
EvLag – A Tool for Monitoring and Lagging Linux Input Devices

Shengmei Liu
sliu7@wpi.edu

Worcester Polytechnic Institute
Worcester, Massachusetts, USA

Mark Claypool
claypool@wpi.edu

Worcester Polytechnic Institute
Worcester, Massachusetts, USA

ABSTRACT

Understanding the effects of latency on interaction is important for

building software, such as computer games, that performwell over

a range of system configurations. Unfortunately, user studies eval-

uating latency must each write their own code to add latency to

user input and, even worse, must limit themselves to open source

applications. To address these shortcomings, this paper presents

EvLag, a tool for adding latency to user input devices in Linux.

EvLag provides a custom amount of latency for each device regard-

less of the application being run, enabling user studies for systems

and software that cannot be modified (e.g., commercial games).

Evaluation shows EvLag has low overhead and accurately adds the

expected amount of latency to user input. In addition, EvLag can

log user input events for post study analysis with several utilities

provided to automate studies and facilitate output event parsing.

CCS CONCEPTS

• Software and its engineering → Input / output; Interactive

games.

KEYWORDS

delay, latency, game, lag

ACM Reference Format:

Shengmei Liu and Mark Claypool. 2021. EvLag – A Tool for Monitoring

and Lagging Linux Input Devices. In 12th ACMMultimedia Systems Confer-

ence (MMSys ’21) (MMSys 21), September 28-October 1, 2021, Istanbul, Turkey.

ACM,NewYork, NY, USA, 6 pages. https://doi.org/10.1145/3458305.3478449

1 INTRODUCTION

Real-time games require players to make many time-sensitive ac-

tions that can sufferwhen the computer responses lag behind player

input. Even latencies as small as milliseconds can hamper the in-

terplay between players’ actions and intended results. For exam-

ple, latency when aiming a virtual weapon can make it difficult

for a player to hit a moving target in a shooting game, hurting

the player’s score and degrading the quality of experience. Unlike

in traditional network games where a client can potentially act

on user input immediately, cloud-based games have latency for all

user input by at least a round-trip time to the server [6].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8434-6/21/09. . . $15.00
https://doi.org/10.1145/3458305.3478449

(a) State of the art – adding delay
to game

(b) EvLag – adding delay to game

While there are establishedmethods to compensate for latency [3,

13, 14], an understanding of how latency affects player actions in

games is needed in order to choose the most effective latency com-

pensation techniques and, if possible, to develop and apply new

techniques. Moreover, understanding the impact of latencies may

help better inform competitive gamers about system purchases and

guide researchers on building systems to helpwith game and game-

like applications.

The state of the art for studying the effects of latency is typi-

cally with a user study. In such a study, participants play a game

or use an interactive systemwith different amounts of latency. The

key to a successful study is the ability to add controlled amounts

of latency to the base system. Most often, latency is added with

custom software built into a small game or interactive application,

meaning the needed functionality must be (re)-implemented for

each game, or at least for each programming language (e.g., Python,

Java, Processing, Javascript) and for each game engine (e.g., Unity

or UE4). Even worse, manually adding latency code does not work

when studying the many applications where the source code is

not available (e.g., commercial games). Solutions that add network

latency (e.g., netem [32]) do not work either, since in traditional

game architectures the game client can act on input before net-

work latency is added.

Figure 1(a) depicts a summary of the state of the art. In order

to add latency to user input, researchers must modify the game (or

other software), where the “lag” in the picture represents code that

is inside the application. For each application studied, researchers

must implement a method to add latency to the user input, typi-

cally done by intercepting input events in-game and delaying them

in a queue before applying them. Not only does this require the

same functionality to be re-implemented each time, but in some

https://doi.org/10.1145/3458305.3478449
https://doi.org/10.1145/3458305.3478449


MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Shengmei Liu and Mark Claypool

systems (e.g., Javascript [25]), added latency can be highly variable.

Moreover, having to modify the code restricts studies to use only

custom and open source software, with closed source, commercial

applications being unusable even if these are the targets of such

research.

