
Evaluating Streaming and Latency Compensation in

a Cloud-based Game

Jiawei Sun, Mark Claypool
Worcester Polytechnic Institute

Worcester, MA, 01609 USA

{jsun|claypool}@wpi.edu

Abstract—The growth in cloud computing and network con-
nectivity brings the opportunity for cloud-based game systems
where players interact through a lightweight client that only
displays rendered frames and captures input, while the heavy-
weight game processing happens on the cloud server. Compared
to traditional games, cloud-based games present challenges in
handling network latency and bitrate requirements. This work
uses Drizzle, a custom cloud-based game system, to evaluate: 1)
time warp to compensate for latency, and 2) graphics streaming to
reduce network bitrates. A user study shows time warp mitigates
the effects of latency on player performance, and laboratory
experiments show graphics streaming provides bitrate reduction
compared to the video streaming typically used by commercial
cloud-based game systems.

I. INTRODUCTION

Although still an emerging commercial market, cloud-based

games are growing rapidly with the increase in the number

of gamers and the global penetration of the Internet and

smart phones. Established companies like Sony1 and NVidia2

are already invested in cloud-based game services, but other

big players such as Google3 and smaller companies such as

Vortex4 are looking to capture market shares.

Cloud-based games differ from traditional games in that

game clients are relatively lightweight, only sending user

input (e.g., key presses and mouse actions) and receiving

game output (i.e., images and sounds). The heavyweight game

logic – applying physics to game objects, resolving collisions,

processing AI, etc. – and rendering are done at the server,

with the game frames streamed to the client to display. A

cloud-based game system offers advantages over traditional

games including: modest client hardware requirements, no

client game installation requirement, easier software piracy

prevention, and fewer target platforms for developers.

While promising, cloud-based games face two major chal-

lenges when compared to traditional games: 1) bitrates –

cloud-based games require significantly higher network bi-

trates from the server to the client [1] than do traditional

network games; and 2) latency – cloud-based game clients

1https://www.playstation.com/en-us/explore/playstation-now/
2https://www.nvidia.com/object/cloud-gaming.html
3https://store.google.com/us/magazine/stadia
4https://vortex.gg/

cannot immediately act on player input but must instead send

the input to the server, have it processed, the result rendered

and sent back to the client for display [2].

Approaches to reduce bitrates can leverage innovations in

image and video compression. However, the graphics-based

nature of games present an opportunity for additional bitrate

savings with only modest increases in client complexity by

not necessarily streaming rendered game images but instead

sending drawing information so the client can do the render-

ing [3].

Approaches to compensate for latency [4] have been widely

used in commercial games. However, there has been limited

scientific evaluation of their overall effectiveness and no

specific evaluations covering the breadth of games and network

conditions. Moreover, latency compensation techniques have

not been applied to cloud-based game systems which are more

restrictive in the techniques they can use given the client’s

limited knowledge of the game state and reduced hardware

capabilities.

This work makes three contributions to this area: 1) the

evaluation of a latency compensation technique, time warp,

in a cloud-gaming system; 2) exploration of approaches to

cloud-based game streaming to reduce network bitrates; and 3)

evaluation using Drizzle, a cloud-gaming system designed and

developed from scratch using the Dragonfly [5] game engine.

Results of a 30-person user study show that time warp

for projectile weapons can ameliorate the effects of latency

on player performance, but with a cost in player perception

of the consistency of the game world. Results of system

experiments show graphics streaming can significantly reduce

network bitrates over video streaming, but still has higher

bitrates compared to traditional network games. Both time

warp and game streaming have considerable CPU cost on the

server, particularly as the number of game objects increases.

The rest of this paper is organized as follows: Section II

describes related work; Section III presents our methodology;

Section IV analyzes the results; and Section V summarizes

our conclusions and possible future work.

II. RELATED WORK

This section describes research related to this work: archi-

tectures for cloud-based game systems (Section II-A), studies

of latency and games (Section II-B), and work on latency

compensation algorithms (Section II-C).

