 (1973), 175–178.

[24] Julian Looser, Andy Cockburn, and Joshua Savage. 2005. On the validity of using first-person shooters for Fitts’ law

studies. People and Computers XIX 2 (2005), 33–36.

[25] I. S. MacKenzie and W. Buxton. 1992. Extending Fitts’ law to two-dimensional tasks. In Proceedings of the ACM CHI

Conference on Human Factors in Computing Systems. 219–226.

[26] I. Scott MacKenzie and Colin Ware. 1993. Lag as a determinant of human performance in interactive systems. In

Proceedings of the CHI Conference on Human Factors in Computing Systems. 6.

[27] Atsuo Murata and Hirokazu Iwase. 2001. Extending Fitts’ law to a three-dimensional pointing task. Elsevier Human

Movement Science 20 (2001), 719–805.

[28] James Nichols and Mark Claypool. 2004. The effects of latency on online Madden NFL Football. In Proceedings

of the 14th ACM International Workshop on Network and Operating Systems Support for Digital Audio and Video

(NOSSDAV’04).

[29] Lothar Pantel and Lars C. Wolf. 2002. On the impact of delay on real-time multiplayer games. In Proceedings of the

Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV’02).

[30] K. Raaen and R. Eg. 2015. Instantaneous human-computer interactions: Button causes and screen effects. In Proceed-

ings of the 17th HCI International Conference.

[31] Kjetil Raaen and Andreas Petlund. 2015. How much delay is there really in current games? Proceedings of ACM

Multimedia Systems.

[32] R. Shea, L. Jiangchuan, E. Ngai, and Y. Cui. 2013. Cloud gaming: Architecture and performance. IEEE Network 27, 4

(July-Aug. 2013), 16–21.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 14, No. 3s, Article 57. Publication date: June 2018.



57:22 M. Claypool

[33] R. So and G. Chung. 2002. Combined and interacting effects of hand and head movement delays on discrete manual

performance in a virtual environment. Ergonomics 45, 2 (2002), 105–123.

[34] R. W. Soukoreff and I. S. MacKenzie. 2004. Towards a standard for pointing device evaluation—Perspectives on 27

years of Fitts’ law research in HCI. Elsevier International Journal of Human-Computer Studies 61, 6 (2004), 751–789.

[35] Colin Ware and Ravin Balakrishnan. 1994. Target acquisition in fish tank VR: The effects of lag and frame rate. In

Proceedings of the Candian Information Processing Society’s Graphics Interface Conference.

[36] C. Ware and H. Mikaelian. 1987. An evaluation of an eye tracker as a device for computer input. In Proceedings

of ACM Human Factors in Computing Systems and Graphics Interface.

[37] A. T. Welford. 1968. Fundamentals of Skill. Methuen, London, U.K.

Received August 2017; revised November 2017; accepted January 2018

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 14, No. 3s, Article 57. Publication date: June 2018.