Figure 1(b) depicts the use of EvLag – a tool for adding latency

and monitoring input for devices in Linux. Instead of modifying

the game, EvLag sits between the input devices and the operating

system, adding a custom amount of latency to each device (e.g., a

keyboard andmouse). This allows researchers to add latency to any

application, such as the depicted commercial first-person shooter

game CS:GO (Valve, 2012), withoutmodification. In addition, for re-

searchers that want to monitor user input, EvLag provides a logfile

of all input events (e.g., mouse clicks and timing) for each device.

The EvLag repository includes EvParse and EvDetect for help with

parsing logfiles and mapping devices, respectively, as well as sam-

ple logfiles.

Evaluation shows EvLag has minimal overhead and accurately

adds the intended amount of latency. We have successfully used

EvLag in a previous user study [15] and provide a virtual machine

image that demonstrates EvLag’s functionality.

The rest of this paper is organized as follows: Section 2 describes

work related tomeasuring local latency; Section 3 details the imple-

mentation of EvLag and accompanying utilities; Section 4 provides

a brief evaluation of EvLag’s accuracy and overhead, prior use and

a demo; and Section 5 summarizes the tool and presents possible

future work.

2 RELATED WORK

This section presents work related to EvLag: tools adding latency

(Section 2.1), studies of added latency (Section 2.2) and measuring

local latency (Section 2.3).

2.1 Tools Adding Latency

There are various tools that add latency to network interfaces. A

partial list of free/open source options include: dummynet [4],Mahi-

mahi [18], Clumsy [31] and netem [32]. There are various commer-

cial products that can add network latency, as well. These tools

vary in their platforms (e.g., Linux versus Windows) and features

(e.g., latency and latency jitter).

We are not aware of any other tools that add latency to com-

puter input devices, in general.

2.2 Studies of Added Latency

There are many studies of the effects of latency on interactive ap-

plications that have added controlled amounts of latency and ob-

served the effects on users.

Studies focusing on local latency [7, 8, 13, 16, 17, 20, 21, 29] typ-

ically use the technique depicted in Figure 1(a) where a custom ap-

plication is written/modified tomanually intercept and add latency

to user input. This same technique is used for studies of latency in

cloud-based game systems [26, 30] where, since all player input is

delayed by local latency and network latency to the server, adding

local latency can emulate network latency.

While such methods are effective for studying latency, these ap-

proaches have the significant downsides mentioned in the intro-

duction, including a re-implementation for each study and, worse,

the inability to work with closed source software (e.g., commercial

games), unlike EvLag.

Studies focusing on network latency [1, 2, 10–12, 22, 28], includ-

ing some with a focus on cloud-based game streaming [6, 9], typi-

cally use a network emulator (e.g., dummynet, Clumsy, or netem)

to add delay to game packets sent over the network.

While these techniques avoid custom implementations of added

latency and can work with closed-source software, they are only

effective when studying network latency or, if used to study lo-

cal latency, require considerable more complexity than the single-

computer system needed by EvLag.

2.3 Measuring Local Latency

There are numerous papers that propose tools and techniques to

measure local latency for systems and devices, with most also pre-

senting measurement results using their techniques.

Raeen and Petlund [24] describe a method to measure local sys-

tem latency using an oscilloscope and a photosensor. Their prelim-

inary test results show local latencies vary by 10s of milliseconds

and can be larger for games. Raeen and Kjellmo [23] apply the same

measurement technique to virtual reality devices.

Ivkovic and Gutwin [13] use a high speed camera to measure

latencies for 16 different game systems. For these systems, local

latencies can vary from a low of about 20 milliseconds to a high of

about 250 milliseconds.

Casiez et al. [5] present a real-time method for measuring end-

to-end latency in graphical user interfaces using an optical mouse.

Evaluation of some existing systems shows local latency is affected

by the operating system and system load, with substantial differ-

ences between different libraries and different Web browsers.

Schmid and Wimmer [27] propose a method for measuring the

end-to-end latency using a microcontroller with electrical contact

to a mouse and a photo-resistor to capture the screen response.

They show their measured local latency values are close to those

for a high-speed smartphone camera (240 Hz).

Wimmer et al. [33] propose a method for measuring the latency

of input devices and give measurements for 36 keyboards, mice and

gamepads connected via USB. They show devices differ in their

average local latencies and their latency distributions.