A. Cloud-based Game Systems

While there is no single agreed-upon cloud system archi-

tecture, a four-layer architecture defined by Foster et al. [6]

has often been used by researchers. Foster et al.’s model,

from bottom to top, has a fabric layer, unified resource layer,

platform layer and application layer. For our work, the Drizzle

server runs at the application layer. Foster et al. also list cloud

services at three different levels: infrastructure as a service,

platform as a service, and software as a service. Cloud-based

gaming in general, and Drizzle specifically, is an example of

software as a service.

Cloud-based game systems can broadly be classified into

graphics streaming and video streaming [7]. In graphics

streaming, as done by de Winter et al. [3], instead of sending

video, the server sends graphics commands to the client and

the client renders the game images. In video streaming, as

described by Shea et al. [8], the server is responsible for

rendering the game scene, compressing the images as video,

and then transmitting to the client. Both approaches reduce

computation on the client versus a traditional network game

architecture because only the server manages the entire game

world.

The video streaming approach is discussed the most in cloud

gaming research [8], [9] and is currently used by most existing

commercial cloud-based systems since it reduces the workload

on the client the most compared to the other two approaches.

Figure 1 depicts a cloud-based game system with video

streaming. The lightweight (“thin”) client on the left captures

user interaction (e.g., a game controller button press) and sends

the user command to the cloud gaming platform on the right.

The user interactions are translated into game actions (e.g.,

a “shoot” command) which is processed by the game logic.

When the game engine updates the game world, changes are

rendered by the server’s GPU and the rendered scene passed

to the video encoder. The encoded video is then streamed to

the thin client where it is decoded.

Drizzle, our custom cloud-based game system, supports

both graphics streaming and video streaming, each of which

is evaluated in this paper.

B. Latency and Games

The effects of latency has been studied for many tradi-

tional games [11]–[16]. While such work has helped better

understand the impact of latency on traditional network games,

the results may not hold for cloud-based games that have a

fundamentally different underlying system architecture.

For cloud game systems, Chen et al. [2] discuss the effects

of network latency (and other parameters) on the cloud-based

Fig. 1. Cloud-based game system with video streaming [10].

game systems OnLive5 and StreamMyGame.6 The authors did

not explicitly measure player performance with latency.

Jarschel et al. [17] conducted a user study in an emulated

cloud game system, measuring the quality of experience for

games users selected to play. Claypool and Finkel [18] present

the results of two user studies that measured the objective and

subjective effects of latency on cloud-based games. Sackl et

al. [19] analyze the relationships between latency and player

experience for cloud gaming. While more closely related to

our work, these papers do not compare cloud-based games

with and without latency compensation.

C. Latency Compensation

Bernier [20] describes methods game systems can use to

compensate for network latencies, such as system-level treat-

ments (e.g., real-time packet priorities), latency compensation

algorithms (e.g., dead reckoning, sticky targets, aim dragging)

and even game designs (e.g., deferred avatar response, ge-

ometry scaling). While providing an important foundation for

latency compensation, the work does not provide scientific

evaluation of the techniques.

Ivkovic et al. [21] carried out a controlled study of aiming in

a first person shooter game with latency both with and without

an aim assistance latency compensation technique. Lee and

Chang [22] evaluated the effects of the latency compensa-

tion techniques time warp and interpolation on players in a

commercial first person shooter game. Lee and Chang [23]

continued evaluation of time warp with a custom first person

shooter game, providing a guideline of 250 milliseconds as a

limit for latency compensation. While helpful in better under-

standing latency compensation, and even used in traditional

network games [24], such techniques have not been applied to

cloud-based games.

Our work applies a popular latency compensation technique,

time warp, to a cloud-based game and evaluates it with a user

study and system CPU load measurements.

5https://en.wikipedia.org/wiki/OnLive
6https://en.wikipedia.org/wiki/StreamMyGame

III. METHODOLOGY

This section presents our methodology to evaluate graphics

streaming and latency compensation in cloud-based games.

A. Cloud-based Game Streaming

There are generally three approaches to cloud-based game

streaming, depicted in Figure 2. At the top left is image

streaming, where the game server renders the game frames

to be displayed as individual images, compresses them (e.g.,

as a JPEG image) and sends them to the client for decoding

and playing. Next down, is video streaming, where the server

renders the game frames as images, then encodes them into a

video stream and sends the stream to the client for decoding

and playing. In video streaming, the server applies intra-

encoding for each image as in image streaming, but also takes

advantage of the temporal redundancy in adjacent images,

applying inter-encoding for a higher compression rate. At the

bottom is graphics streaming, where the server does not render

individual images but instead sends graphics information for

each frame to the client whereupon the client renders the im-

ages. Unlike in image streaming or video streaming, graphics

streaming requires both the server and client to have a priori

knowledge of how to render the image from the underlying

image data.

Fig. 2. Cloud streaming approaches. Top: image streaming, Middle: video
streaming, Bottom: graphics streaming.

The three approaches depicted in Figure 3 – image stream-

ing, video streaming and graphics streaming – have tradeoffs

in the bitrates required by the network and the decoding and

rendering complexity needed by the client. At the top left

Fig. 3. Cloud-based game streaming tradeoffs.

is image streaming, the simplest for the client, but with the

highest network bitrate owing to the only modest compression

afforded to the individual images. Video streaming requires

more client complexity in that both intra- and inter-image

decoding is needed, but with a significant bitrate reduction

attained by the inter-encoding. Graphics streaming requires

somewhat more complexity than video streaming in that the

client itself must render the images from graphics data, but

there is significant potential for lower bitrates than in video

streaming. For comparison, traditional games are at the bottom

right, having fairly low bitrates (5 kb/s to 124 kb/s) [1] but

requiring complex clients, capable of running a game engine

and doing a full render of the game world from game data.

B. Time Warp

Time warp is a latency compensation technique deployed at

a game server, as depicted in Figure 4. With time warp, the

player acts (e.g., shooting) based on the opponent’s apparent

position, but when the server gets the input ∆t later, the

opponent’s actual position has moved. To compensate for this

latency, the server warps time (and the game world) back by

∆t, determines the outcome, and rolls the game world forward

to the present time.

Fig. 4. Time warp – server rolls back game world ∆t.

C. Drizzle

Drizzle is based on Dragonfly – a 2d game engine, full-

featured enough to make a wide variety of arcade-style

games.7 The core engine is written in C++ and includes ASCII

graphics rendered with SFML,8 basic kinematics (velocity and

acceleration), keyboard and mouse input, collision detection

and resolution, and audio (sound effects and music).

We extended Dragonfly to support networking – specifically

a network manager that uses TCP sockets. The network

manager handles the network connection – a TCP socket and

supports accept() and connect() calls for the server and

client, respectively:

• The NetworkManager::accept() method sets up and

then waits for a TCP/IP socket connection from the

client, listening on a “well-known” port. This includes

system calls to socket(), bind(), listen() and

accept().

• The NetworkManager::connect() method is invoked

by the client to connect to the server, indicated by a

hostname. This includes system calls to socket(),

getaddrinfo(), and connect().

The network manager has methods to send() data through

the connected socket and receive() data from the con-

nected socket. Receiving is non-blocking, so if there is no data

pending, the method does not block but returns. Data arriving

at the server triggers a network event to all interested9 game

objects.

Drizzle has a heavyweight server that does the game com-

putations and a “thin” client that displays frames and transmits

user input.

Pseudo-code for the Drizzle server is depicted in Listing 1.

The server starts up the game engine and gets ready for a client

to connect by waiting on a well-known port. Once the client

connects, the server does all the game computations – updating

positions of game objects, detecting and resolving collisions,

and composing frames. However, unlike in a traditional game,

there is no player sitting at the console (viewing the game

and providing input). Instead, the server composes the game

stream (Line 1) depending on if it’s using image streaming,

video streaming or graphics streaming. The game frame data

is streamed down the network socket to the client. Player input

from the keyboard and mouse at the Drizzle client is received

at the server via the same network socket. The server applies

all input received over the socket to the game as if the player

were providing input to the keyboard and mouse of the server.