We use a high-speed camera technique to measure local latency,

similar to Ivkovic and Gutwin [13], but do so with the base system

and with EvLag adding different amounts of latency. Our base sys-

tem has low latency, but can be used to study arbitrary additional

latencies with EvLag.

3 EVLAG

EvLag provides a stand-alone program that adds latency (lag) to

input devices in Linux. Features include:

• Adding a fixed (constant) amount of latency to any input

device.

• Adding latency to more than one input device at a time.

• Logging input events to a file, one file per device.



EvLag – A Tool for Monitoring and Lagging Linux Input Devices MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

Listing 1: Input event
✞ ☎

0 struct input_event {

1 struct timeval time;

2 u16 type;

3 u16 code;

4 s32 value;

5 };
✝ ✆

All code described, as well as examples and documentation, are

available in the public EvLag git repository:

https://claypool@bitbucket.org/claypool/evlag.git

This section describes the EvLag implementation (Section 3.1),

usage (Section 3.2), output (Section 3.3), utilities (Section 3.4) and

license (Section 3.5).

3.1 Implementation

EvLag uses the Linux event devices (evdev) – interfaces that gener-

alize raw input events from device drivers andmake them available

as character devices. These character devices are, by default, in the

/dev/input directory on the Linux system.

EvLag accesses the evdev devices via libevdev, a user-space li-

brary that abstracts IO calls through a type-safe interface. Libevdev

(and EvLag) sits just above the kernel, between the application and

the devices themselves. Communication to and from the input de-

vices makes use of the input_event structure, defined in include/-

linux/input.h and shown in Listing 1.

The struct input_event members are [19]:

• time is the timestamp when the event happened.

• type is the event type – for example EV_REL for relativemove-

ment and EV_KEY for a key press or key release. More types

are defined in include/linux/input-event-codes.h.

• code is the event code that accompanies the type – for exam-

ple REL_X for relative mousemovement or KEY_BACKSPACE for

a key press. The complete list of codes is defined in include/-

linux/input-event-codes.h.

• value is the value the event carries, either a relative change

for EV_REL, absolute new value for EV_ABS (such as for joy-

sticks), or 0 for release, 1 for keypress and 2 for autorepeat

for EV_KEY.

EvLag uses pthreads, creating two additional threads – a reader

and a writer – for each lagged device. Psuedo-code for the reader

thread is shown in Listing 2. The reader thread pulls input events

out of the device, adds the desired amount of latency, and puts the

input events into a FIFO queue shared by the writer. Psuedo-code

for the writer thread is shown in Listing 3. The writer thread pulls

input events out of the FIFO queue at the appropriate time and

writes them to the device.

A third thread – the main thread – is interrupted at a fixed tick

rate and notifies all the writer threads each tick. The timing is from

the real time clock /dev/rtc via a read(), which blocks until the

next tick (a timer interrupt) is received. This allows for high fre-

quency polling without being CPU bound, e.g., without continu-

ously polling gettimeofday().

The EvLag repository includes a Makefile. To compile EvLag,

the libevdev package is needed (as well as gcc, of course).

Listing 2: Reader thread
✞ ☎

0 while (1):

1

2 ev = libevdev_next_event() / / P u l l e v e n t f rom dev . ( b l o c k i n g )
3 ev.time = ev.time + delay / / Add de l ay t o e v e n t
4 lock FIFO queue

5 enqueue (ev) / / Add t o queue f o r w r i t e r
6 unlock FIFO queue

7

8 end while

✝ ✆

Listing 3: Writer thread
✞ ☎

0 while (1):

1

2 if gettimeofday() > ev.time: / / Time f o r n e x t e v e n t ?
3 libevdev_uinput_write_event(ev) / / Push e v en t t o dev .
4 lock FIFO queue

5 ev = dequeue () / / Get n e x t f rom r e a d e r

6 unlock FIFO queue

7 end if

8

9 pthread_cond_wait() / / B l o c k u n t i l t ime r i n t e r r u p t f rom main
10

11 end while

✝ ✆

Listing 4: Main thread
✞ ☎

0 open /dev/rtc / / Open t ime r

1 ioctl () / / S e t i n t e r r u p t / p o l l i n g r a t e f o r t ime r
2

3 for each device :

4

5 setup FIFO queue / / F o r r e ad e r −w r i t e r communi ca t i on
6 create reader thread

7 create writer thread

8

9 end for

10

11 while (1):

12

13 read /dev/rtc / / Read t ime r a t p o l l i n g r a t e
14 pthread_cond_broadcast() / / S i g n a l w r i t e r ( s )
15

16 end while

✝ ✆

3.2 Usage

EvLag is run as a command line tool, indicating the amount of la-

tency to add and the device(s) to add it to. EvLag must be run with

root permissions (e.g., through sudo), but without any other ker-

nel modules – everything runs in user-space through libevdev and

uinput. Usage is:

Usage: evlag [OPTIONS...] --lag <NUM>

--device <FILE> [--device <FILE> ... (max 10)]

MAIN OPTIONS

-b, --buffer=NUM Size of buffer (MB)

-d, --device=DEV Device /dev/input/eventX to lag

-f, --file=FILE Logfile for events (default none)

-h, --Hz=NUM Polling rate of device

-l, --lag=NUM Length of delay (ms)

For example, the command:

sudo ./evlag -l 75 -d /dev/input/event10

adds 75milliseconds of latency to the event10 device (e.g., a mouse).

3.3 Output

https://claypool@bitbucket.org/claypool/evlag.git


MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Shengmei Liu and Mark Claypool

EvLag can produce logfiles detailing all input events upon request.

This is done by using the -f NAME (or –file NAME) flag, with NAME

the file prefix and .log as the file suffix. This creates a logfile for

each device, with the device type (e.g., mouse) used as a prefix in

the name.

The logfiles themselves are in comma separated value (CSV) for-

mat, with each row:

millisec, event-type, event-code, event-value

The first line of each file is the header, followed by the events, one

per line. The first column is the time the event happened (in mil-

liseconds) relative to the start time, followed by the event type,

event code and event value.

Since evdev is a serialized protocol, simultaneous events are in-

dicated by a “synchronous marker” (EV_SYN, with values (0,0,0)) to

indicate that the preceding events all belong together. For example,

the output from a mouse may look like (the ‘#’ and following char-

acters are comments shown here only and are not in the EvLag

output file):

13, 0002, 0000, 0001 # EV_REL / REL_X 1

13, 0002, 0001, -006 # EV_REL / REL_Y -6

13, 0000, 0000, 0000 # EV_SYN

The output indicates that the mouse moved 1 to the right (on the

x-axis) and 6 units up (on the y-axis). The timestamps (the number

13 in the first column) are all the same since they happened at

the same time. They belong together as indicted by the last line

(EV_SYN). As another example:

23, 0004, 0004, 589825 # EV_MSC / MSC_SCAN

23, 0001, 0110, 0001 # EV_KEY / BTN_LEFT

23, 0000, 0000, 0000 # EV_SYN

34, 0004, 0004, 589825 # EV_MSC / MSC_SCAN

34, 0001, 0110, 0000 # EV_KEY / BTN_LEFT

34, 0000, 0000, 0000 # EV_SYN

The output here indicates that the left mouse button was pressed

at time 23 and then released and time 34. For a keyboard example,

the output:

51, 0004, 0004, 458792 # EV_MSC / MSC_SCAN

51, 0001, 0028, 0001 # EV_KEY / KEY_ENTER

51, 0000, 0000, 0000 # EV_SYN

indicates the enter key was pressed down at time 51.

3.4 Utilities

Since the EvLag raw output can be difficult to understand, the

EvLag repository also includes EvParse – a utility for parsing EvLag

log files. Running EvParse on the above output produces:

relative axis event at 0.000013, REL_X , X val: 1

relative axis event at 0.000013, REL_Y , Y val: -6

synchronization event at 0.000013, SYN_REPORT

event at 0.000023, code 04, type 04, val 589825

key event at 0.000023, 110 (KEY_INSERT), down

synchronization event at 0.000023, SYN_REPORT

event at 0.000034, code 04, type 04, val 589825

key event at 0.000034, 110 (KEY_INSERT), up

synchronization event at 0.000034, SYN_REPORT

event at 0.000051, code 04, type 04, val 458792

key event at 0.000051, 28 (KEY_ENTER), down

synchronization event at 0.000051, SYN_REPORT

Listing 5: Using EvDetect to find a device number
✞ ☎

0 #!/bin/bash

1

2 keyboard =$(./evdetect .sh -q "GIGABYTE USB−HID Keyboard " )
3 mouse=$(./evdetect .sh -q " L og i t e ch Gaming Mouse G502 " )
4

5 ./ evlag -l 50 -d $keyboard -d $mouse &
✝ ✆

EvParse is written in Python 3 and uses the Python 3 evdev pack-

age.