When the game is over, the Drizzle server closes the network

connection to the client.

Pseudo-code for the Drizzle client is depicted in Listing 2.

The client starts up and immediately connects to the Drizzle

server using the hostname provided by the player and the

7http://dragonfly.wpi.edu/games/index.html\#trailers
8The Simple and Fast Multimedia Library, https://www.sfml-dev.org/
9Using the Observer software design pattern.

Listing 1. Drizzle Server✞ ☎
0 start Dragonfly game engine

1 load game resources

2 wait until Client connects

3

4 / / Run u n t i l end o f game

5 while game is not over do

6

7 / / Do one s t e p i n game loop

8 update positions for all game objects

9 detect and resolve collisions

10 compose game frame

11

12 / / P repare and send game frame

13 marshall game frame / / image , v i d e o or g r a p h i c s
14 send game frame to client

15

16 / / R e c e i v e and p r o c e s s any p l a y e r i n p u t

17 if network input then

18 receive data

19 apply input to game

20 end if

21

22 end while

23

24 / / Shu t i t down
25 close network connection

26 exit
✝ ✆

Listing 2. Drizzle Client✞ ☎
0 connect to Server

1

2 / / Loop as long as c o n n e c t e d

3 while network is connected do

4

5 / / R e c e i v e and d i s p l a y f rames

6 if network input then

7 receive data

8 draw frame on screen

9 end if

10

11 / / Get u s e r i n p u t and send t o s e r v e r
12 if keyboard/mouse input then

13 marshall input data

14 send input data to server

15 end if

16

17 end while

18

19 / / Shu t i t down

20 exit
✝ ✆

well-known port. Once connected, the client receives the game

frame data sent by the server over the network socket, render-

ing the frame depending on the type of streaming (Line 2) and

displaying it on the screen. The client also captures keyboard

and mouse input from the player, sending all to the server.

When the network connection to the server is closed, the client

exits.

Drizzle can be configured to do image streaming, video

streaming or graphics streaming. Image streaming is provided

by using the SFML capture() method, sending the re-

sulting image as a JPEG. Video streaming is provided via

ffmpeg.10 Graphics streaming is provided by sending send

the bare minimum needed by the client to draw a packet – the

character (1 byte), color (1 byte), and (x,y) location (4 bytes

each).

D. Cloud Saucer Shoot

We created a Drizzle-compatible game called Cloud Saucer

Shoot – an arcade-style shooting game set in space, where

the player pilots a space ship against an endless, and ever

increasing, horde of alien saucers. Figure 5 depicts the game.

The player controls the blue ship on the left using arrow keys

to move up and down. The green saucers move right to left,

spawning in greater numbers as time progresses. If the ship is

struck by a saucer, both are destroyed. The player fires bullets

from the ship by pressing the spacebar. When a bullet hits a

saucer, both are destroyed and the player is awarded 10 points.

The player also receives 1 point each second the ship is alive.

The goal is to shoot as many saucers as possible before being

destroyed.

Fig. 5. Cloud Saucer Shoot. The player controls the ship on the left, firing
blue bullets horizontally at the saucers. Bullets destroy one saucer upon

contact. Saucers move right to left, destroying the ship upon contact.

E. Experiments

Our user study was conducted in a windowless computer

lab with bright, fluorescent lighting.

Both the server and client ran on a laptop equipped with

a 14” display, Intel i7 CPU 4 GHz processor, and 8 GB of

memory running Windows 10. The system experiments were

conducted on the same laptop. Given the lightweight nature

of both the server, game and game client, the hardware was

more than sufficient to provide a playout rate of 30 f/s.