Figuring out which device is a mouse or keyboard (or other) can

be done by trial and error, checking each input device (/dev/input/eventX)

one by one. Alternatively, the Linux program evtest can be helpful.

Sample output of sudo evtest on a Linux box with a mouse:

/dev/input/event0: Power Button

/dev/input/event1: Sleep Button

/dev/input/event2: Video Bus

/dev/input/event3: HDA Intel PCH Headphone

/dev/input/event4: PS/2+USB Mouse

In the above example, the mouse is /dev/input/event4.

A device that is plugged into a port after booting (e.g., an ex-

ternal mouse for a laptop) and/or moved to a different USB port

may be assigned a different /dev/input/event number by the OS.

For scripts that need to automatically determine the device num-

ber, EvLag includes evdetect – a utility for finding the number of a

particular device. For example, the shell script in Listing 5 finds the

device numbers for a Logitech mouse and GIGABYTE keyboard

and, then, using EvLag applies 50 ms of latency to each device:

When using EvLag in a virtualmachine, some caremay be needed

when lagging input depending upon how the input devices are

shared with the host OS. For example, with Oracle Virtual Box,

with the “mouse integration” setting on (the default), EvLag does

not receive the mouse movement commands and so cannot lag

(or log) the mouse movement. EvLag can still lag (and log) mouse

clicks and the keyboard. The “mouse integration” setting can be

toggled on and off and when off, EvLag works as expected (i.e., the

mouse movements can be delayed and logged). Note, in this “off”

mode, the right control key can be used to re-capture the mouse

by the host OS.

3.5 License

EvLag is distributed as free software; it can be redistributed and/or

modified under the terms of the GNU General Public License as

published by the Free Software Foundation. It is distributed in the

hope that it will be useful, but without any warranty. See the GNU

General Public License for more details.

4 EVALUATION

This section describes evaluation of EvLag, including accuracy and

overhead (Section 4.1), use in a user study (Section 4.2) and details

on a demonstration image (Section 4.3).

4.1 Accuracy and Overhead

We measure the ability for EvLag to achieve the desired added la-

tency and the overhead by measuring latency without EvLag and

then with EvLag with several different added latencies.



EvLag – A Tool for Monitoring and Lagging Linux Input Devices MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

Figure 1: Measuring system latency

We used a Gigabyte Aero 15 laptopwith a Logitech G502 mouse.

The Aero has an 8-core i7 9750H / 2.6 GHz processor, 16 GB RAM

an NVidia GF RTX 2070 graphics card, and a screen resolution of

1920x1080 pixels at 240 Hz. The G502 is a laser mouse with 12k

DPI, 300 IPS, and a polling rate of 1 kHz. The laptop is configured

with Ubuntu 20.04 LTS, with Linux kernel version 5.4.

We measured latency using the method depicted in Figure 1. A

high frame rate camera (a Casio EX-ZR100) filmed at 1000 f/s, cap-

turing the moment a mouse button was clicked inside the file ex-

plorer. Bymanually examining the video frames, the frame number

when the mouse was clicked (finger bent, frame number 214 in Fig-

ure 1) is subtracted from the frame number when the output was

visible based on the user input click (frame number 239 in Figure 1),

giving the base system latency (25 milliseconds in Figure 1).

The first conditionwe testedwas the base systemwithout EvLag.

Then, we tested EvLag with 0ms, 10 ms and 50ms of added latency.

The 0 ms condition is to ascertain the latency overhead for EvLag.

Themeasurement methodwas repeated 10 times on our system for

each condition. All EvLag conditions used a polling rate of 8192Hz.

Figure 2 depicts the results. The x-axis is the added latency and

the y-axis is the measured latency from our high-speed camera

method. Each point is the mean value for that condition shown

with standard deviation error bars. The blue point on the left shows

the baseline system latency without EvLag, also indicated by the

dashed horizontal line. EvLag with 0 ms has about the same mea-

sured latency, suggesting it has minimal observable overhead. The

10 ms and 50 ms conditions closely follow the expected latency,

indicated by the dashed angled line.

4.2 User Study

We have successfully used EvLag in a user study assessing the ef-

fects of low amounts (under 100ms) of latency on competitive first-

person shooter (FPS) game players [15].

In this study, we configured a high-end gaming laptop (a Gi-

gabyte Aero 15) and gaming mouse (a Logitech G502) to run the

FPS game Counter Counter-Strike: Global Offensive (CS:GO) (Valve,

2012), scripted so as to take players through game rounds with re-

stricted weapon choices. EvLag was used to control the amount of

added latency for the user input for both the keyboard (for avatar

movement) and mouse (for aiming and shooting). We replicated

this same configuration onto 11 identical laptops, which allowed

us to distribute the setup to 43 participants in their homes for test-

ing. EvLag allowed for controlled amounts of local delay without

needing manual intervention. EvDetect let us automatically detect

the right input devices to lag, even when users rebooted and/or

Figure 2: EvLag evaluation

Figure 3: EvLag in a user study – CS:GO score versus latency

plugged in the mouse to different USB ports. After the study, Ev-

Parse helped our analysis to ascertain user performance and glean

insights from user actions with different amounts of latency.

Figure 3 depicts the results for player score (CS:GO computes

score as B2>A4 = 2×:8;;B + 0BB8BCB) for 4 minutes of gameplay. The

CS:GO log files were mined to determine number of hits, kills and

assists by each user for each round, and the EvLag log files were

used to determine the number of shots fired based on the number

of left mouse button clicks. The x axis is total latency (base plus

added by EvLag) in milliseconds (ms). The right y axis is the score

and the left y axis is the score increase from the 125ms latency con-

dition. For example, a score of 15 at 125 ms of latency compared to

a score of 20 at 25 ms of latency would be a 5 point improvement

on the left y axis. The circles are the means for all users for that la-

tency condition, bounded by 95% confidence intervals. The dashed

line shows a linear regression for the mean values.

The linear regression fits the mean scores well with an '2 of

0.98 and ? = 0.001. As a take-away, a decrease in latency by 10

ms improves score by 1.2 points per 4 minutes of gameplay. For



MMSys 21, September 28-October 1, 2021, Istanbul, Turkey Shengmei Liu and Mark Claypool

reference, often less than a single point separates the scores of top

CS:GO players.

4.3 Demonstration

We provide a demonstration of EvLag in a Linux Virtual machine,

available for download at:

https://web.cs.wpi.edu/~claypool/papers/evlag/

Upon launching the virtual machine, the demo application shows

EvLag’s ability to add latency by having the user interact with a

paint application with different amounts of added latency. After

painting, the demo application shows a logfile produced by EvLag

and parsed by EvParse.

5 SUMMARY

Understanding the effects of latency on interactivity in general and

computer games specifically is important to build software and

systems that better support interactive media applications. Unfor-

tunately, user studies to assess the impact of latency typically must

modify the applications being tested. Thismeans re-implementation

of latency-inducing techniques each time and, worse, cannot be

done for closed-source software, making it difficult to study input

latency for commercial games.

This paper presents EvLag, a tool we developed for adding con-

trolled amounts of latency to input devices in Linux, with the op-

tion of logging all input events for later analysis. EvLag is imple-

mented in C using the evdev device abstraction and the libevdev

library, providing a lightweight layer of software between input

devices and the operating system. This allows it to be used with

any Linux application, open source or not, including in user stud-

ies with commercial games.

Evaluation of EvLag shows it is effective in adding the desired

amount of input latency with low overhead. We have successfully

used EvLag in a previous study [15], where EvLag added input de-

lay to a commercial first-person shooter game, and parsed EvLag

logfiles to determine player performance and actions with latency.