Participants were volunteers solicited among graduate stu-

dents in the department. First, the users heard a scripted brief

about the study and signed an Institute Review Board (IRB)

consent form. Next, they were asked to make themselves

comfortable at the laptop by adjusting chair height and laptop

screen tilt. Then users filled out a demographics and gaming

experience survey coded using the Qualtrics survey tool.11

Users were told the objective of the Saucer Shoot game

and how to control the ship and fire bullets. Users then played

10https://www.ffmpeg.org/
11https://www.qualtrics.com/

through a 15 second version of the game for practice. Results

were not recorded for the practice session.

Immediately after the practice, users played 10 game ses-

sions, each with an added latency selected from the range

[0, 100, 200, 400, 800 milliseconds] using the network utility

Clumsy.12. Five of the sessions had time warp on and the

other 5 had time warp off. The game sessions were shuffled

and users were blind to the amount of added latency and time

warp.

After each of the 10 game sessions, users were asked to

rate the responsiveness and graphics consistency from 0 (low)

to 5 (high).

Playing through all game sessions typically took less than

15 minutes.

IV. ANALYSIS

This section summarizes participant demographics (Sec-

tion IV-A), presents analysis of the user experience with time

warp (Section IV-B), and analyzes system impact for the game

streaming options (Section IV-C).

A. Demographics

Thirty users participated in the study. All users were 20 to

30 years old. Twenty-five identified as male and 5 as female.

Sixty percent of the users played online games every day, 25

percent once per week, and 15 percent once per month or less.

B. User Experience

Figure 6 depicts user game performance, measured by game

score, versus added latency, both with and without time warp.

The x-axis is the added latency (in milliseconds) and the y-

axis is the user score (a combination of Saucers destroyed and

seconds alive). There are two trendlines, one for sessions with

time warp on and the other for sessions with time warp off.

Each point is the mean score for all users at that latency, shown

with standard error bars. From the graph, user performance

decreases with added latency, both with and without time warp.

Without time warp, the trend is a clear exponential decay.

With time warp, there is an initial decline in performance from

0 to 100 milliseconds of added delay, but then performance

does not decline appreciably from 100 to 400 milliseconds,

before decreasing again at 800 milliseconds. 800 milliseconds

is about the time it takes a Saucer to travel completely across

the screen in the game.

Figures 7 and 8 depict user opinions of the game sessions

in the presence of latency – specifically, responsiveness and

consistency, respectively. User opinions are on a 6 point scale,

from 0 (low) to 5 (high). In both graphs, the x-axis, data

points, error bars and trend lines are as for Figure 6. From the

graphs, the responsiveness of the game is about the same with

and without time warp, evidenced by the overlapping red and

blue trend lines in Figure 7. The inconsistency in the game

12https://jagt.github.io/clumsy/

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800

S
c
o
re

Added Latency (milliseconds)

Time warp off
Time warp on

Fig. 6. User game score versus added latency.

with time warp is noticeable, however, seen by the clearly

higher blue trend line in Figure 8. The absolute difference in

consistency between time warp on and time warp off stays

about the same (1 point) for all latencies.

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600 700 800

R
e
s
p
o
n
s
iv

e
n
e
s
s

Added Latency (milliseconds)

Time warp off
Time warp on

Fig. 7. Responsiveness versus added latency.

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600 700 800

C
o
n
s
is

te
n
c
y

Added Latency (milliseconds)

Time warp off
Time warp on

Fig. 8. Consistency versus added latency.

C. System Impact

Figure 9 depicts the average downstream (server to client)

network bitrate (the y-axis) for different Drizzle streaming

approaches. Each bar shown is the average bitrate measured

over a complete Saucer Shoot game session. From the graph,

image streaming is network intensive, needing almost 8 Mb/s.

Video streaming has substantial bitrate savings, about 20% of

that of image streaming. Graphics streaming has significantly

reduced bitrates, about 20% that of video streaming and less

than 5% that of image streaming.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

image video graphics

B
it
ra

te
 (

K
b
/s

)

Fig. 9. Network bitrates for Drizzle streaming approaches for Cloud Saucer
Shoot.