Future work may include testing EvLag across a larger range of

latencies. There are also many more games and interactive applica-

tions that might use EvLag in user studies to better understand the

effects of latency. EvLag is limited to Linux, so it would be helpful

to develop a similar tool for other PC OSes (Windows, Mac OS) and

formobile devices (Android, IOS). Feature extensions to EvLag that

may be useful include: support for game controllers in EvParse and

the ability to delay multiple devices, each with a different amount

of delay. Since EvLag is open source, interested researchers could

add such features, and others, as needed.

REFERENCES
[1] R. Amin, F. Jackson, J. Gilbert, J. Martin, and T. Shaw. [n.d.]. Assessing the Impact

of Latency and Jitter on the Perceived Quality of Call of Duty Modern Warfare
2. In Proceedings of HCI – Users and Contexts of Use. Berlin, Heidelberg.

[2] G. Armitage. 2003. An Experimental Estimation of Latency Sensitivity in Multi-
player Quake 3. In Proceedings of IEEE ICON. Sydney, Australia.

[3] Y. Bernier. 2001. Latency Compensating Methods in Client/Server In-game Pro-
tocol Design and Optimization. In the GDC. San Francisco, CA, USA.

[4] M. Carbone and L. Rizzo. 2010. Dummynet Revisited. ACM SIGCOMMComputer
Communications Review 40, 2 (April 2010).

[5] G. Casiez, S. Conversy,M. Falce, S. Huot, and N. Roussel. 2015. "Looking through
the Eye of theMouse: A SimpleMethod forMeasuringEnd-to-end Latency using

an Optical Mouse". In Proceedings of the 28th Annual ACM Symposium on User
Interface Software and Technology (UIST).

[6] K. Chen, Y. Chang, H. Hsu, D. Chen, C. Huang, and C. Hsu. 2014. On the Quality
of Service of Cloud Gaming Systems. IEEE Trans. onMultimedia 26, 2 (Feb. 2014).

[7] Mark Claypool, Andy Cockburn, and Carl Gutwin. 2019. Game Input with Delay
-Moving Target Selection Parameters. In Proceedings of ACMMultimedia Systems
Conference (MMSys). Amherst, MA, USA.

[8] M. Claypool, R. Eg, and K. Raaen. 2017. Modeling User Performance for Moving
Target Selection with a Delayed Mouse. In Proceedings of the 23rd International
Conference on MultiMedia Modeling (MMM). Reykjavik, Iceland.

[9] M. Claypool andD. Finkel. 2014. The Effects of Latency on Player Performance in
Cloud-based Games. In Proceedings of the 13th ACMNetwork and System Support
for Games (NetGames). Nagoya, Japan.

[10] M. Dick, O. Wellnitz, and L. Wolf. 2005. Analysis of Factors Affecting Play-
ers’ Performance and Perception in Multiplayer Games. In Proceedings of ACM
NetGames. Hawthorn, NY, USA.

[11] T. Fritsch, H. Ritter, and J. Schiller. 2005. The Effect of Latency and Network
Limitations on MMORPGs: a Field Study of Everquest 2. In Proceedings of ACM
NetGames. Hawthorne, NY, USA.

[12] O. Hossfeld, H. Fiedler, E. Pujol, and D. Guse. 2016. Insensitivity to Network
Delay: Minecraft Gaming Experience of Casual Gamers. In Proceedings of the
International Teletraffic Congress (ITC). IEEE, Würzburg, Germany, 31–33.

[13] Z. Ivkovic, I. Stavness, C. Gutwin, and s. Sutcliffe. 2015. Quantifying and Miti-
gating the Negative Effects of Local Latencies on Aiming in 3D Shooter Games.
In Proceedings of the ACM CHI. Seoul, Korea.

[14] I. Lee, S. Kim, and B. Lee. 2019. Geometrically Compensating Effect of End-to-
End Latency in Moving-Target Selection Games. In Proceedings of the ACM CHI.

[15] S. Liu, A. Kuwahara, J. Sherman, J. Scovell, and M. Claypool. 2021. Lower is
Better? The Effects of Local Latencies on Competitive First Person Shooter Game
Players. In Proceedings of ACM CHI. Virtual Conference.

[16] M. Long and C. Gutwin. 2018. Characterizing and Modeling the Effects of Local
Latency on Game Performance and Experience. In Proceedings of the ACM CHI
Play. Melbourne, VC, Australia.