In order to provide a perspective on Drizzle bitrates, Table I

compares Drizzle bitrates to a commercial cloud-based game

service, traditional network games and video conferencing.

From the table, traditional network games have the lowest

network bitrates since the heavyweight client runs a full copy

of the game as only game object updates need to be sent over

the network. Drizzle image streaming has the highest bitrate,

but not substantially higher than commercial cloud-based game

streaming. Drizzle image streaming has bitrates around that

of video conferencing. Drizzle graphics streaming has bitrates

between video conferencing and traditional network games,

but closer to the latter.

TABLE I. Network bitrate comparison

System Bitrate (Kb/s) Citation

Traditional network game 5 to 67 [16], [25], [26]
Drizzle graphics streaming 320
Drizzle video streaming 1520
Video conference 2222
Commercial cloud-based game 6339 [1]
Drizzle image streaming 7950

The game frames captured and sent by the server vary in size

based on the game scene complexity. Game scenes with more

game objects tend to be visually complex, not compressing

as well for image and video streaming and requiring more

commands for graphics streaming.

Figure 10 depicts the average network bitrate versus number

of game objects for different Drizzle streaming approaches.

The x-axis is the number of game objects and the y-axis is

the network bitrate. Each point is the mean bitrate required for

rendering a Cloud Saucer Shoot game frame with the indicated

number of objects. From the graph, the bitrate requirements

grow linearly with the number of objects. In all cases, image

streaming has the highest bitrate by far, followed by video

streaming and then graphics streaming.

Supporting games with a lot of game objects can make

the performance bottleneck the server instead of the network.

 0

 2500

 5000

 7500

 0 5 10 15 20

B
it
ra

te
 (

K
b
/s

)

Number of Objects

Image
Video

Graphics

Fig. 10. Network bitrates versus number of game objects with trendlines for
each Drizzle streaming approach.

Using the same computer as for our user study, we analyzed

the CPU load for the Drizzle server for image streaming

scenarios from Figure 11 with 200 milliseconds of added

latency and time warp. The breakdown is as follows:

Time warp - each game loop (30 Hz), the server rolls back the

game world 200 milliseconds to compensate for client latency,

applies the user input, and rolls the world forward again.

Update - the server then updates the game world (moving

game objects and resolving collisions).

Copy - the server copies the current game world, effectively

replicating every game object in the game to preserve it for

future time warping.

Stream - lastly, the server renders the game world and sends

it to the client.

Fig. 11. CPU load breakdown versus number of game objects.

From the graph, as expected, total CPU load increases with

number of game objects. Once the CPU load exceeds 33

milliseconds (at about 260 game objects), the game engine

on can no longer keep up with the 30 Hz game loop rate.

Under these conditions, the player experience would degrade

from a reduced frame rate and overall sluggish performance.

Time warp and streaming have the highest processing load by

far. Many traditional game servers have latency compensation,

but streaming adds an additional processing overhead unique

to cloud-based game servers. This suggests the processing

requirements for cloud-based servers are significantly higher

than that of traditional game servers. Future work might look

to optimize the processing of streaming as well as latency

compensation.

V. CONCLUSION

The growth in games and networking has provided the

opportunity for cloud-based games, where the server handles

most of the game processing and rendering, streaming game

frames to the lightweight client that primarily gathers and

transmits player input. While cloud-based games have some

advantages over traditional games, the remote processing of

gameplay presents challenges in accommodating latency and

network bitrate requirements.

This paper presents Drizzle, a lightweight cloud-based game

system that allows for the study of latency compensation

and game streaming approaches. Drizzle is written in C++

using the Dragonfly [5] game engine, adding a networking

component and a lightweight client for full cloud-based game

functionality.