[17] M. Long and C.Gutwin. 2019. Effects of Local Latency on Game Pointing Devices
and Game Pointing Tasks. In Proceedings of the ACM CHI. Glasgow, Scotland.

[18] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens, and H. Bal-
akrishnan. 2015. Mahimahi: Accurate Record-and-replay for HTTP. In USENIX
Annual Technical Conference (ATC). Santa Clara, CA, USA.

[19] V. Pavlik. 1999 - 2001. Linux Input Drivers v1.0. Online:
https://www.kernel.org/doc/Documentation/input/input.txt.

[20] A. Pavlovych and C. Gutwin. 2012. Assessing Target Acquisition and Tracking
Performance for Complex Moving Targets in the Presence of Latency and Jitter.
In Proceedings of Graphics Interface. Toronto, ON, Canada.

[21] A. Pavlovych and W. Stuerzlinger. 2011. Target Following Performance in the
Presence of Latency, Jitter, and Signal Dropouts. In Proceedings of Graphics In-
terface. St. John’s, NL, Canada.

[22] P. Quax, P. Monsieurs, W. Lamotte, D. De Vleeschauwer, and N. Degrande. 2004.
Objective and Subjective Evaluation of the Influence of Small Amounts of De-
lay and Jitter on a Recent First Person Shooter Game. In Proceedings of ACM
NetGames. Portland, OG, USA.

[23] K. Raaen and I. Kjellmo. 2015. Measuring Latency in Virtual Reality Systems. In
Proceedings of International Conference on Entertainment Computing (ICEC).

[24] K. Raaen and A. Petlund. 2015. How Much Delay Is There Really in Current
Games? Proceedings of ACM Multimedia Systems (March 2015).

[25] B. Ruiz. 2020. The Most Accurate Way to Schedule a Function in a Web Browser.
Online: https://tinyurl.com/53xyex6s. (Accessed June 5, 2021).

[26] S. Sabet, S. Schmidt, S. Zadtootaghaj, B. Naderi, C. Griwodz, and S. Moller. 2020.
A Latency Compensation Technique Based on Game Characteristics to Mitigate
the Influence of Delay on Cloud Gaming Quality Of Experience. In Proceedings
of ACM Multimedia Systems Conference (MMSys). Istanbul, Turkey.

[27] A. Schmid and R. Wimmer. 2021. Yet Another Latency Measuring Device. In
Proceedings of the ACM Esports and High Performance HCI Workshop (EHPHCI).
Virtual Conference.

[28] N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu. 2003. The Effect of
Latency on User Performance in Warcraft III. In Proceedings of ACM Network
and System Support for Games Workshop (NetGames). Redwood City, CA, USA.

[29] D. Stuckel and C. Gutwin. 2008. The Effects of Local Lag on Tightly-Coupled
Interaction in Distributed Groupware. In Proceedings of theACM Conference on
Computer Supported Cooperative Work. San Diego, CA, USA.

[30] J. Sun and M. Claypool. 2019. Evaluating Streaming and Latency Compensation
in a Cloud-based Game. In In Proceedings of the 15th IARIA Advanced Interna-
tional Conference on Telecommunications (AICT). Nice, France.

[31] Chen Tao. [n.d.]. Clumsy. Online: https://jagt.github.io/clumsy/.
[32] The Linux Foundation. [n.d.]. netem. Online:

https://wiki.linuxfoundation.org/networking/netem.
[33] R. Wimmer, A. Schmid, and F. Bockes. 2019. On the Latency of USB-Connected

Input Devices. In Proceedings of the ACM CHI.

https://web.cs.wpi.edu/~claypool/papers/evlag/
https://www.kernel.org/doc/Documentation/input/input.txt
https://tinyurl.com/53xyex6s
https://jagt.github.io/clumsy/
https://wiki.linuxfoundation.org/networking/netem

	Abstract
	1 Introduction
	2 Related Work
	2.1 Tools Adding Latency
	2.2 Studies of Added Latency
	2.3 Measuring Local Latency

	3 EvLag
	3.1 Implementation
	3.2 Usage
	3.3 Output
	3.4 Utilities
	3.5 License

	4 Evaluation
	4.1 Accuracy and Overhead
	4.2 User Study
	4.3 Demonstration

	5 Summary
	References