Addressing network bitrates, Drizzle is used to evaluate

different cloud-based streaming approaches, comparing the

bitrates required by image streaming, video streaming and

graphics streaming. Results from our systems experiments

show video streaming, the state of the art for most commercial

systems, provides a significant bitrate reduction over image

streaming but graphics streaming can reduce bitrates even

more.

Addressing latency, Drizzle is used to evaluate a well-known

(but not well-evaluated) latency compensation technique –

time warp – wherein the game server rolls back time to when

the client provided input in order to accommodate the server

to client latency. While time warp is often used by traditional

game servers, e.g., Overwatch [24] (Blizzard, 2016), it has

not been scientifically evaluated much nor has it been applied

to cloud-based games. Results from our 30-participant user

study show time warp can mitigate some of the effects of

latency in terms of player performance, but time warp with

projectile weapons has a noticeably more inconsistent game

state. Analysis of CPU load shows time warp and streaming

dominate, suggesting cloud-based game servers need more

resources than traditional game servers.

Since time warp in cloud-based games was studied for

projectile weapons in this paper, future work could evaluate

time warp for hit scan (i.e., instant effect) weapons. Other

latency compensation techniques such as aim assistance or

time delay, could be evaluated in a cloud-based game system.

While Drizzle shows graphics streaming has potential to

reduce bitrates more than video streaming, future work could

apply graphics streaming techniques to systems other than

Drizzle and explore the benefits for a wider range of games

and game conditions.

REFERENCES

[1] M. Claypool, D. Finkel, A. Grant, and M. Solano, “On the Performance
of OnLive Thin Client Games,” Springer Multimedia Systems Journal

(MMSJ) - Special Issue on NetGames, vol. 20, no. 5, 2014.
[2] K.-T. Chen, Y.-C. Chang, H.-J. Hsu, D.-Y. Chen, C.-Y. Huang, and C.-

H. Hsu, “On the Quality of Service of Cloud Gaming Systems,” IEEE
Transactions on Multimedia, vol. 26, no. 2, Feb. 2014.

[3] D. D. Winter, P. Simoens, L. Deboosere, F. D. Turck, J. Moreau,
B. Dhoedt, and P. Demeester, “A Hybrid Thin-client Protocol for Multi-
media Streaming and Interactive Gaming Applications,” in Proceedings

of NOSSDAV, Newport, RI, USA, Jun. 2006.
[4] Y. W. Bernier, “Latency Compensating Methods in Client/Server In-

game Protocol Design and Optimization,” in Proceedings of GDC, San
Francisco, CA, USA, Feb. 2001, https://tinyurl.com/yan2yvs2 (accessed
1-17-2019).

[5] M. Claypool, Dragonfly - Program a Game Engine from Scratch.
Worcester, MA, USA: Interactive Media and Game Development,
Worcester Polytechnic Institute, 2014, online at: http://dragonfly.wpi.
edu/book/.

[6] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid
Computing 360-Degree Compared,” in Proceedings of Grid Computing

Environments Workshop (GCE), Austin, TX, USA, Nov. 2008, pp. 1–10.
[7] C. Huang, C. Hsu, Y. Chang, and K. Chen, “GamingAnywhere: An Open

Cloud Gaming System,” in Proceedings of ACM Multimedia Systems
(MMSys), Oslo, Norway, Feb. 2013.

[8] R. Shea, L. Jiangchuan, E. Ngai, and Y. Cui, “Cloud Gaming: Archi-
tecture and Performance,” IEEE Network, vol. 27, no. 4, pp. 16–21,
Jul-Aug 2013.

[9] I. Slivar, M. Suznjevic, and L. Skorin-Kapov, “Game Categorization
for Deriving QoE-Driven Video Encoding Configuration Strategies for
Cloud Gaming,” ACM Transactions on Multimedia Computuing Com-
munications and Applications, vol. 14, no. 3s, pp. 56:1–56:24, Jun. 2018.

[10] R. Shea, J. Liu, E. Ngai, and Y. Cui, “Cloud Gaming: Architecture and
Performance,” IEEE Network, vol. 27, pp. 16–21, Aug. 2013.

[11] T. Fritsch, H. Ritter, and J. H. Schiller, “The Effect of Latency and
Network Limitations on MMORPGs: a Field Study of Everquest 2,” in
Proceedings of NetGames, Hawthorne, NY, USA, Oct. 2005.

[12] G. Armitage, “An Experimental Estimation of Latency Sensitivity in
Multiplayer Quake 3,” in Proceedings of the 11th IEEE International

Conference on Networks (ICON), Sydney, Australia, Sep. 2003.
[13] K. Chen, P. Haung, G. Wang, C. Huang, and C. Lee, “On the Sensitivity

of Online Game Playing Time to Network QoS,” in Proceedings of IEEE

Infocom, Barcelona, Spain, Apr. 2006.
[14] R. Amin, F. Jackson, J. E. Gilbert, J. Martin, and T. Shaw, “Assessing

the Impact of Latency and Jitter on the Perceived Quality of Call of

Duty Modern Warfare 2,” in Proceedings of HCI – Users and Contexts

of Use, Las Vegas, NV, USA, Jul. 2013, pp. 97–106.

[15] O. Hohlfeld, H. Fiedler, E. Pujol, and D. Guse, “Insensitivity to Network
Delay: Minecraft Gaming Experience of Casual Gamers,” in Proceedings
of the International Teletraffic Congress (ITC), Wurzburg, Germany, Sep.
2016.

[16] N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu, “The Effect
of Latency on User Performance in Warcraft III,” in Proceedings of

NetGames, Redwood City, CA, USA, May 2003.

[17] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hossfeld, “An Evaluation
of QoE in Cloud Gaming Based on Subjective Tests,” in Proceedings
of Innovative Mobile and Internet Services in Ubiquitous Computing,
Seoul, Korea, 2011.

[18] M. Claypool and D. Finkel, “The Effects of Latency on Player Perfor-
mance in Cloud-based Games,” in Proceedings of NetGames, Nagoya,
Japan, Dec. 2014.

[19] A. Sackl, R. Schatz, T. Hossfeld, F. Metzger, D. Lister, and R. Irmer,
“QoE Management Made Uneasy: The Case of Cloud Gaming,” in
IEEE Conference on Communications Workshops (ICC), Kuala Lumpur,
Malaysia, May 2016.

[20] Y. W. Bernier, “Latency Compensating Methods in Client/Server In-
game Protocol Design and Optimization,” in Proceedings of the Game

Developers Conference, San Francisco, CA, USA, Feb. 2001, [On-
line] https://www.gamedevs.org/uploads/latency-compensation-in-client-
server-protocols.pdf.

[21] Z. Ivkovic, I. Stavness, C. Gutwin, and S. Sutcliffe, “Quantifying and
Mitigating the Negative Effects of Local Latencies on Aiming in 3D
Shooter Games,” in Proceedings of the Conference on Human Factors

in Computing Systems, Seoul, Korea, 2015.

[22] W.-K. Lee and R. K. C. Chang, “Evaluation of Lag-related Configu-
rations in First-person Shooter Games,” in Proceedings of NetGames,
Zagreb, Croatia, 2015.

[23] S. W. K. Lee and R. K. C. Chang, “On ‘Shot Around a Corner’ in
First-Person Shooter Games,” in Proceedings of NetGames, Jun. 2017.

[24] T. Ford and P. Orwig, “Developer Update - Let’s Talk Netcode,” Online,
apr 2016, https://www.youtube.com/watch?v=vTH2ZPgYujQ (accessed:
1-17-2018).

[25] J. Nichols and M. Claypool, “The Effects of Latency on Online Madden
NFL Football,” in Proceedings of NOSSDAV, Kinsale, County Cork,
Ireland, Jun. 2004.

[26] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M. Clay-
pool, “The Effects of Loss and Latency on User Performance in Unreal
Tournament 2003,” in Proceedings of NetGames, Portland, OG, USA,

Sep. 2004.

